
Warsaw 2020

Working Papers
No. 8/2020 (314)

 NOVEL MULTILAYER STACKING FRAMEWORK
WITH WEIGHTED ENSEMBLE APPROACH FOR

MULTICLASS CREDIT SCORING PROBLEM
APPLICATION

MAREK STELMACH

MARCIN CHLEBUS

UNIVERSITY OF WARSAW

FACULTY OF ECONOMIC SCIENCES

WORKING PAPERS 8/2020 (314)

Working Papers contain preliminary research results. Please consider this when citing the paper. Please contact the
authors to give comments or to obtain revised version. Any mistakes and the views expressed herein are solely those
of the authors

Novel multilayer stacking framework with weighted ensemble approach for
multiclass credit scoring problem application

Marek Stelmach*, Marcin Chlebus

Faculty of Economic Sciences, University of Warsaw
* Corresponding author: marekstelmach89@gmail.com

AAbbssttrraacctt:: Stacked ensembles approaches have been recently gaining importance in complex
predictive problems where extraordinary performance is desirable. In this paper we develop a
multilayer stacking framework and apply it to a large dataset related to credit scoring with
multiple, imbalanced classes. Diverse base estimators (among others, bagged and boosted tree
algorithms, regularized logistic regression, neural networks, Naive Bayes classifier) are examined
and we propose three meta learners to be finally combined into a novel, weighted ensemble. To
prevent bias in meta features construction, we introduce a nested cross-validation schema into the
architecture, while weighted log loss evaluation metric is used to overcome training bias towards
the majority class. Additional emphasis is placed on a proper data preprocessing steps and
Bayesian optimization for hyperparameter tuning to ensure that the solution do not overfits. Our
study indicates better stacking results compared to all individual base classifiers, yet we stress the
importance of an assessment whether the improvement compensates increased computational
time and design complexity. Furthermore, conducted analysis shows extremely good performance
among bagged and boosted trees, both in base and meta learning phase. We conclude with a thesis
that a weighted meta ensemble with regularization properties reveals the least overfitting
tendencies.

KKeeyywwoorrddss:: stacked ensembles, nested cross-validation, Bayesian optimization, multiclass
problem, imbalanced classes

JJEELL ccooddeess:: G32, C38, C51, C52, C55

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 1

1. Introduction

In recent years, ensemble learning techniques have been constantly gaining in popularity for

machine learning applications, especially in those areas where extraordinary predictive

performance is recommended and problems addressed are of a rather complicated nature

(among others, in Lessmann et al. (2015); Alaraj and Abbod (2016); Hung and Chen (2009);

Marqués et al. (2012); Nanni and Lumini (2009); Xiao et al. (2016); Zhai and Chen (2018);

Whalen and Pandey (2013); Madasamy and Ramaswami (2018); Zhang et al. (2018); Lessmann

et al. (2019); Kang et al. (2015); Menahem et al. (2009)). The general idea is to use multiple

algorithms and combine their predictions into a single one. We may divide them into

homogenous ensemble models: in those methods weak learners from the same family are used

(e.g., decision tree in Random Forest and Gradient Boosting Machine, see Hastie et al. (2009);

Wan and Yang (2013); Brown and Mues (2012)) or heterogeneous ensemble models which take

advantage of diverse set of learners and multilayer architectures, with stacking and blending

being the most successful (e.g., in Shahhosseini et al. (2019); Zhang et al. (2018); LeDell

(2015); van Veen et al. (2015)). As pointed out by LeDell (2015) the superior results do come

with a burden of computational cost assigned to training multiple models and becomes more

acute in case of rigorous validation and complicated frameworks present, therefore one should

remember about the possible tradeoff between the score obtained and time consumption.

 Among numerous ensemble approaches, stacking, in one of its forms sometimes also

referred to as Super Learning (van der Laan et al. (2007)), appears to be the most widely used

and achieves top performance improvements, notably those reported in machine learning

competitions and literature (e.g., in Zhai and Chen (2018); Whalen and Pandey (2013); Sill et

al. (2009)). With many available and evolving variations designed to solve particular problems

from various fields, theoretical basis underlying the stacking structure consist of adapting cross-

validation for training and selecting multiple algorithms - base learners - and building the final

model - meta learner - on top of them, thus reducing the generalization error (Wolpert (1992)).

In case of nonlinear, very complex relationships existing in the given data, when single

classifiers may struggle to approximate the true prediction function (LeDell (2015)), stacked

ensembles are often utilized. The advantages are even more tangible for broader area of data

challenges, including multiclass or multilabel classification, large datasets or class imbalance

which are currently regularly faced by many data science and business experts (among others,

in Büyükçakir et al. (2018); Zhang et al. (2018); Madasamy and Ramaswami (2018); Sjardin et

al. (2016); Kang et al. (2015); Menahem et al. (2009)).

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 2

An important area of studies that incorporates both high class imbalance and large data

volumes, and is increasingly addressed by modern machine learning algorithms (Alaraj and

Abbod (2016); Lessmann et al. (2015)), relates to broadly defined credit scoring, a topic

essential from the perspective of financial institutions and proper loan decisions (Vahid and

Ahmadi (2016)). Though numerous researches on credit scoring with ensemble methods

utilized are available, they mainly focus on a traditional default prediction subject with good

and bad entities distinguished (e.g., in Xiao et al. (2016); Brown and Mues (2012); Nanni and

Lumini (2009)). Nevertheless, as shown by Irawan and Samopa (2019), Vahid and Ahmadi

(2016) or Kwon et al. (2013), ensemble learning and stacking in particular might be successfully

adapted to more complicated, multiclass creditworthiness assessment problems, for example

existing in a form of credit ratings or various credit states.

The aim of this study is to propose a comprehensive stacking solution and investigate

its performance against multiclass classification problem for peer-to-peer loan default dataset

with over one million observations and highly imbalanced classes present. To obtain

satisfactory results, three stage approach is proposed with nested cross-validation and Bayesian

optimization for hyperparameter tuning and meta features construction. For the first stage

multiple and diverse algorithms are used with decision tree based ensemble methods (e.g.,

bagging, boosting), linear classifiers (e.g., logistic regression, support vector machines),

feedforward neural networks and Naive Bayes classifiers being the main ones. For the second

level, three different meta learners (logistic regression, tree based model and neural network)

are applied and it is further examined whether the final stage prediction being an ensemble of

those three with corresponding weights tuned improves the whole solution effectiveness.

Results are also compared with single base learners scores and we additionally observe if a

model family outperforming others can be distinguished. In particular, the problems of

overfitting, choosing the right evaluation metric and data preprocessing steps (e.g., dealing with

high cardinality features) are addressed as well.

 This paper is organized as follows. The second section contains literature review

regarding different stacking approaches over the years and related work. Third section provides

thorough methodology description, including algorithm architecture, data preprocessing and

evaluation. Subsequent section describes the dataset used in research. In fifth part the empirical

results are presented and the last section concludes the paper findings.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 3

2. Literature review

The concept of stacking has been initially proposed by Wolpert (1992) with respect to neural

networks as base learners. Stacked generalization idea, as introduced by the author, relies on

adapting leave-one-out cross-validation to construct the - so called - level one data and

combining given set of predictors instead of just selecting the best one. It is also concluded that

picking the type and the number of generalizers (therefore defining the stacking architecture)

is rather an art not a theoretically proven approach, which is, to some extent, the case even in

modern machine learning solutions. Breiman (1996), by suggesting decision trees (with varying

number of terminal nodes) and generalized linear models as base models, and k-fold cross

validation framework (as opposed to Wolpert, mainly due to computational efficiency), extends

Wolpert’s research to develop stacked regressions. Although his stacking attempts are still

made within the same model classes (CART or GLM) author achieves the most satisfying

results from the mix of subset regressions (different predictor variables) and ridge regressions

with different ridge parameters thus finally supporting a thesis that the most noticeable error

reduction occurs when stacked models are not too similar (see also Hashem (1996); Lanes et

al. (2017)).

 Van der Laan et al. (2007) were among the first to provide a theoretical background for

stacked ensembles and proposed a super learner algorithm that according to the authors research

is an asymptotically optimal learning system (it performs asymptotically as well as the best

estimator from given candidates). Super learner, composed of wide variety of candidate learners

(e.g., CART, Random Forest, LARS or ridge regression), uses 10-fold cross-validation to obtain

candidates predictions and on top of that fits a linear regression model with least squares method

for learners parameters estimates (they may be interpreted as indicators of a given base model

importance for the particular problem). In the study algorithm is applied to many different

datasets performing reasonably well for each of them and therefore providing a strong evidence

of its flexibility and stacking potential in general. Those observations for regression problems

are confirmed by more modern researches, for example presented by Zhai and Chen (2018)

who introduce a complex stacked generalization strategy to predict the PM2.5 concentration

averages in China. Their approach, including, among others, XGBoost or AdaBoost (base layer)

and Support Vector Regressor (meta learner), outperforms any single estimator considered.

What is more, lower overfitting vulnerability is observed which is also the point in van Veen et

al. (2015).

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 4

Another important study was conducted by Whalen and Pandey (2013) in the area of

computational genomics where, as stressed by authors, even small performance improvements

compared to the industry baseline are of a great importance, especially when one takes into

account extreme class imbalance, high missing values percentage and feature complexity

presence. Four different ensemble techniques are compared in the experiment: simple averaging

of classifier’s predictions, novel cluster based meta learning, ensemble selection based on

choosing the best classifiers subset and stacking with logistic regression, with the latter offering

the most significant improvement in the final results. Each technique is trained using up to 27

heterogeneous models with nested cross-validation and undersampling underneath. Advantages

of adapting stacked ensembles to handle highly imbalanced datasets for classification problems

are also outlined by Madasamy and Ramaswami (2018) and Zhang et al. (2018). First paper

applies the two layer solution for the real-time data while the latter tests the similar architecture

for plenty of different datasets and many metrics observed, both reporting impressing

effectiveness. LeDell (2015), who introduces an AUC-maximizing super learner, claims that

for a binary classification the gain obtained when compared to the top base algorithm is even

higher if the class imbalance is more evident. Although the results itself are reliable in case of

meta learning superiority, it is widely discussed whether AUC can be considered a good metric

for skewed datasets (e.g., in Jeni et al. (2013)).

Beside choosing the proper evaluation metric for a particular case one should take into

account rigorousness of cross-validation schema (e.g., whether it is flat, nested, repeated or

combination), hyperparameter tuning and potential overfitting presence – crucial components

with respect to designing the proper stacking architecture, though not directly referred to

stacking per se. Cawley and Talbot (2010) along with Krstajic et al. (2014) emphasize the

importance of rigorous cross-validation (both for model selection overfitting prevention and

reliable performance evaluation), particularly with limited size datasets. On the other hand,

Wainer and Cawley (2018) show that in practice using flat or standard cross-validation (even

though it introduces bias) versus nested variant leads to the selection of models that are

approximately almost the same in quality, provided there are relatively few hyperparameters to

be tuned. To overcome the issues observed by aforementioned authors, Shahhosseini et al.

(2019) propose a novel ensemble technique (COWE-ITH) based on nested algorithm and

Bayesian optimization for hyperparameter tuning which is to a certain degree similar to our

approach.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 5

3. Methodology

3.1. Stacked ensembles

For this study we focus on meta learning with stacking, i.e., probabilistic outputs from base

classifiers on the first level are further used as an input (meta features) to the meta classifier

(Whalen and Pandey (2013)). In this form it is rather a standard, well known technique. The

general solution is therefore extended by implementing nested cross-validation at the meta

features creation level, introducing Bayesian optimization to effectively tune hyperparameters

and redefining the meta classifier composition to finally come with a more innovative stacking

design. The detailed architecture is presented in subsequent sections.

3.1.1. Cross-validation framework for stacked ensembles

The general aim of nested cross-validation is to obtain more reliable, almost unbiased estimator

performance assessment, which is, according to Krstajic et al. (2014), a completely different

task than using conventional cross-validation for model selection process. Having that

knowledge, we use the mentioned property of nested cross-validation in order to build a meta

features set that will not be biased towards any of the particular base learners. In other words,

classifier’s probabilistic predictions at the first, base stage of learning are considered to reflect

the true estimation error. Pseudocode for the stacking algorithm is shown in Figure 1.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 6

Algorithm 1: Stacking algorithm

1. split main dataset into train80 and test20 with 80:20 split ratio

2. for b=1 to B (number of base classifiers):

2.1. split train80 dataset into kouter=3 stratified folds

2.2. for each trainingouter fold (outer loop):

 2.2.1. split trainingouter into kinner=3 stratified folds

2.2.2. for each traininginner fold (inner loop):

2.2.2.1. tune_hyperparametersinner_b

2.2.3. fit base_classifierb with chosen hyperparametersinner_b to trainingouter

2.2.4. predict on validationouter and set aside predictionsouter_b for each class

2.2.5. tune_hyperparametersouter_b

2.3. fit base_classifierb with chosen hyperparametersouter_b to training80

2.4. predict on test20 to obtain the final score for base_classifierb

2.5. merge 2.2.4. results across rows

3. merge 2.4. and 2.5. results across columns to obtain trainmeta and testmeta, respectively

4. for m=1 to M (number of meta classifiers):

4.1. split trainmeta dataset into kouter=3 stratified folds

4.2. for each trainingouter fold:

 4.2.1. tune_hyperparametersouter_m

4.3. fit meta_classifierm with chosen hyperparametersouter_m to trainmeta

4.4. predict on testmeta to obtain the final score for meta_classifierm

Figure 1: Pseudocode for the stacking algorithm.

Whole architecture consists of two loops: outer and inner, with training and validation

folds created for both. First loop is used for model selection while the latter is responsible for

hyperparameter tuning for meta features creation purposes. The choice of 3 x 3 nested cross-

validation schema (kouter=3 outer folds and kinner=3 inner folds for each outer fold) is primarily

dictated by the computational time reduction willingness and sufficient dataset size in which

case there is no need for more rigorous approach as model selection variance is reduced (Cawley

and Talbot (2010)). The tune_hyperparametersindex term, introduced for pseudocode

readability, simply stands for hyperparameter tuning process consisting of averaging scores

across all validation folds in cross-validation loop (whether it is inner or outer, for given base

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 7

model b or meta model m, all of them denoted by index subscript) and selecting

hyperparameters set maximizing the average. Aforementioned best set obtained during the inner

loop is then used to fit the model to trainingouter fold (which is actually repeated kouter times) and

predict on validationouter dataset (in literature also called out-of-sample or holdout data). This is

in contrast to tuning and predicting only on trainingouter and validationouter (without nested folds)

where the same data is used to search for the best model and estimate its performance. The

detailed framework for hyperparameter tuning is presented in Figure 2.

Figure 2: Hyperparameter tuning within outer and inner cross-validation loop.

Note: For each base_classifierb from the pool of B base classifiers, hyperparameters are first tuned within the inner
cross validation loop (tune_hyperparametersinner_b) for n_iter iterations and the prediction ‘pred’ is made as a part
of meta features set. Second, there is a hyperparameter tuning for the outer loop performed with the same number
of iterations (tune_hyperparametersouter_b) to obtain test set predictions (‘pred_test’). Finally, meta features (blue
fields) are used for meta_classifierm hyperparameter tuning for n_itermeta rounds (tune_hyperparametersouter_m)
resulting in predictions for pred_testmeta set, which is a concatenation of ‘pred_test’ sets for all base classifiers.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 8

One may notice that there are actually two tuning rounds for outer folds performed. To

be technically precise, first one is also extended by inner tuning stage for all base models. The

key note at this point is to use the same folds across all trained classifiers. For simplicity let’s

assume that we train identical estimators on different folds and generate predictions for meta

learning. It is rather obvious that a meta learner will choose the base estimator with a higher

score, though they are both the same. It complicates even more if various models are fitted to

different folds, thus introducing potential bias to the system. Nevertheless, diverse splits may

be possible and beneficial but in case the repeated cross-validation is applied (Džeroski and

Ženko (2004)). The second run is specifically designed for meta learners training with trainmeta

dataset of nrow(train80) x (B*n_classes) dimension, where B is the total number of base

classifiers used and n_classes denotes dependent variable unique levels count.

Another important issue that arises is rather a practical concern and might have the effect

on the total time spent on system training. Hyperparameter tuning, especially in case of complex

algorithms, is rarely a one-time process – quite often a few rounds of tuning (e.g., with different

parameter ranges) are required for results to be satisfactory. For that reason, any effective and

flexible stacking architecture should be designed in a way allowing to work on a specific

algorithm without the necessity to rerun already tuned estimators or the whole system. Thus,

the pseudocode presented in Figure 1 begins with the loop iterating over base classifiers as

opposed to initial cross-validation folds split followed by tuning all classifiers in one go.

The last point, also emphasized by Cawley and Talbot (2010), refers not only to

particular stacking algorithm but to machine learning in general. In order to overcome the

selection bias or any potential pitfalls during the algorithm building process, one should not

treat it simply as fitting a specific model (like decision tree) to a new data but as a whole learning

procedure which involves model selection and fitting integrally conducted. Considering the

complexity of majority stacking approaches the latter is especially important for creating a

successful solution.

3.1.2. Learners selection overview

Diverse predictions of base learners unleash the meta classifier’s capability to collectively

capture those areas where their performance on the holdout set is ultimate, leading to a more

generalizable final ensemble and expected improved performance over each single first level

estimator (Zhai and Chen (2018)). Therefore a proper attention is necessary in the algorithms

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 9

selection process and things like a specific dataset, computational time and model’s

characteristics need to be examined.

Considering all of the above we first construct the baseline approaches being the easiest

to implement algorithms available. This consists of fitting a dummy classifier (it uses class

frequencies as predictions) to have a general benchmark of other method’s performance

followed by training a relatively fast and simple Complement Naive Bayes model (Rennie et

al. (2003)), an extended version well suited for handling imbalanced classes problems. The

second one serves not only as a good point of reference but may also have an ability to build

up valuable meta features.

For each subsequent estimator chosen (including naive bayes mentioned) mean cross-

validation score obtained for the outer loop is reported and saved for further comparison

purposes. What is more, the performance across all folds and tuning iterations is being tracked

to observe the classifier’s behavior on training and validation samples. Although time

consuming in case of complex algorithms, such approach allows to tune hyperparameters more

precisely, for instance by consecutively narrowing hyperparameter ranges or observing regions

where model overfits and thus providing more reliable out-of-sample predictions. Additionally,

the train80 and test20 datasets are scored, though only for the final performance reporting, not

any kind of selection.

Based on the knowledge above, we are able to effectively discard algorithms performing

worse than the baseline set, prone to overfitting or those with computational time inadequate to

gains, in particular ones endlessly computing due to large dataset. It is also worth noting that

any sort of comparisons should be especially rigorous among classifier’s families and not as

such between families themselves. As an example, one may almost harmlessly reject one of

two variations of logistic regression with similar score, while throwing away tree based

algorithm only because it performs worse than logistic regression might be unreasonable due

to the fact that, despite the weaker score, different patterns are potentially discovered.

To check for learners diversity we also examine the correlation matrix for meta features

dataset but it is conducted rather to make sure about its presence (at least to the extent the

correlation defines diversity) than to discard base models only due to high correlation for a

given class predictions. As Lanes et al. (2017) indicate, even though the meta set is considered

more diversified (whichever metric is chosen), the stacking solution itself does not necessarily

improve. We should then consider diversity as a set of different patterns captured by mixed

classifiers, not a single measure. To ensure the aforementioned is provided, ensemble based

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 10

methods, linear classifiers, neural networks, support vector machines, naive bayes and k-nearest

neighbors are investigated and trained, with the main focus on the differences between groups

of algorithms and algorithms themselves as well.

From among boosting methods, one of ensemble families, we choose to adapt Gradient

Boosting Machine (GBM) introduced by Friedman (2000), multiclass extension of AdaBoost

called SAMME (Zhu et al. (2009)) and a very competitive XGBoost (Chen and Guestrin

(2016)). Those three, despite being designed for sequential optimization with weak learners,

differ in approaches. GBM utilizes regression trees fitted on top of the gradient of the loss

function deviance. On the other hand, SAMME uses classification trees (at least in our research)

in a stagewise additive modeling manner minimizing the exponential loss. XGBoost, the most

recent among considered propositions, has a more regularized formalization than traditional

gradient boosting and scales incredibly well (sparsity awareness, multicore computations, in

Chen and Guestrin (2016)).

Another representation of ensemble methods, also referred to as averaging, unlike

boosting builds a set of independent estimators aggregated in order to reduce variance (Hastie

et al. (2009)). In this paper two decision tree based algorithms are presented: Random Forest

(Breiman (2001)) and Extra-Trees (extremely randomized trees, in Geurts et al. (2006)). Each

of them places the emphasis on rather deeply grown trees and randomization (bootstrap

samples, random subsets of features) as a means to variance reduction, but Extra-Trees moves

one step further in its randomness and chooses the best split in particular tree node amongst

randomly designated splits.

Turning to linear classifiers, first of all we focus on training multinomial logistic

regression extended by the elastic net regularization included to prevent overfitting (Friedman

et al. (2010)). As an alternative, stochastic gradient descent algorithm (SGD) with modified

Huber loss is proposed (Sjardin et al. (2016)). Although both similar in the core concept, they

vary in optimization method and loss function underneath thus leading to potentially different

predictions. Following the linear classification, we also apply Support Vector Machine (SVM)

model with linear kernel and multiclass probabilistic estimates calculated according to Wu et

al. (2004).

Several architectures of feedforward neural networks using back-propagation are fitted

as well, with combinations of hidden layers number and size, activation functions (tanh, relu,

sigmoid), dropout, L1 and L2 regularization, diverse optimizers (e.g., SGD, Adam) and learning

schema (Geron (2017)). Nevertheless, we keep in mind that complex structures are more

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 11

computationally expensive and the gain achieved should be satisfactory in comparison with

simpler algorithms.

Already mentioned Support Vector Machine is also trained with polynomial and

Gaussian RBF kernels to capture nonlinear relationships, however, as stated by Geron (2017),

neither of presented versions is predestined for large datasets. The same applies to K-Nearest

Neighbors classifier (KNN; tried with various neighbors numbers), even though faster

implementations are used in our research (Hastie et al. (2009)).

For meta learners, three algorithms from different families are chosen arbitrarily: SGD

optimized logistic regression with regularization (Sjardin et al. (2016)), feedforward neural

network and tree based method (XGBoost or Extra-Trees – to be decided during ensemble

performance investigation). Those are tuned and assessed separately within the second phase

of stacking as discussed in Section 3.1.1. The novel concept that we introduce is to combine all

meta models into a single big estimator (according to Figure 1 pseudocode it might be

considered as M-th meta classifier) and tune all hyperparameters expanded by corresponding

meta weights w1, w2 and w3 simultaneously (approximately 20 hyperparameters in total). This

is what we call the third stage of training, although technically it is proceeded in parallel to the

second one. Each tuning iteration then consists of fitting a set of hyperparameters (including

w1, w2, w3) with the final prediction for a given class being a weighted average of constituent

models predictions, thereby reducing the stacking variance. We believe that in case there is no

a single meta learner that dominates others in terms of estimation accuracy, hyperparameters

chosen and performance is expected to be different than if tuned independently (as in the second

stage), which would be in accordance with Shahhosseini et al. (2019).

To conclude, dependent on the particular algorithms specifications, we cross-validate

roughly up to 20 base classifiers, which is a sufficient and reasonable amount according to the

literature provided. Nonetheless, due to selection process described, not all of them may be

chosen for the second and third phase of stacking where four learners are fitted altogether with

the last constructed as an aggregated hybrid ensemble.

3.1.3. Hyperparameter tuning with Bayesian optimization

Taking into account the complexity level and the total number of algorithms applied in this

research, one needs to focus on time efficient and reliable method leading up to finding the best

hyperparameters sets. This term refers not only to algorithm specific parameters, but also to

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 12

weights used for training to overcome the class imbalance problem and weights associated with

meta learners aggregation (see Section 3.1.2. for more details), as those are all tunable as well.

For the above reasons, we choose to adapt the Bayesian search for hyperparameter optimization,

since its effectiveness is widely reported in the literature (among others, in Shahhosseini et al.

(2019); Snoek et al. (2012); Rasmussen and Williams (2006)), especially in the event of large

parameters space scanned.

In referring to Snoek et al. (2012), the general idea is to approximate the underlying,

unknown function, usually by utilizing Gaussian processes, based on initial random guesses

and to update it at each step when the most recent information (i.e., new observation) is being

gathered. In our case, a function denotes evaluation measure chosen. The simplified form of

such process is presented in Figure 3.

Figure 3: Bayesian optimization of score function for a single hyperparameter value h and
5 iterations.

Note: True score (assumption is that it exists and can be defined in a functional form) is well approximated in the
area that has been exploited by more observations (h=5 to 8), while the region around h=1 is still to be explored.
Values on the axes serve only as an example.

Up against multi-dimensional space with many hyperparameters available, sufficient

number of iterations and careful hyperparameter candidate ranges selection is crucial for

stacking success, though the exact numbers are rather dictated by the dataset size, expert

judgement, intuition and computational resources. Our algorithms, particularly the most

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 13

sophisticated ones like the weighted meta learner trained during the third stage, are tuned with

even up to 100 iterations, not to mention multiple tuning rounds performed for vast majority of

them. This consumes meaningful amount of time, but is still considered to be more efficient in

terms of obtaining the optimum within fewer trials than traditional random search (e.g., in

Nishio et al. (2018); Yamashita et al. (2018)).

3.2. Data preprocessing and feature engineering

This section summarizes all data preprocessing and feature engineering or extraction techniques

applied in our research, with some of them constituting a standard in machine learning

implementations whilst others being rather innovative and hybrid approaches. Furthermore,

several steps are only applicable for certain types of algorithms, which is also outlined. To

prevent overfitting and ensure a good ensemble generalization, we avoid any potential data

leakage, meaning each rule that requires learning is trained without the contribution of

validation or test datasets, in particular during cross-validation loops.

After initial data cleaning that includes, among others, missing values patterns

investigation according to Zhang (2015) and dropping (almost) perfectly correlated or (near)

zero variance variables, we use the following methods, presented in order of their actual

application.

Power transform

In case of highly skewed distributions, Yeo-Johnson transformation is employed as it

allows, through maximum likelihood estimation, to make the data more normal-like and is also

dedicated for nonpositive values (Yeo and Johnson (2000)). Although tree based models, which

constitute a significant part of our project, are rather insensitive to predictors skewness,

Gaussianity is recommended for many other algorithms (Kuhn and Johnson (2013)).

Additionally, a symmetric distribution combined with data scaling is also a useful property for

subsequent distance based engineering methods.

Word2vec and k-means clustering

Raw text inputs, for instance customers answers gathered during credit interviews, are

handled by word2vec and k-means algorithms altogether – the approach we call sentences to

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 14

variable, conceptually similar to a sentiment expression analysis performed by Wang and

Castanon (2015). In general, upon initial text cleaning, a word2vec learns the numerical

representation of the entry tokenized strings (Mikolov et al. (2013)) and k-means clusters the

received sentences vector space (word vectors are averaged across sentences at first) to

eventually extract a single, cluster labeled categorical variable. Specifically, we expect to obtain

a separate cluster for empty input sentences with others carrying a meaningful and

differentiated, word based information. Technically, for word2vec a fifty-dimensional vector

size is defined, whereas k-means relies on Euclidean distance and an automatic algorithm

specifying the optimal number of clusters (H2O.ai., n.d.).

Target encoding

To deal with high cardinality categorical features like zip codes or addresses, we

incorporate a mean aggregation of target variable in relation to the problematic feature, as

proposed by Micci-Barreca (2001). This approach is then extended for multiclass classification

and the calculation is performed in one versus all manner with a given level of dependent

variable denoted as 1 and 0 assigned to the other instances (analogical example for WoE in

Zdravevski et al. (2015)). Therefore, we end up with n_classes new attributes. The target

encoding formula calculated for class c and categorical predictor’s unique level ul is presented

in Equation 1.

!!" = l($!")
$#_!"
$!"

+ '1 − l($!")*
$#
$%&

, (1)

where:

!!" = calculated estimate within a [0, 1] range,

l = sigmoidal function (smoothing parameter),

$!" = number of records for unique level ul,

$#_!" = number of class c positive instances for level ul,

$# = total number of class c positive instances,

$%& = total number of training set records.

Apart from introducing a blended average (l parameter) to prevent overfitting, the

desired statistic is also calculated in a 3-fold cross-validation scheme for each training set, with

the final estimate being an average aggregated only from holdout samples. Missing values are

left alone for further processing, they are not encoded.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 15

Missing data imputation

Although some of modern machine learning algorithms have their own, in-built

imputation methods (e.g., XGBoost), we decide to choose a unified line throughout all models

and apply a Random Forest multiple imputation technique, mainly due to its effectiveness

reported (e.g., in Shah et al. (2014); Tarap and Stos (2019)). As shown by Shah et al. (2014),

continuous features, becoming respectively response variables for the sake of algorithm training

process, are imputed with random values drawn from Gaussian distribution that is centered on

the Random Forest mean prediction and scaled by the out-of-bag root mean square error

(RMSE) obtained from a given fit. For categorical attributes, authors propose to train numerous

independent tree estimators on bootstrap samples and predict each missing value with a

randomly selected tree. Before this step, we additionally encode a separate NA category for the

highest missing percentages observed.

KNN and K-means based features

Classifiers performance is potentially enhanced by the implementation of K-Nearest

Neighbors as a feature engineering method. For the specified number of neighbors k and within

each dependent variable class separately, we compute a sum of distances between a given

observation and its 1 up to k nearest neighbors, thus resulting in k* n_classes new features that

characterize in transition from a nonlinear space into a linear one (Pinto (2017)). For our

research k=5 is chosen to control the total preprocessing time.

K-means, on the other hand, allows us to engineer two types of predictors – nominal

one, represented by the clusters labels, and K numerical features calculated as distances from

each cluster center, where K is the total number of clusters. The same technical specification as

previously described in word2vec section is used.

Prior to the application of either aforementioned technique, the input data is subset only

to continuous, power transformed variables and then standardized.

In addition to outlined preprocessing steps, before feeding the data to a base learner and

if it is advised for the given estimator to do so, continuous features are scaled, either by

normalization ([0, 1] range) or standardization (zero mean, unit variance). In particular, this

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 16

refers to a family of stochastic gradient optimized algorithms. Furthermore, remaining

categorical variables, if not already target encoded, are treated by a one-hot encoder.

3.3. Model evaluation

To properly address the class imbalance problem and build a reliable meta features set

(constructed from probability outputs, see Section 3.1.1.), special emphasis should be placed

on a performance measure that handles these both requirements. To fulfil the second condition,

we choose a log loss metric, as it allows to evaluate the quality of the probabilistic estimates

and prepare a good input for an ensemble algorithm (Ferri et al. (2009)). The target classes

skewness is addressed by introducing case weights, which is shown in Equation 2 with a

modified log loss formula for multiclass classification (often referred to as cross entropy; in

Geron (2017)) implemented in our solution.

,-.,-// = − 1
∑ 1'(
')*

	3 	
(

')*
31' ∗ 5'_# ∗ 6$(7'_#)
+

#)*
	 (2)

where:

$ = number of observations,

1' = weight assigned to observation i,

9 = number of classes,

5'_# = 1 if observation i belongs to class c, 0 otherwise,

7'_# = probability estimated for observation i and class c.

For this research, weights are calculated as inverse proportions of class frequencies

(King and Zeng (2001)), though it would also be reasonable to associate 1' with any meaningful

business value, like credit exposure.

The important, yet sometimes confused point is that the log loss adapted for scoring

purposes, similar to AUC or F1, needs to be distinguished from using this measure as a loss

function optimized during algorithm training, e.g., in logistic regression or neural networks.

4. Data

Our analysis was conducted on the Lending Club data available online

(https://www.lendingclub.com) for the period from June 2007 to December 2017, according to

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 17

the loan issuance date. The gathered dataset contains information about peer-to-peer lending

activity with the status of the loan denoted as a response variable.

Since the predictions were to be made at the moment of credit application, we first

filtered the data for the variables only known up to that time and thus prevented a potential data

leakage. In the next step, all records with current loans were dropped (due to being non-

informative for predictive model learning) and the remaining statuses were encoded as follows.

The default class was composed of charged off credits or borrowers that failed to repay

for extended period of time. Loans that were due for 16-30 and 31-120 days were tagged as

late. A 15-day grace period instances were excluded as it is hard to consider those actually late

– many debtors extensively make use of an interest-free option. From business point of view,

separation of the late class might be beneficial due to an early detection of potentially

problematic customers. Fully paid loans fell into the last category. As a result, the dependent

variable was constructed with default, late and paid classes, for which we also observed a major

imbalance of 19.9%, 1.9% and 78.2%, respectively. After performing above operations and

right before the train/test split, the dataset consisted of 1,223,196 observations and 47 raw

explanatory variables available for further processing.

More in-depth investigation revealed several data problems. The pattern appeared for

seven variables with the largest missing values percentage, as their missings were observed for

the same period (approximately 3.7% samples). To our best knowledge, it seems like at the

beginning the data for those variables has not been gathered. Yet, we decided not to discard

affected records and subject them to a standard imputation process.

For many continuous predictors, a noticeable right skewness was also detected. This,

for example, applies to income based features and is a natural reflection of a fact that individuals

report the highest earnings. Skewed variables were handled by Yeo-Johnson transformation,

shown in Appendix A. Among numerous categorical features, we identified a high cardinality

ones, with multiple unique levels present and zip code being the most problematic (over 900

hundred distinct values). According to preprocessing scheme, those were addressed by target

encoding (see Appendix B). Text variable, including a loan description provided by the

borrower during application and composed of sentences of varying length and content, has been

a subject to word2vec and k-means approach.

Finally, the aforementioned steps and data preprocessing allowed us to obtain a

numerical matrix consisting of 175 columns for algorithm training.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 18

5. Results

Results of our research are illustrated in Figure 4, which presents a log loss value obtained on

3-fold cross validation holdout samples (mean score), train and test datasets. All algorithms that

were chosen to a final stacked ensemble are shown and the log loss is reported separately for

the base and meta learners (the latter denoted with meta prefix). Classifiers are also sorted by

their performance on the test set. The more precise numbers can be additionally found in Table

1.

Our analysis demonstrates two main findings. First and foremost, all meta models

outperformed base learners, however the differences in relation to the best single base classifiers

are not dramatic and might be of little practical business use, at least not as a priority. In

particular, top three meta algorithms appeared to score very similar, with the slight advantage

of the complex weighted learner. Second, we observe a significant share of well performing

and efficient tree based methods. Both of these points are the subject of a further discussion.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 19

Figure 4: Results for base and meta learners, calculated on Ubuntu server with Python
3.7 and scikit-learn, h2o, xgboost and Keras libraries (last two GPU supported).

According to the inverse order in the Figure 4, nine base estimators used in the stacking

solution are: Complement Naive Bayes, Stochastic Gradient Descent algorithm with modified

Huber loss, feedforward neural network, regularized logistic regression, Extra-Trees classifier,

AdaBoost, Random Forest, XGBoost and Gradient Boosting Machine. Other classifiers

examined for this stage were discarded, either due to a large computational time burden (e.g.,

KNN, variations of SVM) or a poor performance compared to the dummy model that scored

1.94 for the test set (see Table 1).

In the second phase of ensemble learning, 27 new meta features allowed to train three

meta learners and while a neural network (meta_keras) and logistic regression (meta_lr) were

selected arbitrary, Extra-Trees estimator (meta_extr) provided more stable and slightly better

results than XGBoost candidate, therefore being our final choice for the stacking architecture.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 20

Lastly, the weighted meta model (meta_weighted) fitted in the third step was composed of

[0.0244, 0.4878, 0.4878] weights vector for meta_lr, meta_extr and meta_keras, respectively.

Implications of introducing the weighted solution are also raised in the subsequent section.

Table 1: Log loss summary results for all learners used in the stacked ensemble

learners cv train test

meta_weighted 0.865503 0.856358 0.859343
meta_keras 0.866597 0.865595 0.859534
meta_extr 0.866285 0.856912 0.860083
meta_lr 0.871553 0.872038 0.867112
h2ogb 0.874424 0.839490 0.868141
xgb 0.874410 0.843409 0.873250
h2orf 0.895326 0.872491 0.886271
adaboost 0.905681 0.901164 0.895343
extrclf 0.929000 0.925230 0.919961
h2oglm 0.925876 0.948772 0.945716
h2onn 0.938245 0.921203 0.955768
sgdhub 0.955162 0.961741 0.956091
sknaive 1.013754 1.006417 1.003702
dummy — 1.943596 1.943596

Note: Bold numbers denote the best score obtained for a given type of the dataset: cross-validation holdout samples
(cv), training set (train) and test set (test).

6. Discussion

In line with previous studies (among others, in Zhai and Chen (2018); Zhang et al. (2018);

LeDell (2015)) we show that stacking improves the overall algorithm performance, although

the complexity of the architecture presented and subtle gain boost may indicate applying it to

those business areas that require enhanced results regardless of the costs or using it in the second

place, after a well-established and simpler solution had been built. Minor differences in the

achieved score are also of a great importance in the vast majority of machine learning

competitions (van Veen et al. (2015)). To start with stacked ensembles, one can specifically

consider applying a single meta learner instead of several algorithms or combinations, though

we argue that using a simple classifier like logistic regression, as suggested for example by

Whalen and Pandey (2013), might be the optimal selection. Indeed, according to our results,

meta_lr was not able to fully capture complicated relationships. Choosing a more sophisticated

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 21

meta learner, e.g., from bagging or boosting family, might further elevate the performance,

especially in case of nonlinearities presence among the meta features set.

A strong evidence for implementing tree based algorithms to obtain a good predictive

results on tabular data is found, which confirms a conclusion reached by Olson et al. (2018) on

the basis of 165 datasets. In our research, top 5 base learners were actually tree ensembles, with

Extra-Trees estimator additionally being an important component of the meta learning

architecture. What is more, satisfactory scores in aforementioned cases were achieved with a

high efficiency due to the parallelization and GPU contribution. We also find a clear support

for the thesis that any machine learning algorithm and tree ensembles in particular, can benefit

substantially from meta features learning – Extra-Trees, an average base learner, performed

incredibly well as a meta_extr classifier.

On the other hand, a slight tendency to overfit for this dataset was observed among tree

boosting methods (very optimistic train score for h2ogb and xgb, see Figure 4), therefore

indicating a necessity for a cautious and time consuming hyperparameter search. The latter

directly refers to tuning the tree depth for Extra-Trees in meta_weighted solution, where the

particular depth appeared to give satisfactory results while constantly overfitting in a single

meta_extr model. This is in accordance with Shahhosseini et al. (2019) and proves that tuning

meta hyperparameters altogether in a meta ensemble algorithm leads to a different estimates

compared to treating meta learners separately.

The last point that should be discussed is the stability and generalizability of the stacking

ensemble, which definitely requires a further investigation and we also consider it as a potential

limitation of our research. However, to the extent that this can be determined by the presented

study, we claim that the weighted meta learner, as an optimal combination of the best attributes

of its components, is less prone to overfitting than any single algorithm examined. The weights

vector recommended during the Bayesian search equally favored meta_extr and meta_keras

classifiers while marginalizing a logistic regression. Thus, an analogy to the regularization can

be made (and it is generally agreed that regularization reduces overfitting), where weights serve

as coefficients and meta learners predictions are penalized, which might be additionally useful

for meta algorithm selection process. Nevertheless, a thorough investigation, certainly

including more than three meta learners and various datasets, would be appropriate for stronger

evidence.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 22

7. Conclusion

In this paper we propose a comprehensive, end-to-end stacked ensemble approach and evaluate

its performance on the large, loan default dataset with multiple classes and high class imbalance

presence – problems especially difficult to handle for single classifiers, yet widely faced in

machine learning applications. Particularly, a complex multilayer structure consisting of

diverse algorithms is built, with three separate meta learners examined and a combined,

simultaneously tuned weighted ensemble fitted in the last stage. The whole architecture is also

extended by a nested cross-validation schema for constructing unbiased meta features set.

Results obtained indicate that stacking offers a noticeable improvement compared to individual

estimators, although we conclude that any implementation should consider a relation between

gains potentially acceptable only in certain business areas and increased computational load

along with diminished model interpretability. The latter is especially important in the context

of explainable AI (Arrieta et al. (2019)).

To overcome the imbalanced classification problem, weighted log loss metric is

proposed, thus preventing models from being biased towards the majority class during training.

Additionally, necessary preprocessing steps are outlined as an inherent part of an effective, not

overfitted stacking solution. Specifically, we use Yeo-Johnson transformation in case of skewed

variables and Random Forest multiple imputation technique for missing values. High

cardinality categorical features are successfully addressed by a target encoding. Word2vec, K-

means and KNN algorithms are utilized for a feature engineering or extraction processes.

In the second place, our findings confirm the supremacy of tree based methods for

tabular data in predictive modeling. Not only their overall performance as base learners is

satisfactory (including time efficiency), but also Extra-Trees algorithm appears to be a strong

meta classifier, capturing more complicated data relationships than a popular logistic

regression. Moreover, it is equally weighted with a neural network in the final ensemble. As a

supplementary observation, cautious hyperparameter selection is recommended to prevent

overfitting, in particular for bagged or boosted trees, and it is not guaranteed that the same

hyperparameters set is an optimal choice in both separated and combined meta learning phase.

For hyperparameter tuning purposes, Bayesian optimization is applied in this study.

Further research should aim to investigate the stability and generalizability of the

presented stacking architecture, especially when implementing a weighted meta learner, which,

in our opinion, is less prone to overfitting as it introduces regularization-like behavior to the

system and might be potentially used for best meta algorithms selection.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 23

References

Alaraj, M., and Abbod, M.F. 2016. “Classifiers consensus system approach for credit scoring.”

Knowledge-Based Systems 104: 89–105. https://doi.org/10.1016/j.knosys.2016.04.013.

Arrieta, A.B., D'iaz-Rodr'iguez, N., Ser, J.D., Bennetot, A., Tabik, S., Barbado, A., Garc'ia, S.,

Gil-L'opez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. 2019. “Explainable

Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges

toward Responsible AI.” Information Fusion 58: 82–115.

https://doi.org/10.1016/j.inffus.2019.12.012.

Breiman, L. 1996. “Stacked Regressions.” Machine Learning 24: 49–64.

https://doi.org/10.1007/BF00117832.

Breiman, L. 2001. “Random Forests.” Machine Learning 45: 5–32.

https://doi.org/10.1023/A:1010933404324.

Brown, I., and Mues, C. 2012. “An experimental comparison of classification algorithms for

imbalanced credit scoring data sets.” Expert Systems with Applications 39 (3): 3446–

3453. https://doi.org/10.1016/j.eswa.2011.09.033.

Büyükçakir, A., Bonab, H., and Can, F. 2018. “A Novel Online Stacked Ensemble for Multi-

Label Stream Classification.” Proceedings of the 27th ACM International Conference on

Information and Knowledge Management (CIKM ’18). New York, NY, USA: 1063–

1072. https://doi.org/10.1145/3269206.3271774.

Cawley, Gavin C., and Talbot, Nicola L.C. 2010. “On Over-fitting in Model Selection and

Subsequent Selection Bias in Performance Evaluation.” The Journal of Machine Learning

Research 11: 2079–2107.

Chen, T., and Guestrin, C. 2016. “XGBoost: A Scalable Tree Boosting System.” Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining - KDD ’16: 785–794. https://doi.org/10.1145/2939672.2939785.

Džeroski, S., and Ženko, B. 2004. “Is Combining Classifiers with Stacking Better than

Selecting the Best One?” Machine Learning 54 (3): 255–273.

https://doi.org/10.1023/B:MACH.0000015881.36452.6e.

Ferri, C., Hernández-Orallo, J., and Modroiu, R. 2009. “An experimental comparison of

performance measures for classification.” Pattern Recognition Letters 30 (1): 27–38.

https://doi.org/10.1016/j.patrec.2008.08.010.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 24

Friedman, J., Hastie, T., and Tibshirani, R. 2010. “Regularization Paths for Generalized Linear

Models via Coordinate Descent.” Journal of statistical software 33 (1): 1–22.

http://dx.doi.org/10.18637/jss.v033.i01.

Friedman, J.H. 2000. “Greedy Function Approximation: A Gradient Boosting Machine.”

Annals of Statistics 29 (5): 1189–1232. https://doi.org/10.1214/aos/1013203451.

Geron, A. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’Reilly

Media Inc.

Geurts, P., Ernst, D., and Wehenkel, L. 2006. “Extremely randomized trees.” Machine Learning

63: 3–42. https://doi.org/10.1007/s10994-006-6226-1.

H2O.ai. n.d. “K-Means Clustering.” Retrieved from http://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/k-means.html.

Hashem, S. 1996. “Effects of Collinearity on Combining Neural Networks.” Connection

Science 8 (3-4): 315–336. https://doi.org/10.1080/095400996116794.

Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. New York, NY, USA: Springer New York Inc.

Hung, C., and Chen, J.-H. 2009. “A selective ensemble based on expected probabilities for

bankruptcy prediction.” Expert Systems with Applications 36 (3): 5297–5303.

https://doi.org/10.1016/j.eswa.2008.06.068.

Irawan, F., and Samopa, F. 2019. “Accounts Receivable Seamless Prediction for Companies by

Using Multiclass Data Mining Model.” Proceedings of the 4th International Seminar on

Science and Technology. http://dx.doi.org/10.12962/j23546026.y2019i1.5096.

Jeni, L. A., Cohn, J. F., and De La Torre, F. 2013. “Facing Imbalanced Data Recommendations

for the Use of Performance Metrics.” Proceedings of the International Conference on

Affective Computing and Intelligent Interaction and workshops. ACII (Conference):

245–251. https://dx.doi.org/10.1109%2FACII.2013.47.

Kang, S., Cho, S., and Kang, P. 2015. “Multi-class classification via heterogeneous ensemble

of one-class classifiers.” Engineering Applications of Artificial Intelligence 43: 35–43.

https://doi.org/10.1016/j.engappai.2015.04.003.

King, G., and Zeng, L. 2001. “Logistic Regression in Rare Events Data.” Political Analysis 9

(2): 137–163. https://doi.org/10.1093/oxfordjournals.pan.a004868.

Krstajic, D., Buturovic, L.J., Leahy, D.E. et al. 2014. “Cross-validation pitfalls when selecting

and assessing regression and classification models.” Journal of Cheminformatics 6 (1):

10. https://doi.org/10.1186/1758-2946-6-10.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 25

Kuhn, M., and Johnson, K. 2013. “Data Pre-processing.” In Applied predictive modeling: 30–

35. New York, NY: Springer.

Kwon, J., Choi, K., and Suh, Y. 2013. “Double Ensemble Approaches to Predicting Firms’

Credit Rating.” Proceedings of PACIS 2013: 158. https://aisel.aisnet.org/pacis2013/158.

Lanes, M., Borges, E.N., and Galante, R.D. 2017. “The effects of classifiers diversity on the

accuracy of stacking.” The 29th International Conference on Software Engineering and

Knowledge Engineering: 323–328. https://doi.org/10.18293/SEKE2017-016.

LeDell, E. 2015. “Scalable Ensemble Learning and Computationally Efficient Variance

Estimation.” University of California, Berkeley.

https://escholarship.org/uc/item/3kb142r2.

Lessmann, S., Baesens, B., Seow, H.-V., and Thomas, L. 2015. “Benchmarking state-of-the-art

classification algorithms for credit scoring: An update of research.” European Journal of

Operational Research. https://doi.org/10.1016/j.ejor.2015.05.030.

Lessmann, S., Haupt, J., Coussement, K., and De Bock, K. 2019. “Targeting customers for

profit: An ensemble learning framework to support marketing decision-making.”

Information Sciences. https://doi.org/10.1016/j.ins.2019.05.027.

Madasamy, K., Ramaswami, M. 2018. “Two-phase stacking ensemble to effectively handle

data imbalances in classification problems.” International Journal of Advanced Research

in Computer Science 9 (1): 908–913. https://doi.org/10.26483/ijarcs.v9i1.5495.

Marqués, A., García, V., and Sánchez, J.S. 2012. “Exploring the behaviour of base classifiers

in credit scoring ensembles.” Expert Systems with Applications 39 (11): 10244–10250.

https://doi.org/10.1016/j.eswa.2012.02.092.

Menahem, E., Rokach, L., and Elovici, Y. 2009. “Troika - An improved stacking schema for

classification tasks.” Information Sciences 179 (24): 4097–4122.

https://doi.org/10.1016/j.ins.2009.08.025.

Micci-Barreca, D. 2001. “A preprocessing scheme for high-cardinality categorical attributes in

classification and prediction problems.” ACM SIGKDD Explorations Newsletter 3 (1):

27–32. https://doi.org/10.1145/507533.507538.

Mikolov, T., Chen, K., Corrado, G.S., and Dean, J. 2013. “Efficient Estimation of Word

Representations in Vector Space.” CoRR abs/1301.3781.

https://arxiv.org/abs/1301.3781.

Nanni, L., and Lumini, A. 2009. “An experimental comparison of ensemble of classifiers for

bankruptcy prediction and credit scoring.” Expert Systems with Applications 36 (2, Part

2): 3028–3033. https://doi.org/10.1016/j.eswa.2008.01.018.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 26

Nishio, M., Nishizawa, M., Sugiyama, O., Kojima, R., Yakami, M., Kuroda, T., and Togashi,

K. 2018. “Computer-aided diagnosis of lung nodule using gradient tree boosting and

Bayesian optimization.” PloS One 13 (4): e0195875.

https://dx.doi.org/10.1371%2Fjournal.pone.0195875.

Olson, R.S., Cava, W., Mustahsan, Z., Varik, A., and Moore, J.H. 2018. “Data-driven advice

for applying machine learning to bioinformatics problems.” Pacific Symposium on

Biocomputing 23: 192–203. https://doi.org/10.1142/9789813235533_0018.

Pinto, D. 2017. “Feature Extraction with KNN.” Retrieved from

https://davpinto.github.io/fastknn/articles/knn-extraction.html.

Rasmussen, C. E., and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning. The

MIT Press.

Rennie, Jason D.M., Shih, L., Teevan, J., and Karger, David R. 2003. “Tackling the poor

assumptions of naive bayes text classifiers.” Proceedings of the Twentieth International

Conference on Machine Learning (ICML’03): 616–623.

Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., and Hemingway, H. 2014. “Comparison

of random forest and parametric imputation models for imputing missing data using

MICE: A CALIBER study.” American Journal of Epidemiology 179 (6): 764–74.

https://doi.org/10.1093/aje/kwt312.

Shahhosseini, M., Hu, G., and Pham, H. 2019. “Optimizing Ensemble Weights and

Hyperparameters of Machine Learning Models for Regression Problems.” ArXiv

abs/1908.05287. https://arxiv.org/abs/1908.05287.

Sill, J., Takács, G., Mackey, L.W., and Lin, D. 2009. “Feature-Weighted Linear Stacking.”

ArXiv abs/0911.0460. https://arxiv.org/abs/0911.0460.

Sjardin, B., Massaron, L., and Boschetti, A. 2016. Large Scale Machine Learning with

Python. Birmingham, England: Packt Publishing.

Snoek, J., Larochelle, H., and Adams, R. 2012. “Practical Bayesian optimization of machine

learning algorithms.” Advances in Neural Information Processing Systems 25: 2960–

2968.

Tarap, K., and Stos, A. 2019. “Hit and Miss: An evaluation of imputation techniques from

Machine Learning.” Proceedings of the PhUSE US Connect 2019: Paper ML04.

Vahid, P.R., and Ahmadi, A. 2016. “Modeling corporate customers’ credit risk considering the

ensemble approaches in multiclass classification: evidence from Iranian corporate

credits.” Journal of Credit Risk 12 (3): 71–95. https://doi.org/10.21314/JCR.2016.213.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 27

van der Laan, Mark J., Polley, Eric C., and Hubbard, Alan E. 2007. “Super Learner.” U.C.

Berkeley Division of Biostatistics Working Paper Series. Working Paper 222.

https://doi.org/10.2202/1544-6115.1309.

van Veen, H.J., Nguyen, The Dat L., Segnini, A. 2015. “Kaggle Ensembling Guide.” Retrieved

from https://mlwave.com/kaggle-ensembling-guide.

Wainer, J., and Cawley, G.C. 2018. “Nested cross-validation when selecting classifiers is

overzealous for most practical applications.” ArXiv abs/1809.09446.

https://arxiv.org/abs/1809.09446.

Wan, S., and Yang, H. 2013. “Comparison among Methods of Ensemble Learning.”

Proceedings of the International Symposium on Biometrics and Security Technologies,

ISBAST 2013: 286–290. https://dx.doi.org/10.1109/ISBAST.2013.50.

Wang, H., and Castanon, J.A. 2015. “Sentiment expression via emoticons on social media.”

Proceedings of the 2015 IEEE International Conference on Big Data: 2404–2408.

https://doi.org/10.1109/BigData.2015.7364034.

Whalen, S., and Pandey, G. 2013. “A Comparative Analysis of Ensemble Classifiers: Case

Studies in Genomics.” Proceedings of the 2013 IEEE 13th International Conference on

Data Mining: 807–816. https://doi.org/10.1109/ICDM.2013.21.

Wolpert, D.H. 1992. “Stacked Generalization.” Neural Networks 5 (2): 241–259.

https://doi.org/10.1016/S0893-6080(05)80023-1.

Wu, T., Lin, C., and Weng, R.C. 2004. “Probability Estimates for Multi-class Classification by

Pairwise Coupling.” Journal of Machine Learning Research 5: 975–1005.

https://dl.acm.org/doi/10.5555/1005332.1016791.

Xiao, H., Xiao, Z., and Wang, Y. 2016. “Ensemble classification based on supervised clustering

for credit scoring.” Applied Soft Computing 43: 73–86.

https://doi.org/10.1016/j.asoc.2016.02.022.

Yamashita, T., Sato, N., Kino, H., Miyake, T., Tsuda, K., and Oguchi, T. 2018. “Crystal

structure prediction accelerated by Bayesian optimization.” Physical Review Materials 2

(1): 013803. https://doi.org/10.1103/PhysRevMaterials.2.013803.

Yeo, I., and Johnson, R. 2000. “A New Family of Power Transformations to Improve Normality

or Symmetry.” Biometrika 87 (4): 954–959. https://doi.org/10.1093/biomet/87.4.954.

Zdravevski, E., Lameski, P., Kulakov, A., and Kalajdziski, S. 2015. “Transformation of

nominal features into numeric in supervised multi-class problems based on the weight of

evidence parameter.” Proceedings of the 2015 Federated Conference on Computer

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 28

Science and Information Systems (FedCSIS): 169–179.

http://dx.doi.org/10.15439/2015F90.

Zhai, B., and Chen, J. 2018. “Development of a stacked ensemble model for forecasting and

analyzing daily average PM2.5 concentrations in Beijing, China.” Science of the Total

Environment 635: 644–658. https://doi.org/10.1016/j.scitotenv.2018.04.040.

Zhang, Y., Liu, G., Luan, W., Yan, C., and Jiang, C. 2018. “An approach to class imbalance

problem based on stacking and inverse random under sampling methods.” Proceedings

of the 2018 IEEE 15th International Conference on Networking, Sensing and Control

(ICNSC): 1–6. https://doi.org/10.1109/ICNSC.2018.8361344.

Zhang, Z. 2015. “Missing data exploration: highlighting graphical presentation of missing

pattern.” Annals of translational medicine 3 (22): 356.

https://doi.org/10.3978/j.issn.2305-5839.2015.12.28.

Zhu, J., Zou, H., Rosset, S., and Hastie, T. 2009. “Multi-class AdaBoost.” Statistics and its

interface 2 (3): 349–360. https://doi.org/10.4310/SII.2009.v2.n3.a8.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 29

Appendix A

Yeo-Johnson transformation for continuous variables

Figure A1: Variables before (left picture) and after (right picture) Yeo-Johnson power transformation. Distributions on the right appear
to have more Gaussian-like distribution, though skewness is still persistent in several cases. Response classes are also distinguished.

 Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314) 30

Appendix B

Target encoding of high cardinality variables

Figure B1: Bar plots for all categorical variables (number of levels in square brackets) and target encoding for the most high cardinal
predictors (right picture), in one versus all manner. Twelve continuous features are generated instead of utilizing hundreds of unique
categorical levels.

UNIVERSITY OF WARSAW

FACULTY OF ECONOMIC SCIENCES

44/50 DŁUGA ST.

00-241 WARSAW

WWW.WNE.UW.EDU.PL

	WNE WP 8/2020 (314)
	Introduction
	Literature review
	Methodology
	Data
	Results
	Discussion
	Conclusion

