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 [eAbstract 
Option pricing models are the main subject of many research papers prepared both in academia 
and financial industry. Using high-frequency data for Nikkei225 index options, we check the 
properties of option pricing models with different assumptions concerning the volatility process 
(historical, realized, implied, stochastic or based on GARCH model). In order to relax the 
continuous dividend payout assumption, we use the Black model for pricing options on futures, 
instead of the Black-Scholes-Merton model. The results are presented separately for 5 classes of 
moneyness ratio and 5 classes of time to maturity in order to show some patterns in option 
pricing and to check the robustness of our results. The Black model with implied volatility (BIV) 
comes out as the best one. Highest average pricing errors we obtain for the Black model with 
realized volatility (BRV). As a result, we do not see any additional gain from using more complex 
and time-consuming models (SV and GARCH models. Additionally, we describe liquidity of the 
Nikkei225 option pricing market and try to compare our results with a detailed study for the 
emerging market of WIG20 index options (Kokoszczyński et al. 2010b). 
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1. Introduction 

 
The  quest for the best option pricing model is at least 40 years old but going back into the past 

we could find its traces even few centuries earlier (e.g. the speculation during tulipomania or 

South Sea bubble). 

The futures option pricing model (Black 1976) began a new era of futures option valuation 

theory. The rapid growth of option markets in the 1970s1 brought rapidly a lot of data and 

stimulated an impressive development of research in this area. Quite soon numerous empirical 

studies put in doubt basic assumptions of the Black model: they strongly suggest that the 

geometric Brownian motion is not a realistic assumption. Many underlying return series display 

negative skewness and excess kurtosis (see Bates 1995, Bates 2003). Moreover, implied volatility 

calculated from the Black-Scholes model often vary with the time to maturity of the option and 

the strike price (cf. Rubinstein 1985, Tsiaras 2009). These observations drove many researchers 

to propose new models that each relaxes some of those restrictive assumptions of the Black-
Scholes model (Broadie and Detemple 2004, Garcia et al. 2010, Han 2008, Mitra 2009). Basing 

on Han 2008, we can divide these researchers into a few groups. The first one engage in 

extending Black-Scholes-Merton framework by incorporating stochastic jumps or stochastic 

volatility (Amin and Jarrow 1992, Hull and White 1987), another one goes into estimating the 

stochastic density function of the underlying asset directly from the market option prices 

(Derman and Kani 1994, Dupire 1994) or using other distribution of the rate of return on the 

underlying asset rather than normal distributions (Jarrow and Rudd 1982, Corrado and Su 1996, 

Rubinstein 1998, Lim et al. 2005). On the other hand, the Black-Scholes model is still widely 

used not only as a benchmark in comparative studies testing various option pricing models, but 

also among market participants. Christoffersen and Jacobs 2004 show that much of its appeal is 

related to the treatment of volatility – the only parameter of the Black-Scholes model that is 
however not directly observed. 

Detailed analysis of the literature (An and Suo 2009, Andersen et al. 2007, Bates 2003, Brandt 

and Wu 2002, Ferreira et al. 2005, Mixon 2009, Raj and Thurston 1998) seems to suggest that 

the BSM model with implied volatility calculated on the basis of the last observation performs 

quite well even when compared with many different pricing models (standard BSM model, BSM 

with realized volatility, GARCH option pricing models or various stochastic volatility models).  

Our motivation for this paper is to check the results of Kokoszczyński et al. 2010a, who 

conducted a similar study for emerging market HF data (WIG20 index options)2. Their results 

show that the Black model with implied volatility (BIV) gives the best results, the Black model 

with historical volatility (BHV) is slightly worse and the Black model with realized volatility 

(BRV) gives clearly the worst results.  

The complex comparison of Black model with different volatility assumptions presented only 
for an emerging market is definitely not enough to formulate conclusions of a more general 

nature. Therefore, we have decided to compare the results for the Polish emerging market with a 

similar research for the developed Japanese market. For this purpose we choose the Nikkei225 

index option market (European style), which can be regarded as one of the most important in the 

world, especially when we consider the level of its innovation and complexity. As a result we 

hope we will be able to suggest some more general conclusions. 

After a thorough analysis we can say that the literature regarding the Japanese capital market 

and especially European style index options, is not so rich and this is our second motivation to 

write this paper. The reason for this can be that Nikkei225 index is the basis instrument for many 

                                                
1
 The Chicago Board of Options Exchange was founded in 1973 and it adopted the Black-Scholes model for option 

pricing in 1975. 
2 The WIG20 is the index of twenty largest companies on the Warsaw Stock Exchange (further detailed information may 

be found at www.gpw.pl). 

http://en.wikipedia.org/wiki/Warsaw_Stock_Exchange
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different derivatives which are quoted on many different exchanges and the literature is widely 

dispersed. We can easily find some papers focusing on pricing American style options or options 
quoted in different currency than Yen. On the other hand, papers in English focusing on 

European style Nikkei255 index options are not so numerous3. The literature on American style 

options shows quite good results for the Black model (Raj, Thurston 1998), sometimes better 

than for various GARCH models (Iaquinta 2007). When we consider the second case (options in 

other currencies), we actually model not only option prices but the exchange rate fluctuations as 

well (Wei 1995), thus the comparison of their results with ours could be regarded as not valid. 

Therefore, we are left with the very limited number of studies that focus on European style 

options or otherwise touch this subject, sometimes only in an indirect way. Li 2006 shows that 

Nikkei225 is rather an efficient market (in the sense of lack of arbitrage possibilities analysed 

through existence of put-call parity). Yao et al. 2000 compare the BSM model with historical 

volatility with pricing done via neural networks and show that in some cases (mainly for ATM 

options) the BSM model gives the better results. Kanoh and Takeuchi 2006 once again show that 
the BSM model is better (in terms of the RMSE statistics) from GARCH (1,1) and E-GARCH 

(1,1) model. On the other hand Mitsui and Satoyoshi 2006 got better results for GARCH-T model 

for almost all moneyness classes, but their results are based on strong assumptions concerning the 

type of distribution of the basis instrument. 

This review, covering those Nikkei225 index options studies that are comparable with our 

approach, justifies quite strongly the positive assessment of the BSM model. We are going to 

check this using high-frequency data from 2008.  

The structure of this paper has been planned in such a way as to answer the following detailed 

questions: 

- Which model from among those we test can be treated as the best one?  

- Can we observe any distinctive patterns in option pricing taking into account moneyness 
ratio (MR) and time to maturity (TTM)? 

- Can we distinguish any patterns of liquidity behaviour in a developed market using 

transactional data? 

- Do we observe any outliers and what is the real influence of outliers (or “spurious 

outliers”) on final results and how can we identify those observations that can be later 

excluded from the dataset? 

- Is there any substantial difference between the results for a developed (this paper) and an 

emerging market (Kokoszczyński et al. 2010a)? 

The remainder of this paper is organized as follows. The second section describes some 

methodological issues. Next section presents data and the fluctuations of volatility processes 

derived from transactional data. The fourth section discusses the liquidity issues. Results are 

presented in section five and the last section concludes. 
 

2. Option pricing methodology 

 
2.1. The Black option pricing model with historical, realized and implied volatility 

 

The basic pricing model we choose is the Black-Scholes model for futures prices, i.e. the Black 
model (Black, 1976). We call it further in the text the BHV model – the Black model with 

historical volatility. Below are formulas for this model: 

 

                                                
3
 Unfortunately, because of language barrier we were not able to extend our literature review to papers written in 

Japanese. 
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where c and p are respectively valuations of a call and a put option, T is time to maturity, r is the 

risk-free rate, F – the futures price, K – underlying strike, σ – volatility of underlying and N(.) is 

the cumulative standard normal distribution.  

There are two reasons why we decided to use the Black model instead of the standard Black-

Scholes model. First, we are able to relax the assumption about continuous dividend payouts4. 

Second, we can use additional data because usually derivatives (options, futures, etc.) are quoted 

much longer than the basis instruments (e.g. Nikkei225 index). 

To further justify such an approach, we assume that we can price a European style option on 
Nikkei225 index applying the Black model for futures contract (with historical, realized and 

implied volatility), where Nikkei225 index futures contract is the basis instrument. This is 

possible due to following facts: 

 Nikkei225 index futures expire exactly on the same day as Nikkei225 index options do, 

 the expiration prices are set exactly in the same way, 

 we study only European-style options; hence early expiration - like in the case of American 

options - is impossible5. 

One of the most important issues about option pricing is the nature of an assumption 

concerning the specific type of volatility process. Therefore, we check the properties of the Black 

model with three different types of volatility estimators: historical volatility, realized volatility 

and implied volatility, and additionally we use the Heston model and the GARCH option pricing 

model. Below we provide a brief description of each of these volatility estimators and models. 
The historical volatility (HV) estimator is based on the formula 
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where: 
nVAR

 – variance of log returns calculated on high frequency data on the basis of last n days, 

ri,t - log return for i-th interval on day t with sampling frequency equal to Δ, which is 

calculated in the following way: 

)6(loglog ,1,, tititi CCr   

Ci,t – close price for i-th interval on day t with sampling frequency equal to Δ, 
NΔ – number of Δ intervals during the stock market session, 

n – memory of the process measured in days, used in the calculation of respective 

estimators and average measures. 

                                                
4
 In this way we are able to eliminate two possible source of pricing error: the necessity to estimate the dividend yield and 

the assumption about continuous payouts. 
5
 Early expiration of American-style option could result in the significant error in the case of such a pricing, because of 

the difference in prices of index futures and of Nikkei225 index before the expiration date (the basis risk). 
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r  – average log return calculated for last n days with sampling frequency Δ, which is 
calculated in the following way: 
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In this research, we use NΔ=1 and hence the HV estimator is simply standard deviation for log 

returns based on the daily interval. This approach is commonly used by the wide range of market 

practitioners. 

The second approach is the realized volatility (RV) estimator proposed early by Black (1976) 

and Taylor (1986) and further popularised by Bollerslev (cf. Andersen et al. 2001). It is based on 

squared log returns summed over the time interval of NΔ .  
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The implied volatility (IV) estimator is based on the last observed market option price. It 

assumes that all parameters (with the exception of sigma) are also known. We calculate the 

implied volatility for the last market price for each option and then average them separately for 

each class of TTM and moneyness ratio, and for both call and put options6. Hence, for each 

observation we have 50 different IV values (5×5×2). These values are then treated as an input 

variable for volatility parameter in calculations of the theoretical options price for the Black 

model with the implied volatility (BIV) for the next observation. 

Before entering into the formula for the Black model, the HV and RV estimators have to be 

annualized and transformed into standard deviation. The formula for the annualization of the HV 
estimator is as follows: 

)9(**252_ nnstdannual VARNSDHV    

Contrary to the HV estimator, which is based on information from many periods (n>1), RV 
estimator requires information only from a single period (time interval of Δ). Therefore, the 

procedure of averaging and annualizing realized volatility estimator is slightly different from that 

presented in formula (9): 
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Having all these volatility estimators and additionally the Heston and GARCH (1,1) option 

pricing models we present below we study several types of option pricing models, which will be 
described in details in section 2.5. 

 

2.2. The GARCH Model 

 

Many classical option pricing models (e.g. the Black model) assume the constant level of 

volatility of log-returns of basis instruments. However, in reality many financial time series are 

characterized by time varying volatility. GARCH models are one possible way to relax this initial 

assumption. They were proposed by Engle 1982 and Bollerslev 1986. GARCH model describes 

the dynamic of returns of the basis instruments with following equations: 

                                                                       

                                                                          

                                                
6
 We divide 320 options (160 call and 160 put options) into 5 moneyness ratio classes and 5 time-to-maturity classes. The 

details of this classification are presented in Section 3. 
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  , St is the price of the basis instrument in the moment t, and p and q define 

the order of GARCH (p,q) model. Currently, we have many extensions of standard GARCH(p,q) 

model, which mainly differ by the specification of the conditional variance equation and by 

various assumptions concerning the conditional distributions of residuals in the mean equation. 

Through the years GARCH models have become the standard approach in volatility modelling, 

asset pricing, financial time series forecasting or risk management. Examples of this kind of 

research can be found in Bollerslev et al. 1988, Bollerslev et al. 1994, Campbell and Hentschel 

1992, French et al. 1987, Glosten et al. 1993, Maheu and McCurdy 2004, Pagan and Schwert 

1990, whereas detailed description of GARCH models can be found in Bollerslev et al. 1992 or 

Campbell et al. 1997. 

Finally, GARCH models are also used in option pricing models. Duan 1995 presents the 

methodology of European style call option pricing with the assumption that returns of the basis 
instrument can be described with the GARCH process. In order to become risk neutral in this 

approach, we differentiate between physical and martingale (risk free) probability measure. 

Garcia and Renault 1998 describe theoretical aspects of using GARCH models in risk hedging 

strategies, while Ritchken and Trevor 1999 use GARCH models in American style option pricing 

applying trinomial trees. Duan et a.l 2004 extend the methodology presented in his previous 

paper through inclusion of volatility jumps in prices of the basis instrument. 

Option pricing based on GARCH model has been done here according to Duan 1995.  This 

approach assumes that log returns undergo GARCH-M(p,q) process described by the following 

equations:  

           
 

 
                                                           

                                                                             

             
 

 

   

                                                      

 

   

 

where parameters are denoted in the same way as in earlier formulas, and additionally δ in 

equation (14) is interpreted as a unit risk premium. 
The pricing of options is conducted assuming local risk-neutral valuation. It requires 

modification of log returns processes in such a way that conditional variance one step ahead 

remains unchanged and simultaneously conditional expected return equals risk-free rate (Fiszeder 

2008). Introduction of risk-neutral probabilistic measure Q enables us to price options through 

discounting expected option payoff. 

The dynamic of basis instrument log returns with respect to measure Q can be described as 

follows: 

      
 

 
                                                                    

                                                                          

                    
 

 

   

        

 

   

                                    

The formula describing the dependence between the price of basis instrument on maturity day 

and its price in the time of pricing can be described: 
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while the price of European style call option is described by the discounted value of the option 

price on the maturity day: 

                                                                     

where       is the operator of conditional expected value with respect to Q measure. 
In practice, the pricing is done through Monte Carlo simulation. In the first stage we estimate 

parameters of the model (14), (15) and (16), and then on the basis of (17), (18), (19), and (20) we 

simulate N realization of basis instrument price. Call and put option prices are then calculated in 

the following way: 

                   
 

 
              

 

   

                              

                  
 

 
              

 

   

                              

We use GARCH-M(1,1) model in this study7. Many research papers show that this order of the 
model defines the dynamics of stock index returns in the most adequate way (Hansen and Lunde 

2004 or Zivot 2008). Similarly, like in case of the BSM model we used index returns. We estimate 

the parameters of the equations (14), (15) and (16) on the basis of data from 1/1/2007 until the 

moment of option pricing. As a result, the size of sample used to estimate GARCH parameters 

varies from one year (for pricing done on 2nd January, 2008) to 1.5 year (for pricing done on 30th 

June, 2008). In order to eliminate problems with instability of GARCH model parameters we 

have decided to delete overnight returns from our data sample. 

The number of replications in Monte Carlo simulations is another important choice to be made. 

Finance literature suggests strongly that N = 10 000 gives an adequate precision of estimates. 

However,  due to the very large number of pricing (5-minute data) we need, we have to limit the 

number of replication to N=1000. In order to minimize possible negative effects of that choice we 
use variance reduction technique called antithetic variables sampling. The data we use in this 

study are described in detail in section 3. 

 

2.3. The Heston Model  

 

Log returns volatility in stochastic volatility models is represented by a given stochastic 

volatility process with dynamics set a priori. Hull and White 1987 are among pioneers of 

applying stochastic volatility for option pricing.  They assume that variance dynamics can be 

described with the following differential equation: 

                                                                                          
Under additional assumption - that volatility is not correlated with the basis instruments - Hull 

and White present the analytical formula for European style call option. One of the main 

conclusions of their research is that the BSM model systematically underestimates prices of ITM 

and OTM options, and overestimates prices of ATM options.8 

The Heston model we use in our research is an extension of Stein and Stein 1991. Their option 

pricing formula assumes that volatility is described by the Ornstein-Uhlenbeck process and is not 

correlated with the basis instrument. On the other hand, Heston 1993 presents call option pricing 

formula with no assumption on correlation of volatility with the basis instrument. His model 

                                                
7
 In the results section we will refer to this model as to GARCH(1,1). 

8
 The constant volatility assumption is responsible for this drawback of the BSM model. 
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assumes that the dynamics of underlying asset price    and its volatility    are given by the 

following set of differential equations: 

                  
                                           

                     
                                                                                     

   
    

                                                         

where        
 and        

 indicate the price and the variance of the basis instrument, and    
 
   

 

and    
 
   

 are correlated Brownian motion processes (with parameter of correlation  ). 

Additionally, it is assumed that        
 is mean reverting process, with long memory expected 

value   and mean reverting coefficient  . The parameter   is defined as volatility of volatility. 

One of the main reasons, why the Heston 1993 model has become so popular is the fact that it 

is possible to obtain its closed-form solution for European style call option pricing for an asset 

not paying dividend, which is given by: 
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for      , where:   
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,     ,           ,        

Formula 28 is not difficult to implement in practice. The only problem is to calculate the limit 

of the integral therein. This limit is often approximated by an adequate quadrature (Gauss-

Legendre or Gauss-Lobatto), what can be done in many statistical software packages. 

 Practical implementation of the Heston model is done in two stages. First, we have to calibrate 

the model in order to find its parameters from equation (25), (26) and (27). Calibration can be 

done on the basis of call transactional prices observed in every one-hour interval. We choose 

parameter values in such a way as to minimize the difference between market and theoretical 

prices. Next, we use formulas (28) and (29) to calculate theoretical prices. 

The calibration of the Heston model can be conducted in two ways - via global or local 

optimization. Global optimization guarantees that we find the true global minimum of our target 

function. The disadvantage of this method is that it is time-consuming and parameters obtained 

here tend to be very unstable. On the other hand, local optimization gives only local minima but it 
is very fast and parameters derived in this way are stable.  

In our study the global optimization is used for the first period and its results are the starting 

point for the local optimization in the second period. Then, the further iterations of the local 

optimization are being performed, for which the starting point is set to the local minimum from 

the previous stage. 
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In the second stage the parameters found previously are used to calculate theoretical prices in 

the next hourly interval. The prices of call options are calculated according to the formulas (28) 
and (29), while put option prices are found on the basis of call-put parity: 

                                                                    

where    and    are European style call and put prices,    is the price of basis instrument,   is 

the risk-free rate, and finally   is the strike price, and T is time to maturity for both call and put 

options. 

The calibration of the Heston model in our study for the Japanese market has been done on the 

basis of an hourly interval. It means that in the time of calibration we use transactional prices 

from the previous hourly interval, and then we use those results to price options for the current 

interval. The calibration of the Heston model was based on all available transactional prices in 

one-hour interval. 

 

2.4. Goodness-of-fit statistics 

 

The metric used to compare models we test here is given by three error statistics: 

 Root Mean Squared Error (RMSE):    
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where closei is the option price (i.e. the last observed transaction price) for the i-th interval and 

theoretical_optioni is the model price of option (BHV, BRV, BIV, GARCH, Heston) for the i-th 

interval. We calculate these statistics for all models, for different TTM and MR classes, and for 

both call and put options. 

 

2.5. Models’ description 

 

 Thus, we study properties of the following models: 

 BHV - the Black model with historical volatility (sigma as standard deviation, n=21), 

 BRV - the Black model with realized volatility (realized volatility as an estimate of sigma 

parameter; RV calculated on the basis of observations with several different  intervals 
and different values for parameter n applied in the process of averaging), 

 BIV - the Black model with implied volatility (implied volatility as an estimate of sigma; 

IV calculated for the previous observation, separately for each TTM and MR class, and for 

both call and put options, hence for 50 different groups). 

 Heston – the Heston option pricing model, 

 GARCH – GARCH (1,1) option pricing model based on the Duan methodology, 

 

Initially, we calculate BRV models with four different  values: 10s, 1m, 5m, and 15m. Then, 
we check the properties of averaged RVs with different values of parameter n in pricing models. 

We find, like Kokoszczyński et al. 2010a, no significant differences between RVs with different 

 parameter (assuming that  is equal or higher than 5 minutes). On the other hand, Sakowski 
2010, after a detailed analysis of similar data for WIG20 index options but for a longer data span 
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confirms our choice of  parameter. He shows  that BRV, BHV and BIV models have better 

properties (basing on HMAE statistics) for parameter  equal to 5  than for   equal to 10, 15 and 
30 minutes.  Moreover, he also shows that going with Δ below 5 minutes, i.e. to 1 minute or even 

to 10 seconds could result in much higher pricing errors because of very high volatility of 

volatility for time series calculated on the basis of such intervals. Sakowski‟s results support what 
is a common approach in the literature, e.g. setting the interval between 5 minutes and 15 minutes 

because this constitutes the good trade-off between the nonsynchronous bias and other 

microstructure biases (cf. Ait-Sahalia et al. 2009). Therefore, we calculate the BRV model only 

for =5m interval with different values of averaging parameter (n=1, 2, 3, 5, 10, 21, and 63), but 
after analysing their properties we present only the best and the worst model from the family of 

BRV models: BRV5m (non-averaged one), and BRV5m_639. GARCH model has been estimated 

with the same  interval and the Heston model has been calibrated on hourly intervals but it still 

enables us to calculate theoretical prices for  interval equal to 5 minutes. 
 

3. Data and the description of volatility processes  

 

3.1 Data description 

 

We use transactional data10 for Nikkei225 index options, Nikkei225 index and Nikkei225 index 

futures, which have been provided by Reuters company11. The data cover the period from January 

2, 2008 to June 30, 2008. Transactional prices for Nikkei225 index options and Nikkei225 index 
are in the form of 5-minutes data and we use such data for further calculations. However, in order 

to calculate different volatility estimators we transform 5-minutes data into different frequencies. 

The risk-free interest rate is approximated by the LiborJPY3m interest rate, also converted into 5-

minute intervals. 

The market for Nikkei225 index option started in this period at 1.00 CET and ended at 7.00 

CET12. For that reason we have 6745 observations (122 session days with 56 5-minutes intervals 

each13).  

As a result, our data set for Nikkei225 index options comprised transactional prices for 160 call 

options and 160 put options maturing in January, February, March, April, May, June and July 

2008. Maturity days of these options and their symbols for each call and put series are as follows: 

11.01.2008 (call-A8, put-M8), 08.02.2008 (call-B8, put-N8), 14.03.2008 (call-C8, put-O8), 

11.04.2008 (call-D8, put-P8), 09.05.2008 (call-E8, put-Q8), 13.06.2008 (call-F8, put-R8) i 
11.07.2008 (call-G8, put-S8).  

The results of our analysis will be presented with respect to 2 types of options, 5 classes of MR 

and 5 classes of TTM: 

 2 types of options (call and put), 

 5 classes of moneyness ratio, for call options: deep OTM (0-0.85), OTM (0.85-0.95), ATM 

(0.95-1.05), ITM (1.05-1.15) and deep ITM (1.15+), and for put options in the opposite order
14

, 

                                                
9
 Our choice is confirmed by results in Sakowski 2010 and Kokoszczyński et al. 2010 a. 

10
 Some papers that test alternative option pricing models and include the Black-Scholes model among models tested 

therein use instead of transactional data bid-ask quotes (midquotes) as they allow to avoid microstructural noise effects 

(Dennis and Mayhew 2009). Ait-Sahalia and Mykland 2009 state explicitly that quotes “contain substantially more 

information regarding the strategic behaviour of market makers” and they “should be probably used at least for 

comparison purposes whenever possible” (p. 592). On the other hand, Beygelman 2005 and Fung and Mok 2001 argue 

that midquote is not always a good proxy for the true value of an option.  
11

 Thanks to government financial support we were able to buy all necessary data (5 minutes intervals) from Reuters 

Datascope company. 
12

 In practice market session lasted from 1.00 CET to 3.00 CET, then there was a pause, and later session lasted from 4.30 

CET to 7.00 CET. Therefore, we get 56 5-minutes intraday returns. 
13

 Some days, close to the most important national holidays, the market session finished before 7.00 CET. 
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 5 classes for time to maturity: (0-15 days], [16-30 days], [31-60 days], [61-90 days], [91+ 

days). 
This categorization allows us to compare different pricing models along several dimensions.  

 

3.2 The descriptive statistics for Nikkei225 futures time-series. 

 

We begin our study with the basic analysis of the time series of returns of the basis instrument. 

Table 3.1 presents the descriptive statistics for 5-minute interval data. They are calculated for two 

samples: with (sample denoted Rf) and without opening jumps effects (Rf‟)
15.  

 

Table 3.1. The descriptive statistics for Nikkei225 index returns (with and without opening jump 

effect). 

 Rf 
a 

Rf’ 
b 

N 6745 6504 

Mean -0,000025394 -0,000014111 

Median 0,000032644 0,000036116 

Standard Deviation 0,0030907 0,0028429 

Range 0,0535235 0,0535235 

Minimum -0,0319108 -0,0319108 

Maximum 0,0216127 0,0216127 

Kurtosis 10,4364219 12,7560437 

Skewness -0,6227228 0,7206586 

 Normality tests   

Kolmogorov-Smirnov 
Statistic 0,093349 0,086497 

p-value <0,01 <0,01 

Jarque-Berra 
Statistic 30995,9195 44584,7971 

p-value <0,0001 <0,0001 
a
 full sample,  

b
 sample without opening and mid-session jump effect. 

 

Both samples have high kurtosis and are asymmetric. The distribution for the full sample has 

negative skewness while removing jump effects makes the distribution right skewed. Overall, 

both Jarque-Bera and Kolmogorov-Smirnov statistics indicate that returns in both samples are far 

from normal. Nevertheless, we observe interesting feature that - contrary to data from the Polish 

market (Kokoszczyński et al., 2010b) - for adjusted sample skewness and kurtosis are larger 

when we consider their absolute values. In case of the Japanese market it is not the jump effect 

that is responsible for the non-normality of returns, but returns‟ general features. 

Figures 3.1 and 3.2 additionally confirm this observation showing high negative and positive 
returns in both time series with and without jump effects. Formally, the lack of normality of the 

basis instrument means that the standard BSM model should not be applied for option pricing 

with these data. Accordingly, we transform this model varying its assumption about the nature of 

                                                                                                                               
14

 Moneyness ratio is usually calculated according to the following formula: 

)34(
/

ratio moneyness
K

F

eK

S
rT


 

where K is the option strike price, S is the price of underying, F is the futures price of underlying, r is the risk-free rate 

and T is time to maturity. 
15

 By opening jump effects we mean returns between 7.00 CET and 1.00 CET on the next day. Thus, sample without 

opening jump effects does not include observations with these returns. In case of the Japanese market two returns were 

excluded: one overnight return and second one including the return from the mid-session break. 
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the volatility process. Moreover we also apply the Heston and GARCH option pricing models to 

the same data. 
 

Figure 3.1. Index returns with the opening jump effect. a 

 
a 
The returns and index prices cover the data span between January 2, 2008 to June 30, 2008. 

 

Figure 3.2. Index returns without the opening and mid-session jump effect.a 

 
a 

The 10-second returns between the closing price from each day and the opening price from the next day have been 

excluded. The same was done with the mid session jump. The returns cover the data span from January 2, 2008 to June 

30, 2008. 

 

3.3 The description of volatility processes; historical, realized and implied. 

 

We consider three different volatility measures: historical, realized and implied volatility for the 

Black option pricing model and - in addition to that - stochastic volatility and GARCH model. 

Obviously, the volatility process assumed in pricing is one of important reasons for differences 

among theoretical option prices we compare. 
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In the case of the historical volatility estimator NΔ=1 for every ri,t (daily log returns) and Ci,t in 

formulas (5), (6) and (7). Moreover, we use the constant value of parameter n being equal to 21, 
because we want to reflect historical volatility from the last trading month. 

On the basis of similar studies for the Polish market (Kokoszczyński et al. 2010a, 

Kokoszczyński et al. 2010b) realized volatility has finally been calculated on the basis of Δ equal 

to 5 minutes. Therefore, at this stage we limit our selection of volatility time series only to RV 

calculated for Δ=5 minutes, with averaging parameter n=5, 10, 21 and 63 days (Figure 3.3). 

Figure 3.3 presents realized volatility compared to historical volatility. The distinguishing fact is 

that the non-averaged RV time series (RV_5m) is much more volatile than the averaged RV or 

HV time series. Obviously, such high volatility of volatility can strongly influence theoretical 

prices from the BRV model and their stability over time. One can thus expect that in periods of 

high volatility the BRV model with the non-averaged RV estimator may produce high pricing 

errors. 

 
Figure 3.3. Historical and realized volatility (5m, 5m_5, 5m_10, 5m_21, 5m_63). a 

 
a The volatility time series cover the data period between January 2

nd
 , 2008 and June 30

th
 , 2008. Vertical lines represent 

end of month and additionally the day of January 11
th
, February 8

th
, March 14

th
,April 11

th,
 May 9

th
, and June 13

th
, when 

option series expired. 

 

On the other hand, implied volatility time series exhibits substantially different trajectories than 

RV or HV time series. Figure 3.4 (call options), and Figure 3.6 (put options) present how IV time 

series evolve in time. Similarly to Kokoszczyński et al. (2010) we observe that for the short TTM 

(5-10 days) IV tends to increase with shortening of TTM. Contrary to the Polish market for TTM 

lower than 5 days we do not observe explosion of IV and it does not reach the level of over 200% 

(annualized). This happens mostly for the call and put (deep) OTM and ATM options. However, 
jump of IV to 70% can be the reason of big mispricing of options with low TTM. For that reason, 

some researchers often exclude from comparisons options with short TTM and market prices 

lower than 5-10. However, we have consciously decided to conduct this research on the full 

sample, believing that such an approach would allow us to better answer the question what kind 

of observation should be treated as outliers. 
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Figure 3.4. Implied volatility for ATM call option. 
a
 

 
a The volatility time series cover the data period between January 2

nd
 , 2008 and June 30

th
 , 2008. IV are presented for 7 

series of options. Vertical lines represent end of month and additionally the day of January 11
th
, February 8

th
, March 

14
th
,April 11

th,
 May 9

th
, and June 13

th
, when option series expired. 

 

Figure 3.5. Implied volatility for ATM put option. a 

 
a The volatility time series cover the data period between January 2

nd
 , 2008 and June 30

th
 , 2008. IV are presented for 7 

series of options. Vertical lines represent end of month and additionally the day of January 11
th
, February 8

th
, March 

14
th
,April 11

th,
 May 9

th
, and June 13

th
, when option series expired. 

 

4. Market liquidity  

 

Liquidity constraints are typical features of an emerging derivatives market and they put severe 
limits for conducting such a study as we have done for the Polish market. To make our 

comparisons of both markets (WIG20 and Nikkei225) as comprehensive as possible we have also 

decided to present a detailed discussion of developed market liquidity on the example of 
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Nikkei225 index option market with respect to volume, turnover and open positions for 

transactional data  we use. 
Observing the distribution of call volume for transactional data, presented in Figure 4.1, we 

notice that the lowest volume is observed for low TTM and MR equal to ITM, deepITM, and 

deepOTM. The highest volume we see for MR equal to ATM and OTM for TTM up to 60days. 

This suggests that investors rarely trade highly valued options (deepITM and ITM) or options 

with long TTM. 

  

Figure 4.1. The distribution of volume for call optiona 

 
a
 the volume for call options quoted in the period between January 2

nd
 , 2008 and June 30

th
 , 2008. 

 

Figure 4.2. The distribution of volume for put option a 

 
a
 the volume for put options quoted in the period between January 2

nd
 , 2008 and June 30

th
 , 2008. 

 

The distribution for put volume (Figure 4.2) is very similar. The only difference is that the 

volume is also high for deepOTM options with TTM less than 60 days. However, this is mostly 
due to the fact that put options are used as an insurance against sharp downward movement of the 

basis instrument16. Generally, we could say that the volume distribution for call and put options is 

very similar and that investors focus their trades on low-valued options with short TTM. 

                                                
16

 One buys the right to sell the basis instrument in the case of an extreme financial catastrophe, e.g. financial crash, for a 

relatively low cost (put option premium). 
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Next figure (Figure 4.3) addresses the liquidity issue from another perspective by focusing on 

the turnover volume increasing the importance of traded options value. We observe significant 
shift from deepOTM to ATM and then to OTM options. It obviously means that most investors 

involved in the option trades concentrate in the ATM-OTM range. The same results are observed 

for call and put options with only slightly higher turnover volume for put options. However, this 

latter feature can be tied to the behaviour of the basis instrument in the period we study.17  

 

Figure 4.3. The volume of turnover for call and put option. 

 
a
 call options         

a
 put options 

 

The final aspect in the discussion of liquidity is the comparison of our data set with actual trade 

possibilities. Looking at the Figure 4.4 and 4.5 we see that the volume observed for call and put 

options is in some way conditional on options available in the respective time period. Comparing 
figures 4.1 and 4.2 with 4.4. and 4.5 shows the same picture  for call and put options. In the case 

of call options most of the available strikes constitute ATM and ITM, while for put options it is 

ATM, OTM and deepOTM. Therefore, we see that results are not robust with respect to available 

options strikes that can be traded in the given period. 

 

Figure 4.4. Moneyness ratio histogram for call options with respect to transactional data.a 

 
a
 transactional data. 

 

                                                
17

 We observe sharp downward movement of Nikkei225 index in the time of research 
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Figure 4.5. Moneyness ratio histogram for put options with respect to transactional data. 

 
a
 transactional data. 

 

 

The most important outcome from the liquidity analysis is that we can indicate where the 

volume of options concentrates. We notice that after dividing the set of options into different MR 

and TTM classes we can distinguish options with low TTM which are ATM, OTM or ITM that 

cumulate more than 90% of the total volume, both in case of call and put options. Similar 

situation has been observed in the case of the Polish emerging market. Finally, it is worth to 
notice that the cumulation of volume in the given class of MR and TTM is partly conditional on 

the availability of options with specified MR or TTM ratio. 

 

5. Results  

 

We structure the results section into three subsections containing the description of theoretical 

premiums (5.1), results presented separately for call and put options (5.2), and the aggregated 

comparison of results with respect to different dimension (5.3). This enables us to present a 

multidimensional comparative analysis of option pricing models. 

 

5.1. The description of theoretical premiums 
 

Finally, we obtain three error statistics (RMSE, OP, HMAE) calculated for six different pricing 

models (BRV5m, BRV5m_63, GARCH(1,1), Heston, BHV, BIV), which are divided into 5 TTM 

classes and 5 MR classes. The number of pricing errors calculated for each model is presented in 

the table below: 
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Table 5.1. Number of theoretical premiums for different classes of MR and TTM for BRV 

model* 

option moneyness 0-15 days 16-30 days 31-60 days 61-90 days 91+ days Total 

CALL deep OTM 372 4327 27089 23799 10494 66081 
CALL OTM 6501 11635 22572 19567 8959 69234 
CALL ATM 8199 9681 17385 12141 5368 52774 
CALL ITM 3880 4510 5373 1484 761 16008 
CALL deep ITM 1205 1935 3032 1044 1335 8551 

 Total Call 20157 32088 75451 58035 26917 212648 

PUT deep OTM 6964 20580 44831 31225 7768  111368 
PUT OTM 6109 8142 15466 12674 5631 48022 
PUT ATM 8028 9669 17014 12001 6413 53125 
PUT ITM 4278 4826 7427 1790 1096 19417 
PUT deep ITM 2411 3002 3098 1161 1962 11634 

 Total Put 27790 46219 87836 58851 22870 243566 

 Total Call and Put 47947 78307 163287 116886 49787 456214 
* 456 thousand for BIV, Heston and GARCH(1,1) model, and 445 thousand for BHV. 

 

Figures (5.1 and 5.2) show the number of theoretical premiums for call and put options with 

respect to TTM i MR. 

 

Figure. 5.1. The number of theoretical values for call options with respect to TTM i MR ratio. 

 
 

Table 5.1 and figures 5.1 and 5.2 suggest that the activity of market participants (measured by 

the number of single trades and not by their volume) concentrates on call ATM, OTM and 

deepOTM and put deepOTM option with TTM between 16 and 90 days. Additionally, we can see 

that slight differences between these and volume data (figures 5.2 and 5.3, and 4.1 and 4.2) seem 

to show that - beside larger total volume for ATM and OTM options, especially for call options 

(figures 4.1 and 4.2) - much  greater  number of transactions with smaller unit volume is made for 

deepOTM options. 
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Figure 5.2. The number of theoretical values for put options with respect to TTM i MR. 

 
 

5.2. Error statistics distribution 

 

Major results of our research will be presented in the form of pricing error statistics (OP, RMSE 

and HMAE) shown separately for six models in the following sequence: 1. BRV5m, 2. 

BRV5m_63, 3. GARCH(1,1), 4. Heston, 5. BHV and 6. BIV. The discussion of our results is 

based on two-dimensional charts presented as panels containing five or six boxes where we show 
error statistics (OP, RMSE or HMAE) for all models, all MR and TTM classes. Each chart is 

scaled with global minimum and maximum what makes for simple and reliable comparison of 

presented results. Figures 5.3-5.7 present error statistics for call and put options separately, with 

individual boxes for different MR, albeit for all TTM and all models in one box. Additionally, we 

present figures 5.3b, 5.6b, and 5.7b where scale is different and results are not distorted by 

possible outliers or „spurious outliers‟. 

Figure 5.3 - with OP values for call options - indicates that the BIV model (number 6) is the 

best one. It is characterised by almost the same level of over- and underprediction (the value of 

OP is approximately equal to 0.5). Results for other models differ. The second best model 

according to this metric is the Heston model (number 4) and the BHV model may be ranked in 

the third place. Unfortunately, we can see that results - with the exception of the BIV model - 

vary strongly with changes in TTM. The worst results are observed for first three models when 
MR equals ATM, ITM, and deepITM. 
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Figure. 5.3. OP statistics for call options 

 
 

Figure 5.4 presents RMSE statistics for call options. Here again the best results are observed for 

the BIV model, but we also observe equally good results for all models for TTM equal to 0-30 

days. Analysing the results for the remaining values of TTM we observe that results for the 

Heston model are only slightly worse. BRV5m_63 ranks third. Other models show rather 

diversified outcomes with respect to TTM and MR. In all cases we notice a substantial increase 

of RMSE for longer TTM. 

 

Figure. 5.4. RMSE statistics for call options 

 
 

The next figure (Figure 5.5a) – presenting HMAE - informs us about a substantial outlier in our 

data in the case of the GARCH(1,1) model which distorts results and makes it impossible to 

interpret them. These charts will be presented once again below in the figure 5.5b, where the 

scale is transformed with maximum set to 1.0. Then we can observe that differences among the 

BIV, Heston and BRV5m_63 models (in this order) are not significant. The best performance is 
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once again observed for the GARCH model. Generally, figure 5.5b shows significant decrease of 

HMAE when shifting from deepOTM to ATM to deep ITM. 
 

Figure. 5.5a. HMAE statistics for call options 

 
 

Figure. 5.5b. HMAE statistics for call options  

 
a 
different scale in comparison to Figure 5.5a 

 

Our results for put options are shown in Figures 5.6 - 5.8. Figure 5.6 with OP statistics for put 

options confirms the ranking of models derived from results for call options. The BIV model is 

the best one, than the Heston model is the second one and as the third one we have the BHV 

model. The volatility of results for models other than the BIV with respect to various TTM values 

is again the very high. We also observe strong underestimation of market prices for all models 

with the only exception of the BIV model.  
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Figure. 5.6. OP statistics for put options 

 
 

Figure 5.7 presents RMSE statistics for put options and shows almost the same results as those 

for call options. The BIV model is again the best one, the Heston model is only slightly worse, 

and as the third one we have BRV5m_63. Additionally, we do not observe any substantial 

differences among models with TTM lower than 30 days. Moreover, errors gradually decrease 

from highest TTM to lowest TTM, but we can assign this „pattern‟ to the properties of RMSE, 

which is an absolute error statistics. Nevertheless, these results confirm the previous ranking. 

 

Figure. 5.7. RMSE statistics for put options 

 
 

Analysing of the next figure (5.8a) is difficult because of outliers occuring for OTM and ATM 

for TTM lower than 15 days. Therefore, we present HMAE in charts with transformed scale in 

Figure 5.8b (with maximum set to 1.0) what enables us to interpret the results. Once again we see 

that the best models are: BIV, Heston and BRV5m_63 (in this sequence). The worst models are 

GARCH, BRV5m and BHV. 
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Figure. 5.8a. HMAE statistics for put options 

 
 

Figure. 5.8b. HMAE statistics for put options 

 
a 
different scale in comparison to Figure 5.8a 

 

Figures that follow (Figure 5.9a and 5.9b) present HMAE statistics for put options with a 

separate model in each box. Each box contains results for a single model for five classes of TTM 
(TTM-1 = „0-15 days‟, TTM-2 = ‟16-30 days‟, TTM-3 = ‟31-60 days‟, TTM-4 = ‟61-90 days‟, 

TTM-5 = ‟91+days‟) and five classes of MR (from the dotted line indicating deepOTM to dashed 

lines indicating OTM, ATM and ITM to the solid line indicating deepITM). Unfortunately, once 

again the existence of serious outlier in figure 5.9a  prevents any meaningful interpretation of 

results.  
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Figure. 5.9a. HMAE statistics for put options – different dimension 

 
 

Therefore, we present figure 5.9b with transformed vertical axis scale (maximum set to 1.2) 

what enables us to visualise the same pattern of valuation as that for the Polish index option 

market (Kokoszczyński et al. 2010b). We observe the dependence of HMAE values from TTM 

and MR ratios. However, the dependence of HMAE on TTM is not stable and is conditional on 
MR, while we observe significant decrease of HMAE with MR going from deepOTM to 

deepITM. The similar pattern could probably be observed in the case of call options (figure 5.5b) 

but because of the distortion of data with an outlier for the GARCH model we are not able to 

show it clearly. 

 

Figure. 5.9b. HMAE statistics for put options – different dimension 

 
a 
different scale in comparison to Figure 5.9a 

 

Finally, focusing on the issue of outlier identification (Figure 5.5b, 5.8b, and 5.9b) we are sure 

that their possible exclusion requires special attention, because in many cases outliers totally 

distort results. Summing up the problem of outlier identification and the motivation for their 

exclusion we can formulate the following conclusions. Firstly, substantial deviations of error 

values from their average value are not always signalling a “true” outlier. In some cases the 

reason thereof is the nature of the model used rather than data themselves (e.g BRV models with 
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non-averaged RV). We call the former spurious outliers to differentiate them from “true” outliers. 

Secondly, excluding outliers (including those spurious ones) gives as a result similar patterns in 
error statistics for call options as those we have for put options. However, in the paper we solve 

the problems of outliers just by transforming vertical axis, what is enough to make results‟ 

interpretation possible. 

 

5.3. Multidimensional comparisons of results. 

 

In this closing subsection we present our conclusions in a more formal way. Figure 5.8 presents 

the frequency of best pricing for all tested models in 5 diagrams for each moneyness ratio for call 

and put options together. Our initial conclusions from section 5.2 are confirmed here by this 

aggregated approach. BIV is clearly the best model, the Heston model is the next one, and the 

third one is BHV. Additionally, we see that the Heston model seems to behave much better for 

OTM, and especially for ATM options, while the BIV model behaves in the the worst way for 
ATM and then for ITM options. Finally, we noticed that the BRV and the GARCH models are 

the worst models for every MR. 

 

Figure. 5.8. The frequency of the best option pricing for Nikkei225 index options with respect to 

MR based on HMAE error statistic. a 

 

a
 The charts present the data for call and put options together. 
 

Figure 5.9 shows next the frequency of best pricing for all tested models but for each TTM  

class for call and put together. The BIV model is - as expected - the best one, and the Heston 

model is ranked as the second one, the BHV model follows. Additionaly, we see that the BIV 

model gains on efficiency, while the Heston model worsens its performance when we go from the 

lowest TTM to the highest one. Other models do not change their performance with respect to the 

TTM class. 
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Figure 5.9. The frequency of the best option pricing for Nikkei225 index options with respect to 

TTM on HMAE error statistic. a 

 
a
 The charts present the data for call and put options together. 
 

The final figure (5.10) that presents the frequency of best pricing for all tested models with 

respect to the type of options obviously does not change the model ranking. However, we see a 

very interesting pattern concerning two best models. The BIV model performs much better for 
put options, while the Heston model is better for call options. Here again we do not observe any 

significant differences for other models. 

 

Figure. 5.10. The frequency of the best option pricing for Nikkei225 index options with respect 

to the type of option on HMAE error statistic. a 

 
a
 The charts present the data for call and put separately. 
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6. Conclusions and further research. 

 
We have presented in this study a detailed analysis of the Japanese Nikkei225 index options 

basing our research on HF transactional 5-minutes data. We compared 5 different types of option 

pricing models: the Black model with different assumptions about the volatility process (BRV -  

two cases, BHV, BIV), the Heston model and GARCH models. Then, we present detailed error 

statistics describing how efficient in option pricing are the model we test. Furthermore, we focus 

on the analysis of liquidity for option market in order to better understand different behavior of 

options within various classes of TTM and MR. Here, we try to summarize our conclusions from 

this study and we formulate some thoughts concerning further research. 

First of all, when we consider the performance of models we have tested, the model ranking, 

from the most efficient to the least efficient one, is as follows: BIV, Heston, BHV, BRV5m_63, 

BRV5, and GARCH(1,1). Moreover, the BIV model comes out as the best model when compared 

to many different types of option valuation models, and additionally for various classes of TTM 
and MR. Additionally, our results confirm the previous findings for an emerging market, what 

means that this model ranking is not only a feature of an individual market, but can also be 

regarded as an observation robust to the level of development, liquidity or various other market 

characteristics.   

Secondly, we observe the clear relation between model error and moneyness ratio (for call and 

put options): high error values for low moneyness ratios (deepOTM) and the best fit for high 

moneyness ratios (deepITM). We can explain this pattern by noting that highly valued options 

(MR equal to ITM or to deepITM) are relatively better priced because of more active 

participation of market makers and institutional investors in this market segment, where we do 

not observe strong under- or overreaction to new information as it happens with individual 

investors. The concentration of liquidity for low-valued options with short TTM we notice can 
mean high error for options which are traded more frequently. Such error distribution can explain 

higher interest of speculative investors for OTM and deepOTM options, where information noise, 

responsible for larger departure of transactional prices from the theoretical ones, is of a greater 

importance. All these outcomes confirm our previous results for the Polish WIG20 index option 

market. 

Thirdly, focusing on parameter n (RV averaging parameter) for BRV models we observe that 

much lower error values are obtained for n=63 than in the case of non- averaged RV, what 

confirms our initial hypothesis that the non-averaged RV estimator (Figure 3.3) is rather a poor 

choice considering the efficiency of option pricing model. This is the confirmation of results 

presented in the literature on the efficiency and accuracy of various volatility estimators 

(Ślepaczuk and Zakrzewski 2009). 

Fourthly, we would like to focus on two models with the most time-consuming estimation 
process (the Heston model and GARCH models). Results we have presented earlier make us to 

doubt whether there is any gain from using them, especially in the case of the GARCH model 

which comes out as the worst one, when better models are formally much less complicated and 

additionally less time consuming in the process of estimation. 

Analysing liquidity issues we observe several interesting feature of the Japanese index option 

market data. First of all, the volume of calls and puts concentrates in ATM, OTM and deepOTM 

options, with hardly any volume noticed for deepITM and ITM options. Secondly, the turnover 

volume peaks around ATM and ITM options, indicating that the highest (in terms of transaction 

value) liquidity is observed for ATM options, and then for ITM options. Thirdly, the liquidity – 

however measured - is significantly higher for put options. Nevertheless, we are aware of the fact 

that the latter conclusion could result from the sharp downward movement of the market in the 
time we study and the high demand for put options for hedging purposes. 
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This final observation shows clearly how important are liquidity issues for patterns we get 

while comparing performance of various option pricing models. They should be certainly the 
subject of further studies. Our intention is thus to conduct a similar study for other markets. 

There are suggestions in the literature that notwithstanding unrealistic assumptions of the BSM 

or the Black model they can produce results of the same quality than much more sophisticated 

model do. Our paper constitutes a strong argument supporting this opinion, because superiority of 

this model is shown for a great number of various classes of option pricing models.  
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