$\frac{815}{*}+$
UNIVERSITY OF WARSAW

Working Papers

No. 22/2023 (429)

FRAMING-INDUCED EMOTIONS AFFECT PERFORMANCE IN SIMPLE COGNITIVE TASKS UNDER RISK

Joanna Rachubik

University of Warsaw
Faculty of Economic Sciences

Framing-induced emotions affect performance in simple cognitive tasks under risk

Joanna Rachubik
University of Warsaw, Faculty of Economic Sciences
Corresponding author: j.rachubik@uw.edu.pl

Abstract

In this study, we investigated how performance in a number of puzzles (decisions under risk) depended on the framing. The puzzles, drawn and adapted from existing literature, were designed to expose well-established cognitive biases could lead respondents to select intuitive yet incorrect answer. Subjects were randomly assigned to one of three treatments: a third of the sample saw puzzles framed in terms of COVID-19, another third about a common cold, and the remaining group about unemployment. Across five continents, we collected over 8,000 observations. We found that framing of the puzzles affected performance, prompting questions regarding the external validity of these puzzles. Treatments associated with more severe threats, such as COVID and Unemployment, elicited stronger (negative) emotions compared to the common cold. Moreover, these emotional reactions were also linked to performance, and their levels correlated negatively with the number of correctly solved puzzles.

Keywords: decision-making under risk, framing, emotions, cognitive biases, cognitive tasks, COVID-19

JEL codes: C91, C99, D01, D81, D91

Acknowledgments: I express my sincere gratitude to Prof. Michał Krawczyk for his invaluable mentorship, insightful feedback, and meticulous comments throughout the various iterations of this work. His guidance has been instrumental in shaping the direction and quality of this research.

I would also like to thank Raman Kachurka, a member of the initial team working on this project. His contributions in the early stages of this research were essential in laying the foundation for this work.

The author gratefully acknowledges the support of the National Science Centre, Poland, grant 2020/01/0/HS4/00251, which was acquired together with Prof. Michał Krawczyk, Raman Kachurka and Erita Narhetali.

[^0]
1. Introduction and literature review

Emotions have traditionally been seen as obstacles to rational decision making. Recent research, however, shows a more nuanced perspective. In this project, we contributed to this evolving understanding by running an experiment using puzzles known to frequently elicit normatively incorrect responses from a substantial fraction of subjects. We manipulated the framing of the puzzles: while the logical structure remained the same, we presented them in a more vs. less emotionally involving form. We did so in a large international sample to assess the robustness of our findings to languages and cultures.

The starting point for our design was the general observation that the ability to make normatively correct choices may strongly depend on the (broadly understood) framing of the problem. The existing evidence regarding the puzzles used in this study remains limited. For instance, Bar-Hillel (1980) found reduced base-rate neglect when - unlike in Tversky and Kahneman's taxicab problem - individuating information was framed as a feature of the type (see also Pennycook et al., 2022). Doyle (1997) found that strategies employed to judge cumulative risk depended on the problem being framed as a conjunction or a disjunction.

One form of framing involves manipulating the emotional load of task wording. This path is less explored in emotion research, which often relies on a separate task to induce emotions. (e.g., inducing affect in a preceding task by displaying happy vs. sad movie clips). However, this technique may be considered deceptive because it is either implied or explicitly said that the two tasks are unrelated. Furthermore, the question arises if findings concerning such incidental emotions are also valid for integral or task-related emotions. We are unaware of studies on the framing of cognitive biases that directly manipulate the emotional load in their wording. The COVID-19 pandemic inspired us to do just that.

We came up with a manipulation of the framing of the puzzles identified in the literature on decisions under risk, to see if it affected the prevalence of normatively correct answers to these puzzles. Given that COVID-19 was a potentially severe medical threat, framing logical puzzles in its terms might influence outcomes, given that fear and anxiety, widely experienced during crises (Jin, 2009; Pang et al., 2009), impact the quality of judgment and decision-making under risk. For example, in a study investigating the "Asian disease" (which we also used), Rachev et al. (2021) found that the risky-choice framing effect seemed to be especially high during the (early months of the) pandemic, particularly among respondents concerned about the virus. On top of that, some studies showed that longer (Forgas, 1989), more systematic
(Mohanty \& Suar, 2014) processing of information was characteristic of negative mood more generally. There is also some evidence that the experience of a loss led to improved cognitive performance, which could be explained by increased arousal, attention, and consistency in judgments (Yechiam \& Hochman, 2013b, 2013a).

The pandemic itself and especially the public health measures taken have also invoked high levels of anger. While being a negative affect (like fear or sadness), anger prompts different action tendencies; in particular, it leads to greater risk-taking (Lerner \& Keltner, 2000). Still, like fear, it has been linked to more active information-seeking (Griffin et al., 2008) and more analytical processing (Moons \& Mackie, 2007). Conversely, in the domain of political decision-making, induced anger (compared to fear) was shown to lead to more impulsive decisions (Parker \& Isbell, 2010). Studies also found that it caused greater reliance on stereotypical thinking (Bodenhausen et al., 1994).

For comparison, our second treatments included another framing involving a severe (but not medical) threat: unemployment. Virgolino et al. (2022) reviewed literature that unambiguously showed its serious psychological consequences: a large majority of studies investigating a possible link between unemployment and phenomena such as anxiety and mood disorders found a positive association. Not only the actual job loss but mere job insecurity had adverse effects on psychological well-being; it even extended to the spouse, see Bünnings et al. (2017) and studies cited therein.

The third, sort of a control treatment, was one that, just like COVID-19 (and unlike unemployment), was a medical threat, but unlike either of the two was not severe - framing puzzles in terms of a common cold.

In the current paper, we reported two studies building upon the above. In both of them, we investigated how performance in a number of puzzles of decision-making under risk and uncertainty depended on framing treatment: COVID vs. unemployment vs. common cold. The main difference between them was that whereas Study 1 was conducted in Poland only, Study 2 was run in eight countries, allowing us to observe possible cultural differences. Additionally, the set of puzzles was streamlined. Both studies yielded consistent results, with the non-lethal, serious threat of unemployment tending to worsen performance slightly compared to the other two.

1.1. Hypotheses

We formulate the following hypotheses:
H1: Puzzles framed in terms of a serious threat (COVID and Unemployment) will lead to more negative emotions compared to a less serious threat (Cold).

H2: Systematic differences in performance across treatments will be observed.
H3: Emotions and response times will mediate performance differences between treatments.

2. Study 1

2.1. Design and procedures

Our study involved several demographic questions and a set of puzzles. The puzzles came in three different versions: for one-third of the sample, they concerned COVID-19, one-third saw those relating to the common cold, and the rest were about unemployment. In each case, the subjects were pre-warned that the puzzles involved possible simplified scenarios, not statistical facts. Note that all three domains involved threats (rather than chances). Whereas COVID represented a severe and medical threat, unemployment was a serious but nonmedical threat, and the common cold was a minor medical threat. We might thus hope to unravel which aspect of the threat of COVID (that it is a threat to one's health or that it is a major one) affected performance in our puzzles.

Notably, the logical structure of all the puzzles was identical in all treatments. For example, three versions of one of the questions (inspired by the cognitive reflection task (Frederick, 2005) are shown in Table 1.

Table 1. The 'lilypad' puzzle in the three treatments

Covid	Common cold	Unemployment
In [a small town of]	In [a small town of]	town of]
Braniewo, the percentage of residents infected with coronavirus doubles every day. After 12 days, everyone is infected.	Braniewo, the percentage of residents with a cold doubles every day. After 12 days, everyone has a cold.	Braniewo, among adult residents who are fit to work, the percentage of those unemployed doubles every month. After 12 months, everyone is unemployed. After how many months were half of the adults unemployed?
After how many days was half of the population	After how many days did half of the population have a cold?	
infected?		

The puzzle has an intuitive answer (six), but the correct answer is different (11). It proved to be quite difficult, perhaps indicating that the concept of exponential growth is not easily grasped, which is of obvious relevance in pandemics (or: at its early stages at any rate). The puzzle is also brief, does not require special mathematical training to solve, and can be readily adapted to our three contexts. The same criteria were used to select the remaining puzzles in this study. The puzzles are summarized in Table 2, while the exact wording of all the questions can be found in Appendix A.

It should be noted that in some puzzles, arriving at an exact answer was challenging, such as 41.4% in the case of the Cab problem. To categorize answers as correct or incorrect, we adopted a more lenient approach. Any response recognizing that both the base rate information and the individuating information were valuable, i.e., any value higher than 15% and lower than 80% was considered as "correct" (see the last column of Table 2). Similarly, we took a lenient approach in the case of misestimation of compound probability and the inability to interpolate. Conversely, in the case of Asian disease, where framing was manipulated between subjects, it was impossible to establish correctness at the individual level at all.

Table 2: The puzzles

Bias studied	Puzzle from the literature adapted	Bibliographi c reference	Key elements of the narrative (COVID treatment)	Intuitive answer	Normative answer	Acceptable interval
Misperception of exponential growth*	Lilypad	(Frederick, 2005)	Doubles daily, in 12 days, all infected. When was half infected?	6	11	[11,11]
Base rate neglect/fallacy	Cab problem	(Tversky \& Kahneman, 1980)	15% really infected. Tests are 80% accurate. Prob. that a test-positive person is really infected.	15\%, 80\%	41.4\%	(15\%,80\%)
Misestimation of compound probability	x	(Bar-Hillel, 1973; Kahneman et al., 1982)	99.5% to stay healthy. Iterate 100 times. What is the prob. of being healthy after 100 x .	99.5\%	60.5\%	(40\%,80\%)
Gain/loss framing effect in choice under risk	Asian disease	 Kahneman, 1981)	Lives framed as gained vs. lost (betweensubject). Choose risky vs. safe.	risky option in the loss frame only	Consistency and los	between gain framing
Loss aversion	50% for a greater gain, 50\% for a (smaller) loss	(Kahneman et al., 1982; Tversky \& Kahneman, 1991)	A new policy: 50/50 gamble, lives being lost/saved vs. do nothing	Loss aversion>1	Loss av	rsion=1
Inability to interpolate: death rate	x	x	$\begin{array}{ll} \hline 51-60 & 0.5 \% \\ 61-70 & 1.9 \% \end{array}$ Jan is 61 . What is the prob. of Jan's death?	1.9\%	x	(0.5\%,1.9\%)

What you see is all there is sample size neglect in beliefs update	X	$\begin{aligned} & \text { (Kahneman, } \\ & 2012 \text {) } \end{aligned}$	10 (1% of the sample) vs. $10.000(1 \%$ of the sample) infected. Are the beliefs updated?	upward (downward) belief update when the absolute number of cases is high (low)	Consistency between the direction of belief update from large vs. small sample (within-subject)

Variable names are in italics.
See Appendix A for all the questions.

* 12 changed to 8 in Study 2; see the design subsection of the Study 2 section for an explanation

After solving the puzzles, subjects were asked to state the intensity of feeling the basic emotions, namely fear, anger, disgust, sadness, surprise, and joy, on a scale of 1 to 10 (Ekman, 2005). They were also asked about the level (rated from 1 to 10) of fear regarding the labor market situation, the common cold, and the COVID-19 pandemic. We also asked about their willingness to take risks in general and in two specific domains (work and health); feeling informed about the issues of COVID-19, the labor market situation and unemployment, and the common cold; feeling in control regarding the risk of being infected with COVID-19, losing their job, catching a cold; beliefs in conspiracy theories; willingness to get vaccinated against COVID-19; mask-wearing habits, keeping physical distance from others, and meeting with the close elderly ones compared to before the pandemic.

2.2. Results

Our sample consisted of 3105 adult Poles who were recruited from among approximately 110,000 individuals registered in the Ariadna panel. The identity of each panel member was verified, and their personal data was kept confidential to ensure anonymity. Ariadna's security measures prevent bot activity. Respondents earned virtual points for each survey they completed, which could later be redeemed in an online shop. The sample was nationally representative in terms of key demographic variables. Summary statistics are presented in Table 3.

Table 3. Summary statistics: Study 1

Variable	Mean	SD	Min	Max
Female	0.52	0.50	0	1
Age	43.72	15.89	18	95
Education	4.54	1.99	1	7
Income	3.12	0.77	1	5
Health	2.58	0.79	1	4
Religious	0.76	0.43	0	1
Joy	5.24	2.35	1	10
Fear	4.39	2.61	1	10

Anger	4.45	2.75	1	10
Disgust	3.40	2.52	1	10
Sadness	4.54	2.76	1	10
Surprise	4.00	2.43	1	10
Fear: covid	5.84	2.52	1	10
Fear: cold	4.45	2.38	1	10
Fear: unempl	6.30	2.48	1	10
Risk: overall	5.60	2.26	1	10
Risk: work	5.59	2.42	1	10
Risk: health	4.73	2.48	1	10
Mask wearing	3.20	1.00	1	4
Social distance	7.03	2.49	1	10
Elderly*	-0.54	0.59	-1	1
Informed: covid	4.59	1.58	1	7
Informed: cold	4.17	1.52	1	7
Informed: unempl	3.88	1.58	1	7
Control: covid	4.03	1.74	1	7
Control: cold	3.41	1.86	1	7
Control: unempl	4.28	1.67	1	7
Conspiracy score	5.00	1.57	1	7
Vaxx_yes	0.56	0.50	0	1
Performance	0.43	0.18	0	1
	3105			
*-1 means meeting with the elderly less often than before the pandemic,				
l more often				

2.2.1. Manipulation check

We found significant differences in all emotions except joy; see Table 4. In the case of negative emotions, they were always most potent in the COVID treatment, as expected. In pairwise comparisons, COVID was found to induce significantly stronger feelings than Cold, except for the positive emotion of joy. Compared to Unemployment, COVID triggered significantly stronger anger and sadness (see Appendix B, Table B1 for the results of the Tukey's HSD pairwise comparison test).

Table 4. Study 1: Manipulation check

Emotions	COVID	Unemployment	Cold	SD total sample	Kruskal-Wallis p-value
Fear	4.72	4.50	3.93	2.61	0.0001
Anger	4.89	4.49	3.95	2.75	0.0001
Disgust	3.72	3.48	2.97	2.52	0.0002
Sadness	4.93	4.61	4.07	2.76	0.0003
Surprise	4.14	4.15	3.71	2.43	0.0004
Joy	5.30	5.16	5.25	2.35	0.4310

2.2.2. Performance in the puzzles

Statistics of our performance measures by puzzle are presented in Tables 5 and 6. Although not substantial, the differences observed in each instance are statistically significant, owing to the large sample size. These differences are also puzzle-specific, although there is some tendency for the Unemployment treatment to do worse than the other treatments.

Table 5. Study 1: Performance by treatment and puzzle

	COVID	Unemployment	Cold	Kruskal-Wallis p-value
Lilypad	0.28	0.23	0.29	0.003
Base rate	0.77	0.81	0.78	0.0444
Compound prob	0.26	0.18	0.25	0.0001
Loss aversion	0.43	0.33	0.39	0.0001
Death rate	0.15	0.11	0.13	0.016
Beliefs update	0.73	0.67	0.76	0.0001

Note: we show the fraction of subjects providing answers defined as "acceptable"; see the last column of Table 2.

Table 6. Study 1: Prevalence of risky choices in the "Asian disease" puzzle, by treatment and framing

	Treatment		
Framing	COVID	Unemployment	Cold
Negative	0.51	0.47	0.48
Positive	0.33	0.26	0.32

The response times did not differ between the treatments and they did not mediate the treatment effects. Neither the quantile regression of time on treatment nor the pairwise comparisons of means (Tukey's HSD) allowed us to reject the null hypothesis.

The correlations between variables indicating normatively correct answers to different puzzles were generally low, never exceeding 10% (see Table B2 in Appendix B).

Given the large and diversified sample, we were able to explore demographic effects. We computed the number of puzzles correctly solved by each individual, ranging from zero to six (while there were seven puzzles, recall that the Asian disease puzzle was run betweensubject). Then, we took it as the dependent variable in an ordered logit model, see Table 7. In the basic specification (1) we only included treatment dummies. In (2) we added basic demographic variables, and in (3-7) also included self-reported experienced emotions. Findings from the regression confirmed that the Unemployment treatment had a small, negative impact on performance. Having completed higher education and living in a big city was associated with better performance. Interestingly, unemployed people did slightly better. Overall, the fit
of the model, judging by pseudo R2, was very poor. However, inclusion of any of the selfreported emotions markedly improved the fit (we did not include all of them simultaneously due to their high intercorrelation, as presented in Table B3 in Appendix B, which can lead to multicollinearity). Each of these emotions was negatively associated with performance.

Table 7. Study 1: Ordered logit model with performance as a dependent variable

Variable	(1) Base	(2) Demo	(3) Fear	(4) Anger	(5) Disgust	(6) Sadness	(7) Surprise	(8) Joy
Treatment Cold	-0.070	-0.100	-0.145*	-0.140*	-0.146*	-0.131*	-0.124	-0.103
Tr_ Unemployment	-0.434***	-0.457***	-0.469***	-0.476***	-0.474***	-0.472***	-0.454***	-0.461***
Female		-0.047	-0.025	-0.032	-0.054	-0.035	-0.050	-0.043
Age		0.023	0.022	0.021	0.020	0.021	0.022	0.025*
Age ${ }^{2}$		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
City Population:								
small (<20k)		-0.160	-0.149	-0.148	-0.143	-0.159	-0.139	-0.159
medium (<99k)		-0.050	-0.045	-0.041	-0.041	-0.044	-0.039	-0.054
big (<500k)		0.060	0.065	0.072	0.073	0.069	0.073	0.048
large ($>500 \mathrm{k}$)		0.169	0.179*	0.178*	0.184*	0.181*	0.171	0.164
Edu: secondary		0.100	0.108	0.105	0.085	0.102	0.086	0.081
Edu: higher		0.415***	0.425***	0.423***	$0.398 * * *$	0.423***	0.399***	0.393***
Wealth: low		-0.221**	-0.203**	-0.202**	-0.183**	-0.196**	-0.191**	-0.225**
Wealth: high		-0.082	-0.097	-0.093	-0.093	-0.094	-0.077	-0.064
Health: poor		0.052	0.066	0.067	0.057	0.069	0.062	0.029
Health: good		0.073	0.012	0.030	0.026	0.028	0.051	0.108
Religious		-0.160**	-0.127*	-0.159**	-0.150**	-0.148*	-0.131*	-0.133*
Unemployed		0.205*	0.214*	0.215*	0.205*	0.212*	0.194*	0.183
Pensioner		-0.050	-0.041	-0.051	-0.066	-0.041	-0.052	-0.040
Student		0.170	0.171	0.143	0.138	0.174	0.125	0.151
Fear			$-0.060 * * *$					
Anger				$-0.047 * * *$				
Disgust					$-0.064^{* * *}$			
Sadness						$-0.040^{* * *}$		
Surprise							$-0.066^{* * *}$	
Joy								-0.045***
Log-likelihood	-5096.547	-5056.393	-5045.643	-5048.757	-5044.367	-5050.884	-5044.238	-5051.520
Pseudo R2	0.003	0.011	0.013	0.013	0.014	0.012	0.014	0.012
Observations	3105	3105	3105	3105	3105	3105	3105	3105

Legend: ${ }^{*} p<.1 ;{ }^{* *} p<.05 ;{ }^{* * *} p<.01$
In Table B4 in Appendix B we also show the logistic regressions with acceptable answers to each of the puzzles as a dependent variable. These separate regressions increased the fit of the models considerably. However, they only emphasize what was already visible from the ordered logit model in Table 7.

3. Study 2

3.1. Design

Study 2 followed the same pattern as Study 1, with analogous treatments and puzzles. The only change we implemented was that the number 12 was replaced with 8 in the Lilypad Puzzle. Twelve (and six) are prominent numbers of months but not prominent numbers of days. This could make the intuitive, incorrect answer especially tempting in the Unemployment treatment, which would be an undesirable artefact. Additionally, there were minor adjustments to the postexperimental questionnaire.

More importantly, Study 2 was conducted internationally. On top of the Polish version as used in Study 1, we deployed an English translation in Kenya, New Zealand, the UK, and the US, as well as a Spanish version in Argentina, Mexico, and Spain. This enabled us to investigate the robustness of our results with respect to language and, within English and Spanish versions, to substantial geographic and cultural differences. We collected a minimum of 400 observations in each country, except for the much larger, diverse US society, where we collected over 2000. The distribution of key variables in the US is presented in Table 8, while Table 9 provides this distribution for the other countries (referred to as the international dataset). Specific values for individual countries can be found in Table C5 in Appendix C.

Table 8. Study 2 (US sample): Summary statistics

Variable	Mean	SD	Min	Max
Female	0.56	0.5	0	1
Age	52.76	17	18	102
Education	2.51	0.55	1	3
Income	2.98	1.02	1	5
Health	2.86	0.89	1	4
Religious	1.11	0.71	0	2
Joy	4.93	2.88	1	10
Fear	3.55	2.89	1	10
Anger	3.57	2.89	1	10
Disgust	3.59	2.90	1	10
Sadness	3.90	2.94	1	10
Surprise	4.11	2.94	1	10
Risk: overall	5.72	2.56	1	10
Risk: work	5.07	2.84	1	10
Risk: health	5.00	2.92	1	10
Mask	2.79	1.13	1	4
wearing				
Social	7.37	2.57	1	10
distance	0.49	0.18	0	1
Performance				

| $\mathrm{N} \quad 2041$ |
| :---: | :--- |

Table 9. Study 2 (international sample): Summary statistics

Variable	Mean	SD	Min	Max
Female	0.48	0.5	0	1
Age	42.46	16.01	18	97
Education	2.58	0.54	1	3
Income	2.91	0.84	1	5
Health	2.91	0.79	1	4
Religious	0.84	0.64	0	2
Joy	5.71	2.6	1	10
Fear	4.42	2.83	1	10
Anger	4.09	2.82	1	10
Disgust	4.11	2.77	1	10
Sadness	4.58	2.81	1	10
Surprise	4.76	2.68	1	10
Risk: overall	6.57	2.29	1	10
Risk: work	5.43	2.71	1	10
Risk: health	5.2	2.88	1	10
Mask wearing	3.52	0.83	1	4
Social distance	7.29	2.36	1	10
Performance	0.51	0.19	0	1
N	2949			

3.2. Results

3.2.1. Manipulation check

Once more, treatments had a significant effect on all negative emotions, as seen in Table 10. Specifically, they were less pronounced in the cold treatment compared to the remaining two. Statistics from Tukey's HSD pairwise comparison test can be found in Table C1 of Appendix C.

Table 10. Study 2 (both samples): Manipulation check

Emotions	COVID	Unemployment	Cold	SD total sample	Kruskal-Wallis p-value
Fear	4.08	4.21	3.91	2.89	0.0089
Anger	3.96	3.98	3.69	2.86	0.0039
Disgust	4	4.01	3.68	2.84	0.0007
Sadness	4.38	4.44	4.09	2.88	0.0008
Surprise	4.44	4.63	4.41	2.81	0.0450
Joy	5.33	5.38	5.47	2.75	0.2537

3.2.2. Performance

We now turn to the analysis of performance by puzzle. The differences between countries were limited (see Table 11); the results were thus analyzed jointly.

Table 11. Study 2 : performance by country and puzzle

	Lilypad	Base rate	Compound probability	Loss aversion	Death rate	Beliefs update
England	0.34	0.84	0.18	0.33	0.78	0.73
Kenya	0.14	0.9	0.23	0.33	0.81	0.67
New Zealand	0.31	0.87	0.19	0.3	0.77	0.73
USA	0.19	0.88	0.17	0.22	0.71	0.77
Spain	0.23	0.86	0.2	0.25	0.76	0.76
Argentina	0.19	0.84	0.23	0.28	0.73	0.72
Mexico	0.15	0.89	0.24	0.2	0.73	0.69
Poland	0.28	0.81	0.22	0.2	0.62	0.71
Total	0.22	0.87	0.2	0.25	0.73	0.74

As shown in Table 12, the performance was similar to that of Study 1. In particular, making the incorrect answer less salient in the Unemployment framing of the Lilypad problem did not improve performance. Treatment effects from Study 1 are thus replicated: performance in the Unemployment treatment was lower not only in the Lilypad problem but also in the Compound probability and Loss aversion problems. Again, performance in the Loss aversion puzzle was slightly worse under Cold than under COVID treatment. As in Study 1, response times did not differ across treatment.

Table 12. Study 2: Performance by treatment and puzzle

	COVID	Unemployment	Cold	Kruskal-Wallis p-value
Lilypad	0.23	0.18	0.23	0.0004
Base rate	0.85	0.87	0.88	0.0071
Compound				
probability	0.24	0.14	0.21	0.0001
Loss aversion	0.31	0.21	0.23	0.0001
Death rate	0.09	0.06	0.04	0.0001
Beliefs update	0.74	0.70	0.77	0.0001

Note: we show the fraction of subjects providing answers defined as "acceptable"; see the last column of Table 2.

Choices in the "Asian disease" puzzle were also very similar (see Table 13), except that the fraction of participants choosing the risky option in the Unemployment treatment was higher. However, the positive-negative framing gap was very stable across studies and across treatments.

Table 13. Study 2: Prevalence of risky choices in the "Asian disease" puzzle, by treatment and framing

		Treatment	
Framing	COVID	Unemployment	Cold

negative	0.51	0.56	0.52
positive	0.36	0.37	0.34

Again, the correlations between variables indicating normatively correct answers to different puzzles were low; see Table C2 in Appendix C.

In Table 14, we report ordered logit analyses analogous to those presented for Study 1 in Table 7 (whereas models for individual puzzles are displayed in Table C4). Once more, the Unemployment framing hindered performance; also, respondents with higher education did better. Likewise, self-reported economic status different from "we live very poorly" was associated with higher performance. As previously, the inclusion of any emotion (not included jointly due to multi-collinearity, see Table C3) improved the otherwise miniscule fraction of variance explained in the model: higher levels of emotions were associated with lower performance.

Table 14. Study 2: Ordered logit model with performance as a dependent variable

Variable	(1) Base	(2) Demo	(3) Fear	(4) Anger	(5) Disgust	(6) Sadness	(7) Surprise	(8) Joy
Treatment Cold	-0.153*	-0.171**	-0.182**	-0.192**	-0.191**	-0.184**	-0.175**	-0.165**
Tr_Unemployed	$-0.587 * * *$	-0.606***	-0.605***	-0.609***	-0.611***	-0.608***	-0.600***	-0.608***
Female		-0.239***	-0.232***	-0.244***	-0.250 ***	-0.235***	-0.274***	-0.269***
Age		-0.008	-0.009	-0.007	-0.006	-0.008	-0.009	-0.009
Age ${ }^{2}$		0	0	0	0	0	0	0
City population:								
Small city		0.028	0.025	0.018	0.024	0.025	0.028	0.038
Medium city		-0.07	-0.058	-0.067	-0.049	-0.061	-0.035	-0.029
Large city/suburbs		-0.079	-0.07	-0.077	-0.059	-0.073	-0.034	-0.023
Edu: secondary		0.288	0.268	0.253	0.244	0.274	0.272	0.267
Edu: higher		0.690***	0.680***	0.665***	$0.653 * * *$	0.682***	0.687***	0.669***
Income:								
We live modestly		0.289*	0.253	0.246	0.238	0.259	0.251	0.294*
We live an average								
life		0.432***	0.376**	0.359**	0.352**	0.385**	0.385**	0.457***
We live well		$0.487 * * *$	0.435**	0.409**	0.402**	0.436**	0.463**	$0.541^{* * *}$
We live very well		0.461 **	0.425*	0.402*	0.392*	0.413*	0.495**	0.578***
Health: poor		0.103	0.122	0.131	0.121	0.122	0.08	0.007
Health: good		0.069	0.066	0.068	0.069	0.068	0.069	0.07
Religious		-0.262***	$-0.248^{* * *}$	-0.252***	-0.247***	-0.257***	-0.218***	-0.210***
Unemployed		-0.073	-0.09	-0.095	-0.085	-0.078	-0.117	-0.094
Pensioner		0.178	0.174	0.187	0.184	0.179	0.18	0.167
Student		0.167	0.147	0.142	0.164	0.159	0.097	0.15
Fear			-0.044***					
Anger				-0.056***				

Disgust			$-0.058^{* * *}$				
Sadness				$-0.030^{* *}$			
Surprise					$-0.077^{* * *}$		
Joy						$-0.070^{* * *}$	
Log-likelihood	-6948.356	-6850.57	-6839.5	-6832.84	-6831.82	-6845.61	-6819.18
Pseudo R2	0.007	0.021	0.022	0.023	0.023	0.021	0.025
Observations	4990	4990	4990	4990	4990	4990	4990

4. Discussion

As expected, we observed that the treatments involving more severe threats, namely COVID and Unemployment, triggered stronger (negative) emotions compared to Cold. These emotions were also linked to performance, with their levels correlating negatively with the number of correctly solved puzzles. This path cannot, however, fully explain treatment effects: while performance under Unemployment was worse than under Cold, this was not the case for COVID. Moreover, including emotions in the regression models did not substantially change estimates of direct treatment effects.

The remaining part of the treatment effect could, in principle, be related to differences in the clarity of the puzzles. Yet, there is, little evidence to support this explanation. First, nothing in the open-ended comments led us to believe that, for instance, the Unemployment treatment was more ambiguous than the other two. Treatment effects also exhibited remarkable stability across all three language versions. Lastly, while the initial formulation of the Lilypad puzzle might have made the incorrect answer particularly tempting in the Unemployment version, fixing the problem in Study 2 yielded no difference.

We thus observe very stable, systematic framing effects which are difficult to explain in terms of participants' emotional reactions. This observation calls for exploration of different possible wordings of the classic puzzles in the domain of decisions under risk, finding out how framing affects performance and seeking underlying mechanisms. The current practice of sticking to the canonical version can give a misleading picture of the cognitive biases these puzzles purportedly illustrate.

5. Bibliography

Bar-Hillel, M. (1973). On the subjective probability of compound events. Organizational Behavior and Human Performance, 9(3), 396-406.

Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44(3), 211233. https://doi.org/10.1016/0001-6918(80)90046-3

Bodenhausen, G. V., Sheppard, L. A., \& Kramer, G. P. (1994). Negative affect and social judgment: The differential impact of anger and sadness. European Journal of Social Psychology, 24(1), 45-62. https://doi.org/10.1002/ejsp. 2420240104
Bünnings, C., Kleibrink, J., \& Weßling, J. (2017). Fear of Unemployment and its Effect on the Mental Health of Spouses: FEAR OF UNEMPLOYMENT AND ITS EFFECT ON THE MENTAL HEALTH OF SPOUSES. Health Economics, 26(1), 104-117. https://doi.org/10.1002/hec. 3279

Doyle, J. K. (1997). Judging Cumulative Risk. Journal of Applied Social Psychology, 27(6), 500-524. https://doi.org/10.1111/j.1559-1816.1997.tb00644.x

Ekman, P. (2005). Basic Emotions. In T. Dalgleish \& M. J. Power (Eds.), Handbook of Cognition and Emotion (pp. 45-60). John Wiley \& Sons, Ltd. https://doi.org/10.1002/0470013494.ch3
Forgas, J. P. (1989). Mood effects on decision making strategies. Australian Journal of Psychology, 4l(2), 197-214. https://doi.org/10.1080/00049538908260083
Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25-42. https://doi.org/10.1257/089533005775196732
Griffin, R. J., Zheng Yang, Ter Huurne, E., Boerner, F., Ortiz, S., \& Dunwoody, S. (2008). After the Flood: Anger, Attribution, and the Seeking of Information. Science Communication, 29(3), 285-315. https://doi.org/10.1177/1075547007312309
Jin, Y. (2009). The effects of public's cognitive appraisal of emotions in crises on crisis coping and strategy assessment. Public Relations Review, 35(3), 310-313. https://doi.org/10.1016/j.pubrev.2009.02.003
Kahneman, D. (2012). Thinking, fast and slow. Penguin Books.
Kahneman, D., Slovic, S. P., Slovic, P., \& Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge university press.

Lerner, J. S., \& Keltner, D. (2000). Beyond valence: Toward a model of emotion-specific influences on judgement and choice. Cognition \& Emotion, 14(4), 473-493. https://doi.org/10.1080/026999300402763
Mohanty, S. N., \& Suar, D. (2014). Decision Making under Uncertainty and Information Processing in Positive and Negative Mood States. Psychological Reports, 115(1), 91-105. https://doi.org/10.2466/20.04.PR0.115c16z2
Moons, W. G., \& Mackie, D. M. (2007). Thinking Straight While Seeing Red: The Influence of Anger on Information Processing. Personality and Social Psychology Bulletin, 33(5), 706-720. https://doi.org/10.1177/0146167206298566

Pang, A., Jin, Y., \& Cameron, G. T. (2009). Final stage development of the Integrated Crisis Mapping (ICM) Model in crisis communication: The myth of low engagement in crisis. 12th

International Public Relations Research Conference: Coral Gables, Florida, March 11-15 2009: Proceedings, 449-468.

Parker, M. T., \& Isbell, L. M. (2010). How I Vote Depends on How I Feel: The Differential Impact of Anger and Fear on Political Information Processing. Psychological Science, 21(4), 548-550. https://doi.org/10.1177/0956797610364006
Pennycook, G., Newton, C., \& Thompson, V. A. (2022). Base-rate neglect. In R. F. Pohl, Cognitive Illusions (3rd ed., pp. 44-60). Routledge. https://doi.org/10.4324/9781003154730-5

Rachev, N. R., Han, H., Lacko, D., Gelpí, R., Yamada, Y., \& Lieberoth, A. (2021). Replicating the Disease framing problem during the 2020 COVID-19 pandemic: A study of stress, worry, trust, and choice under risk. PLOS ONE, 16(9), e0257151. https://doi.org/10.1371/journal.pone. 0257151

Tversky, A., \& Kahneman, D. (1980). Causal schemas in judgments under uncertainty. In Causal schemas in judgments under uncertainty (Vol. 1, pp. 49-72). Lawrence Erlbaum.
Tversky, A., \& Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453-458. https://doi.org/10.1126/science. 7455683

Tversky, A., \& Kahneman, D. (1991). Loss Aversion in Riskless Choice: A Reference-Dependent Model. The Quarterly Journal of Economics, 106(4), 1039-1061. https://doi.org/10.2307/2937956

Virgolino, A., Costa, J., Santos, O., Pereira, M. E., Antunes, R., Ambrósio, S., Heitor, M. J., \& Vaz Carneiro, A. (2022). Lost in transition: A systematic review of the association between unemployment and mental health. Journal of Mental Health, 31(3), 432-444. https://doi.org/10.1080/09638237.2021.2022615

Yechiam, E., \& Hochman, G. (2013a). Loss-aversion or loss-attention: The impact of losses on cognitive performance. Cognitive Psychology, 66(2), 212-231. https://doi.org/10.1016/j.cogpsych.2012.12.001

Yechiam, E., \& Hochman, G. (2013b). Losses as modulators of attention: Review and analysis of the unique effects of losses over gains. Psychological Bulletin, 139(2), 497-518.
https://doi.org/10.1037/a0029383

6. Appendix A

Covid:

[P1] Suppose that 15% of Polish citizens are infected with coronavirus, and 85% are healthy. A test to detect coronavirus at an early stage is 80% effective, i.e., when an actually infected person is examined, there is an 80% chance that the test will show that they are infected and 20% that they are healthy. When an actually healthy person is examined, there is an 80% chance that the test will show that they are healthy and 20% that they are infected.

In a randomly selected citizen, the test indicated the presence of the virus. What is the probability (in percent) that this person is actually infected?
[....] \%
[P2] Suppose that a random sample of [Poles] was tested, and it turned out that 10,000 of them were currently infected with the coronavirus. This represents 1% of the tested sample.

Would this information make you more or less concerned about the pandemic than you currently are?

More concerned
Less concerned
[P3-option 1] Authorities in a certain city are preparing to confront a new wave of a coronavirus pandemic. It can be expected to kill approx. 600 residents. Two prevention programs are being considered. Epidemiologists estimate that their effects on these statistical 600 people will be as follows:
Program A: 200 people will be saved
Program B: with a probability of $1 / 3,600$ people will be saved; with a probability of $2 / 3$, nobody will be saved
Which program should be implemented?
Program A
Program B
[P3-option 2] Authorities in a certain city are preparing to confront a new wave of a coronavirus pandemic. It can be expected to kill approx. 600 residents. Two prevention programs are being considered. Epidemiologists estimate that their effects on these statistical 600 people will be as follows:

Program A: 200 people will die
Program B: with a probability of $1 / 3$, no one will die; with a probability of $2 / 3$, everyone will die

Which program should be implemented?

Program A
Program B
[P4] Mortality among patients with coronavirus depends on their age. Suppose that the estimated probability of death within one month of infection for men in specific age groups is as follows:

Age group	Probability of death
$0-40$	0.1%
$41-50$	0.3%
$51-60$	0.5%
$61-70$	1.9%
$71+$	4%

Jan is 61 years old. What do you think is the probability that Jan will die within one month of being infected?
[.........] \%
[P5] Nationwide, around 20,000 more coronavirus deaths can be expected. A change in the procedure for handling patients in isolation hospitals has been proposed. The change may turn out to be good or bad.

The expected outcomes and their probabilities are shown in the table. For each row, indicate whether you think such a change should be implemented in the given situation.

Outcomes if the change turns out to be bad (chance: 50%)	Outcomes if the change turns out to be good (chance: 50%)	Should the proposed procedure change be implemented?	
An additional 5000 people will die	5000 people will be saved	Yes	No
An additional 5000 people will die	6000 people will be saved	Yes	No
An additional 5000 people will die	7000 people will be saved	Yes	No
An additional 5000 people will die	8000 people will be saved	Yes	No
An additional 5000 people will die	9000 people will be saved	Yes	No
An additional 5000 people will die	10000 people will be saved	Yes	No

[P6] Suppose you are now healthy-you have no coronavirus. You meet 100 people. For every meeting you start while being healthy, you have a 99.5% chance of remaining healthy (not being infected with coronavirus).

What is the probability that you will remain healthy after the last of 100 meetings?

[....]\%

[P7] Suppose that a random sample of [Poles] was tested, and it turned out that 10 of them were currently infected with the coronavirus. This represents 1% of the tested sample.

Would this information make you more or less concerned about the pandemic than you currently are?

More concerned
Less concerned
[P8] In Braniewo, the percentage of residents infected with coronavirus doubles every day. After 12 days, everyone is infected.
After how many days was half of the population infected?
[....]

Common cold:

[P1] Suppose that 15% of [Polish] citizens have a cold and 85% are healthy. A test to diagnose a cold at an early stage is 80% effective, i.e., when a person with an actual cold is examined, there is an 80% chance that the test will show that they have a cold and 20% that they are healthy. When an actually healthy person is examined, there is an 80% chance that the test will show that they are healthy, 20% that they have a cold.
In a randomly selected citizen, the test indicated the presence of a cold. What is the probability (in percent) that this person actually has a cold?
[....] \%
[P2] Suppose that a random sample of [Poles'] saliva in a given week was tested, and it turned out that 10,000 of them had a common cold. This represents 1% of the tested sample.

Would this information make you more or less concerned about catching a common cold

 than you currently are?More concerned
Less concerned
[P3-option 1] The authorities of a certain city are preparing to confront a wave of seasonal cold. It can be expected that approx. 600 residents will have to go on sick leave because of it. Two prevention programs are being considered. Doctors estimate that their effects on these statistical 600 people will be as follows:
Program A: 200 people will be able to work
Program B: with a probability of $1 / 3,600$ people will be able to work; with a probability of $2 / 3$, nobody will be able to work
Which program should be implemented?
Program A
Program B

[^1]Program A: 200 people will go on sick leave
Program B: with a probability of $1 / 3$, nobody will go on sick leave; with a probability of $2 / 3$, everyone will go on sick leave
Which program should be implemented?
Program A
Program B
[P4] The proportion of patients with complications due to the common cold depends on their age. Suppose that the estimated probability of complications for men in specific age groups is as follows:

age group	prob. of complication s
$0-40$	0.1%
$41-50$	0.3%
$51-60$	0.5%
$61-70$	1.9%
$71+$	4%

Jan is 61 years old. What do you think is the probability that John will develop complications?
[.........] \%
[P5] Nationwide, around 20,000 people can be expected to have health complications after having a cold. A change in the procedure for handling patients reporting to their family doctors has been proposed. The change may turn out to be good or bad.

The expected outcomes and their probabilities are shown in the table. For each row, indicate whether you think such a change should be implemented in the given situation.

Outcomes if the change turns out to be bad (chance: 50\%)	Outcomes if the change turns out to be good (chance: 50\%)	Should the proposed procedure change be implemented?	
5000 more people with complications	5000 fewer people with complications	Yes	No
5000 more people with complications	6000 fewer people with complications	Yes	No
5000 more people with complications	7000 fewer people with complications	Yes	No
5000 more people with complications	8000 fewer people with complications	Yes	No

5000 more people with complications	9000 fewer people with complications	Yes	No
5000 more people with complications	10000 fewer people with complications	Yes	No

[P6] Suppose you are now healthy - you do not have a cold. You meet 100 people. For every meeting you start while being healthy, you have a 99.5% chance of remaining healthy (not contracting a cold).
What is the probability that you will remain healthy after the last of $\mathbf{1 0 0}$ meetings?
$[\ldots] \%$
[P7] Suppose that a random sample of [Poles'] saliva in a given week was tested, and it turned out that 10 of them had a common cold. This represents 1% of the tested sample.

Would this information make you more or less concerned about catching a common cold than you currently are?
More concerned
Less concerned
[P8] In Braniewo, the percentage of residents with a cold doubles every day. After 12 days, everyone has a cold.
After how many days did half of the population have a cold?
[. . . .]

Unemployment:

[P1] Suppose that 15% of [Polish] citizens are at risk of unemployment and 85% are not. A competency test to detect the threat of unemployment is 80% effective, i.e., when an actually threatened by an unemployment person takes the test, there is an 80% chance that the test will detect the threat of unemployment and 20% that it will not detect this threat. When a person who is not at risk of unemployment takes the test, there is an 80% chance that the test will indicate no risk of unemployment and 20% that it will indicate a threat.
In a randomly selected citizen (from a group of working [Poles]), the test indicated that this person is at risk of unemployment. What is the probability (in percent) that this person is actually at risk of unemployment?
[. . . .] \%
[P2] Suppose that a random sample of employees in [Poland] was interviewed, and it turned out that 10,000 of them were afraid of losing their job within the next three months. This represents 10% of the tested sample.

Would this information make you more or less concerned about the threat of unemployment than you currently are?
More concerned

Less concerned
[P3-option 1] The authorities of a certain city are preparing to confront a wave of layoffs. It is expected that around 600 people will permanently lose their jobs as a result. Two aid programs for the newly laid-off are being considered. The authors of these programs estimate that their effects on these statistical 600 people will be as follows:
Program A: 200 people will save their job
Program B: with a probability of $1 / 3,600$ people will save their job; with a probability of $2 / 3$, nobody will keep their job

Which program should be implemented?

Program A
Program B
[P3-option 2] The authorities of a certain city are preparing to confront a wave of layoffs. It is expected that around 600 people will permanently lose their jobs as a result. Two aid programs for the newly laid-off are being considered. The authors of these programs estimate that their effects on these statistical 600 people will be as follows:
Program A: 400 people will lose their jobs
Program B: with a probability of $1 / 3$, nobody will lose their job; with a probability of $2 / 3$, everyone will lose their job
Which program should be implemented?
Program A
Program B
[P4] The proportion of workers at risk of sudden job loss depends on their age. Suppose that the estimated probability of being fired for men in specific age groups is as follows:

Age group	Probability of being fired
$0-40$	0.1%
$41-50$	0.3%
$51-60$	0.5%
$61-70$	1.9%
$71+$	4%

Jan is $\mathbf{6 1}$ years old. What do you think is the probability that Jan will lose his job?
[.........] \%
[P5] Nationwide, around 20,000 people can be expected to permanently lose their jobs as a result of the wave of layoffs. A change in the procedures for collective redundancies has been proposed. The change may turn out to be good or bad.

The expected outcomes and their probabilities are shown in the table. For each row, indicate whether you think such a change should be implemented in the given situation.

Outcomes if the change turns out to be bad (chance: $50 \%)$	Outcomes if the change turns out to be good (chance: $50 \%)$	Should the proposed procedure change be implemented?	
5000 more people laid off	5000 fewer people laid off	Yes	No
5000 more people laid off	6000 fewer people laid off	Yes	No
5000 more people laid off	7000 fewer people laid off	Yes	No
5000 more people laid off	8000 fewer people laid off	Yes	No
5000 more people laid off	9000 fewer people laid off	Yes	No
5000 more people laid off	10000 fewer people laid off	Yes	No

[P6] Suppose you have a job right now. Over 100 days, each day when you start work, you have a 99.5% chance of not being fired.

What is the probability that you will remain employed after your 100th day on the job?
[....] $\%$
[P7] Suppose that a random sample of employees in [Poland] was interviewed, and it turned out that 10 of them were afraid of losing their job within the next three months. This represents 10% of the tested sample.

Would this information make you more or less concerned about the threat of unemployment than you currently are?

More concerned
Less concerned
[P8] In [Braniewo], among the adult residents that are fit to work, the percentage of those unemployed doubles every month. After 12 months, everyone is unemployed.
After how many months were half of them unemployed?
[....]

7. Appendix B

Table B1. Study 1: Tukey's HSD pairwise comparisons test
Pairwise comparisons of means with equal variances
Over: treatment

			Tukey	Tukey	
Joy	Contrast	$\underline{\text { Std. err. }}$	t $\mathrm{P}>\mathrm{t}$	[95\% conf. interval]	
Cold vs COVID	-.0508	.1029	-0.49	0.874	$-.2921 \quad .1905$

Unempl vs COVID	-.1468	.1029	-1.43	0.327	-.3881	.0945
Unempl vs Cold	-.0960	.1046	-0.92	0.629	-.3412	.1492
Fear						
Cold vs COVID	-.7897	.1133	-6.97	-0.000	-1.0555	-.5240
Unempl vs COVID	-.2161	.1134	-1.91	0.137	-.4818	.0495
Unempl vs Cold	.5736	.1151	4.98	0.000	.3037	.8436
Anger						
Cold vs COVID	-.9450	.1193	-7.92	-0.000	-1.2247	-.6653
Unempl vs COVID	-.4030	.1193	-3.38	0.002	-.6827	-.1234
Unempl vs Cold	.5420	.1212	4.47	0.000	.2578	.8262
Disgust						
Cold vs COVID	-.7453	.1095	-6.81	-0.000	-1.0020	-.4886
Unempl vs COVID	-.2359	.1095	-2.16	0.079	-.4926	.0207
Unempl vs Cold	.5094	.1112	4.58	0.000	.2486	.7702
Sadness						
Cold vs COVID	-.8556	.1200	-7.13	-0.000	-1.1369	-.5743
Unempl vs COVID	-.3236	.1199	-2.70	0.019	-.6048	-.0423
Unempl vs Cold	.5320	.1219	4.37	0.000	.2462	.8178
Surprise						
Cold vs COVID	-.4293	.1060	-4.05	0.000	-.6778	-.1808
Unempl vs COVID	.01418	.1059	0.13	0.990	-.2342	.2626
Unempl vs Cold	.4435	.1076	4.12	0.000	.1911	.6959

Table B2: Study 1: Pairwise correlations of performance between puzzles

	Base rate neglect	Death rate	Beliefs update	Compound prob	Lilypad	Loss aversion
Base rate neglect	1.0000					
Death rate	-0.0686^{*}	1.0000				
Beliefs update	0.0001					
Compound prob	-0.0212	0.0083	1.0000			
	0.2365	0.6453				
Lilypad	0.0919^{*}	-0.0011	-0.0053	1.0000		
	0.0000	0.9520	0.7693		1.0000	
Loss aversion	0.0971^{*}	0.0113	0.0546^{*}	0.0434^{*}	0.0155	
	0.0000	0.5302	0.0023	0.0706^{*}	1.0000	
	0.0438^{*}	0.0060	0.0190	0.0181	0.0001	

Table B3: Study 1: Pairwise correlations of emotions

	Joy	Fear	Anger	Disgust	Sadness	Surprise
Joy	1.0000					
Fear	-0.0156	1.0000				
	0.3833					
Anger	-0.1012^{*}	0.6346^{*}	1.0000			
	0.0000	0.0000				
Disgust	-0.0202	0.5581^{*}	0.7046^{*}	1.0000		
	0.2595	0.0000	0.0000			
Sadness	-0.2030^{*}	0.6689^{*}	0.7043^{*}	0.6152^{*}	1.0000	
	0.0000	0.0000	0.0000	0.0000		
Surprise	0.1277^{*}	0.4555^{*}	0.4773^{*}	0.5290^{*}	0.4401^{*}	1.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	

Table B4. Study 1: Logistic regressions with acceptable answers in each of the puzzles as dependent variables

Logistic regression; Dependent variable: Lilypad (Acceptable interval from Table 2)								
Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	0.067	0.035	-0.050	-0.054	-0.062	-0.020	-0.017	0.029
Tr_Unemployment	$-0.270 * * *$	-0.279***	$-0.317^{* * *}$	-0.334***	-0.324***	-0.312***	-0.289***	-0.291***
Female		-0.448***	-0.412***	-0.428***	-0.475***	-0.432***	-0.464***	-0.446***
Age		-0.011	-0.014	-0.014	-0.016	-0.013	-0.011	-0.007
Age ${ }^{2}$		0.000	0.000	0.000	0.000	0.000	0.000	0.000
City Population								
Small (<20k)		-0.168	-0.154	-0.146	-0.125	-0.162	-0.140	-0.174
Medium (<99k)		-0.216*	-0.212*	-0.201*	-0.200	-0.213*	-0.200*	-0.220*
Big ($<500 \mathrm{k}$)		-0.064	-0.052	-0.036	-0.032	-0.046	-0.043	-0.083
Large ($>500 \mathrm{k}$)		0.051	0.070	0.073	0.083	0.072	0.052	0.057
Edu: secondary		0.420**	0.452***	0.446***	0.418**	0.439***	0.420**	0.385**
Edu: higher		1.240***	1.285***	1.274***	$1.241 * * *$	1.270***	1.238***	1.200***
Wealth: low		$-0.556^{* * *}$	$-0.528 * * *$	$-0.501 * * *$	-0.454***	$-0.512 * * *$	-0.495***	$-0.563 * * *$
Wealth: high		0.009	-0.024	-0.014	-0.020	-0.016	0.010	0.044
Health: poor		-0.028	0.003	0.006	-0.014	-0.001	-0.008	-0.066
Health: good		-0.011	-0.124	-0.101	-0.114	-0.084	-0.056	0.063
Religious		-0.450 ***	-0.388***	-0.452***	-0.435***	-0.433***	-0.395***	-0.398***
Unemployed		-0.404**	-0.380**	-0.388**	-0.403**	-0.390**	-0.431**	-0.464***
Pensioner		-0.371**	-0.362**	-0.368**	-0.387**	-0.350**	-0.365**	-0.376**
Student		0.320	0.308	0.269	0.256	0.339*	0.239	0.282
Fear			$-0.114^{* * *}$					
Anger				$-0.097 * * *$				
Disgust					$-0.147 * * *$			
Sadness						$-0.067 * * *$		
Surprise							$-0.127^{* * *}$	
Joy								-0.094***
Log-likelihood	-1791.492	-1664.030	-1643.393	-1646.522	-1632.957	-1655.595	-1640.591	-1652.060
Pseudo R2	0.003	0.074	0.086	0.084	0.092	0.079	0.087	0.081
N	3105	3105	3105	3105	3105	3105	3105	3105

Logistic regression; Dependent variable: Base rate neglect (Acceptable interval from Table 2)

Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	0.052	0.059	0.041	0.048	-0.001	0.051	0.041	0.058
Tr_Unemployment	$0.258^{* *}$	$0.275^{* *}$	$0.269^{* *}$	$0.271^{* *}$	$0.254^{* *}$	$0.272^{* *}$	$0.276^{* *}$	$0.274^{* *}$
Female	$0.189^{* *}$	$0.198^{* *}$	$0.192^{* *}$	$0.183^{* *}$	$0.192^{* *}$	$0.189^{* *}$	$0.190^{* *}$	
Age	-0.035^{*}	-0.036^{*}	-0.036^{*}	-0.039^{*}	-0.036^{*}	-0.036^{*}	-0.034^{*}	
Age 2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
City Population								
Small (<20k)	-0.057	-0.051	-0.053	-0.027	-0.056	-0.044	-0.056	
Medium ($<99 \mathrm{k})$	-0.066	-0.063	-0.064	-0.051	-0.065	-0.057	-0.066	
Big ($<500 \mathrm{k})$	0.097	0.101	0.101	0.120	0.099	0.108	0.091	
Large ($>500 \mathrm{k})$	-0.046	-0.043	-0.044	-0.030	-0.045	-0.045	-0.047	
Edu: secondary	0.227^{*}	0.229^{*}	0.229^{*}	0.211	0.228^{*}	0.220	0.217	
Edu: higher	$0.455^{* * *}$	$0.456^{* * *}$	$0.456^{* * *}$	$0.432^{* * *}$	$0.456^{* * *}$	$0.444^{* * *}$	$0.442^{* * *}$	
Wealth: low	$-0.285^{* *}$	$-0.279^{* *}$	$-0.280^{* * *}$	-0.234^{*}	$-0.280^{* *}$	$-0.266^{* *}$	$-0.285^{* *}$	
Wealth: high	$-0.349^{* * *}$	$-0.356^{* * *}$	$-0.352^{* * *}$	$-0.365^{* * *}$	$-0.352^{* * *}$	$-0.349^{* * *}$	$-0.340^{* * *}$	
Health: poor	0.005	0.009	0.008	0.004	0.007	0.008	-0.005	

Health: good	0.141	0.120	0.132	0.092	0.132	0.130	0.159
Religious	-0.082	-0.069	-0.082	-0.070	-0.079	-0.064	-0.068
Unemployed	-0.048	-0.044	-0.046	-0.046	-0.046	-0.054	-0.059
Pensioner	-0.204	-0.202	-0.204	-0.220	-0.201	-0.205	-0.202
Student	$0.570^{* *}$	$0.563^{* *}$	$0.562^{* *}$	0.516^{*}	$0.570^{* *}$	0.536^{*}	$0.559^{* *}$
Fear		-0.022					
Anger		-0.010					
Disgust			$-0.073^{* * *}$				
Sadness				-0.008		$-0.039^{* *}$	-0.022
Surprise						-1571.545	
Joy							0.029
Log-likelihood	-1614.855	-1572.175	-1571.425	-1571.988	-1563.963	-1572.055	-1569.933
Pseudo R2	0.002	0.028	0.029	0.028	0.033	0.028	0.030
N	3105	3105	3105	3105	3105	3105	3105

Logistic regression; Dependent variable: Compound probability (Acceptable interval from Table 2)								
Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	-0.099	-0.112	-0.103	-0.104	-0.101	-0.106	-0.099	-0.112
Tr_Unemployment	-0.464***	-0.477***	-0.474***	-0.473***	-0.473***	-0.474***	-0.478***	-0.476***
Female		-0.167*	-0.172*	-0.170*	-0.165*	-0.169*	-0.165*	-0.167*
Age		0.001	0.002	0.002	0.002	0.002	0.001	0.001
Age ${ }^{2}$		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
City Population								
Small (<20k)		-0.027	-0.029	-0.030	-0.032	-0.027	-0.036	-0.027
Medium (<99k)		-0.065	-0.067	-0.067	-0.068	-0.066	-0.071	-0.065
Big ($<500 \mathrm{k}$)		-0.017	-0.019	-0.020	-0.021	-0.019	-0.023	-0.015
Large ($>500 \mathrm{k}$)		0.191	0.189	0.190	0.188	0.189	0.190	0.191
Edu: secondary		-0.205	-0.207	-0.206	-0.202	-0.206	-0.200	-0.201
Edu: higher		-0.118	-0.121	-0.120	-0.114	-0.120	-0.110	-0.113
Wealth: low		-0.220*	-0.224*	-0.225*	-0.231*	-0.225*	-0.237*	-0.220*
Wealth: high		-0.063	-0.059	-0.061	-0.060	-0.060	-0.064	-0.066
Health: poor		-0.242	-0.244	-0.244	-0.242	-0.244	-0.246	-0.238
Health: good		-0.105	-0.093	-0.097	-0.095	-0.097	-0.096	-0.113
Religious		-0.024	-0.032	-0.024	-0.027	-0.026	-0.040	-0.030
Unemployed		0.215	0.212	0.213	0.215	0.214	0.221	0.220
Pensioner		0.153	0.151	0.153	0.155	0.150	0.152	0.152
Student		0.210	0.213	0.216	0.219	0.209	0.235	0.215
Fear			0.013					
Anger				0.009				
Disgust					0.015			
Sadness						0.007		
Surprise							0.032*	
Joy								0.009
Log-likelihood	-1673.438	-1664.235	-1663.962	-1664.074	-1663.887	-1664.131	-1662.601	-1664.123
Pseudo R2	0.006	0.012	0.012	0.012	0.012	0.012	0.013	0.012
N	3105	3105	3105	3105	3105	3105	3105	3105

Logistic regression; Dependent variable: Loss aversion (Acceptable interval from Table 2)

Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	-0.147^{*}	-0.156^{*}	-0.157^{*}	-0.178^{*}	$-0.181^{* *}$	-0.165^{*}	-0.171^{*}	-0.157^{*}
Tr_Unemployment	$-0.436^{* * *}$	$-0.466^{* * *}$	$-0.467^{* * *}$	$-0.477^{* * *}$	$-0.476^{* * *}$	$-0.470^{* * *}$	$-0.467^{* * *}$	$-0.467^{* * *}$
Female		0.129^{*}	0.130^{*}	0.136^{*}	0.125	0.132^{*}	0.128^{*}	0.130^{*}
Age		$0.036^{* *}$	$0.036^{* *}$	$0.036^{* *}$	$0.035^{* *}$	$0.036^{* *}$	$0.036^{* *}$	$0.037^{* *}$

Age ${ }^{2}$		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
City Population								
Small (<20k)		-0.105	-0.104	-0.097	-0.092	-0.104	-0.094	-0.104
Medium (<99k)		0.029	0.029	0.034	0.035	0.030	0.036	0.029
Big ($<500 \mathrm{k}$)		0.161	0.161	0.169	0.170	0.164	0.169	0.158
Large ($>500 \mathrm{k}$)		0.348***	0.348***	0.353***	0.356***	0.351***	0.350***	0.348***
Edu: secondary		0.152	0.153	0.156	0.145	0.154	0.146	0.148
Edu: higher		0.227*	0.227*	0.231*	0.217*	0.230*	0.218*	0.221*
Wealth: low		0.007	0.007	0.019	0.030	0.014	0.025	0.007
Wealth: high		-0.007	-0.007	-0.012	-0.013	-0.010	-0.005	-0.002
Health: poor		0.068	0.069	0.074	0.068	0.071	0.071	0.064
Health: good		-0.007	-0.009	-0.028	-0.031	-0.018	-0.018	0.002
Religious		-0.005	-0.003	-0.004	0.001	-0.002	0.012	0.002
Unemployed		0.306**	0.307**	0.312**	0.307**	0.309**	0.301**	0.300**
Pensioner		0.301**	0.301**	0.301**	0.295**	0.304**	0.301**	0.302**
Student		0.340*	0.340*	0.327*	0.322*	0.342*	0.316*	0.336*
Fear			-0.002					
Anger				-0.023				
Disgust					-0.034**			
Sadness						-0.010		
Surprise							-0.035**	
Joy								-0.011
Log-likelihood	-2054.436	-2017.561	-2017.553	-2016.219	-2015.201	-2017.295	-2015.046	-2017.346
Pseudo R2	0.006	0.024	0.024	0.024	0.025	0.024	0.025	0.024
N	3105	3105	3105	3105	3105	3105	3105	3105
Logistic regression; Dependent variable: Death rate (Acceptable interval from Table 2)								
Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	-0.171	-0.168	-0.216*	-0.200	-0.191	-0.188	-0.179	-0.168
Treatment Unemployment	-0.381***	-0.370***	$-0.387 * * *$	-0.384***	$-0.378 * * *$	-0.379***	-0.370***	-0.370***
Female		0.170	0.192*	0.181	0.168	0.177	0.170	0.170
Age		0.031	0.030	0.030	0.029	0.030	0.031	0.031
Age ${ }^{2}$		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
City Population								
Small (<20k)		0.051	0.067	0.064	0.064	0.054	0.059	0.051
Medium (<99k)		0.024	0.033	0.031	0.031	0.027	0.030	0.024
Big ($<500 \mathrm{k}$)		-0.076	-0.066	-0.063	-0.067	-0.070	-0.070	-0.077
Large ($>500 \mathrm{k}$)		0.022	0.032	0.028	0.029	0.027	0.022	0.022
Edu: secondary		-0.027	-0.021	-0.022	-0.035	-0.025	-0.031	-0.029
Edu: higher		-0.184	-0.181	-0.181	-0.197	-0.181	-0.192	-0.186
Wealth: low		-0.306*	-0.296*	-0.293*	-0.287*	-0.295*	-0.295*	-0.306*
Wealth: high		0.109	0.092	0.100	0.104	0.101	0.109	0.110
Health: poor		0.060	0.075	0.071	0.064	0.069	0.062	0.059
Health: good		0.107	0.056	0.078	0.087	0.085	0.100	0.109
Religious		0.108	0.140	0.107	0.112	0.113	0.118	0.109
Unemployed		-0.330	-0.319	-0.320	-0.329	-0.325	-0.334	-0.331
Pensioner		-0.314*	-0.312*	-0.314*	-0.320*	-0.308*	-0.314*	-0.314*
Student		0.137	0.127	0.116	0.117	0.139	0.120	0.136
Fear			-0.054**					
Anger				-0.033				
Disgust					-0.030			
Sadness						-0.021		

Surprise				-0.024				
Joy					-0.003			
Log-likelihood	-1192.393	-1172.736	-1169.729	-1171.442	-1171.862	-1172.213	-1172.185	-1172.728
Pseudo R2	0.004	0.020	0.022	0.021	0.021	0.020	0.020	0.020
N	3105	3105	3105	3105	3105	3105	3105	3105

Logistic regression; Dependent variable: Beliefs update (Acceptable interval from Table 2)

Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	0.155	0.139	0.103	0.123	0.138	0.125	0.127	0.138
Treatment Unemployment	-0.284***	-0.293***	-0.306***	$-0.301 * * *$	-0.294***	$-0.300^{* * *}$	-0.293***	-0.296***
Female		-0.178**	-0.159*	-0.172**	-0.178**	-0.172**	-0.180**	-0.176**
Age		-0.005	-0.005	-0.006	-0.005	-0.005	-0.005	-0.004
Age ${ }^{2}$		0.000	0.000	0.000	0.000	0.000	0.000	0.000
City Population								
Small (<20k)		-0.249*	-0.237*	-0.243*	-0.248*	-0.247*	-0.240*	-0.250*
Medium ($<99 \mathrm{k}$)		0.160	0.166	0.164	0.160	0.162	0.166	0.159
Big ($<500 \mathrm{k}$)		0.092	0.099	0.097	0.092	0.097	0.098	0.084
Large ($>500 \mathrm{k}$)		-0.088	-0.083	-0.086	-0.088	-0.085	-0.088	-0.089
Edu: secondary		0.037	0.044	0.039	0.036	0.039	0.031	0.024
Edu: higher		0.343**	0.350***	$0.345^{* * *}$	0.343**	0.347***	0.335**	$0.327^{* *}$
Wealth: low		0.023	0.037	0.031	0.024	0.034	0.036	0.021
Wealth: high		-0.062	-0.077	-0.066	-0.062	-0.068	-0.061	-0.051
Health: poor		-0.049	-0.039	-0.043	-0.049	-0.043	-0.046	-0.061
Health: good		0.057	0.009	0.040	0.056	0.037	0.047	0.080
Religious		-0.150	-0.124	-0.150	-0.150	-0.145	-0.137	-0.133
Unemployed		0.325**	0.336**	0.329**	0.325**	0.329**	0.320**	0.310**
Pensioner		-0.149	-0.146	-0.150	-0.149	-0.144	-0.150	-0.146
Student		-0.209	-0.215	-0.220	-0.210	-0.207	-0.230	-0.223
Fear			-0.048***					
Anger				-0.018				
Disgust					-0.002			
Sadness						-0.018		
Surprise							-0.030*	
Joy								-0.029
Log-likelihood	-1825.788	-1805.841	-1801.356	-1805.108	-1805.837	-1805.160	-1804.258	-1804.554
Pseudo R2	0.006	0.016	0.019	0.017	0.016	0.017	0.017	0.017
N	3105	3105	3105	3105	3105	3105	3105	3105

8. Appendix C

Table C1. Study 2: Tukey's HSD pairwise comparisons test
Pairwise comparisons of means with equal variances
Over: treatment

Joy	Contras	Std. err.	Tukey		Tukey	
			t	$\mathrm{P}>\mathrm{t}$	[95\% con	f. interval]
Cold vs COVID	. 1454	. 0951	1.53	0.277	-. 0776	. 3684
Unempl vs COVID	. 0493	. 0954	0.52	0.863	-. 1744	. 2731
Unempl vs Cold	-. 0961	. 0951	-1.01	0.570	-. 3190	. 1268
Fear						
Cold vs COVID	-. 1721	. 1000	-1.72	-0.197	-. 4066	-. 0623
Unempl vs COVID	. 1243	. 1003	1.24	0.430	-. 1109	. 3596
Unempl vs Cold	. 2965	. 1000	2.97	0.009	. 0621	. 5309
Anger						
Cold vs COVID	-. 2686	. 0991	-2.71	0.019	-. 5010	-. 0362
Unempl vs COVID	. 0236	. 0995	0.24	0.970	-. 2096	. 2568
Unempl vs Cold	. 2922	. 0991	2.95	0.009	. 0598	. 5245

Disgust

Cold vs COVID	-.3240	.0981	-3.30	-0.003	-.5541	-.0939
Unempl vs COVID	.0078	.0985	0.08	0.997	-.2230	.2387
Unempl vs Cold	.3319	.0981	3.38	0.002	.1018	.5619

Sadness

Cold vs COVID	-.2817	.0998	-2.82	0.013	-.5156	-.0478
Unempl vs COVID	.0668	.1001	0.67	0.782	-.1679	-.3015
Unempl vs Cold	.3845	.0998	3.49	0.001	.1147	.5824
Surprise						
Cold vs COVID	-.0332	.0972	-0.34	0.938	-.2611	-.1948
Unempl vs COVID	.1857	.0976	1.90	0.138	-.0430	.4145
Unempl vs Cold	.2189	.0972	2.25	0.063	-.0090	.4468

Table C2: Study 2: Pairwise correlations of performance between puzzles

	Base rate neglect	Death rate	Beliefs update	Compound prob	Lilypad	Loss aversion
Base rate neglect	1.0000					
Beliefs update	-0.0111	1.0000				
	0.4339					
Death rate	-0.0231	0.0219	1.0000			
	0.1029	0.1219				
Compound prob	0.0078	-0.0206	0.0107	1.0000		
	0.5827	0.1452	0.4509		0.0000	
Loss aversion	0.0228	0.0060	0.0341	0.0041	0.1819	0
	0.1079	0.6704	0.0160	0.7722		
Lilypad	-0.0123	0.0540	0.0544	0.0082	0.560	
	0.2847	0.0001	0.001	0.5616	0	

Table C3: Study 2: Pairwise correlations of emotions

	Joy	Fear	Anger	Disgust	Sadness	Surprise
Joy	1.0000					
Fear	0.1509	1.0000				
	0.000					
Anger	0.0773	0.6758	1.0000			
	0.0000	0.0000				
Disgust	0.1157	0.6007	0.7525	1.0000		
	0.0000	0.0000	0.0000			
Sadness	0.0343	0.7190	0.6920	0.6451	1.0000	
	0.0153	0.0000	0.0000	0.0000		
Surprise	0.4503	0.4865	0.4226	0.4362	0.3848	1.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	

Table C4. Study 2: Logistic regressions with acceptable answers in each of the puzzles as dependent variables

Logistic regression; Dependent variable: Lilypad (Acceptable interval from Table 2)								
Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	-0.025	-0.056	-0.079	-0.078	-0.092	-0.071	-0.067	-0.031
Tr_Unemployment	-0.313***	-0.342***	-0.341***	-0.343***	-0.350***	-0.343***	$-0.333 * * *$	-0.346***
Female		-0.655***	-0.645***	$-0.663 * * *$	-0.674***	-0.651***	-0.720***	$-0.725^{* * *}$
Age		0.017	0.014	0.018	0.019	0.017	0.016	0.015
Age ${ }^{2}$		0.0000	0	0	0	0	0	0
City Population								
Small		-0.003	-0.007	-0.01	0	-0.007	-0.001	0.022
Medium		-0.368**	-0.351**	-0.363**	-0.336*	-0.358**	-0.320*	-0.298*
Large city/suburbs		-0.250*	-0.232*	-0.246*	-0.217*	-0.244*	-0.175	-0.152
Edu: secondary		0.112	0.071	0.07	0.042	0.091	0.053	0.066
Edu: higher		0.814**	0.789**	0.778**	$0.751^{* *}$	0.799**	0.778**	0.758**
Wealth: low		0.650**	0.583*	0.597*	0.579*	0.607*	0.576*	0.639**
Wealth: high		0.685*	0.694**	0.712**	0.685**	0.736**	0.714**	0.824***
Health: poor		0.201	0.226	0.238	0.225	0.227	0.176	0.026
Health: good		0.031	0.03	0.034	0.041	0.03	0.04	0.045
Religious		-0.577***	-0.551***	-0.565***	-0.555***	-0.570***	-0.514***	-0.485***
Unemployed		0.029	-0.011	-0.001	-0.003	0.023	-0.051	-0.023
Pensioner		0.184	0.167	0.188	0.176	0.178	0.158	0.133
Student		0.143	0.097	0.114	0.135	0.13	0.04	0.106
Fear			-0.088***					
Anger				$-0.066^{* * *}$				
Disgust					$-0.088^{* * *}$			
Sadness						-0.042**		
Surprise							$-0.125^{* * *}$	
Joy								-0.029
Log-likelihood	-2594.57	-2400.76	-2380.27	-2388.84	-2380.35	-2395.82	-2361.2	-2357.06
Pseudo R2	0.003	0.078	0.085	0.082	0.085	0.079	0.093	0.094
N	4990	4990	4990	4990	4990	4990	4990	4990

| Logistic regression; Dependent variable: Basa rete neglect (Acceptable interval from Table 2) | | | | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Variable | Base | Demo | Fear | Anger | Disgust | Sadness | Surprise | Joy |
| Treatment Cold | $0.315^{* *}$ | $0.315^{* *}$ | $0.308^{* *}$ | $0.298^{* *}$ | $0.301^{* *}$ | $0.299^{* *}$ | $0.314^{* *}$ | $0.321^{* *}$ |
| Treatment | 0.189 | 0.204^{*} | 0.207^{*} | 0.203^{*} | 0.203^{*} | 0.206^{*} | 0.209^{*} | 0.205^{*} |
| Unemployment | | $0.286^{* * *}$ | $0.292^{* * *}$ | $0.284^{* * *}$ | $0.281^{* * *}$ | $0.293^{* * *}$ | $0.271^{* *}$ | $0.271^{* *}$ |
| Female | 0.016 | 0.015 | 0.017 | 0.017 | 0.016 | 0.015 | 0.015 | |
| Age | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| Age | | | | | | | | |
| City Population | -0.007 | -0.007 | -0.014 | -0.009 | -0.015 | -0.007 | 0 | |
| Small | -0.092 | -0.078 | -0.085 | -0.075 | -0.076 | -0.075 | -0.071 | |
| Medium | -0.035 | -0.025 | -0.031 | -0.019 | -0.026 | -0.011 | -0.007 | |
| Large city/suburbs | 0.417 | 0.403 | 0.386 | 0.384 | 0.393 | 0.401 | 0.405 | |
| Edu: secondary | 0.565^{*} | 0.560^{*} | 0.543^{*} | 0.536^{*} | 0.551^{*} | 0.556^{*} | 0.553^{*} | |

Wealth: low	0.458^{*}	0.432^{*}	0.423^{*}	0.427^{*}	0.412^{*}	0.436^{*}	0.456^{*}
Wealth: high	$0.582^{* *}$	$0.538^{* *}$	$0.515^{* *}$	$0.528^{* *}$	$0.506^{* *}$	$0.556^{* *}$	$0.590^{* *}$
Health: poor	-0.131	-0.117	-0.101	-0.116	-0.097	-0.145	-0.179
Health: good	0.149	0.147	0.15	0.151	0.146	0.148	0.149
Religious	0.008	0.02	0.02	0.021	0.019	0.029	0.034
Unemployed	-0.049	-0.067	-0.075	-0.064	-0.061	-0.073	-0.065
Pensioner	0.298	0.295	0.304	0.295	0.299	0.295	0.289
Student	0.288	0.271	0.255	0.283	0.272	0.254	0.28
Fear		-0.036^{*}					
Anger			$-0.053^{* * *}$				
Disgust				$-0.041^{* *}$			
Sadness				$-0.052^{* * *}$			
Surprise					-0.037^{*}		
Joy						-0.034^{*}	

Log-likelihood	-1961.39	-1937.05	-1934.15	-1930.52	-1933.32	-1930.78	-1934.31	-1934.91
Pseudo R2	0.002	0.015	0.016	0.018	0.017	0.018	0.016	0.016
N	4990	4990	4990	4990	4990	4990	4990	4990

Logistic regression; Dependent variable: Compound prob. (Acceptable interval from Table 2)								
Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	-0.167*	-0.184*	-0.171*	-0.172*	-0.171*	-0.166*	-0.186*	-0.193*
Tr_Unemployment	-0.681***	-0.722***	-0.736***	-0.723***	-0.722***	-0.728***	-0.734***	-0.725***
Female		-0.217**	-0.238**	-0.217**	-0.213**	-0.228**	-0.195**	-0.198**
Age		-0.037*	-0.037*	-0.038**	-0.039**	-0.039**	-0.038**	-0.037*
Age ${ }^{2}$		0	0	0	0	0	0	0
City Population								
Small		0.112	0.119	0.12	0.117	0.125	0.114	0.102
Medium		0.234	0.21	0.231	0.218	0.215	0.209	0.204
Large city/suburbs		0.191	0.172	0.19	0.177	0.181	0.154	0.152
Edu: secondary		-0.424	-0.389	-0.393	-0.387	-0.387	-0.402	-0.411
Edu: higher		-0.43	-0.417	-0.406	-0.396	-0.404	-0.418	-0.419
Wealth: low		-0.141	-0.071	-0.109	-0.106	-0.072	-0.102	-0.132
Wealth: high		-0.272	-0.16	-0.214	-0.214	-0.167	-0.225	-0.275
Health: poor		-0.17	-0.211	-0.196	-0.186	-0.22	-0.15	-0.1
Health: good		0.001	0.005	-0.001	-0.001	0.004	0.002	0.002
Religious		0.157**	0.124*	0.147**	0.145**	0.143**	0.121*	0.120*
Unemployed		-0.196	-0.146	-0.176	-0.18	-0.182	-0.153	-0.174
Pensioner		-0.164	-0.151	-0.17	-0.162	-0.165	-0.16	-0.154
Student		0.175	0.217	0.199	0.179	0.195	0.229	0.19
Fear			$0.091^{* * *}$					
Anger				0.044***				
Disgust					0.042**			
Sadness						$0.070 * * *$		
Surprise							$0.058 * * *$	
Joy								0.048***
Log-likelihood	-2440.22	-2382.23	-2357.56	-2376.33	-2376.93	-2367.32	-2373.06	-2376.71
Pseudo R2	0.012	0.036	0.046	0.038	0.038	0.042	0.039	0.038
N	4990	4990	4990	4990	4990	4990	4990	4990

Logistic regression; Dependent variable: Loss aversion (Acceptable interval from Table 2)

Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	-0.430***	-0.479***	-0.504***	-0.522***	-0.522***	-0.509***	-0.497***	-0.469***
Tr_Unemployment	-0.522***	$-0.547 * * *$	-0.544***	$-0.553^{* * *}$	-0.555***	$-0.547 * * *$	-0.537***	-0.549***
Female		-0.158*	-0.142*	-0.167*	-0.174*	-0.148*	-0.215**	-0.196**
Age		-0.029*	-0.032*	-0.029*	-0.028*	-0.030*	-0.032*	-0.031*
Age ${ }^{2}$		0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
City Population								
Small		0.213	0.209	0.2	0.212	0.208	0.218	0.228
Medium		0.031	0.052	0.042	0.07	0.053	0.085	0.082
Large city/suburbs		0.006	0.024	0.011	0.042	0.02	0.082	0.072
Edu: secondary		0.986**	0.950**	0.919**	0.905**	0.953**	0.938**	0.967**
Edu: higher		$1.458 * * *$	1.440 ***	1.408***	$1.387 * * *$	$1.438 * * *$	$1.435 * * *$	1.433***
Wealth: low		0.386	0.325	0.304	0.308	0.319	0.317	0.377
Wealth: high		0.647**	0.546**	0.505*	0.515**	0.541**	0.566**	$0.661^{* * *}$
Health: poor		0.133	0.161	0.195	0.168	0.18	0.103	0.016
Health: good		0.093	0.095	0.101	0.107	0.095	0.102	0.099
Religious		-0.338***	-0.317***	-0.325***	-0.319***	-0.331***	-0.276***	-0.276***
Unemployed		0.041	0.008	0	0.011	0.033	-0.034	0.01
Pensioner		0.109	0.094	0.119	0.106	0.103	0.086	0.081
Student		0.129	0.093	0.079	0.121	0.111	0.023	0.105
Fear			-0.086***					
Anger				$-0.110^{* * *}$				
Disgust					$-0.100^{* * *}$			
Sadness						-0.074***		
Surprise							$-0.128 * * *$	
Joy								-0.086***
Log-likelihood	-2768.53	-2681.92	-2658.65	-2644.8	-2651.88	-2664.12	-2633.13	-2660.8
Pseudo R2	0.009	0.04	0.048	0.053	0.051	0.046	0.057	0.047
N	4990	4990	4990	4990	4990	4990	4990	4990

Logistic regression; Dependent variable: Death rate (Acceptable interval from Table 2)

Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	$-0.391^{* *}$	$-0.387^{* *}$	$-0.398^{* *}$	$-0.404^{* *}$	$-0.410^{* *}$	$-0.389^{* *}$	$-0.393^{* *}$	$-0.380^{* *}$
Tr_Unemployment	$-0.889^{* * *}$	$-0.889^{* * *}$	$-0.887^{* * *}$	$-0.889^{* * *}$	$-0.892^{* * *}$	$-0.889^{* * *}$	$-0.882^{* * *}$	$-0.888^{* * *}$
Female	0.249^{*}	0.254^{*}	0.245^{*}	0.239^{*}	0.249^{*}	0.228	0.229	
Age	-0.002	-0.004	-0.002	-0.002	-0.002	-0.004	-0.003	
Age 2	0	0	0	0	0	0	0	
City Population								
Small	0.054	0.052	0.048	0.047	0.054	0.053	0.063	
Medium	0.03	0.041	0.033	0.047	0.031	0.05	0.06	
Large city/suburbs	-0.16	-0.154	-0.16	-0.145	-0.159	-0.134	-0.123	
Edu: secondary	0.814	0.792	0.77	0.749	0.811	0.784	0.796	
Edu: higher	0.527	0.51	0.486	0.464	0.524	0.504	0.504	
Wealth: low	0.371	0.348	0.34	0.329	0.367	0.349	0.372	
Wealth: high	0.652	0.612	0.594	0.58	0.645	0.624	0.665	
Health: poor	0.414	0.425	0.441^{*}	0.434	0.417	0.405	0.347	
Health: good	0.24	0.239	0.242^{*}	0.246^{*}	0.24	0.242^{*}	0.244^{*}	
Religious	-0.133	-0.127	-0.128	-0.123	-0.133	-0.112	-0.101	
Unemployed	-0.146	-0.159	-0.159	-0.158	-0.146	-0.167	-0.157	
Pensioner	0.054	0.047	0.059	0.053	0.054	0.049	0.044	
Student	0.221	0.205	0.197	0.218	0.22	0.181	0.205	

Logistic regression; Dependent variable: Beliefs update (Acceptable interval from Table 2)								
Variable	Base	Demo	Fear	Anger	Disgust	Sadness	Surprise	Joy
Treatment Cold	0.139	0.149	0.144	0.147	0.147	0.146	0.148	0.152
Treatment Unemployment	-0.195*	-0.186*	-0.184*	-0.186*	-0.186*	-0.186*	-0.181*	-0.185*
Female		-0.041	-0.037	-0.042	-0.042	-0.04	-0.052	-0.049
Age		0.018	0.018	0.018	0.018	0.018	0.018	0.018
Age ${ }^{2}$		0	0	0	0	0	0	0
City Population								
Small		-0.194	-0.195	-0.194	-0.194	-0.195	-0.194	-0.19
Medium		-0.104	-0.097	-0.104	-0.103	-0.102	-0.093	-0.093
Large city/suburbs		-0.048	-0.042	-0.048	-0.046	-0.046	-0.032	-0.033
Edu: secondary		0.037	0.026	0.034	0.033	0.033	0.027	0.031
Edu: higher		0.144	0.14	0.142	0.141	0.142	0.138	0.139
Wealth: low		-0.135	-0.152	-0.138	-0.138	-0.142	-0.15	-0.136
Wealth: high		-0.097	-0.126	-0.102	-0.102	-0.107	-0.115	-0.092
Health: poor		0.053	0.063	0.055	0.055	0.058	0.043	0.027
Health: good		-0.063	-0.064	-0.063	-0.062	-0.063	-0.063	-0.063
Religious		-0.065	-0.057	-0.064	-0.064	-0.064	-0.05	-0.05
Unemployed		-0.011	-0.02	-0.013	-0.012	-0.012	-0.026	-0.018
Pensioner		0.159	0.158	0.16	0.159	0.159	0.158	0.154
Student		-0.126	-0.135	-0.128	-0.126	-0.128	-0.148	-0.13
Fear			-0.024*					
Anger				-0.004				
Disgust					-0.004			
Sadness						-0.007		
Surprise							-0.026*	
Joy								-0.019
Log-likelihood	-2868.69	-2845.26	-2843.09	-2845.18	-2845.19	-2845.05	-2842.89	-2844.17
Pseudo R2	0.003	0.011	0.012	0.011	0.011	0.011	0.012	0.012
N	4990	4990	4990	4990	4990	4990	4990	4990

Table C5. Study 2: Specific values of variables for individual countries

		Argenti							
	England	Kenya	Zealand	USA	Spain	na	Mexico	Poland	Total
Female	0.52	0.38	0.51	0.56	0.47	0.46	0.52	0.52	0.52
Age	49.62	30.99	46.87	52.76	47.33	41.4	39.49	42.86	46.67
Education	2.47	2.82	2.46	2.51	2.52	2.55	2.74	2.47	2.55
Income	2.9	2.68	2.82	2.98	2.99	2.82	3.04	3.13	2.94
Health	2.58	3.24	2.72	2.86	2.91	3.13	3.06	2.72	2.89

Religious	0.54	1.24	0.68	1.11	0.64	0.82	1.03	0.84	0.95
Joy	4.67	6.33	4.88	4.93	5.76	6.09	7.3	4.94	5.39
Fear	3.81	4.7	3.9	3.55	4.44	4.32	4.59	5.08	4.07
Anger	3.85	3.9	3.6	3.57	4.17	4.32	4.04	4.69	3.87
Disgust	3.42	3.68	3.54	3.59	4.8	4.99	4.66	3.72	3.9
Sadness	4.21	4.53	4.2	3.9	4.85	4.66	4.41	5.17	4.3
Surprise	3.95	4.61	3.99	4.11	5.02	5.2	6	4.58	4.5
Risk: overall	5.54	8.16	5.79	5.72	5.9	6.95	7.63	5.9	6.22
Risk: work	4.96	5.42	5.19	5.07	5.4	5.71	6.14	5.18	5.28
Risk: health	4.71	4.69	4.97	5	5.48	5.56	5.55	5.5	5.12
Mask: wearing	2.9	3.22	3.77	2.79	3.86	3.69	3.82	3.43	3.22
Distance	7.03	7.23	7.5	7.37	7.36	7.26	8.35	6.37	7.32
Performance	0.54	0.51	0.53	0.49	0.51	0.5	0.48	0.47	0.5

[^0]: Working Papers contain preliminary research results. Please consider this when citing the paper. Please contact the authors to give comments or to obtain revised version. Any mistakes and the views expressed herein are solely those of the authors

[^1]: [P3 - option 2] The authorities of a certain city are preparing to confront a wave of seasonal cold. It can be expected that approx. 600 residents will have to go on sick leave because of it. Two prevention programs are being considered. Doctors estimate that their effects on these statistical 600 people will be as follows:

