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Introduction

Predicting financial time series is a challenging task due to the nature of the data. Among the

challenges are the high volatility and constant changes over time, which means that we are not

able to parameterize the time series and find any sustainable patterns to predict the prices effi-

ciently. Despite the obstacles, the effort to predict the market has never stopped. For institutional

investors such as investment funds and insurance companies, an efficient model can help anticipate

market’s volatility and optimize portfolio allocation. Individual investor can also apply algorithmic

trading to find investment opportunities that maximize returns and minimize risks. Because of all

these benefits, we have seen numerous research in various directions, such as using macroeconomics

indicators, analyzing market sentiment, or using technical analysis.

In recent years, the financial industry has joined with other industries to take advantage of

modern technological advancements, especially Deep Learning. Since computational resources have

become more accessible, there has been increasing attention to exploring the application of compli-

cated models such as neural networks in predicting financial time series. However, the majority of

the literature we found focused on solving the forecasting problem, while only a few works analyzed

the application of these models in investment strategies.

This research aimed to investigate the application of Long Short-Term Memory (LSTM), a

Recurrent Neural Network (RNN), in predicting and trading the S&P500 index. We compared the

LSTM models’ performance with other traditional trading strategies that have been used in the

market for a long time, including the Simple Moving Average (SMA), Moving average convergence

divergence (MACD), and Relative Strength Index (RSI). We conducted the research using daily

S&P500 closed prices from 2001.01.01 to 2022.04.30, in which the out-of-sample period was from

2011.01.01 to 2022.04.30.

Since LSTM models have been proved superior in handling sequential data, we presumed there

was great potential in developing an effective trading strategy based on LSTM models compared to

other conventional approaches. We searched for results in order to verify the following hypotheses:

(RH1) The signals from algorithmic investment strategy using predictions from the LSTM model

consisting only from daily returns in its input layer are more efficient than using technical analysis

indicators.

(RH2) The signals from algorithmic investment strategy using predictions from the LSTM model

combining daily returns and technical analysis indicators in its input layer are more efficient than

using only technical indicators.

The research was developed using Python 3.7 and leveraged GPUs and TPUs from Google Colab.

The neural networks were built on the framework from TensorFlow and Keras packages. Due to

the complexity of the models, one full training and hyperparameter tuning took approximately 12

hours to complete.

The research is structured into five sections. First section reviews recent research on approaches

to predict and trade financial assets. Second section describes the data, methodology, and details

of the strategies responsible for trading signals generation process. The third section summarizes
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the results of the tested strategies. The fourth section conducts a sensitivity analysis of how the

performance of the selected model changes with respect to the change of the main hyperparameters

or input data. The last section provides the conclusion about the hypothesis based on the results

of the experiments we conducted.

1 Literature Review

Traders have been using indicators such as SMA, MACD, and RSI to find short-term trends and

make trading decisions. These trading strategies have the advantages of being simple to implement

and have been tested in academics and in the market for a long time (Sang & Di Pierro, 2019).

The moving average is a smoothing technique to verify the emergence of new trends. Ellis and

Parbery (2005) conducted research comparing the performance of SMA strategies using fixed and

adaptive window lengths. The research was performed on three stock market indices: the Australian

All Ordinaries (AOI), the Dow Jones Industrial Average (DJIA), and the S&P500. The authors

concluded that the returns generated by adaptive moving average were not significantly higher

than the fixed SMA200 strategy if we consider transaction cost. The authors pointed out that

the adaptive strategy might be superior in reflecting market trends and generating more trading

signals; however, the returns from such a strategy could not compensate for the transaction cost,

which resulted in lower net returns.

In order to analyze the momentum of the market, the MACD indicator derived from the 12-day

exponential moving average, and 26-day EMAs is commonly used. There are also variations of the

analysis, such as instead of using the fixed weight to calculate the EMA, we can use a changing

weight based on the historical volatility, which shows 55.55% higher accuracy in terms of trend

recognition compared to the conventional MACD (Wang & Kim, 2018).

Pradipbhai (2013) studied whether using a simple moving average instead of an exponential

moving average had an impact on the performance of MACD strategy on the CNX Nifty during

the period from 2011-01-04 to 2012-03-31. The study confirmed that using an exponential moving

average was better in terms of generated returns.

In another recent study, the author tested various MACD strategies in different markets’ indices,

including DAX, NIKKEI 225, RTS, SSE, and HOSE. In all MACD strategies, the author used the

popular MACD parameters (12,26,9), which was also the default parameter used in almost all

technical analysis software. The results show that the strategies could generate positive returns,

and the best strategy was to buy when the MACD line crossed over the signal line and both lines

were above the zero line. Alternatively, we should sell when the MACD line crossed under the signal

lines and both lines were below the zero line. (Hoang Hung, 2016). The same MACD strategy was

also tested on London Stock Exchange’s FT30 index during the period of 60 years, from 1935 to

1994, and the strategy was proved to outperform the buy and hold (Chong & Ng, 2008).

The profitability of strategy using the RSI oscillator was investigated for trading CHFUSD

from January 1998 to May 2009 (Anderson & Li, 2015). The author computed RSI based on the
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past 14-day period, which was a typical period length used in practice, and constructed trading

strategies using different thresholds: (40,60), (30,70), (20,80), (15,85), and (10,90). The strategy

that used (40,60) thresholds generated the most significant profit, and the authors concluded that

investors should customize the strategy instead of using the conventional parameters. The same

conclusion was confirmed by Bartkus (2018), who tested RSI in trading the EURUSD pair from

January 2016 to July 2017 and used hourly data. Instead of testing different thresholds, the author

tested the strategy using different periods and suggested that an RSI modification that used a

daily or weekly period generated less number of trades and could potentially bring a better result.

Nor and Wickremasinghe (2014) investigated RSI on the Australian stock market, utilizing daily

data of the Australian All Ordinaries Index from 1996 to 2014. Using the parameter values from

Wilder’s original research about RSI (Wilder, 1978), the authors found that this strategy showed

the possibility of making profits. The research results indicated that the strategy worked well

in some periods but performed poorly in others. Therefore, the authors proposed the idea of

constantly revisiting and optimizing the parameters to improve its performance. NSE stock market

prediction using deep-lear The research papers that we reviewed about applying technical indicators

such as SMA, MACD, and RSI confirmed that these strategies could predict trends. However, we

were unable to compare strategies because their performance was mostly summarized by the rate

of returns instead of using any risk-adjusted return metrics, for example, information ratio. All

of the research emphasized tuning of each indicator’s parameters in order to find out the best

configurations.

As technology advances, attention is turning to Machine Learning and Deep Learning to un-

derstand the market’s behavior and discover the most efficient indicator for developing better-

automated trading strategies.

Heaton et al. (2017) applied deep learning models to perform smart indexing for the biotech-

nology IBB index from January 2012 to April 2016 and concluded that deep learning had better

predictive performance in comparison to conventional approach. Grudniewicz and Ślepaczuk (2021)

used machine learning models such as Neural Networks, KNN, Regression Tree, Random Forest,

Bayesian Generalized Linear and Support Vector Machines to trade different market indices from

2002 to 2020. The results showed that Bayesian Generalized Linear was the best performing model,

outperformed the Buy & Hold strategy. Kanwal et al. (2022) proposed a hybrid approach that

combined Bidirectional Cuda Deep Neural Network Long Short-Term Memory (BiCuDNNLSTM)

and 1-D Convolutional Neural Network (CNN) to predict five different financial time-series. The

outcome showed that this hybrid model had the highest prediction accuracy, compared to other

models such as LSTM-DNN, LSTM-CNN, and LSTM.

Recurrent Neural Network (RNN) is a class of artificial neural networks specializing in modeling

sequential data. RNNs were firstly applied in domains such as Natural Language Processing or

predicting DNA sequences. Technical traders have soon recognized the similarity of these prediction

problems with the stock price prediction problem. For example, a series of sentences or words could

be viewed as a time series with some degree of auto-correlation. Long Short-Term Memory (LSTM)
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is a variant of RNN, firstly introduced in 1997, and since then, researchers have been trying to use

these models to predict the market.

Kim and Kang (2019) tested various deep learning models, including MLP, 1D CNN, LSTM,

and attention network, to predict the trends of Korean’s KOSPI200 index. The authors found

that LSTM and weighted attention networks worked well with sequential data. Fischer and Krauss

(2018) noticed that LSTM model outperformed random forest and logistic classifier when used to

predict the movements of S&P500 from 1992 to 2015. Before that, M et al. (2018) concluded in his

work that LSTM and CNN models outperformed linear model such as ARIMA. The research results

was obtained from highly traded stocks of India’s NSE index and NYSE. However, the authors used

different trading periods for NSE and NYSE stocks, which might make the conclusion biased.

Lv et al. (2021) used a general LSTM model and a LightGBM-optimized LSTM model to predict

the daily closing prices of Shanghai and Shenzhen 300 indices. Their experiments showed that the

LightGBM-LSTM version had the best results in predicting the stock indices’ trend, measured

by accuracy and F1 scores. LSTM model was also used to predict the next-day closing price of

S&P500 index (Bhandari et al., 2022). In this research, the authors used predictors representing the

macroeconomic data, technical indicators, and the time series itself as input to generate predictions.

The technical indicators used in this research were MACD, Average True Range (ATR), and RSI.

The model performance was measured using RMSE, MAPE, and R2 - which measured the precision

of predicted prices versus the actual price. The findings showed that the LSTM model with a single

layer and 150 hidden neurons provided better results than stacked LSTM models.

Sang and Di Pierro (2019) combined the LSTM model and traditional technical indicators:

SMA, MACD, and RSI, to use the advantages of both approaches. The technical indicators could

provide LSTM with information about the market behavior, and LSTM had the ability to process

sequential data. The experiments were conducted on the top five stocks in each of the nine sectors

constituting the S&P500 and the ETFs representing these nine sectors. Daily data for 2014 was used

as train data set, while the out-of-sample period lasted from 2015 to 2018. From these findings, the

authors concluded that applying LSTM had the potential to improve the performance of technical

trading algorithms.

The mentioned research above focused on the predicting ability of LSTM models. However, they

did not investigate the profitability of the strategies based on LSTMmodels’ predictions. Michańków

et al. (2022) compared the performance of different trading strategies using LSTM prediction and on

different asset classes: the S&P500 index and Bitcoin price using data from 2013 to the end of 2020

with the 15-minute, hourly, and daily frequency data. The authors also used a customized Mean

Absolute Directional Loss (MADL) loss function to train the LSTM model to improve the usefulness

of LSTM prediction with regard to algorithmic investment strategies. The authors concluded that

the LSTM models were sensitive to the hyperparameters and the configuration of the LSTM models,

especially the loss function played a crucial role. Overall, during the tested period from 2017 to

2020, the LSTM strategies could not outperform Buy& Hold strategies, regardless of the asset class

or the data frequency used. Kijewski and Ślepaczuk (2020) applied LSTM model to predict and
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trade S&P 500 index in the period from 2001 to 2020 and came to similar conclusion. Although

the authors found that LSTM model was able to outperformed Buy&Hold strategy this period, the

results were not robust to changes in most of the hyperparameters. The strategy that combined

signals from LSTM models and other classical methods outperformed market significantly.

Previous authors’ work enabled us to develop our approach for this research. We utilized the

MADL as the loss function to train the LSTM network, as this function took into account the

magnitude of the loss resulting from the wrong predictions. We investigated three of the most

used technical indicators - SMA, MACD, and RSI - separately and in combination with the LSTM

models and were able to compare the performance among the strategies by using a standardized set

of performance metrics.

2 Methodology and Data

2.1 Data

The research used the daily data of S&P500 index in the period from 2001.01.01 to 2022.04.30,

and the trading period started from 2011.01.01. The index was imported from Yahoo Finance via

Python’s package yfinance. Figure 1 shows the index’s closed price of the whole period, and the

descriptive statistic of the daily returns are summarized in Table 1.

Figure 1: S&P 500 Closed Price from 2001-01-01 to 2022-04-30
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Note: The index was imported from Yahoo Finance via Python’s package yfinance and covered the period from

2001-01-01 to 2022-04-30.
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Table 1: S&P500 daily return descriptive statistic

Count 5365 Mean 0.000294

Std 0.012311 Min -0.119841

25% percentile -0.004544 50% percentile 0.000673

75% percentile 0.005772 Max 0.115800

Kurtosis 11.28 Skewness -0.174437

KS Test stat. 0.4779 KS Test pvalue 0.0

Note: Descriptive statistics calculated of S&P500’s daily returns from 2001-01-01 to 2022-04-30.

Kolmogorov-Smirnov test for normality had test statistic = 0.48 and p-value = 0.0. Therefore, we rejected the null

hypothesis that the data were normally distributed.

S&P500’s daily simple returns are leptokurtic, with the Kurtosis statistic of 11.28, significantly

higher than the normal distribution. It means that there are high probabilities of extraordinarily

high or low returns. The Skewness of -0.17 indicates a relatively symmetrical distribution. The

density plot of daily returns in Figure 2 showed a symmetrical distribution of daily returns around

zero, which meant that the number of gain days and loss days in the research period are more or

less balanced.

Figure 2: S&P 500 Daily return density plot from 2001.01.01 to 2022.04.30
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Note: Daily returns from 2001-01-01 to 2022-04-30 are distributed symmetrically but are leptokurtic (Kurtosis statistic

of 11.28).
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LSTM model learns by using functions that map a sequence of past observations to an output

observation. Therefore, we split the time series into sub-sequences of input and output. The splitting

process uses the sequence length hyperparameter, which dictates how many time steps, in this case

- previous trading days, are used as input to predict the next value in the sequence. We scaled the

S&P500 data by transforming the daily index values to the index daily simple return in order to

reduce the training time of the LSTM’s models.

We used the daily S&P500 closed price for the other benchmark strategies without any trans-

formation.

2.2 Investment Strategies Descriptions

We used the below general assumptions for all the strategies in this research:

• We assumed that we could trade a fraction of the index.

• When entering the position on day t, we assumed that we bought the index at day t’s closing

price.

• When exiting the position on day t, we assumed that we sold at day t’s closing price.

For each indicator, we used a specific strategy to identify trading signals:

• LSTM predictions At the end of day t− 1, we generated a prediction of day t’s return. If

the predicted returns in positive, we placed an order to buy the index at day t. Otherwise,

we exited the existing long position or did not enter the long position.

post =

1 if r̂t > 0

0 else
(1)

where post is position for day t, r̂t is predicted return of day t, 1 means a long position, and

0 means no position.

• Simple Moving Average: We entered a long position at t if the index’s closed price crossed

over the SMA line at day t − 1. We exited the long position at t the index’s closed price

crossed under the SMA line at day t−1. Otherwise, we kept the previous position. The SMA

was calculated using the index level.

post =


1 if SP500t−1 > SMAt−1 and post−1 = 0

0 if SP500t−1 < SMAt−1 and post−1 = 1

post−1 else

(2)

where post is position of day t, SP500t−1 is SP500 index level at end of day t − 1, and

SMAt−1 =
1
n

∑n
i=1 SP500t−i is the simple average of price of period [t− n, t− 1].
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• Relative Strength Index: We entered a long position at day t if the RSI line crossed over

the oversold threshold at day t− 1 and sold at t when the RSI crossed below the overbought

threshold at day t− 1. Otherwise, we kept the previous position.

post =


1 if RSIt−1 > oversold and post−1 = 0

0 if RSIt−1 > overbought and post−1 = 1

post−1 else

(3)

where post is position of day t, RSIt−1 is RSI value at end of day t− 1.

• Moving Average Convergence Divergence: When the MACD line indicating the differ-

ence between the two EMA lines crossed over the signal line at day t − 1, we opened a long

position on day t. We exited the long position when the MACD line crossed under the signal

line. Otherwise, we kept the previous position.

post =


1 if MACDt−1 > signalt−1 and post−1 = 0

0 if MACDt−1 > signalt−1 and post−1 = 1

post−1 else

(4)

where post is position of day t, signalt−1 is the difference between two EMAs, and MACDt−1

is MACD value at end of day t− 1.

• Buy and Hold: We bought the index at the beginning of the test period and held it until

the end.

2.3 The Evaluation of Model’s Performance

Adopting the approach from Michańków et al. (2022), we calculated to following metrics to evaluate

the performance of the tested strategies:

• Portfolio value: We calculated the daily portfolio value using this formula:

Et = Et−1(1 + rt × post−1) (5)

where

post−1 : trading position we had at the end of day t − 1, which was generated by the

model on day t− 2. The position was one if we had a long position and 0 if we did not have

a position.

rt: daily simple returns of the index of day t.

Et−1: portfolio value at the end of day t− 1

The position of each trading day was generated a day before because we used the closed price

up to the previous trading day as input to our models. For example, the position of day t was
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generated at the end of day t− 1. If models generated a buy signal and we already had a long

position on the day t − 1, we continued holding the position, and the portfolio value at day

t grew at the same rate as the return of day t. In the other case, when we did not have any

position on the day t − 1, the portfolio value at the end of day t was the same as day t − 1

since we used all the available funds from day t− 1 to enter the long position at day t’s closed

price.

In case there is a transaction fee applied:

Et = Et−1(1 + rt × post−1 − |post − post−1| × fee) (6)

where

fee: the transaction fee, and was a percentage of the trade’s value.

• Annualised Return Compounded (ARC): The metric shows annualised rate of return

for the given strategy over the period from (0, ..., T ). We assumed there were 250 trading days

in a year.

ARC =

(
ET

E0

) 250
T

− 1 (7)

where

T : the number of trading days in the investment period.

ET : portfolio’s value at the end of the investment period.

E0: portfolio’s value at the beginning of the investment period.

• Annualised Standard Deviation (ASD): This is a risk measure showing the annualised

deviation of returns from their long-term average.

ASD =

√√√√S

T

T∑
t=0

(rt −R)2 (8)

where

T : the number of trading days in the investment period.

S: the number of trading days in a year. We assumed S = 250.

rt: the daily return of investments.

R: the average daily return of the whole period.

• Information Ratio (IR*): This metric measures the amount of return for a given unit of

risk.

IR∗ =
ARC

ASD
(9)

• Maximum Drawdown(MD): The maximum percentage drawdown during the investment

period. We calculate the change from the highest point to the lowest point before a new
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peak is established and take the greatest of such movements. A low MD is preferred as this

means that losses from the investment are small. According Ryś and Ślepaczuk (2018), we

can calculate MD using below formula:

MD = sup(x,y)∈{[0,T ]2:x≤y}
Ex − Ey

Ex
(10)

where

[0, T ] : investment period from 0 to T

x, y : instances in the investment period.

Ex, Ey: portfolio’s value at the moments of x and y respectively.

• Modified Information Ratio (IR**): The metric adjusts the IR∗ by considering maximum

drawdown and the sign of ARC.

IR∗∗ = IR∗ ×ARC × sign(ARC)

MD
(11)

2.4 Methodology

2.4.1 LSTM Model and Hyperparameters

LSTM is an RNN network with long-term memory cells that can keep track of long-term trends.

Because of this characteristic, LSTM is used in forecasting time series, especially when the time

series show some trends.

An LSTM network consists of layers similar to a feed-forward neural network: the input layer,

optional hidden layer(s), and output layer. LSTMs also have Recurrent Units to learn from se-

quential data. There are two primary operations in each standard recurrent unit: (i) combine the

previous hidden state with the new input, and (ii) pass the combined info to the activation function

and the next state. LSTMs’ recurrent unit is more complex. It uses three gates (input gate, output

gate, and forget gate) to decide which information to keep or discard. It also has a cell state to keep

the long-term memory of the network. The diagram in Figure 3 shows how a LSTM’s recurrent

unit processes information:
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Figure 3: Architecture of LSTM cell

Note: Referenced from Neural Networks LSTM (Matsumoto, 2019).

• Hidden state of the previous timestep ht−1 and the input of the current timestep xt are

combined and then passed to the three gates: forget gate, input gate, and output gate.

• At forget gate, the activation function is defined as:

ft = σ(Uf .xt + Vf .ht−1 + bf ) (12)

where ft is the activation function of the forget gate, b, U, V denote biases, input weights, and

recurrent weights of the network cells. The function ranges from 0 to 1, and it sets to which

extent the values in the previous cell states Ct−1 will be discarded.

C
′
t = ft.Ct−1 (13)

• The input gate identifies which information from the previous hidden state and current input

will be added to the current cell state Ct:

it = σ(Ui.xt + Vi.ht−1 + bi) (14)

C+
t = tanh(Uc.xt + Vc.ht−1 + bc) (15)

Ct = C
′
t + it.C

+
t (16)

• The output gate is also a sigmoid activation function and uses inputs from the hidden state

of the previous timestep ht−1 and the input of the current timestep xt.

ot = σ(Uo.xt + Vo.ht−1 + bo) (17)
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The output gate decides how the hidden state of the current timestep will be updated.

ht = ot.tanh(Ct) (18)

In this research, we used KerasTuner (Keras, 2022) framework to identify the optimal specifica-

tions for our LSTM models. We identified three main groups of hyperparameters to tune:

• Input data hyperparameters

Sequence length: The number of previous trading days to use as input to predict the

return for the next trading day.

• Model configuration hyperparameters

Number of LSTM layers: How many LSTM layers to include in the model. If we include

too many layers, we can have the issue of overfitting and increasing training time.

Number of neurons per layer: The number of nodes included in each LSTM layer.

Activation function: We checked two options, either tanh or relu for activation function.

Input dropout rate: Input dropout is used as a regularization method to reduce overfit-

ting and improve the model performance. This is the rate where inputs are probabilistically

excluded from updating weights during model training. We can also place a dropout layer

after each LSTM layer, however, due to the computational constraint we did not incorporate

this layer in the scope of this research. Future study can consider including the drop out layer

in tuning process and examine if it can improve the model’s performance.

Learning rate: Defines how much the model’s weights will change in response to the loss

function’s gradient change after each epoch. The learning rate is considered one of the most

critical hyperparameters since it controls the training process. A low learning rate can help

us make sure we do not miss the local minimum of the loss function; however, it will increase

the training time. Setting a higher learning rate helps us train the model faster but might not

reach the optimal weights. In the hyperparameter tuning process, we set the range of learning

rates from low to high, and the optimal learning rate was chosen from trials with the lowest

loss value.

Loss function: We used custom loss function MADL (Michańków et al., 2022) to train

the model. Unlike MSE, MADL does not focus on the accuracy of the point forecast but on

the correctness of the sign and the value of possible loss after using the forecasted return.

MADL =
1

N

N∑
t=1

(−1)× sign(r̂t × rt)× abs(rt) (19)

where rt is the actual return on day t, r̂t is the predicted return. If the predicted return has

the same sign as the actual return, the loss function is reduced by an amount of the actual
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return. On the other hand, when the predicted return has the opposite sign with the actual

return, the loss function increases by an amount of the actual return.

• Model training hyperparameters

epoch: Number of times the whole training data set is fed through the LSTM networks.

This hyperparameter is passed to the max epoch argument of the Hyperband tuner.

batch size: Number of samples the LSTM network processes simultaneously.

We identified a search space for each hyperparameter and used Hyperband Tuner to search for

the optimal value. We defined the early-stopping condition when the loss function did not show any

improvement after 30 consecutive epochs. The Hyperband Tuner trains a large number of models

for a few epochs and carries forward the top-performing half of models to the next rounds. The

nearest integer to 1+logfactor(max epochs) determines the number of models to train in each round.

By default, factor is set to 3. This approach allows Hyperband Tuner to perform 5 to 30 times

faster than Bayesian optimization methods in various deep-learning problems (Li et al., 2018).

Table 2: Hyperparameter search space of LSTM network

Hyperparameter Initial Value Range Extended Value Range

n layers From 1 to 5 From 1 to 5

n units [25, 50, 100, 128, 256] [10, 25, 50, 100, 128, 256]

sequence length [5, 10, 20, 40, 60] [5, 10, 20, 40, 60]

input dropout [0.01, 0.02, 0.1, 0.2] [0.01, 0.02, 0.1, 0.2]

activation [relu, tanh] [relu, tanh]

learning rate [0.0002, 0.002, 0.02] [0.0001, 0.0002, 0.002, 0.02]

loss function MADL MADL

batch size [10, 32, 64] [10, 32, 64]

epoch [10, 20, 40, 80, 100] [10, 20, 40, 80, 100]

Note: We started the tuning process with the initial value range. If the tuner returned the best value in either the

upper or lower bound, we extended the range and checked whether the values outside of the range generated a

better loss value.

Table 2 summarizes the search space of hyperparameters of the LSTM model. When the tuner

selected either the upper or lower bound of the range as the optimal value, we extended the search

range and reran the tuner with the new value range to ensure that we covered all scenarios. If

the new model selected by the tuner had a lower loss than the previous model, we used the new

model’s configurations. Otherwise, if the new model had a greater loss, we kept the initial model’s

configurations selected by the tuner. In this research, we needed to extend the search range for the

number of units and the learning rate after the first tuning. However, the new models selected by

the tuner from the new value range did not improve the loss, and we kept the first model returned

by the tuner.
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2.4.2 Benchmark Strategies’ Parameters

• Simple Moving Average

Simple Moving Average is the most used of all technical indicators (Ellis & Parbery, 2005),

and is presented by the following formula:

SMAn =
1

n

n∑
i=1

Pt−i (20)

where Pt is the index price of day t, and n is the length of the window to calculate the simple

moving average.

If the window is short, the SMA reflects the changes in underlying asset prices closely. Al-

ternatively, a long average is less sensitive to the short-term fluctuations of the underlying

asset price and highlights only the major trends. Whether using a long or short window in

the SMA strategy will impact the number of trades and the profitability of the strategy.

In order to choose a reasonable window length for the average, we ran 200 trials on the training

data set, using window lengths starting from 5 and incrementing by 5 after each trial. In the

end, we selected the window length that generates the best IR∗∗ on the training data set.

Table 3 summarizes the parameters that we trained and the value range we used to run the

trials.

Table 3: Parameter tuning for SMA strategy

Parameter Value Range

n 5 -¿ 1005

step 5

max trials 200

Note: n - the window length to calculate the SMA. We ran 200 trials, starting from 5, and incremented the window

length by a step = 5 after every trial up to 1005.

• MACD

MACD is a technical indicator proposed by Gerald Appel more than 40 years ago and is still

widely used by technical analysts today. The standard MACD is computed by subtracting

the 26-day EMA from the 12-day EMA. The signal line is then derived by taking the 9-day

EMA of the MACD line. When the MACD line crosses over the signal line, it indicates an

uptrend and is a buy signal. Similarly, when the MACD line crosses under the signal line, it

is a downtrend indicator, and we should exit the position (Wang & Kim, 2018).

In the scope of this thesis, instead of using the 26-day EMA, 12-day EMA, and 9-day EMA,

we fine-tuned all three hyperparameters to find the optimal values for the MACD strategy:

- The window of slow EMA(slow)

- The window of fast EMA(fast)
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- The window of the signal line(m)

MACDt = EMAfast
t − EMAslow

t (21)

signalt = EMAm(MACDt) (22)

The ranges that we used to search for the optimal value of each parameters are summarized

in Table 4.

Table 4: Parameters tuning for MACD strategy

Parameter Value Range

[EMAslow, EMAfast] [26,12], [52,24], [60,15], [90,10], [90,5], [120,5], [130,5]

EMAm 5 -¿ 1005, each step = 5

max trials 1400

Note: In each trial, we combined a pair of [EMAslow, EMAfast] and a EMAm, where m is the window length to

calculate the EMA of the MACD line. In total, we ran 1400 trials for all the possible combinations.

We performed a grid search on different combinations of EMAfast, EMAslow and EMAm,

and selected the parameters that generated the best IR∗∗ in the training data set.

• RSI

The RSI was developed in 1978 by J.Welles Wilder Jr. and is a popular momentum oscillator

used to evaluate if the asset price changes indicate an overbought or oversold area. The RSI

is determined by:

RSIt = 100−

 100

1 +
Avg[t−n,t−1](gain)

Avg[t−n,t−1](loss)

 (23)

where Avg[t−n,t−1](gain) and Avg[t−n,t−1](loss) is the average of gain and loss in the period

n days prior to the day tth. There are several variations of how to calculate the average. In

his original research, Wilder (1978) used a smoothing factor which was a form of exponential

average with the decay multiplier α defined as:

α =
1

n
(24)

Besides the original RSI, technical analysis softwares also offer option to calculate Cutler’s

RSI, which uses a simple moving average, and another option to use exponential average. In

this research, we chose to use the exponential weighted average, which put more weight on the

latest movement in comparison to the other two approaches. The calculation was achieved by

using built-in function ewn(span = n, adjust = False) from pandas Python’s package. The
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decay α multiplier is defined as below(Pandas, n.d.)

α =
2

n+ 1
(25)

To identify the trading signals, the RSI oscillator is compared with two thresholds: oversold

and overbought. It is a common practice to apply the 30 and 70 for oversold and overbought

thresholds. If the RSI crosses over the oversold threshold, it indicates a bullish sign, and when

it crosses below the overbought threshold, it is a bearish sign. The thresholds are used as a

reference to determine the strength of the trend.

We focused on fine-tuning the three parameters: oversold, overbought, and window length

to calculate the average gain and loss. The ranges we used to tune these parameters are

summarized in Table 5. The objective is to maximize IR∗∗ during the training period.

Table 5: Parameter tuning for RSI strategy

Hyperparameter Value Range

[oversold, overbought] [10,90], [20,80], [30,70], [40,60],

[15,85], [25,75], [35,65], [45,55]

n 5 -¿ 1005, each step = 5

max trial 1600

Note: In each trial, we combined a pair of [oversold, overbought] and n - the window length to calculate average loss

and gain. In total, we ran 1600 trials for all the possible combinations.

2.4.3 Defining Train and Test Data Set

We tested all strategies’ performance over the out-of-sample period from 2011.01.01 to 2022.04.30.

We used two approaches to split train and test data set:

• Approach (I): Train data set was fixed from 2001.01.01 to 2010.12.31, and the test data set is

from 2011.01.01 to 2022.04.30

• Approach (II): We used a rolling window of 3-year for the train data set and 1-year for the

test data set. After every year, we moved this window one year forward until the end of the

data. In the end, we combined the result of each sub-period to get the result for the whole

testing period from 2011.01.01 to 2022.04.30. Figure 4 visualizes this approach.
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Figure 4: Rolling train-test data set - Approach (II)

Note: The results of the whole period from 2011.01.01 to 2022.04.30 was consolidated from all sub-test periods.

3 Results

3.1 Fixed Period

We trained and tuned the hyperparameters of all strategies using the data set from 2001.01.01

to 2010.12.31. Table 6 summarized the values chosen by the tuning and training process. These

fine-tuned strategies were then used for trading S&P500 from 2011 to 2022.04.30.

The strategies based on traditional technical indicators generated fewer signals than the ones

that used LSTM models’ predictions. It can be explained by the fact that these indicators reflect

relatively long-term trends. The SMA strategy was calculated using a 360-day window, while the

MACD was derived from the difference of EMA52 and EMA24, which was longer than the typically

used value of 26 and 12, and the signal was smoothed over a period of 100 days. Similarly, even

though the thresholds used in the RSI strategy are lower than the original thresholds of 30-70, the

selected window length was 40 days - longer than the commonly used window of 14 days. Therefore,

these strategies skip most of the short-term fluctuations in prices.

On the other hand, the LSTM model that used S&P500 daily returns as input generated more

signals. The tuning process selected sequence length = 10, which meant that the next-day return

predictions were determined based on the pattern of the previous ten trading days. As a result, the

LSTM model strategies captured more short-term trends in its predictions.
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Table 6: Hyperparameters

Hyperparameters Best value Parameters Best value

LSTM SMA

n layer 3 window length 360

n nodes 100/128/25 MACD

sequence 10 ema fast 24

dropout 0.02 ema slow 52

activation function tanh window length 100

learning rate 0.0002 RSI

loss function MADL overbought threshold 40

batch size 32 oversold threshold 60

epochs 80 window length 40

Note: Best values of the hyperparameters of the LSTM network and of the parameters of the technical indicators.

Train period: 2001.01.01 to 2010.12.31. Test period: 2011.01.01 to 2022.04.30.

In the SMA strategy, we had long positions in more than 90% of the time, almost similar to the

Buy & Hold strategy. However, the ARC of this strategy is only 5.5% ARC compared to 10.88% of

Buy & Hold. This indicates that the strategy did not generate good trading signals. We had long

positions in the downtrends and were late to enter the up-trend market.

In the MACD and RSI strategies, we stayed in the market more than 50% of the time. The

RSI strategy generated only five trading signals and then held the index over a long period. The

strategy did not generate a sell signal when the market plunged in March 2020; therefore, it had the

same maximum drawdown as the buy and hold strategy. The MACD strategy was able to detect

and avoid this significant downturn and is the strategy that had the lowest volatility measures.

LSTM generated more trading signals and only held long positions for 26.87% of the time. This

means that most of the trades were only for short-term periods. Figure 5 shows that the LSTM

models missed the overall increasing trend from March 2020 to 2022. The market experienced higher

short-term volatility in this period, and it impacted the predictions of the LSTM model that use

previous 10-day daily returns as input.

When used alone, all of the strategies were unable to outperform the Buy & Hold strategy.

Since each strategy has its own advantages, we combined the strengths of each strategy to find the

optimal model. We pointed out earlier that the trading signals generated by the SMA strategy were

not efficient. In addition, the MACD indicator also encapsulates similar trending properties of the

time series as the SMA. Therefore, we added RSI, MACD, and the MACD signal line together with

the previous 10-day daily returns to the input layer of the LSTM network.

To tune this LSTM Extended model, we used the same hyperparameters obtained from the

LSTMmodel tuning process. We trained the parameters of the input technical indicators as specified

in Table 7. We trained n - the window length used to calculate the average of gain and loss

for deriving the RSI. For the MACD, we trained three parameters: the EMAslow, EMAfast and

EMAm, in which m is the window length to compute the MACD signal line.
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Table 7: Parameters of MACD and RSI used in the LSTM Extended model

Parameters Value range Best value

MACD

[EMAslow, EMAfast] [26,12], [52,24], [60,15], [90,10], [26,12]

[90,5], [120,5], [130,5]

m 5 - 1000, each step = 1 964

RSI

n 5 - 1000, each step = 1 17

Note: Train period: 2001.01.01 - 2010.12.31. Test period: 20112.01.01 - 2022.04.30. In RSI, we trained n, the

window length to calculate RSI. Since we did not identify the trading signals from RSI solely, we did not need to use

and tune the overbought and oversold thresholds.

The results in Table 8 showed that this LSTM Extended model improved the performance

significantly. The LSTM Extended model was able to capture the significant downtrend in March

2020 and exited the long position on time to avoid further loss. The strategies outperformed Buy

& Hold benchmark strategy from March 2020, with a maximum drawdown of 18.65% compared

to 33.92% of the Buy & Hold strategy. The strategy also has a slightly higher ARC (11.49%) and

better IR∗ and IR∗∗ ratio. Equity lines for all strategies are compared in Figure 5, where we could

see the strategy using LSTM Extended model had the highest equity line.

Table 8: Performance metrics of the strategies.

ARC ASD IR∗ MD IR∗∗ nTrades %long pos.

Buy & Hold 10.88% 17.20% 0.63 33.92% 0.20 2 100%

SMA 5.48% 13.27% 0.41 21.42% 0.11 58 90.70%

MACD 3.67% 9.45% 0.39 14.64% 0.1 80 53.65%

RSI 7.92% 15.04% 0.53 33.92% 0.12 6 59.13%

LSTM 5.11% 10.93% 0.47 22.14% 0.11 148 26.87%

LSTM Extended 11.49% 14.00% 0.82 18.65% 0.51 80 91.16%

Note: LSTM Extended is the strategy that combines daily returns, MACD, and RSI in the input layer. The LSMT

Extended strategy outperformed all other strategies considered in this research. Train period: 2001.01.01-

2010.12.31. Test period: 2011.01.01 - 2022.04.30
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Figure 5: Equity lines of strategies on the fixed train and test data set
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Note: SP500 represents the Buy & Hold strategy for S&P500 index. LSTM Extended is the strategy that combines

daily returns, MACD, and RSI in the input layer. Train period: 2001.01.01 - 2010.12.31. Test period: 2011.01.01 -

2022.04.30.

3.2 Rolling Train and Test Window

We checked the robustness of the models on the rolling train-test window as defined in Figure 4.

The hyperparameters of the LSTM models were obtained from the tuning process performed on

data from 2001.01.01 to 2010.12.31, and these hyperparameters were fixed over the whole testing

period. Table 6 and Table 7 summarizes the values of these hyperparameters. Meanwhile, we fitted

LSTM models’ parameters every year starting from 2011.01.01 using the last three years of data

as training data set. We also used the same approach to update the parameters of the benchmark

strategies, and the values of these parameters are summarized in Table 9.
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Table 9: Parameters of benchmark strategies in rolling train - test window

Parameter 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022*

SMA

window length 735 45 495 470 220 690 715 465 175 695 715 460

MACD

ema fast 12 12 5 15 24 10 5 12 12 5 5 24

ema slow 26 26 130 60 52 90 120 26 26 130 130 52

window length 40 25 715 30 845 235 240 15 25 285 300 145

RSI

oversold 40 30 45 30 45 40 40 40 45 40 45 25

oversold 60 70 55 70 55 60 60 60 55 60 55 75

window length 530 10 10 15 10 10 10 10 110 10 250 385

* Until 2022.04.30

Note: LSTM models used the same hyperparameters as in Table 6 and Table 7 across all periods. The parameters of

LSTM networks were updated when we fitted the network with rolling train data set.

Table 10 showed the performance of all strategies when the parameters were updated every

year. Compared to using a fixed train and test data set, the benchmark strategies have similar

IR∗∗, apart from the strategy using RSI. In this scenario, the RSI strategy generated 66 trading

signals, compared to 5 signals previously. However, the percentage of long positions is only 21.96%,

which means that most of the trades were short-term. Additionally, the maximum drawdown of the

RSI strategy increased from 33.92% to 37.13%, while ARC decreased from 7.92% to 5.2%. In the

fixed train-test approach, RSI was computed over a window of 40 days, while in 2021 and 2022, this

window was selected as 250 and 385, respectively. This caused the RSI strategy to exit the market

too early during the uptrend from 2021 to early 2022, which we observed from the equity line in

Figure 6.

Table 10: Performance metrics of the strategies.

ARC ASD IR∗ MD IR∗∗ nTrades %long pos.

Buy & Hold 10.88% 17.20% 0.63 33.92% 0.20 2 100%

SMA 6.28% 14.63% 0.43 26.69% 0.10 56 91.58%

MACD 4.27% 9.88% 0.43 20.15% 0.09 120 61.75%

RSI 5.20% 10.48% 0.50 37.13% 0.07 66 21.96%

LSTM 5.08% 10.90% 0.47 22.14% 0.11 148 26.23%

LSTM Extended 12.23% 10.60% 1.15 12.10% 1.17 160 46.20%

Note: LSTM Extended is the strategy that combines daily returns, MACD, and RSI in the input layer. The LSTM

Extended strategy outperformed all other strategies considered in this research. We used Approach (II) to split train

- test data set, as visualized in Figure 4.

The SMA strategy used a long window length in most periods, similar to the fixed train-test

approach. As a result, this strategy had very similar results in all terms IR∗, IR∗∗, number of

trades, and percentage of long positions.

When fitted dynamically, the MACD strategy generated more trade signals (119 trades) than
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the fixed approach (79 signals). The percentage of long positions increased from 53.65% to 61.75%.

However, the increase in ARC was offset by the increase in MD, which resulted in similar IR∗∗.

The performance of the LSTM model that used 10-day daily returns as input was also indifferent

across the two approaches. However, the LSTM Extended network that used 10-day daily returns

and technical indicators as input improved significantly.

As seen in Figure 6, the LSTM Extended strategy outperformed Buy & Hold strategy in multiple

periods: 2012 to mid-2014, 2019 to 2021, and 2022. The strategy also had the least MD (12.1%)

because it was able to anticipate and minimize the impact of the 2020’s downturn. The models

generated more trades (160) compared to the fixed approach (79) and had long positions 46.2% of

the time, lower than in the fixed approach (91.16%). This means that when we fed more updated

data to the network, it was able to trade on the short-term fluctuations more efficiently.

Figure 6: Equity lines of strategies in rolling train and test window
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Note: S&P500 represents the Buy & Hold strategy for S&P500 index. LSTM Extended is the strategy that

combines daily returns, MACD, and RSI in the input layer. The LSMT Extended strategy outperformed Buy &

Hold strategy in multiple periods: 2011.07.27 to 2014.06.05, 2015.08.24 to 2018.01.04, 2018.10.28 to 2021.02.08, and

2022.01.14 to 2022.04.30.

The results of the LSTM extended in the rolling train - test window confirm the robustness

of this model to the type and length of the training window. The model was able to outperform

the Buy & Hold and other benchmark strategies in both circumstances: when we did not refit the
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network’s parameters and when we fitted its parameters dynamically with the new data.

4 Sensitivity Analysis

We evaluated the sensitivity of the LSTM Extended model performance with regard to factors

that played important roles in the model tuning process. The impact of the following factors on

the model’s performance was investigated: loss function, sequence length, batch size, the technical

indicators, and the length of the rolling train - test window. For each scenario, we only changed

the selected hyperparameter while keeping everything else the same, and the below scenarios were

considered:

• Use MSE as loss function instead of MADL

• Sequence length

- Decrease sequence length to 5 days

- Increase sequence length to 20 days

• Batch size

- Decrease batch size to 16 days

- Increase batch size to 64 days

• Technical Indicators

- Increase EMAfast and EMSslow to [24, 52]

- Decrease window length to calculate MACD signal line to 360

- Increase window length to calculate RSI to 30

• Rolling train window

- Increase window of train data set to previous 5 years

- Decrease window of train data set to previous 2 years

• Rolling test window

- Increase window of test data set to next 2 years

- Decrease window of train data set to next 6 months

We generated the predictions for day t on day t−1 and had a general assumption that we made

the trade for day t at day t’s closed price. However, in reality, there are scenarios where we can still

enter a position for the day t at day t− 1’s closed price, for example, during day t− 1’s after-hours

trading sessions. Therefore, we also evaluated the performance of the LSTM Extended model under

this circumstance:

• Enter position at day t-1’s closed price
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Table 11 and Figure 7 summarize the result of the sensitivity analysis of all the scenarios.

Overall, the hyperparameters selected by the tuning process appear to be the optimal values, but

at the same time, the strategy is not robust to any changes in the selected hyperparameters.

Table 11: Sensitivity Analysis for the best LSTM Extended model

ARC ASD IR∗ MD IR∗∗ nTrades %long pos.

Panel A - Loss function

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

Loss function = MADL* 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

Loss function = MSE 5.11% 15.33% 0.33 33.92% 0.05 98 63.56%

Panel B - Sequence length

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

Sequence = 5 5.04% 13.22% 0.38 29.21% 0.07 140 67.00%

sequence = 10* 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

Sequence = 20 9.16% 12.77% 0.72 24.83% 0.26 150 42.90%

Panel C - Batch size

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

batch size = 16 5.14% 12.99% 0.40 31.45% 0.06 148 60.96%

batch size = 32* 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

batch size = 64 3.05% 9.65% 0.32 18.37% 0.05 144 45.67%

Panel D - Input technical indicator

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

macd (12,26,)

macd signal (964), rsi(17)* 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

macd (24,52,)

macd signal (964), rsi(17) 3.14% 12.89% 0.24 45.58% 0.02 152 62.78%

macd (12,26,)

macd signal (360), rsi(17) 1.66% 13.64% 0.12 40.17% 0.01 162 50.16%

macd (12,26,)

macd signal (964), rsi(30) 6.3% 14.17% 0.44 34.76% 0.08 154 65.8%

Panel E - Length of rolling training window

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

5 years 6.57% 9.65% 0.68 15.73% 0.28 86 32.76%

3 years * 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

2 years 5.25% 12.91% 0.41 25.56% 0.08 148 58.65%

Panel F - Length of rolling test window

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

6 months 10.59% 11.97% 0.88 23.73% 0.39 132 46.72%

12 months* 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

24 months 0.26% 10.17% 0.03 29.34% 0.00 126 46.23%

Panel G - Open position day

Buy & Hold 10.9% 17.2% 0.63 33.9% 0.2 2 100%

Open position on t-1 10.7% 10.13% 1.06 20.59% 0.55 160 46.2%

Open position on t* 12.23% 10.6% 1.15 12.1% 1.17 160 46.2%

(*) Base case. The panels describe model’s performance with respect to different loss function, sequence length,

batch size, input technical indicators, and length of rolling train-test window. For each scenario, we only changed

the selected hyperparameter while keeping everything else the same.
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Figure 7: Equity Lines of the Scenarios in Sensitivity Analysis
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━━ macd (12,26,) macd_signal (964), rsi(17)*
━━ macd (24,52,) macd_signal (964), rsi(17)
━━ macd (12,26,) macd_signal (360), rsi(17)
━━ macd (12,26,) macd_signal (964), rsi(30)

(*) Base case. Note: SP500 stands for the Buy & Hold strategy. The plot shows the equity lines in the period from

2011.01.01 to 2022.04.30

Panel A of Table 11 showed that the IR∗∗ was decreased drastically from 1.17 to 0.05 when we

used MSE to train the LSTM network. This proves the importance of using the appropriate loss

function customized to the trading strategy, which emphasizes the direction of the changes rather

than the exact values.

The impact of sequence length on the model’s performance is shown in Panel B of Table 11. The

sequence length selected by the tuning process was the best value. When we reduced or increased

the length, IR∗∗ decreased to 0.07 and 0.26, respectively. However, when the sequence length is
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20, the strategy had ARC and ASD more or less comparable to the base case. The equity line of

the strategy that used sequence length = 20 was almost flat from 2014 to 2018, which means that

we stayed out of the market most of the time. However, we were in the market during 2020. This

indicates that the trading signals generated by this strategy were inefficient because we missed the

uptrend and could not avoid the downtrend.

Batch size also played an important role. In the scenarios where the batch size was changed to

16 and 64, IR∗∗ decreased to 0.06 and 0.05. Other performance metrics also got worse than in the

base case and the benchmark Buy & Hold strategy. A smaller batch size seemed to generate better

results than a larger batch size (Panel C of Table 11), and the value selected by the tuning process

was still the best one.

Panel D of Table 11 presents the scenarios where we altered how the technical indicators were

computed. Because the training process is time-consuming, we only considered three scenarios,

and each time we changed one parameter of the technical indicators. The worst scenario is when

we shortened the window length to calculate the MACD signal line from 964 to 360. The IR∗∗

of this strategy is only at 0.01, and MD is 40%, larger than the MD when we buy and hold the

index. When the EMAfast and EMAslow was increased from [12, 26] to [24,52] the strategy also

performed poorly. The ASD of the strategy was close to the base case; however, it had a lower

ARC and greater MD, resulting in an IR∗∗ of 0.02. Of all the considered scenarios, extending the

window length in RSI from 17 to 30 produced reasonable results. The strategy had IR∗ of 0.44,

close to the Buy & Hold strategy (0.63). However, it had larger MD, therefore, lower IR∗∗.

In Panel E of Table 11, we analyzed how the strategy behaved if we used a different length of

rolling training window. When we extended the training data set from the previous three years to

five years, the strategy slightly outperformed the benchmark Buy & Hold strategy. It performed

better than the benchmark in all risk measures, such as ASD (9.65% compared to 17.2%) and MD

(15.73% compared to 33.9%). However, the strategy generated only 85 trades and had long positions

for only 32.76% of the time, resulting in lower ARC (6.57% compared to 10.9%). Nonetheless, the

strategy was still worse than in the base case. Shortening the rolling train window from 3 to 2 years

had a notable negative impact on the performance.

Similarly, we experimented the strategy with a shorter and longer rolling test window. The

results are summarized in Panel F of Table 11. If we refitted the model every two years instead of 1

year as in the base case, the strategy hardly generated any profit. The equity line of this scenario in

Figure 6 showed that apart from the period from 2015 to 2019, we mostly stayed out of the market.

In the remaining scenario, we refitted the model more frequently every six months. This strategy

was able to outperform the benchmark Buy & Hold strategy in terms of IR∗ and IR∗∗. The equity

line of this strategy was less fluctuating compared to the Buy & Hold equity line, and it did not

have such a big drop in March 2020 as the Buy & Hold. However, the base case strategy was still

the dominating strategy.

In the last scenario, we recalculated the strategy’s performance metrics if we could make after-

hours transactions to buy and sell the index at the day t− 1’s closed price. If models generated a
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buy signal and we already had a long position on the day t− 1, we continued keeping the position,

and the portfolio value at day t grew at the same rate as the return of day t. Otherwise, if we did

not have any position on the day t − 1, the portfolio value at the end of the day t also grew by rt

because we entered the long position at day t − 1’s closed price. The equity line, in this case, was

calculated as follows:

Et = Et−1(1 + rt × post) (26)

where:

post : trading position we actually had on day t, which was generated by the model at the end

of day t− 1. The position was 1 if we had a long position and 0 if we did not have a position.

rt: daily simple return of the index of day t.

Et−1: portfolio value at the end of day t− 1

We also applied a transaction fee:

Et = Et−1(1 + rt × post − abs(post − post−1)× fee) (27)

where fee is the transaction fee percentage.

Figure 8 compares the equity line generated by the scenario where we could make after-hours

trade with the base case and the benchmark Buy & Hold. From 2011 until the beginning of 2020,

the strategy was able to outperform. However, in the major drop in 2020, we experienced a more

extensive loss in comparison to the base case. The IR∗∗ ratio in this scenario was better compared

to the Buy & Hold strategy; however, it was not as good as in the base case.
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Figure 8: Equity Lines of after-hours trade
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* Base case. Note: SP500 stands for the Buy & Hold strategy. The plot shows the equity lines in the period from

2011.01.01 to 2022.04.30

The sensitivity analysis demonstrated that the LSTM Extended model chosen by the hyperpa-

rameter tuning process was not robust to changes. The results confirmed the challenges in applying

neural networks that the quality of the model is highly dependent on the hyperparameter configu-

rations. Because of this, defining an appropriate tuning process is very important. And this process

is different depending on the underlying assets, as well as which period to test.

Conclusion

The research aimed to investigate the application of LSTM networks in predicting and trading the

S&P500 index compared to other technical indicators. We used Keras Hyperband Tuner to find the

optimal hyperparameters of the LSTM networks. We combined the previous 10-day daily returns

with the MACD and RSI indicators in the inputs to train the network. We specifically focused

on hyperparameter tuning in order to select the appropriate configurations for the network. The

model was tested in two approaches: using a fixed train-test data set and using a rolling window of

a 3-year train and 1-year test data set. The strategy using forecasts from our best LSTM networks

was able to outperform the Buy & Hold strategy and other strategies that used technical indicators

alone in both approaches. We also performed a sensitivity analysis to test the robustness of the

model with regard to changes in the main hyperparameters. The analysis proved that the LSTM

performance was not robust and was sensitive to changes of any hyperparameter and input data.
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Based on the results of the research, we were able to verify the hypothesis set at the beginning

of the research:

(RH1) The signals from algorithmic investment strategy using predictions from the LSTM model

consisting only daily returns in its input layer are more efficient than using technical analysis indi-

cators.

(RH2) The signals from algorithmic investment strategy using predictions from the LSTM model

combining daily returns and technical analysis indicators in its input layer are more efficient than

using only technical indicators.

We rejected (RH1) because the strategy using forecast from the LSTM model trained with only

daily returns in input layer did not outperform Buy & Hold and other strategies based on technical

indicators. We were not able to reject (RH2) since the strategy using the LSTM Extended model

outperformed all of the benchmark strategies once we incorporated other technical indicators in the

input layer. However, the sensitivity analysis showed that the signals from the LSTM Extended

model were not robust. Instead, they were highly dependent on the model configurations such as

which loss function was used and batch size. The results were also sensitive to the input data used

to train the model. When we altered either the sequence length of input, the parameters used to

calculate the input technical indicators, or length of rolling train-test window, the results changed

significantly.

There are more possibilities to extend the research in order to improve the performance of the

LSTM-based strategy. The first is to explore the combination of LSTM with different technical

indicators besides RSI and MACD. The hyperparameter tuning process can be improved as well. In

this research, we used the same learning rate throughout the training. We can adapt the techniques

that update the learning rate during the training, such as learning rate annealing (Nakamura et al.,

2021) or cyclical learning rates (Smith, 2015). We learned that the performance was sensitive to

the loss function used to train the model. Therefore, the next research direction can be exploring

different loss functions customized to the trading strategies.
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