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1. Introduction

We observe numerous instances of transitions between states in everyday

life; people change their family status, travel between geographical locations,

or change their labour market status. In this context, Shimer (2012) proposed

a labour market model with dynamic gross flows to study steady states based5

on the transitions between the three states of employment, unemployment, and

inactivity. His model is based on the following two assumptions. First, workers

do not enter or exit the labour force but simply transit between the states of the

economy. Second, all workers are ex-ante identical; in particular, they possess

the same probability of transitioning from a given state to another during any10

period of time.

However, Shimer’s (2012) seminal model does not consider the occurrence

of changes in the population at the labour market. Specifically, it assumes

that the inflow or outflow of workers does not take place over time. However,

this is contradictory to the data observed for economies exhibiting substantial15

cyclic fluctuations in the population, or structural differences between entries of

new workers and the exits of workers in the case of retirement. Additionally, the

number of young workers entering the labour market to initiate their professional

career and older people exiting it in order to retire is subject to an unceasing

evolution.20

A common element in such flows lies in the fact that they can be described

using the Perron-Frobenius theorem. Accordingly, we modify the equations to

describe the flow of persons between the labour market states, allowing the size

of the population to change over time. This flexible framework allows us to

solve two problems related to the stable flow rates and stable population size in25

Shimers (2012) model.

We extend Shimer’s (2012) gross flows model in three directions. First, we

generalise the model by considering n ≥ 3 potential states of the economy.

Second, we relax the assumption of flow dynamics, following a Poisson arrival

process. This assumption was used by Shimer (2012) to calculate the flows30
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using an empirical data. Third, we allow the size of the economy to change over

time as a result of the inflow of new workers in the labour market and outflow

of current workers from the labour market. The first extension allows us to

analyse the employment in different economic sectors within the same general

theoretical framework. The second extension simplifies steady-state calculation35

and the third extensions allows to incorporate fluctuations in the economy size.

Accordingly, we provide a general solution for the existence and the uniqueness

of steady-state.

Following the Perron-Frobenius theorem and related concepts, we present

a generalised mathematical framework that is applicable beyond the labour40

market for the analyses of fluctuations in the flows between states. We build

our proofs based on the Perron-Frobenius theorem, which has been widely used

in various fields of economics, such as asset pricing (Hansen and Scheikman,

2009; LeGrand, 2019), econometrics (Chen et al., 2014), spatial econometrics

(Matrellosio, 2012), and network effects (Mastrobuoni, 2015).45

2. Model extensions

First, we generalise Shimer’s (2012) 3-dimensional model to an n-dimensional

one (n ≥ 3). At a given time t (t ≥ 0), the state of the economy is formally

described by an n-dimensional vector v(t), such that:

∀i≤nvi(t) ≥ 0 ∧
N∑
i=1

vi(t) = N,

where N > 0 denotes the constant size of the economy. The set of all poten-50

tial states of the economy is denoted by S, that is, S = {v(t) :
∑n

i=1 vi(t) =

N, vi(t) ≥ 0}. Note that S is a convex and compact simplex in the n-dimensional

Euclidean space spanned by the vertical vectors (0, . . . , 0, N, 0, . . . , 0)′. When

n = 3 dimensions, S is a triangle. Here, Int(S) denotes the interior of S,

that is, Int(S) = {v(t) :
∑n

i=1 vi(t) = N, vi(t) > 0}. The evolution of the55

economy is deterministic and described by the system of n × n flow matri-

ces {Λ(s, t) : t > s ≥ 0}, such that v(t) = Λ(s, t)v(s), for all t > s ≥ 0.
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The system of flow matrices satisfies the consistency condition, that is, for

any t1, t2 and t3, such that t3 > t2 > t1 ≥ 0, the following condition holds:

Λ(t1, t2)Λ(t2, t3) = Λ(t1, t3).60

We assume that all matrices are stochastic with positive elements, that is,

for all t > s ≥ 0:

1. ∀i, j ≤ n,Λij(s, t) > 0, where i denotes a row and j denotes a column;

2. ∀j ≤ n,
∑n

i=1 Λij(s, t) = 1, that is, the sum of coefficients in each column

equals to 1.65

Both the above conditions jointly ensure that if v(s) is a state of the economy,

v(t) = Λ(s, t)v(s) is also a valid state of the economy; therefore, if v(s) ∈ S,

then Λ(s, t)v(s) ∈ S. The first condition implies that for a time interval [s, t],

the flow between the elementary states i and j (i, j ≤ n) is non-zero. Moreover,

the first condition ensures that for any t > s ≥ 0, Λ(s, t)v(s) ∈ Int(S), that is,70

∀t > 0, v(t) is in the interior of S. Let us now fix t > s ≥ 0, and denote the

flow matrix Λ(s, t) by Λ. We state that the economy is in a steady state v?,

if v? = Λv?, such that at time t, the economy returns to the same state as it

was at time s. The following proposition ensures the existence and uniqueness

of the steady state.75

Proposition 1. Let Λ be a stochastic matrix with positive elements, then:

1. There exists v? ∈ Int(S), such that Λv? = v?, that is, v? is a steady state.

2. The steady state v? is unique, that is, if v, v′ ∈ S are such that Λv = v

and Λv′ = v′, then v = v′.

3. For any v ∈ S limm→∞ Λmv = v?, where Λm denotes m-power of Λ.80

Proposition 1 is a direct consequence of the Perron-Frobenius theorem; un-

der these[A1] assumptions, it states that 1 is the eigenvalue of Λ, which spans

1-dimensional eigenspace that crosses the interior of S, such that the norm of

all other eigenvalues of Λ is strictly less than 1. In the appendix, [A2]we have
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provided a simple proof of Lemma 1, considering the Brouwer fixed-point theo-85

rem.

In Preposition 1, we derived the existence and uniqueness of the steady state

for a predefined transition matrix Λ between time s and t, that is, Λ = Λ(s, t).

In this context, we question whether the derived steady state will be the same

when considering transitions during a different period of time; say data on flows90

is available on quarterly basis rather than monthly. Note that if we triple the

time interval, the transition matrix becomes Λ3, that is, Λ · Λ · Λ; thus there

exists a variation in the flow matrices related to the periods of different lengths.

We consider the process to be stationary if Λ(s, t) = Λ(s′, t′) for any t > s ≥

0, t′ > s′ ≥ 0, such that t− s = t′ − s′. Therefore, transition is only dependent95

on the length of the time interval during measurement of the flow.

Proposition 2. Suppose {Λ(s, t) : t > s ≥ 0} describes a stationary process,

assuming that for any s ≥ 0

Λ(s, t)→ Inwhen t→ s+,

where In denotes the identity matrix. For any s ≥ 0, t, t′ > s, we define v?t and

v?t′ as the steady states for the matrices Λ(s, t) and Λ(s, t′), respectively. Hence,100

v?t = v?t′.

The proof of Proposition 2 has been provided in the appendix.

Proposition 2 shows that a steady state does not depend on the frequency

of data provided that the process is stationary and Λ(s, t)→ In. Although the

process is required to be globally stationary in the proposition, we want the105

derived steady state to be meaningful in an empirical sense, such that the flows

change slowly for the economy to approach its steady state over a short period

of time. The second condition asserts that the process is continuous; in the case

of a stationary process, it is sufficient to assume that it is right-continuous in

0, that is, when s = 0. Considering Shimers (2012) model of the economy, this110

condition is satisfied, as it implies that with the time period converging to 0,

nobody changes their current state.
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Proposition 2 allows us to calculate the steady state directly from The ob-

served data, relaxing Shimer’s assumption that the flow matrices are a result of

the Poisson arrival process.115

Finally, we relax the assumption regarding the constant size of an economy,

and allow for the entry to and exit from the economy. Entries and exits provide

cyclic shocks to the economy which can be structurally inconsistent with the

current economy state; hence, they can continuously displace the economy from

its equilibrium. We are interested in deriving the steady state for such a system,120

if it exists, and analysing the impact of cyclic shocks on the economy equilibrium.

In the context of the labour market, we can consider a situation where a

majority of the new workers are entering the state of employment, while a

majority of the workers exiting the market exit from the state of inactivity. In

such a case, the new steady state will show higher rates of employment and125

lower rates of inactivity, as compared to the model with no shocks.

It is assumed that the cyclic shocks related to an entry to and exit from the

economy do not change the probabilities of transition between the states for the

participants who are already in the market.

As mentioned above, the state of the economy at time t (t ≥ 0) is formally130

described by an n-dimensional state vector v(t). Transition between elementary

states is described by the system of n × n flow matrices {Λ(s, t) : t > s ≥ 0},

such that v(t) = Λ(s, t)v(s) for all t > s ≥ 0 satisfies the consistency condition.

Considering Proposition 2, we can observe the economy from discrete moments

of time without a loss of generality. To simplify our considerations, we assume135

the distance between consecutive moments to be constant. At moments t =

0, 1, 2, . . ., the economy experiences shocks related to entries and exits. Entry

to the economy is an n-dimensional vector win
i , such that for all i ≤ n, win

i ≥ 0

denotes the number of new participants entering each state. Similarly, exit

from the economy is an n-dimensional vector wout
i , such that for all i ≤ n,140

vi ≥ wout
i ≥ 0 denotes the number of participants who exit from each state.

Let us define the shock as w = win − wout. The evolution of the economy is
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described by the following equation:

v(t) = Λ(t− 1, t)v(t− 1) + w(t)

Note that under the above assumptions, if v(t − 1) is a state of the economy,

then v(t) is also a valid state of the economy belonging to a rescaled simplex145

S, that is, S = {v(t) :
∑n

i=1 vi(t) = N(t), vi(t) ≥ 0}. Let Λ and w denote the

flow matrix Λ(t−1, t) and shock vector w(t), respectively. The steady state v??

is defined as Λv?? + w = αv??, where α is a rescaling factor which depends on

N(t−1) and w, that is, α = (N(t−1)+w)/N(t−1). The following proposition

ensures the existence and uniqueness of the steady state.150

Proposition 3. Let Λ be a stochastic matrix with positive elements and w be

a shock vector, then:

1. There exists v?? ∈ int(S), such that Λv?? + w = αv??, that is, v?? is a

steady state.

2. The steady state v?? is unique, that is, if v and v′ are such that Λv+w = αv155

and Λv′+ w = αv′, then v = v′.

The proof is analogous to the proof of Proposition 1 and is provided in the

appendix.

3. Example

Shimer’s (2012) model can be considered as a special case of our generalised160

model, where n = 3 and the distinct states are employment, unemployment,

and inactivity. As observed by Shimer (2012), the inflow and outflow of each

state in the steady state are equal; hence, the steady state can be derived by

solving the following set of linear equations:

(λEU
t + λEI

t )e? = λUE
t u? + λIEt i?

(λUE
t + λUI

t )u? = λEU
t e? + λIUt i?

(λIEt + λIUt )i? = λEI
t e? + λUI

t u?,
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under the condition: e? + u? + i? = 1. The Proposition 3 ensures the165

existence and uniqueness of solutions to the extended gross flows model that

allows for inflows to and outflows from the economy. The analogous system of

linear equations to Shimer’s (2012) takes the following form:

(α− 1)e?? = ΛUEu?? + ΛIEi?? + ein − (ΛEU + ΛEI)e?? − eout

(α− 1)u?? = ΛEUe?? + ΛIU i?? + uin − (ΛUE + ΛUI)u?? − uout

(α− 1)i?? = ΛEIe?? + ΛUIu?? + iin − (ΛIE + ΛIU )i?? − iout

under the condition: e?? + u?? + i?? = N(t− 1).. [A3]

4. Conclusions170

In this study, we suggested three propositions that allowed us to generalise

Shimer’s (2012) gross flow model in three directions. First, due to the gen-

eralisation, our model was not limited to the three states of the economy, as

considered by Shimer (2012). Second, we relaxed the assumption of flow dy-

namics as described by the Poisson arrival process. Third, we allowed the size of175

the economy to change over time. As an example, we demonstrated the Shimer

(2012) model in a more generalised context. Our results are general and not de-

pendent on the labour market conditions. However, our analysis on the labour

market serves as a practical example.
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Appendix with Proofs

Proof of Preposition 1:195

Set S is convex and compact, f : v → Λv is continuous and f(S) ⊆ Int(S)

hence by the Brouwer Fixed Point Theorem there exists v? ∈ S such that

Λv? = f(v?) = v? and v? = f(v?) ∈ Int(S). This proves point 1.

Suppose the steady-state is not unique. Let v, v′ ∈ Int(S) be two different200

vectors such that Λv = v and Λv′ = v′. Then for any θ, vector θv + (1− θ)v′ is

also a steady-state. Indeed, Λ(θv+(1−θ)v′) = θΛv+(1−θ)Λv′ = θv+(1−θ)v′.

Take θ such that θv+(1−θ)v′ ∈ S−Int(S). Then by point 1, vector θv+(1−θ)v′

cannot be a fixed point. Contradiction. This proves point 2.

Note that there is c < 1 such that for any v, v′ ∈ S205

||Λv − Λv′|| ≤ c sup
w,w′∈S

||w − w′||

hence by the law of induction ||Λmv − Λmv′|| ≤ cmN
√

2. Now take v ∈ S. We

shall show that Λmv → v?, when m → ∞ Indeed, ||Λmv − Λmv?|| ≤ cmN
√

2

and Λmv? = v? hence

||Λmv − v?|| ≤ cmN
√

2.

Since limm→∞ cmN
√

2 = 0, then ||Λmv − v?|| → 0. This proves point 3. �

Proof of Preposition 2:210

Let ε > 0. We shall show that ||v?t − v?t′|| < ε. Without loss of generality

we can assume that s = 0. Take k ∈ N such that ||Λm(0, t)v?t′ − v?t || < ε/2

for any m ≥ k (1). The existence of such k follows from Proposition 1 point

3, as for any v ∈ S, Λm(0, t)v → v?t when m → ∞. Take δ > 0 such that215

||Λ(0, τ)v?t′−v?t′|| < ε/2 for all τ < δ (2). This follows from our assumption that

Λ(0, τ)→ In when τ → 0+.

Consider two cases. Case 1: t/t′ is a rational number. In this case, we

can take natural numbers n′, m′ such that m′t − n′t′ = 0. Let m = km′ and
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n = kn′. Then mt − nt′ = 0 and m ≥ k. Case 2: t/t′ is irrational. Then220

{x ∈ R : x = mt(mod)t′,m ∈ N} is a dense subset of the interval [0, t′) and we

can take natural numbers n and m such that m ≥ k, mt > nt′ and mt−nt′ < δ.

In any case, let τ = mt − nt′ and set Λ(0, τ) = In, if τ = 0. Note that

Λ(0, nt′) = Λn(0, t′), Λ(0,mt) = Λm(0, t) and Λ(0,mt) = Λ(0, τ)Λ(0, nt′). Then

||v?t − v?t′|| ≤ ||v?t − Λ(0,mt)v?t′||+ ||Λ(0,mt)v?t′ − v?t′||

where ||v?t − Λ(0,mt)v?t′|| = ||v?t − Λm(0, t)v?t′|| < ε/2 by (1) and ||Λ(0,mt)v?t′ −225

v?t′|| = ||Λ(0, τ)Λ(0, nt′)v?t′ − v?t′|| = ||Λ(0, τ)v?t′ − v?t′|| < ε/2 by (2) and the

assumption that the process is stationary. Thus, ||v?t − v?t′|| < ε. �

Proof of Preposition 3:

The proof is analogous to proof of preposition 1. Set S is convex and com-230

pact, f : v → (1/α)(Λv + w) is continuous and f(S) ⊆ Int(S) hence by the

Brouwer Fixed Point Theorem there exists v?? ∈ S such that (1/α)(Λv??+w) =

f(v??) = v?? and v?? = f(v??) ∈ Int(S). This proves point 1.

Suppose the steady-state is not unique. Let v, v′ ∈ Int(S) be two different

vectors such that Λv + w = αv and Λv′ + w = αv′. Then for any θ, vector235

θv + (1 − θ)v′ is also a steady-state. Indeed, Λ(θv + (1 − θ)v′) + w = θ(Λv +

w) + (1− θ)(Λv′ + w) = θαv + (1− θ)αv′ = α(θv + (1− θ)v′).

Take θ such that θv + (1 − θ)v′ ∈ S − Int(S). Then by point 1, vector

θv + (1− θ)v′ cannot be a fixed point. Contradiction. This proves point 2. �
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