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1 Introduction

Parameter identification is one of the primary concerns of structural macroeconomic model-

ing. In the context of traditional simultaneous equations systems, the essence of the problem

and its treatment has already been formalized in the 1940s, mainly by various authors con-

nected to the Cowles Commission for Research in Economics (see e.g. Koopmans, 1949). In

recent decades, this class of purely backward-looking models has been gradually replaced,

in both academic circles and policy making institutions, by the so-called dynamic stochas-

tic general equilibrium (DSGE) models. In these mathematical constructs, the dynamics

is driven by unobserved stochastic processes and crucially depends on agents’ expectations,

typically assumed rational. The key difficulty with this class of models in the context of iden-

tification is that while their solution has a state-space representation, for which the global

identification problem is fairly well understood, the coefficients defining this solution are only

implicit rather than analytical functions of the original model parameters. As a result, a new

approach to identification became necessary.

Early contributions highlighting the identification problem in simple DSGE models in-

clude Beyer and Farmer (2007), Fukac et al. (2007), Canova and Sala (2009) and Cochrane

(2011). A more formal analysis soon followed, focusing first on local identification issues, and

resulting in the rank conditions on an appropriately defined Jacobian matrix (Iskrev, 2010;

Komunjer and Ng, 2011) or spectral density matrix (Qu and Tkachenko, 2012). Important

progress has also been made towards resolving the problem of global identification. Qu and

Tkachenko (2017) present a numerical routine that searches for observationally equivalent

parameters by minimizing the Kullback-Leibler distance in the frequency domain. Kociecki

and Kolasa (2018) develop an alternative algorithm that relies on the conditions linking

observationally equivalent state space representations from Komunjer and Ng (2011), thus

avoiding the need to solve the model for each candidate parameter.1

However, while these two existing approaches to global identification problem are very

useful tools for detecting possible identification failure, they have one important limitation in

that they cannot strictly prove that a given model is globally identified. If a numerical search

routine fails to find an observationally equivalent vector of parameters to the one at which

one checks identification, this does not necessarily mean that such a vector does not exist.

It might be that the algorithm simply neglected some support of the (multi-dimensional)

parameter space, where observationally equivalent points are situated. Therefore, the lack

of a solution to the problem of global identification in DSGE models should be considered a

serious methodological gap.

1While all of this literature deals with linearized DSGE models, there have been some attempts to study
local identification of their higher-order approximations, see e.g. Mutschler (2015).
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Against this backdrop, this paper develops an analytical framework to study global iden-

tification in dynamic linear systems with rational expectations. The framework is compre-

hensive in that it encompasses both determinate models, in which the rational expectations

solution is unique, as well as indeterminate ones, where the dynamics may be additionally

driven by sunspot shocks. The essence of our approach consists of two insights. The first

one establishes a formal identification condition that reduces checking identification of the

model’s parameters (or their appropriately defined analytical functions) to finding all roots

of a system of polynomial equations. This condition is derived by linking the observationally

equivalent state space systems with the inherent constraints imposed on them by the deep

parameters of the underlying structural model. The second insight relies on applying the

concept of the Gröbner basis to analytically solve this system of polynomial equations. In

short, and postponing the details for later, this last step boils down to transforming the

original system of polynomials into an equivalent triangular system, which is done in a way

resembling Gaussian elimination in linear algebra.

The key advantage of our framework is that it explicitly derives and directly checks the

global identification conditions at a given point in the parameter space. This gives the formal

proof of global identification or lack thereof at this point as the calculation of the Gröbner

basis is exact in principle. Our explicit approach is hence a major advantage over the two

existing methods to check global identification in DSGE models (Kociecki and Kolasa, 2018;

Qu and Tkachenko, 2017), both of which rely on searching numerically over the parameter

space, and hence cannot formally prove that the model is identified. Another useful feature

of our framework is that it generalizes and unifies the conditions linking observationally

equivalent state space representations, which in the previous identification literature were

derived separately for singular and non-singular cases.

While designed to solve the global identification problem, our framework offers also some

additional insights over the existing and well-established approaches to handle its local variant

(Iskrev, 2010; Komunjer and Ng, 2011). Most importantly, a Gröbner basis applied to our

identification condition explicitly produces the complete set of parameter vectors that are

observationally equivalent to the one at which one checks identification. For example, it may

reveal that some parameters “live” on the intersection of hyperplanes. Knowing that is very

useful as it explicitly tells which of them need to be fixed to attain global identification

Gröbner basis methods are a fast developing field in computational algebraic geometry.

Despite their great potential, they are still very rarely used in economics, with only few

exceptions. Kubler and Schmedders (2010a) and Kubler and Schmedders (2010b) successfully

apply these methods to determine the exact number of equilibria in several economic models

and to calculate them analytically. Datta (2010) exploits this concept to find Nash equilibria
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in games. Foerster et al. (2016) apply Gröbner bases to obtain higher-order approximations

to the solutions of Markov-switching DSGE models.

Despite the existence of analytical algorithms that are proved to succeed after a finite

number of iterations, computing a Gröbner basis for large systems of equations can be quite

time and memory consuming in practice. However, there are several features of our applica-

tion that help alleviate this curse of dimensionality. The key one is that, for a typical DSGE

model, the system of polynomials generated by our identification condition is of limited degree

and very sparse.

In fact, we show that our identification analysis can be applied not only to small-scale

DSGE models, but also to their richer versions represented e.g. by the Smets and Wouters

(2007) setup. To our knowledge, we are actually the first to solve the global identification

problem in this popular model, showing that observational equivalence can be ruled out by

fixing only two structural parameters, which is less than suggested by the previous litera-

ture. Unlike other related papers, we also apply our framework to study identification in

several variants of open economy DSGE models, including those featuring a line of promising

extensions suggested by the recent literature. Strikingly, we can prove that all of them are

globally identified, at least for a standard selection of observable variables. Together with the

conclusions obtained for the Smets-Wouters model, our findings indicate that observational

equivalence in medium-sized DSGE models might be actually not as widespread as some

earlier small model-based evidence suggested.

The rest of this paper proceeds as follows. Section 2 presents the setup and establishes

notation for a typical dynamic linear system with rational expectations and its state-space

representation. Section 3 derives the conditions linking observationally equivalent state-

space representations. Section 4 combines these links with the original (structural) form of

the model to establish the formal global identification conditions. Section 5 offers a brief

introduction to the concept of Gröbner basis and describes its application to checking the

identification condition. Several illustrative examples, including popular DSGE models from

the literature and their extensions, are presented in Section 6. Section 7 concludes and

discusses some possible further research directions. All proofs and more involved analytical

details are relegated to the Appendix.
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2 Structural model

Let us cast a linearized DSGE model in the following general form

Γ0(θ)

[
st

pt

]
= Γ1(θ)Et

[
st+1

pt+1

]
+ Γ2(θ)st−1 + Γ3(θ)εt (1)

where st is an n×1 vector of states, pt is a q×1 vector of other endogenous (policy) variables,

and εt ∼ i.i.d.N(0,Σ(θ)) is a k × 1 vector of shocks, which can include both innovations to

structural (fundamental) disturbances, sunspot shocks and measurement errors, the latter

entering with zero loadings. Matrices Γ0(θ), Γ1(θ), Γ2(θ), Γ3(θ) and symmetric positive

definite k × k matrix Σ(θ) are explicit functions of deep model parameters collected in an

m× 1 vector θ ∈ Θ ⊆ Rm.

A stable solution to (1) can be written as

st = A(θ)st−1 +B(θ)εt (2)

pt = F (θ)st−1 +G(θ)εt (3)

where A(θ) is an n×n matrix, B(θ) is an n× k matrix, F (θ) is a q×n matrix and G(θ) is a

q × k matrix, all of which implicitly depend on deep model parameters θ. This is always the

case if the non-explosive equilibrium is unique. Under indeterminacy, the solution has still

the form given by equations (2)-(3) as long as one allows for a sufficient number of sunspot

shocks in εt, see Lubik and Schorfheide (2003). This becomes even more straightforward if,

in the case of indeterminacy, one equivalently transforms the model as suggested by Farmer

et al. (2015), i.e. redefines a sufficient number of errors in expectations as fundamentals.2

Suppose the measurement equations relates the model variables to the data as follows

yt = H(θ)

[
st

pt

]
+ J(θ)εt (4)

where yt is an r× 1 vector of observable variables, H(θ) is an r× (n+ q) matrix and J(θ) is

an r × k matrix, both of which explicitly depend on θ.

Decomposing H(θ) into blocks corresponding to the state and policy variables H(θ) =

[ Hs(θ) Hp(θ) ] and using equations (2) and (3) allows us to rewrite measurement equation

2As our identification analysis requires fixed structure of the model solution, we need to rule out indeter-
minacy while checking identification at θ that implies uniqueness and vice versa. This can be easily done by
imposing appropriate restrictions on Θ.
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(4) as

yt = C(θ)st−1 +D(θ)εt (5)

where an r × n matrix C(θ) and an r × k matrix D(θ) are defined as

C(θ) = Hs(θ)A(θ) +Hp(θ)F (θ) (6)

D(θ) = Hs(θ)B(θ) +Hp(θ)G(θ) + J(θ) (7)

Consequently, the law of motion for observable variables yt has a state space form, given

by transition equation (2) and measurement equation (5). For future reference, such a rep-

resentation will be called the ABCD-representation.

3 Observational equivalence of state-space representa-

tions

One of the key insights from Komunjer and Ng (2011) is that the ABCD-representation of

a DSGE model is not identified, and hence its elements cannot be treated as reduced-form

parameters. In this section we generalize their results by developing a set of conditions

linking the observationally equivalent ABCD-representations that encompass both singular

and non-singular cases.3 From now on, to save on notation, let us denote any matrix X(θ)

that depends on θ simply as X. Similarly, when referring to this matrix evaluated at an

alternative parameter vector θ̄, we will write in short X̄.

3.1 Theoretical setup

To proceed, we need two assumptions to get our most general identification result for the

ABCD-representation of a DSGE model. The first one concerns stability of the model solu-

tion.

Assumption 1. (Stability) For every θ ∈ Θ and for any z ∈ C (a set of complex numbers)

det(zIn − A) = 0 implies |z| < 1.

The purpose of Assumption 1 is to restrict the analysis to stationary models. As a

consequence, we can define the steady-state value P = E(sts
′
t), which is a unique solution

to the Lyapunov equation P = APA′ + BΣB′ implied by equation (2). Bearing in mind

measurement equation (5), the autocovariance sequence Λl = E(yty
′
t−l) is readily seen as

3Non-singular models are the cases in which there are more shocks than observables (k > r) or when the
system is square (k = r) but non-invertible. See the table on page 2010 in Komunjer and Ng (2011).
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Λ0 = CPC ′ + DΣD′ and Λl = CAl−1N , for l > 0, where N = APC ′ + BΣD′. Needless to

say, we have Λ−l = Λ′l.

To state the second assumption, let us define O = [C ′
...A′C ′

...A′2C ′
... . . .

...A′n−1C ′]′ and C =

[N
...AN

...A2N
... . . .

...An−1N ].

Assumption 2. (Stochastic minimality) For every θ ∈ Θ, matrices O and C have, respec-

tively, full column and full row rank, i.e. rank(O) = rank(C) = n.

Assumption 2 (under the name that we use) is well known in the linear system literature,

see e.g. Lindquist and Picci (1996). It is exactly the same as in e.g. Komunjer and Zhu (2020),

who term it as autocovariance minimality. Its main purpose is to confine the analysis only to

those ABCD-representations (consistent with given autocovariance sequences) in which the

dimension of the state vector is as small as possible. To this end, Assumption 2 ensures that

the underlying infinite block Hankel matrix has the same rank n (see Appendix A.2).

Assumption 2 differs from the assumptions made by Komunjer and Ng (2011) in how ma-

trix C is defined. In their framework, N is replaced either by B (Assumption 5-S, applicable

to the singular case) or the steady-state Kalman gain associated with the innovations rep-

resentation of the original state-space system (Assumption 5-NS, for the non-singular case).

Moreover, Komunjer and Ng (2011) additionally impose left-invertibility of the transfer func-

tion (Assumption 4-S for the singular case)4 or full row rank of matrix D (Assumption 4-NS

for the non-singular case). In our most general form of the identification condition, we do not

need any of these additional assumptions. We also do not have to distinguish between sin-

gular and non-singular models, which spares us reformulation of the original problem into its

innovations representation in the latter case. In this sense, our framework can be seen both

as unification and some generalization (as it relies on weaker conditions) of that developed

by Komunjer and Ng (2011).

Even though well established in the linear system literature, one may question the practi-

cal aspect of Assumption 2 since it is impossible to check its validity for all θ ∈ Θ. However,

in Appendix A.1 we show that if Assumption 2 is valid for some θ at which we check identi-

fication, then in fact it holds for almost all θ ∈ Θ. This allows us to safely proceed with our

analysis, with the understanding that the underlying deep parameter space Θ excludes those

θ’s that violate the assumption, which however form the nowhere dense subset of measure

zero. In fact, as we discuss at the end of this section using a simple example, the excluded

parameter values can just correspond to particular degenerate cases, and hence are not the

relevant candidates for observational equivalence to those θ’s for which Assumption 2 holds.

4Under left-invertibility, finding all observationally equivalent ABCD-representations closely resembles
the so-called deterministic realization problem, hence standard assumptions concerning observability and
controllability are sufficient.
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As implied by our model formulation, we deal with a stationary Gaussian environment

and ignore intercept in the measurement equation so that the unconditional mean of all

observables is zero.5 This allows us to define observational equivalence by using only second

moments. More formally, let us define the spectral density of the ABCD-representation as

Φ(z) = H(z)ΣH ′(z−1), where H(z) = D + C(zIn − A)−1B is the transfer function and z−1

corresponds to its backward shift. Then we have the following definition

Definition 1. θ and θ̄ are observationally equivalent (written as θ ∼ θ̄) if Φ(z) = Φ̄(z) for

all z ∈ C.

What Definition 1 conveys is that two deep parameters sets are observationally equivalent

if they result in the same autocovariance sequence, so that we cannot distinguish between

them using second moments of the observable variables. We are now ready to state the key

theorem.

Theorem 1. Let Assumptions 1 and 2 hold. Then θ ∼ θ̄ if and only if 1) Ā = TAT−1,

2) C̄ = CT−1, 3) AQA′ − Q = T−1B̄Σ̄B̄′T ′−1 − BΣB′, 4) CQC ′ = D̄Σ̄D̄′ − DΣD′, 5)

AQC ′ = T−1B̄Σ̄D̄′ − BΣD′, for some nonsingular matrix T and symmetric matrix Q. In

addition, if θ ∼ θ̄ then both T and Q are unique.

This theorem is an adapted version of Corollary 4.5 in Glover (1973), which probably

belongs to “folk wisdom” among specialists in linear system theory, but, to our knowledge,

it has not been yet used to study economic systems.6 From the perspective of identification

in DSGE models, Theorem 1 generalizes and unifies the key propositions 1-S and 1-NS in

Komunjer and Ng (2011), who consider separately the singular and non-singular cases, for

which they need to assume left-invertibility of the transfer function in the former case and the

full row rank of D in the latter case. Most importantly, the general form of the theorem allows

us to treat the case r < k, which arises naturally under indeterminacy as full characterization

of the model solutions requires adding sunspot shocks (Lubik and Schorfheide, 2003).

It may be useful to know under what further conditions our Theorem 1 nests the con-

clusions of Propositions 1-S and 1-NS in Komunjer and Ng (2011) for the singular and

non-singular case, respectively. Starting with the latter, let us define the Riccati equation

(in symmetric matrix Π)

Π = AΠA′ +BΣB′ −KΣaK
′ (8)

5If the measurement equation includes an intercept that depends analytically on θ, additional identification
conditions can be obtained from the first moments of observable variables. Adding this information to our
identification analysis is straightforward, so we do not deal with this possibility here.

6For this reason, and also because Glover (1973) contains only the proof of a continuous time version of
Corollary 4.5, we prove Theorem 1 in Appendix A.2.
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where Σa = CΠC ′ + DΣD′ and K = (AΠC ′ + BΣD′)Σ−1
a (in what follows we assume that

Σa is positive definite). Let us also formulate the following assumption.

Assumption 3. For every θ ∈ Θ, the Riccati equation (8) possesses a unique, positive

semidefinite solution.

Clearly, Assumption 3 is a high level assumption. However, as we show in Appendix A.3,

checking whether it holds is quite easy. Then we have the following proposition.

Proposition 1. Let Assumptions 1, 2 and 3 hold. Then θ ∼ θ̄ if and only if 1) Ā = TAT−1,

2) C̄ = CT−1, 3) K̄ = TK and 4) Σ̄a = Σa for some nonsingular matrix T . In addition, if

θ ∼ θ̄ then T is unique.

The conclusions of this proposition, which we prove in Appendix A.4, are exactly as in

Proposition 1-NS in Komunjer and Ng (2011). Obviously, from an operational point of view,

they should be read together with the definition of Riccati equation (8), which links K and

Σa (K̄ and Σ̄a) to the ABCD-representation via matrix Π (Π̄).

Let us now move to the case, in which the number of observable variables is equal to the

number of shocks, i.e. r = k. This is by far the most relevant case in the DSGE literature,

which uses likelihood-based methods to estimate the model parameters. To nest the square

case in our framework, we need the following assumption.

Assumption 4. For every θ ∈ Θ, D is nonsingular.

Needless to say, as in the case of Assumption 2, if Assumption 4 holds for one θ ∈ Θ,

then it applies for almost all θ′s. Then we have the next proposition.

Proposition 2. Let Assumptions 1-4 hold. Then θ ∼ θ̄ if and only if 1) Ā = TAT−1, 2)

B̄ = TBU , 3) C̄ = CT−1, 4) D̄ = DU , 5) Σ̄ = U−1ΣU ′−1, for some nonsingular matrix T

and nonsingular matrix U . In addition, if θ ∼ θ̄ then both T and U are unique.

The conclusions of this proposition are the same as in Proposition 1-S in Komunjer and

Ng (2011). From the perspective of deep parameter identification that we describe in the

following section, the conditions in Proposition 2 are a bit more convenient to handle than

those stated in Theorem 1, so we recommend using the former whenever Assumptions 3 and

4 are satisfied.

3.2 Simple example

To illustrate the meaning and interaction between our all assumptions, theorem and propo-

sitions, consider a simple MA(1) model, i.e. yt = φεt−1 + εt, where εt ∼ N(0, σ2). This
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model is nested in the ABCD-representation by putting A = 0, B = φ, C = 1, D = 1,

Σ = σ2. Since A = 0, our model is stable (i.e. Assumption 1 holds). Moreover, rank(O) =

rank([1, 0, . . . , 0]′) = 1 for all θ, but rank(C) = rank([φσ2, 0, . . . , 0]) = 1 only for φ 6= 0. This

shows why if the latter rank assumption is satisfied for some φ at which we check identifica-

tion, then it holds for almost all φ. Evidently, Assumption 2 simply excludes the white noise

model (i.e. φ = 0) from the considerations, i.e. a point at which C drops rank. Note that

this exclusion is not restrictive as white noise cannot be observationally equivalent to any

non-degenerate MA(1) model.

In the case φ 6= 0, we can safely apply Theorem 1. Since C is restricted to 1, we

immediately have T = 1. Then, from 3), 4) and 5) in this theorem, we get Q = φ2σ2 −
φ̄2σ̄2, Q = σ̄2 − σ2 and φσ2 = φ̄σ̄2, respectively. Solving these three equations in three

unknowns Q, φ̄, σ̄2 gives us exactly two solutions (Q, φ̄, σ̄2) = (0, φ, σ2) and (Q, φ̄, σ̄2) =

(σ2(φ2 − 1), 1
φ
, φ2σ2) for φ 6= ±1, and one solution (Q, φ̄, σ̄2) = (0, φ, σ2) for φ = ±1. Hence,

the model is not globally identified at φ 6= ±1.

Let us now demonstrate how our analysis works in more specialized cases. Note that, since

D is restricted to 1, Assumption 4 holds automatically. Hence, provided that Assumption

3 is fullfiled, we can apply both Proposition 1 and 2. In our case, the Riccati equation (8)

possesses two solutions Π = 0 and Π = σ2(φ2 − 1). For Assumption 3 to hold, we then

need to restrict |φ| < 1 as in this case the only positive semidefinite solution to the Ricatti

equation is Π = 0. As a matter of fact, in Appendix A.3 we show that Assumption 3 holds if

and only if Ψ = A− BD−1C = −φ is stable, i.e. |φ| < 1. With this restriction, Proposition

1 gives us σ̄2 = σ2, T = 1 and φ̄ = φ, while from Proposition 2 we have T = 1 and U = 1.

Hence, the model is globally identified when |φ| < 1, which is consistent with what Theorem

1 gave us as the alternative solution 1
φ

is precluded from the space of allowable parameters

when Assumption 3 is imposed.

To sum up, our general Theorem 1 comprises both invertible and noninvertible MA(1)

models, proving their global identification failure unless φ = ±1. The less general and

obtained under stronger assumptions Propositions 1 and 2 allow only for invertible MA(1)

processes, in which case their global identification holds.

4 Global identification condition for structural param-

eters

The ABCD-representation is defined by matrices that, except for some very special cases

like the MA(1) model elaborated above, are only implicit functions of θ. Therefore, to
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check identification of this vector of deep parameters, we typically cannot apply Theorem

1 directly, but additionally need to impose restrictions on the observationally equivalent

ABCD-representations defined in this theorem that would guarantee consistence with the

underlying DSGE model structure. As in Kociecki and Kolasa (2018), these can be readily

obtained by substituting the model solution (2)-(3) into model formulation (1), which we

rewrite for convenience in a block form

[
Γs0 Γp0

] [ st

pt

]
=
[

Γs1 Γp1

]
Et

[
st+1

pt+1

]
+ Γ2st−1 + Γ3εt (9)

Using Etεt+1 = 0 results in the following two matrix equation restrictions

Γs0A+ Γp0F − Γs1A
2 − Γp1FA = Γ2 (10)

Γs1AB + Γp1FB − Γs0B + Γ3 = Γp0G (11)

A similar operation using the original measurement equation (4) results in two other matrix

restrictions, that are already available as equations (6) and (7).

We hence arrive at the following final set of conditions that have to be met by any

parameter vector θ̄ that is observationally equivalent to some θ

Γ̄s0Ā+ Γ̄p0F̄ − Γ̄s1(Ā)2 − Γ̄p1F̄ Ā = Γ̄2 (12)

Γ̄s1ĀB̄ + Γ̄p1F̄ B̄ − Γ̄s0B̄ + Γ̄3 = Γ̄p0Ḡ (13)

C̄ = H̄sĀ+ H̄pF̄ (14)

D̄ = H̄sB̄ + H̄pḠ+ J̄ (15)

Ā = TAT−1 (16)

C̄ = CT−1 (17)

AQA′ −Q = −BΣB′ + T−1B̄Σ̄B̄′(T−1)′ (18)

AQC ′ = T−1B̄Σ̄D̄′ −BΣD′ (19)

CQC ′ = D̄Σ̄D̄′ −DΣD′ (20)

Q = Q′ (21)

In this system of equations, the unknowns are θ̄ (on which the following depend explicitly:

Γ̄s0, Γ̄p0, Γ̄s1, Γ̄p1, Γ̄2, Γ̄3, Σ̄, H̄s, H̄p, J̄), as well as Ā, B̄, C̄, D̄, F̄ , Ḡ, T , Q. All remaining

matrices are functions of θ, and hence known while checking identification at this point in
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the parameter space. Therefore, our final global identification condition for the structural

(deep) model parameters can be stated as follows

Definition 2. The model given by equations (1) and (4) is globally identified if and only if

all admissible solutions to system (12)-(21) are such that θ̄ = θ.

Note that being able to solve the system of equations above analytically, i.e. giving the

full set of θ̄ ∈ Θ that satisfy it, essentially resolves the problem of identification in a given

DSGE model. However, this is not easy as equations (12)-(21) are non-linear and their

number is fairly large even for small-scale models. Naturally, one can try to solve this system

numerically, as it is done in a less general framework by Kociecki and Kolasa (2018), but

numerical methods can give only one solution at a time rather than their full set. Solving the

identification problem hence requires analytical methods, and to this end we will use some

concepts developed in computational algebraic geometry.

To apply these methods, we first need to write our model such that the coefficients on

the model variables that show up in the equations of the original model formulation (1)

and (4) form polynomials. In many cases this is straightforward and can be achieved by

basic algebraic operations on the model equations. For example, if some coefficients in a

model equation form a fraction, we can simply multiply all terms in this equation by the

denominator of this fraction. Whenever this is not possible, e.g. when one parameter enters

as an exponent of another, we need to define auxiliary parameters that add to the original

ones, possibly replacing some of them.7 We will denote the thus obtained modified parameter

vector as α, and will refer to its elements as semi-structural parameters, as opposed to deep

parameters collected in θ. Naturally, since the deep and semi-structural parameters are

linked analytically via time-invariant restrictions, it is straightforward to use the solution of

the global identification problem defined for α to make inference about identification of θ.

To see the nature of the underlying problem a bit more clearly, let us eliminate some

terms in the system of equations (12)-(21) and reorganize to get

Γ̄s0TA+ Γ̄p0
¯̃F − Γ̄s1TA

2 − Γ̄p1
¯̃FA = Γ̄2T (22)

Γ̄s1TA
¯̃B + Γ̄p1

¯̃F ¯̃B − Γ̄s0T
¯̃B + Γ̄3 = Γ̄p0Ḡ (23)

7Rewriting the model equations using auxiliary parameters may be useful even if it is not necessary to ob-

tain a polynomial structure. Take for example the New Keynesian Phillips curve πt = βEtπt+1+ (1−ξ)(1−βξ)
ξ xt,

which can be easily cast in the form required by our analysis by multiplying it by ξ. Obviously, for any value
of the Calvo probability ξ there exists an observationally equivalent alternative number, which lies outside the
unit interval and hence should not be taken into account. However, while solving the identification problem
mathematically, this alternative parametrization will be found, only to be discarded after applying economic
restrictions. If we instead replace ξ in the vector of model parameters with a semi-structural parameter

κ = (1−ξ)(1−βξ)
ξ , this validation step can be avoided.
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C = H̄sTA+ H̄p ¯̃F (24)

D̄ = H̄sT ¯̃B + H̄pḠ+ J̄ (25)

AQA′ −Q = −BΣB′ + ¯̃BΣ̄ ¯̃B′ (26)

AQC ′ = ¯̃BΣ̄D̄′ −BΣD′ (27)

CQC ′ = D̄Σ̄D̄′ −DΣD′ (28)

Q = Q′ (29)

where ¯̃F = F̄ T and ¯̃B = T−1B̄.8 We have thus turned our identification conditions into a

system of polynomial equations. In this alternative formulation, the unknowns are: ᾱ (on

which the following depend analytically: Γ̄s0, Γ̄p0, Γ̄s1, Γ̄p1, Γ̄2, Γ̄3, Σ̄, H̄s, H̄p, J̄), as well as

matrices ¯̃B, D̄, ¯̃F , Ḡ, T and Q.

It is straightforward to derive a similar set of identification conditions for the square case,

when we can use the similarity transformation defined by Proposition 2. These are

Γ̄s0TA+ Γ̄p0F̄ T − Γ̄s1TA
2 − Γ̄p1F̄ TA = Γ̄2T (30)

Γ̄s1TABU + Γ̄p1F̄ TBU − Γ̄s0TBU + Γ̄3 = Γ̄p0Ḡ (31)

C = H̄sTA+ H̄pF̄ T (32)

DU = H̄sTBU + H̄pḠ+ J̄ (33)

UΣ̄U ′ = Σ (34)

forming a system of polynomial equations in ᾱ, F̄ , Ḡ, T and U .

5 Implementation

5.1 Gröbner basis

As we have demonstrated in the previous section, the key step in solving the identification

problem in a DSGE model boils down to solving a system of polynomial equations. In

our implementation we draw on the concept of a Gröbner basis. Intuitively, calculating it is

analogous to Gaussian elimination in systems of linear equations, and it is entirely analytical.

There exist many algorithms that produce a Gröbner basis in finitely many steps and, since

8Note that, since T is nonsingular, there is a one-to-one relationship between these two newly defined
matrices and their parents F̄ and B̄.
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the first algorithm proposed by Buchberger in the 1960s, enormous progress in computational

efficiency has been made. Below we offer a brief introduction to the key concepts. For details,

we refer the interested readers to widely suggested introductive textbooks on computational

algebraic geometry (and Gröbner basis in particular) by Cox et al. (1997) and Cox et al.

(2005). An excellent introduction in the context of finding all equilibria in economic models

can be found in Kubler et al. (2014).

Let K denote any field. For us, the most important field will be Q, i.e. that of rational

numbers, however the field of real numbers R, and complex numbers C will also be in use.

In addition, let us denote as K̄ an algebraically closed field containing K. Without going

into details, one can think of K̄ as C. The set of polynomials in variables x1, . . . , xl with

coefficients in K will be denoted K(x1, . . . , xl). Each polynomial equation is a finite sum of

terms cxd11 x
d2
2 · · · x

dl
l , where c is a coefficient (in K) and xd11 x

d2
2 · · ·x

dl
l is called a monomial,

where each di is a non-negative integer. The degree of a monomial is d1 + · · · + dl, and the

degree of a polynomial equation is the maximum of the degrees of its all monomials.

Suppose we have a set of s polynomials f1, f2, . . . , fs ∈ K(x1, . . . , xl). Then, a variety

V is defined to be a set of all solutions to f1 = 0, f2 = 0, . . . , fs = 0, i.e. V (f1, . . . , fs) =

{(a1, . . . , al) ∈ K̄l|f1 = 0, . . . , fs = 0}. Of course, the initial polynomials f1, . . . , fs only

represent the variety. There are many other alternative sets of polynomials, some of which

could do a better job in the sense of the ease with which the underlying solutions can be

read. In particular, this opens a way to a Gröbner basis. To this end, define an ideal

generated by f1, . . . , fs as I = 〈f1, . . . , fs〉= {u1f1+· · ·+usfs|ui ∈ K(x1, . . . , xl), i = 1, . . . , s}.
The ideal is just a weighted sum of all initial polynomials (called its generators), in which

the coefficients (weights) are polynomials themselves. What makes the ideal useful is that

V (f1, . . . , fs) = V (I), i.e. the solution set of the initial finite system of polynomials and that

of an ideal generated by these polynomials (i.e. an infinite system) are the same. Evidently,

any ideal can have different generators. As a matter of fact, if 〈f1, . . . , fs〉 = 〈f ′1, . . . , f ′s′〉,
then V (f1, . . . , fs) = V (I) = V (f ′1, . . . , f

′
s′). Hence, the solutions to f1 = 0, . . . , fs = 0 and

to f ′1 = 0, . . . , f ′s′ = 0 are the same. In the essence, what defines the solution set is the

ideal and not the initial polynomials. The main idea of a Gröbner basis is to find alternative

generators that represent the ideal in a “better” way. For example, in the case of linear

polynomials (equations), this “better” way is to find their row echelon form. Importantly,

by the Hilbert basis theorem, each ideal must be generated by finite number of polynomials,

hence the algorithmic methods to find the “better” representation of the variety may be safely

applied.

Before we can define (and obtain) a Gröbner basis, we have to take a stand on the ordering

of monomials since every algorithm to compute the basis must involve polynomial divisions.
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An ordering is just a rule that allows for a unique placement of terms in a polynomial. It

turns out that the chosen ordering greatly influences the ultimate Gröbner basis, and some

orderings are particularly useful. For our purposes, the most important ordering is the so-

called lexicographic ordering, i.e. monomial xd11 x
d2
2 · · ·x

dl
l � ( is greater than) xe11 x

e2
2 · · ·x

el
l if

d1 = e1, . . . , dm = em and dm+1 > em+1 (where possibly m = 0). For example, x1x
2
2x3 �

x1x
2
2x

3
4, since d3 = 1 > e3 = 0. Let us define xd := xd11 x

d2
2 · · ·x

dl
l . If we choose a monomial

ordering, each polynomial may be written uniquely as f = cdx
d + · · · . Then xd is called

the leading monomial and cdx
d is the leading term. We say that polynomials g1, . . . , gt ∈ I

constitute the Gröbner basis for ideal I if the leading term of any (nonzero) polynomial in I

is divisible by the leading term of one of g1, . . . , gt.Needless to say, g1, . . . , gt are generators

for I, every (nonzero) I possesses a Gröbner basis, and solutions to g1 = 0, . . . , gt = 0 and to

the initial polynomials f1 = 0, . . . , fs = 0 are the same. When there is only a finite number

of solutions, the underlying ideal is called zero-dimensional.

Using the lexicographic ordering, the resulting Gröbner basis represents an ideal particu-

larly well since the polynomial system becomes “triangularized”. The Gröbner basis contains

a lot of information about the solutions set of the initial polynomial system. For example, the

system does not have any solution if and only if the Gröbner basis contains only 1. Further,

the fact whether an ideal is zero-dimensional or not is explicitly “coded” in the Gröbner basis

and may be easily read off. The initial system of polynomials possesses a finite number of

solutions (i.e. I is zero-dimensional) if and only if for every variable xi there exists a poly-

nomial in the Gröbner basis such that its leading monomial is equal to xmi , for some m > 0.

Importantly, calculation of a Gröbner basis is analytical, i.e. numerical approximations are

not involved.

5.2 Computation

Going back to our problem of identification in DSGE models, we showed that the key step

in solving it amounts to finding all roots to a polynomial system of equations. In a typical

case, the number of equations s exceeds the number of variables l, which is the so-called

overdetermined case. For generic overdetermined polynomial systems, the solution set is

empty, but of course in our formulation we do know that at least one solution exists. In

order to deal effectively with overdetermined systems, we exploit the approaches presented

in Lazard (1992) or Moller (1993). The idea is to decompose the original ideal so that

the solution set of the initial polynomials will be the disjoint (finite) union of solutions to

some smaller systems of l equations in l variables. This leads to the so-called triangular

decomposition. See Kubler et al. (2014), section 2.2.3, for some intuition.

For all our calculations that follow, we use SINGULAR, a free and open source computer
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algebra system specialized in polynomial calculations, see at www.singular.uni-kl.de. It

has implemented many routines for calculation of the Gröbner basis, which is useful as there

is no single algorithm that beats in terms of computational efficiency all alternatives for all

possible cases. Importantly, SINGULAR can be considered a repository of most state-of-

the-art algorithms, with active community of users sharing their experience in approaching

various problems. In the next section, we demonstrate that applying the concept of a Gröbner

basis is feasible for widely used DSGE models.

5.3 Checking global identification

By calculating the Gröbner basis for a given DSGE model, we obtain a formally proved verdict

about global identification of its semi-structural parameters. To complete the identification

analysis about the deep model parameters, we need to use the restrictions mapping θ̄ into ᾱ.In

particular, this step also allows us to rule out those observationally equivalent semi-structural

parameter sets that violate the restrictions imposed on them by the deep parameters.

These restrictions can be of two types. One concerns possible remaining dependencies

between the semi-structural parameters, which are imposed by the deep parameters and which

were ignored while defining the former. The second type of restrictions is related to the range

of admissible values of θ̄ summarized by their space Θ, which may also impose restrictions on

ᾱ. Accommodating such restrictions in the existing algorithms used to calculate the Gröbner

basis is not easy, and hence they have to be verified ex post. As we have argued before, and

as we demonstrate in our examples, since the links between α and θ are analytical, this step

of the identification analysis is straightforward.

To summarize, a complete identification analysis in our framework can proceed as follows.

1. Calculate the Gröbner basis associated with identification conditions (22)-(29), or (30)-

(34) if Assumptions 3 and 4 hold.

2. If the obtained Gröbner basis suggests multiple solutions, use the mapping between ᾱ

and θ̄ to rule out those resulting in θ̄ /∈ Θ (and in particular those for which θ̄ ∈ ∅).

3. If at least one of the alternative solutions remains, the model is not globally identified.

4. If instead the Gröbner basis implies only one admissible solution, then the model is

globally identified if and only if the mapping between α and θ is unique (for θ ∈ Θ).

This analysis can be further refined to distinguish between global and local identification

failure. Again, doing it at the level of mapping between α and θ is straightforward and

boils down to checking if a possible non-uniqueness of the mapping imply a finite number
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or infinitely many admissible θ’s consistent with a given α. In the former case, the model

is globally unidentified, but local identification holds. Similar information at the level of

semi-structural parameters is coded in the Gröbner basis. If it implies multiple admissible

solutions, but is zero-dimensional, the model is locally identified.

6 Examples

We demonstrate the working of our identification framework with several examples. The

first one is based on Cochrane (2011), and its simplicity allows us to show in detail the key

steps of our analysis, including the use of the Gröbner basis. We next exploit a small-scale

DSGE model by An and Schorfheide (2007), AS henceforth, modified to allow for correlation

between government spending and productivity as in Herbst and Schorfheide (2016). This

is a very instructive example as it allows to nest various non-trivial types of identification

issues, including the case when the model is only locally (but not globally) identified. Our

next example is the widely cited medium-sized DSGE model of Smets and Wouters (2007),

and the goal here is to show that our approach can also handle models of this size. Finally,

we study global identification in an open economy framework, which has not been done in

the literature before, starting from the model developed by Justiniano and Preston (2010),

and extending it in several directions.

6.1 Cochrane model

6.1.1 Model summary and its analytical solution

Consider a very simple model

it = Etπt+1 (35)

it = φπt + xt (36)

where it is the nominal interest rate, πt denotes inflation and xt is a monetary policy shock

that follows a stationary AR(1) process. The first equation can be interpreted as the log-

linearized Fisher relationship, while the second as a simple monetary policy feedback rule.

We restrict here our attention to the case of determinacy so that φ > 1.

Substituting out it and writing the process driving xt explicitly leads to the following

system

xt = ρxt−1 + εt (37)

φπt + xt = Etπt+1 (38)
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where | ρ |< 1 and εt ∼ N(0, v), with v > 0 denoting the variance. This system can be easily

cast into form (1), with st = xt, pt = πt, θ = [ ρ φ v ]′ and

Γ0 =

[
1 0

1 φ

]
; Γ1 =

[
0 0

0 1

]
; Γ2 =

[
ρ

0

]
; Γ3 =

[
1

0

]
; Σ = v

Note that all deep parameters collected in θ enter the model equations linearly so that we do

not need to rewrite them using semi-structural parameters, which we can formally write as

α = θ. If the only observable variable is inflation, i.e. yt = πt, and there is no measurement

error, we have

H =
[

0 1
]

; J = 0

The model is simple enough to have an analytical solution, which, given the restriction

on φ, is uniquely given by formulas (2)-(3) with the following coefficients

A = ρ; B = 1; F = − ρ

φ− ρ
; G = − 1

φ− ρ

We also obviously have C = F and D = G. This solution implies that the observable variable

can be written as an AR(1) process

yt = ρyt−1 −
1

φ− ρ
εt (39)

Having such an analytical solution, the identification analysis is straightforward and we can

immediately conclude that, of the three model parameters, only ρ is globally identified while

φ and v cannot be separately identified.

6.1.2 Calculating the Gröbner basis

To demonstrate the working of our framework, suppose now that, as it is typically the case,

we do not know the analytical solution of the model, so that A, B, C and D are just numbers.

Let us apply our framework at a generic point θ = [ 0.8 1.8 1 ]′ so that A = 0.8, B = 1,
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C = −0.8 and D = −1. The identification conditions (22)-(29) can then be written as follows

0.8 + ¯̃F = 0

D̄ − Ḡ = 0

0.8T − ρ̄T = 0

0.8T + φ̄ ¯̃F − 0.8 ¯̃F = 0

−T ¯̃B + 1 = 0 (40)

¯̃F ¯̃B − T ¯̃B − φ̄Ḡ = 0

−0.36Q+ 1− ( ¯̃B)2v̄ = 0

0.64Q+ ¯̃Bv̄D̄ + 1 = 0

0.64Q− (D̄)2v̄ + 1 = 0

where the last one was omitted as it becomes an identity when the dimension of Q is one.

The unknown variables are: ρ̄, φ̄, v̄, as well as ¯̃B, D̄, ¯̃F , Ḡ, T and Q, all of which are one-

dimensional objects. The identification conditions are hence given by a system of polynomial

equations of degree three. Finding its all solutions is not straightforward even in this simple

case. We will show now how this goal can be achieved by calculating the Gröbner basis of

the ideal generated by these polynomials.

As we mentioned in the previous section, defining a Gröbner basis involves ordering of

monomials, which allows for a unique placement of terms in each polynomial. In applications

like ours, the most convenient one is the so-called lexicographic ordering, applied to variables

arranged such that the objects of interest, which are the model parameters ρ̄, φ̄ and v̄, come

first. The sequence in which we listed the unknown variables in the previous paragraph meets

this criterion, so we use it here. After applying the lexicographic ordering to our polynomials
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and running the Buchberger algorithm, we obtain the following Gröbner basis

0.64Q2 +Q = 0

TQ+ 0.8Q = 0

ḠQ = 0

ḠT + 0.64Q+ 1 = 0

¯̃F + 0.8 = 0 (41)

D̄ − Ḡ = 0

¯̃B + Ḡ− 0.8Q = 0

v̄ − T 2 + 0.2304Q = 0

φ̄− T − 0.8 = 0

ρ̄− 0.8 = 0

where all numbers showing up in the equations above are exact rational numbers (even

though we present them using a decimal notation) as they are derived by analytical algebraic

operations that do not involve any numerical approximation.

6.1.3 Identification analysis

One important thing to note is a triangular structure of the obtained Gröbner basis. The

first of polynomials includes only Q, the second adds to it T , the third may additionally

contain Ḡ, and so on until the model parameters are finally added. This is exactly what

makes finding all solutions of the system of polynomial equations (41) easy, in contrast to the

original set of identification conditions (40), and we know that the solutions are exactly the

same. Naturally, the particular sequence in which the unknown variables add to this triangle

is no coincidence, but simply reflects the ordering that we have chosen. As we will show now,

this often allows for straightforward conclusions on identification of the model parameters

even without having to solve for all other objects.

In our particular example, we immediately see that all possible solutions must be such

that ρ̄ = 0.8 = ρ, hence this parameter is globally identified at the θ we consider. As regards

the other two parameters, they depend on Q and T , which are fully determined by the first

two equations in (41). From the first one we obtain that Q = −1.5625 or Q = 0. The first

case leads to T = −0.8 and further to φ̄ = 0, which violates the restriction imposed on this

parameter, and hence can be ruled out. If instead Q = 0, the second equation does not put

any restriction on T , and hence v̄ and φ̄ are not identified. For T = 1 we obtain θ̄ = θ, but

any deviation of T from unity results in an alternative θ̄ that is observationally equivalent
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to θ. This deviation can be arbitrarily small, which means that the identification failure is

local.

A useful feature of our approach is that having the Gröbner basis also allows to establish

the explicit relationship between the unidentified parameters, which (by eliminating T from

the penultimate two equations) is v̄ − (φ̄ − 0.8)2 = 0. Any pair of v̄ and φ̄ meeting this re-

striction and consistent with the underlying support for deep parameters Θ is observationally

equivalent to v = 1 and φ = 1.8. Naturally, this conclusion perfectly matches that following

from the analytical solution given by equation (39), but we arrived at it as if we did not know

the latter. It also immediately follows that fixing either v̄ or φ̄ renders the model globally

identified at the considered θ.

6.2 An-Schorfheide model

6.2.1 Model summary

When written in a log-linearized form, the model is given by the following equations

xt = Etxt+1 + gt − Etgt+1 −
1

τ
(Rt − Etπt+1 − Etzt+1) (42)

πt = βEtπt+1 + κ(xt − gt) (43)

Rt = ρmRt−1 + (1− ρm)[ψ1πt + ψ2(xt − gt)] + εm,t (44)

zt = ρzzt−1 + ρzggt−1 + εz,t (45)

gt = ρggt−1 + ρgzzt−1 + εg,t (46)

There are three endogenous variables in the model: detrended output xt, inflation πt and

the interest rate Rt. They are driven by two exogenous AR(1) processes for productivity

growth zt and government spending gt, with innovations εz,t and εg,t, respectively, and by an

i.i.d. monetary policy shock εm,t. All of the i.i.d. innovations are assumed to be mutually

uncorrelated and their variances are vz, vg and vm, respectively. The 13-dimensional vector

of deep parameters is hence θ = [ τ β κ ψ1 ψ2 ρz ρzg ρg ρgz ρm vz vg vm ]′.

The model can be cast in form (1), with states st = [ zt gt Rt ]′, policy variables
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pt = [ xt πt ]′, shocks εt = [ εz,t εg,t εm,t ]′ and matrices Γ0, Γ1, Γ2, Γ3 and Σ given by

Γ0 =


0 −τ 1 τ 0

0 κ 0 −κ 1

0 (1− ρm)ψ2 1 −(1− ρm)ψ2 −(1− ρm)ψ1

1 0 0 0 0

0 1 0 0 0

 ; Γ1 =


1 −τ 0 τ 1

0 0 0 0 β

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Γ2 =


0 0 0

0 0 0

0 0 ρm

ρz ρzg 0

ρgz ρg 0

 ; Γ3 =


0 0 0

0 0 0

0 0 1

1 0 0

0 1 0

 ; Σ =

 vz 0 0

0 vg 0

0 0 vm



where we have multiplied equation (42) by τ so that all coefficients in the model equilibrium

conditions are polynomials. As a result, we do not need to define any auxiliary parameters and

can implement our identification analysis directly on the deep model parameters, i.e. α = θ.9

The vector of observable variables is yt = [ Rt xt πt ]′ and there are no measurement errors,

which means that H = [ 03×2 I3 ] and J = [ 03×3 ].

6.2.2 Global identification failure in a locally identified model

Let us start with the following benchmark parametrization: τ = 2, β = 0.9975, κ = 0.33,

ψ1 = 1.5, ψ2 = 0.125, ρz = 0.9, ρg = 0.95, ρzg = 0.1, ρgz = −0.075, ρm = 0.75, vz = 0.09,

vg = 0.36, vm = 0.04. These values are the same as in An and Schorfheide (2007), except

for ρzg and ρgz, which are taken from Kociecki and Kolasa (2018). Calculating the Gröbner

basis results in the following set of solutions for θ̄:

9More precisely, in the original An-Schorfheide model κ is actually a semi-structural parameter, linked to
the deep model parameters via κ = τ 1−ν

νπ2φ . Since ν, π and φ do not show up anywhere else in the model

equations, including them separately in θ instead of combining into κ trivially leads to (local) identification
failure.
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0 = u2 − 1.8697u+ 0.8697

...

ρ̄z = 0.9155− 0.0155u

ρ̄zg = 0.2415− 0.1415u

ρ̄g = 0.9345 + 0.0155u

ρ̄gz = 0.0209− 0.0959u

τ̄ = 2

β̄ = 0.5351 + 0.4624u (47)

κ̄ = 0.4912− 0.1612u

ρ̄m = 0.75

ψ̄1 = 1.3131 + 0.1869u

ψ̄2 = 0.2516− 0.1266u

v̄z = 0.1279− 0.0379u

v̄g = 0.3128 + 0.6728u

v̄m = 0.04

where u is the second element of the second row in matrix T . To save space, we skip above

the equations determining the solutions for other “unknowns” in the system of identification

conditions (22)-(29) as they are not needed to arrive at identification conclusions for θ. We

also show the numbers rounded to four decimal digits, even though they are in fact arbitrarily

accurate numbers.10

As we can see, three structural parameters, namely τ̄ , ρ̄m and v̄m, are equal to their

respective elements of θ, at which we check identification. The remaining elements of θ̄ are

parametrized by u, which needs to be consistent with the quadratic restriction in the first

equation, implying that u = 1 or u = 0.8697. It is easy to verify that, in the former case,

we get our benchmark parameter vector θ, while the latter case results in an observationally

equivalent model parametrization that is exactly the same as that obtained by Kociecki and

Kolasa (2018) with their numerical algorithm. We have thus a formal and constructive proof

that the AS model is locally but not globally identified at θ, and that the identification failure

10To get arbitrary precision, it is important that the matrices describing the model solution 2-3 for the
parameter vector at which we check identification are also sufficiently precise. Therefore, we recommend to
do all computation (including obtaining matrices A, B, F and G) in SINGULAR, which works at arbitrary
precision.
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concerns all deep parameters but τ , ρm and vm. Moreover, looking at the Gröbner basis (47)

immediately reveals that fixing any of the unidentified parameters renders the model globally

identified.

6.2.3 Local identification failure

Let us now consider the same benchmark parameter vector θ, except that we rule out any

spillovers between productivity and government spending shocks, i.e. fix ρzg = ρgz = 0.

Calculating the Gröbner basis yields:

0 = u2 − 49.3312u

0 = uw

...

ρ̄z = 0.9− 0.0078u

ρ̄g = 0.95

τ̄ = 2− 0.9618u

β̄ = 0.9975

κ̄ = 0.33 (48)

ρ̄m = 0.75w

ψ̄1(w − 1.3333) = 3.7211w − 4.2211

0 = (ψ̄1 − 3.1658)u

ψ̄2 = 2.7302− 1.7368ψ̄1

v̄z = 0.09 + 8.1277u

v̄g = 0.36

v̄m = 0.04w2

where, as before, we save space by skipping those elements of the basis that are not necessary

for our identification analysis.

Of the two roots of the first equation, only u = 0 does not violate the restrictions on the

deep model parameters. In particular, the other root implies τ < 0, so we can rule it out. If

u = 0, the second equation does not put any restrictions on w. Setting w = 1 results in θ̄ = θ,

any other value of w meeting the restrictions on the deep parameters gives an alternative

parameter vector θ̄ that is observationally equivalent to θ. The identification failure concerns

exclusively ρm, ψ1, ψ2 and vm, which is now proved in a constructive way.

One can think of this failure as local since it applies to any vicinity of w = 1. This
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conclusion is consistent with previous papers dealing with this version of the AS model.

Importantly, however, and in contrast to any of the existing approaches to analyze local

identification (also Iskrev, 2010; Komunjer and Ng, 2011), our framework analytically pro-

duces the whole set of parameter vectors that are observationally equivalent to the one at

which we check identification.11 In this example, the set is one-dimensional and can be

written, after some rearrangement, as follows

ρ̄m = 0.75w

ψ̄1 =
3.1658− 2.7908w

1− 0.75w

ψ̄2 =
−2.7682 + 2.7994w

1− 0.75w
(49)

v̄m = 0.04w2

where w is any real number that keeps the alternative model parametrization θ̄ in the de-

terminacy (and stability) region. Having such an explicitly defined set can be useful. For

example, one can see from it that our baseline parametrization, which features a positive

response of the interest rate to both inflation and output, can be observationally equivalent

to one which implies that the central bank’s reaction to output is negative (e.g. for w = 0.8).

More generally, our method gives a new insight into the concept of local identification, that

seems to be new in the literature. In fact, what we demonstrated is that all observationally

equivalent parameters in this example live on the intersection of some hyperplanes, whose

dimension is 1. It is not difficult to imagine other cases that possibly could emerge in other

models, e.g. an intersection of hyperplanes of higher dimension or some polynomials in several

variables (e.g. 2 polynomial equations of second degree in 3 variables).

6.2.4 Handling indeterminacy

In the previous two parametrizations of the AS model, we have considered the parameter

vectors that imply a unique stable solution. However, our framework can also handle inde-

terminate cases. To demonstrate it, let us consider the same benchmark θ as before, except

that now ψ1 = 0.75, i.e. half the previously assumed value. It can be easily verified, e.g.

by checking the Blanchard-Kahn conditions, that there are infinitely many stable equilibria

under such parametrization. As shown by Lubik and Schorfheide (2003), the full set of these

equilibria are still given by equations (2) and (3), except that the vector of shocks εt must

include a sufficient number of sunspots. Moreover, expectations of forward-looking variables

11Though we are the first to offer analytical insight into the local identification problem in this model, a
similar (but numerical) concept called nonidentification curves was proposed earlier by Qu and Tkachenko
(2012).
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become new states, and hence need to be included in vector st. As demonstrated by Farmer

et al. (2015), an equivalent characterization of indeterminate equilibria is to redefine a subset

of expectational errors as new fundamentals. This is what we do in this example.

The order of indeterminacy in the considered model is one, so we need to pick one expec-

tational error. Without loss of generality, let us pick the one associated with the output gap

xt. Then, the AS model can be written as

xt = x̃t + gt − Etgt+1 −
1

τ
(Rt − Etπt+1 − Etzt+1) (50)

πt = βEtπt+1 + κ(xt − gt) (51)

Rt = ρmRt−1 + (1− ρm)[ψ1πt + ψ2(xt − gt)] + εm,t (52)

xt − x̃t−1 = ρszεz,t + ρsgεg,t + ρsmεm,t + εs,t (53)

zt = ρzzt−1 + ρzggt−1 + εz,t (54)

gt = ρggt−1 + ρgzzt−1 + εg,t (55)

where x̃t = Etxt+1, εs,t is an i.i.d. sunspot shock with variance vs and, as evident from equa-

tion (53), we allow for possible correlation between expectational errors and other structural

shocks.

As an illustration, we check identification of this model at ρsz = ρsg = ρsm = 0.1,

vs = 0.01. Calculating the Gröbner basis implies a unique solution to our identification

restrictions, i.e. θ̄ = θ. We have hence proved that the AS model is globally identified

at this indeterminate parametrization θ. We arrive at the same conclusion also if we fix

ρzg = ρgz = 0, thus confirming the outcome obtained by Qu and Tkachenko (2017) with a

numerical algorithm that searches over the parameter space.

6.3 Smets-Wouters model

We next apply our identification framework to a variant of the widely cited medium-sized

DSGE model of Smets and Wouters (2007). The only deviation from the original model is

that we define the output gap in the monetary policy rule as the deviation of output from its

deterministic trend rather than from its potential level. This allows us to leave out the flexible

price block and reduce the time to calculate the Gröbner basis to just around 10 seconds using

a computing unit with CPU speed 2.90 GHz and 16 GB of RAM memory. Since the model

is quite large and its full version well documented in the literature, we describe its structure

and all steps in our identification analysis in Appendix A.6, and here we only discuss the

conclusions.
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By applying our identification framework, complemented with restrictions imposed by

the first moments of the observable variables, we can prove the following results. First, if

none of the 41 deep parameters in the model are fixed, the model is not locally (and hence

also not globally) identified at the posterior mean reported by Smets and Wouters (2007).

Second, after fixing two appropriately selected parameters, which are either the curvature

of the Kimball goods market aggregator or the Calvo probability for prices, and either the

curvature of the Kimball labor market aggregator or the Calvo probability for wages, the

model is globally (and hence also locally) identified.

The part of these findings that concerns local identification hence confirms the results

obtained by Iskrev (2010) and Komunjer and Ng (2011). The results on global identification

are new. The only paper that has studied the Smets-Wouters model from a global identifica-

tion perspective is Qu and Tkachenko (2017). By applying a numerical routine that searches

for observationally equivalent parameters, they conclude that the model is globally identified

after fixing the five parameters that were originally calibrated in the original paper.12 The

novel finding obtained using our framework is that only two parameters need to be fixed to

obtain global identification.

Summing up, by formally solving the global identification problem in the Smets-Wouters

model, we can conclude that identification issues in this framework are less severe than one

could suspect based on the previous studies.

6.4 Open economy models

We finally use our framework to study global identification in several variants of open economy

models, which has not been done before. Our departure point is the setup developed by

Justiniano and Preston (2010), which can be considered a more empirically-oriented version

of the small open economy setup by Gali and Monacelli (2005). Similarly to medium-sized

closed economy DSGE models in the spirit of Smets and Wouters (2007), the model features

imperfect competition, price rigidities, indexation and habits. It also includes two important

open economy frictions, namely incomplete international financial markets and local currency

pricing in imports. The model is estimated using eight time series, which are home and

foreign output, inflation and the short-term interest rates, as well as the terms of trade and

real exchange rate.

We additionally consider several extensions to this baseline setup that have been recently

emphasized as key to resolving several important puzzles in the open economy literature,

see Itskhoki and Mukhin (2017) and Gopinath et al. (2020). These include local currency

12The additional three parameters are the depreciation rate, steady-state wage markup and the steady-state
share of government purchases in output.
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pricing in exports, strategic complementarities in pricing, and use of imported intermediate

inputs in production sold abroad. In Appendix A.7, we present the log-linearized equilibrium

conditions of the richest version of the open economy model, and explain how it can be reduced

all the way back to the original Justiniano-Preston setup by putting appropriate restrictions

on selected parameters. We check global identification at the parameter values calibrated

and estimated for Canada (with foreign economy represented by the United States), while

the extended versions are parametrized using typical values from the literature.

The striking finding of our identification analysis is that, at least when we use the above-

mentioned eight time series as observables, all the model variants prove to be globally identi-

fied. This is despite we do not fix any of the structural parameters that are usually calibrated

rather than estimated when such models are taken to the data. The same conclusion holds

if we treat the three variables describing the foreign economy as unobservable, bringing the

model close to that considered by Lubik and Schorfheide (2007).

All of this suggests that, as long as one uses the standard set of observables, observational

equivalence is not the key source of problems encountered while estimating open economy

DSGE models.

7 Conclusions

In this paper we have developed a comprehensive framework to analyze local and global

identification in DSGE models or, more generally, dynamic linear systems with rational or

model-consistent expectations. Its main advantage is an analytical flavor, which effectively

allows to prove identification or lack thereof. The essence of our approach is application of a

Gröbner basis to solve analytically for all roots of a system of polynomial equations, which

make up a formal identification condition that we derive.

Calculation of the Gröbner bases is known to be computationally involved for large sys-

tems, but we have shown that it can be still successfully applied to small and even some

medium-sized DSGE models. One of the conclusions that emerge from the set of studied

examples is that observational equivalence might be actually not as widespread in this class

of models, and especially in their richer versions, as some earlier small model-based evi-

dence suggested. Instead, problems with estimating these models using maximum likelihood,

commonly resolved by resorting to Bayesian methods, are much more likely to stem from mis-

specification or weak identification issues associated with short data series or irregularities in

the likelihood function (Al-Sadoon, 2021).

Finally, it is worth stressing that using the concept of a Gröbner basis is not the only

possible way to make use of our formal identification condition. One potentially attractive
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avenue to explore is application of all-solution homotopy methods, recently brought to the

attention of economists by Kubler et al. (2014). While numerical in its nature, it may be

a useful complement to the Gröbner basis due to its computational advantage, arising from

the use of parallelizability.
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Appendix

A.1 Discussion of Assumption 2

Let us denote s = n2 + nk + rn + rk + 1
2
k(k + 1) and S = {A,B,C,D,Σ ∈ Rs|rank(O) =

rank(C) = n} = S1 ∩ S2, where S1 = {A,B,C,D,Σ ∈ Rs| rank(O) = n} = {A,B,C,D,Σ ∈
Rs|det(O′O) 6= 0}, S2 = {A,B,C,D,Σ ∈ Rs|rank(C) = n} = {A,B,C,D,Σ ∈ Rs| det(CC ′) 6=
0}. Evidently, both S1 and S2 are open subsets of Rs (being the inverse image of the open

set R \ {0}). Since a finite intersection of open subsets is open, we conclude that S is open.

Further, since the determinant is a polynomial that is an analytic function of its elements, it

implies that S is dense in Rs. This is because an analytic function such as the determinant

cannot be equal to 0 on an open subset of Rs unless it is identically equal to zero. Since S
is an open and dense subset of Rs, we conclude that if Assumption 2 is valid for one θ ∈ Θ,

all θ ∈ Θ such that Assumption 2 is violated form a nowhere dense subset of Rs of measure

zero.

A.2 Proof of Theorem 1

Recalling the notation introduced in the main text, let us define the infinite block Hankel

matrix as

H =


Λ1 Λ2 Λ3 · · ·
Λ2 Λ3 Λ4 · · ·
Λ3 Λ4 Λ5 · · ·
...

...
...

. . .

 =



C

CA

CA2

CA3

...


[
N AN A2N A3N · · ·

]
(A.1)

Assuming stochastic minimality (Assumption 2) and using Sylvester’s rank inequality, it may

be easily shown that rank(H) = n. Suppose that two sets of deep parameters θ̄ 6= θ generate

the same autocovariances. Looking at the Hankel matrix, this implies OAC = ŌĀC̄. By

Assumption 2, it follows that Ā = (Ō′Ō)−1Ō′OACC̄ ′(C̄C̄ ′)−1. Let us denote T = (Ō′Ō)−1Ō′O,

which is nonsingular also by Assumption 2. Since we additionally have OC = ŌC̄, we get

T−1 = CC̄ ′(C̄C̄ ′)−1, hence Ā = TAT−1. Looking at the first block row of the Hankel matrix,

we have CC = C̄C̄ ⇒ C̄ = CT−1. We have hence arrived at the first two conclusions of

Theorem 1. Uniqueness of T follows from equality Ō = OT−1 and full column rank of O.

Now suppose that θ̄ 6= θ results in the same spectral density Φ(z) = Φ̄(z) for all z ∈ C
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(i.e. θ̄ ∼ θ), that is

[C(zIn − A)−1...Ir]

[
BΣB′ BΣD′

DΣB′ DΣD′

]
[C(z−1In − A)−1...Ir]

′ =

[C̄(zIn − Ā)−1...Ir]

[
B̄Σ̄B̄′ B̄Σ̄D̄′

D̄Σ̄B̄′ D̄Σ̄D̄′

]
[C̄(z−1In − Ā)−1...Ir]

′ (A.2)

Using Ā = TAT−1 and C̄ = CT−1, we obtain

[C(zIn − A)−1...Ir]

[
BΣB′ BΣD′

DΣB′ DΣD′

]
[C(z−1In − A)−1...Ir]

′

= [C(zIn − A)−1...Ir]

[
T−1B̄Σ̄B̄′T ′−1 T−1B̄Σ̄D̄′

D̄Σ̄B̄′T ′−1 D̄Σ̄D̄′

]
[C(z−1In − A)−1...Ir]

′ (A.3)

Define the Lyapunov equation evaluated at θ as P = APA′ + BΣB′, and that evaluated at

θ̄ as P̄ = ĀP̄ Ā′ + B̄Σ̄B̄′. Using Ā = TAT−1, the latter may be written as T−1P̄ T ′−1 =

AT−1P̄ T ′−1A′ + T−1B̄Σ̄B̄′T ′−1. Since A is stable , P̃ = T−1P̄ T ′−1 is unique.

To proceed further, we need to use a well known lemma, see e.g. Lindquist and Picci

(2015), p. 199. Let X be any symmetric n× n matrix X, then

[C(zIn − A)−1...Ir]

[
X − AXA′ −AXC ′

−CXA′ −CXC ′

]
[C(z−1In − A)−1...Ir]

′ = 0 (A.4)

Let us use this lemma and subtract (A.4) evaluated at X = P and at X = P̃ from, re-

spectively, the left and right-hand side of equation (A.3). Keeping in mind the Lyapunov

equations, we get

[C(zIn − A)−1...Ir]

[
0 S

S ′ R

]
[C(z−1In − A)−1...Ir]

′ = 0 (A.5)

where S = BΣD′ − T−1B̄Σ̄D̄′ + A(P − P̃ )C ′ and R = DΣD′ − D̄Σ̄D̄′ + C(P − P̃ )C ′.

Since (zIn − A)−1 = z−1In + z−2A+ z−3A2 + · · · , multiplying all terms yields

S ′(zIn + z2A′ + z3A′2 + · · · )C ′ + C(z−1In + z−2A+ z−3A2 + · · · )S +R = 0 (A.6)

Any polynomial is identically (i.e. for all z ∈ C) equal to zero iff its all coefficients are zeros.

Using this fact, we get R = 0 and, by stacking (part of) the remaining restrictions on the
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polynomial coefficients together we have [C ′
...A′C ′

...A′2C ′
... . . .

...A′n−1C ′]′S = 0. By Assumption

2, the latter yields S = BΣD′ − T−1B̄Σ̄D̄′ + A(P − P̃ )C ′ = 0. Lastly, combining the two

Lyapunov equations into one equation we have A(P−P̃ )A′−(P−P̃ ) = T−1B̄Σ̄B̄′T ′−1−BΣB′.

By setting Q = P−P̃ , we arrive at conclusions 3)-5) of Theorem 1. Symmetry and uniqueness

of Q follows from symmetry and uniqueness of P and P̃ .

The implication in the other direction, which amounts to checking if the spectral density

remains the same if conclusions 1)-5) in Theorem 1 hold, is easy to demonstrate.13

A.3 Discussion of Assumption 3

We first show that, if DΣD′ is non-singular,14 then a sufficient condition to make As-

sumption 3 hold is that matrix Ψ = A − BΣD′(DΣD′)−1C is stable, i.e. its all eigen-

values are strictly less than 1 in modulus. To see it, let us additionally define M =

BΣB′ − BΣD′(DΣD′)−1DΣB′. Then, by Theorem 5.4. in Katayama (2005), Assump-

tion 3 holds if and only if, for any z ∈ C with |z| ≥ 1, both rank[Ψ − zIn
... M

1
2 ] = n and

rank

[
Ψ − zIn

C

]
= n. When all eigenvalues of Ψ are such that |z| < 1, then for all z ∈ C

with |z| ≥ 1, Ψ − zIn is nonsingular, i.e. rank(Ψ − zIn) = n.

Moreover, when D is nonsingular, so that Ψ = A−BD−1C, then stability of Ψ is necessary

and sufficient for Assumption 3. To see it, note that, when D is nonsingular, then M = 0.

Suppose that Assumption 3 holds, but Ψ is not stable, which means that there is at least one

|z| ≥ 1 such that Ψ−zIn is singular, i.e. rank(Ψ−zIn) < n. In such a case rank[Ψ−zIn
...M

1
2 ] =

rank[Ψ − zIn
... 0] = rank(Ψ − zIn) = n , for all |z| ≥ 1, cannot hold. Hence we arrive at a

contradiction, which implies that Ψ must be stable.

As a matter of fact, if D is nonsingular, then stability of Ψ is equivalent to the “poor

man’s” invertibility condition in Fernández-Villaverde et al. (2007) and is almost identical to

Assumption 4-S in Komunjer and Ng (2011), i.e. left-invertibility of the transfer function.15

Moreover, to the extent that Assumption 4-S generalizes the “poor man’s” invertibility con-

dition for the case r > k, the condition concerning stability of Ψ can be thought of as

generalizing the latter for the case r < k.

13A similar note also applies to the proofs of Propositions 1 and 2 to be presented below.
14Non-singularity of DΣD′ is also imposed by Komunjer and Ng (2011) as Assumption 4-NS.
15Assumption 4-S in the case of nonsingular D is equivalent to the statement that all eigenvalues of

A−BD−1C are less than or equal to 1 in modulus.
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A.4 Proof of Proposition 1

By definition Λ0 − CPC ′ = DΣD′, N − APC ′ = BΣD′, P − APA′ = BΣB′. Let us write

those equations in the form of the following symmetric matrix[
P − APA′ N − APC ′

N ′ − CPA′ Λ0 − CPC ′

]
=

[
BΣB′ BΣD′

DΣB′ DΣD′

]
(A.7)

On the other hand, by Assumption 2 we have Ā = TAT−1 and C̄ = CT−1. This implies

Λl = CAl−1N = C̄Āl−1N̄ = CAl−1T−1N̄ , for l > 0. Using assumption rank(O) = n, we

conclude that N̄ = TN . Hence, for all θ̄, we can write an analogous symmetric matrix[
P̃ − AP̃A′ N − AP̃C ′

N ′ − CP̃A′ Λ0 − CP̃C ′

]
=

[
T−1B̄Σ̄B̄′T ′−1 T−1B̄Σ̄D̄′

D̄Σ̄B̄′T ′−1 D̄Σ̄D̄′

]
(A.8)

where P̃ = T−1P̄ T ′−1. To proceed, we will need the following lemma

Lemma 1. Let Assumptions 1 and 3 hold. Then W = AWA′+KΣaK
′ has a unique solution

with respect to W . In addition P = W + Π, where P = E(sts
′
t) and Π is the solution to the

Riccati equation (8).

Proof. Since Π = AΠA′ + BΣB′ − KΣaK
′ and P = APA′ + BΣB′, we have P − Π =

A(P −Π)A′ +KΣaK
′. Since A is stable by Assumption 1 and KΣaK

′ is unique (because Π

is unique), W = P − Π is also unique.

Using Lemma 1, we can rewrite (A.7) and (A.8) as

[
W − AWA′ N − AWC ′

N ′ − CWA′ Λ0 − CWC ′

]
=

[
AΠA′ − Π +BΣB′ AΠC ′ +BΣD′

CΠA′ +DΣB′ CΠC ′ +DΣD′

]
(A.9)

and

[
W̃ − AW̃A′ N − AW̃C ′

N ′ − CW̃A′ Λ0 − CW̃C ′

]
=

[
AΠ̃A′ − Π̃ + T−1B̄Σ̄B̄′T ′−1 AΠ̃C ′ + T−1B̄Σ̄D̄′

CΠ̃A′ + D̄Σ̄B̄′T ′−1 CΠ̃C ′ + D̄Σ̄D̄′

]
(A.10)

where W̃ = T−1W̄T ′−1 and Π̃ = T−1Π̄T ′−1. Using (A.9), we can equivalently write the

equation for W as W = AWA′+ (N −AWC ′)(Λ0−CWC ′)−1(N −AWC ′)′. Evaluating the

latter at θ̄, after some simple algebra, we can show that W̃ = AW̃A′ + (N − AW̃C ′)(Λ0 −
CW̃C ′)−1(N − AW̃C ′)′. By Lemma 1, we conclude that W̃ = W .
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Hence, the right hand sides of (A.9) and (A.10) are equal, and K̄ = TK, Σ̄a = Σa.

Moreover, AQ∗A′ − Q∗ = T−1B̄Σ̄B̄′T ′−1 − BΣB′, where Q∗ = Π − Π̃. However, since

P = W + Π, P̃ = W̃ + Π̃ and W̃ = W , we have Q∗ = Π − Π̃ = P − P̃ = Q. Hence the

additional conclusion 3) from Theorem 1 reappears automatically.

A.5 Proof of Proposition 2

Let us consider the following matrix[
In −V
0 Ir

][
P − APA′ N − APC ′

N ′ − CPA′ Λ0 − CPC ′

][
In 0

−V ′ Ir

]
(A.11)

where V = (N −APC ′)(Λ0−CPC ′)−1. Clearly, using expression (A.7) and the fact that, by

Assumption 4, rank

[
B

D

]
= r, the inner matrix in (A.11) has rank r, and the whole matrix

(A.11) has also rank r. Multiplying all terms in (A.11) we have[
Z 0

0 Λ0 − CPC ′

]
(A.12)

where Z = P − APA′ − (N − APC ′)(Λ0 − CPC ′)−1(N − APC ′)′. Using Assumption 4, we

have rank(Λ0 − CPC ′) = rank(DΣD′) = r and

r = rank

[
P − APA′ N − APC ′

N ′ − CPA′ Λ0 − CPC ′

]
= r + rank(Z) (A.13)

It follows Z = 0 i.e. P solves the equation for W . By Lemma 1, we conclude that P = W ,

hence Π = 0. Proceeding similarly we can get an analogous result for any other θ̄, which

leads us to the finding that P̃ = W . Since W = W̃ (see the proof of Proposition 1), we get

Π̃ = 0.

We conclude that not only the right hand sides of (A.9) and (A.10) are equal, but we can

also put Π = Π̃ = 0. As a result, we arrive at[
BΣB′ BΣD′

DΣB′ DΣD′

]
=

[
T−1B̄Σ̄B̄′T ′−1 T−1B̄Σ̄D̄′

D̄Σ̄B̄′T ′−1 D̄Σ̄D̄′

]
(A.14)

From (A.14), it follows quite easily that B̄ = TBU , D̄ = DU and Σ̄ = U−1ΣU ′−1, for some

(unique) nonsingular k × k matrix U .
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A.6 Identification of the Smets-Wouters model

The considered model is made of the following 24 equations:

yt = α1it + (1− α1 − gy)ct +$zt + εgt (A.15)

ct = α2ct−1 + (1− α2)Etct+1 + α3(lt − Etlt+1)− α4(rt − Etπt+1 + εbt) (A.16)

it = α5it−1 + (1− α5)Etit+1 + α6qt + εit (A.17)

qt = α7Etqt+1 + (1− α7)Etrkt+1 − (rt − Etπt+1 + εbt) (A.18)

yt = φp [$kst + (1−$)lt + εat ] (A.19)

kst = kt−1 + zt (A.20)

ψzt = (1− ψ)rkt (A.21)

rkt = −(kst − lt) + wt (A.22)

kt = α8kt−1 + (1− α8)it + α9ε
i
t (A.23)

µpt = $(kst − lt) + εat − wt (A.24)

πt = α10πt−1 + α11Etπt+1 − α12µ
p
t + εpt (A.25)

µwt = wt − σllt − α13ct + (α13 − 1)ct−1 (A.26)

wt = α5wt−1 + α14πt−1 + (1− α7)Et(wt+1 + πt+1)− α15πt − α16µ
w
t + εwt (A.27)

r̃t = ρrt − r∆yyt (A.28)

rt = r̃t−1 + (1− ρ)rππt + [(1− ρ)ry + r∆y]yt + εrt (A.29)

εat = ρaε
a
t−1 + ηat (A.30)

εbt = ρbε
b
t−1 + ηbt (A.31)

εgt = ρgε
g
t−1 + ρgaη

a
t + ηgt (A.32)

εit = ρiε
i
t−1 + ηit (A.33)

εrt = ρrε
r
t−1 + ηrt (A.34)

εpt = ε̃pt−1 + ηpt (A.35)

ε̃pt = ρpε̃
p
t−1 + (ρp − µp)ηpt (A.36)

εwt = ε̃wt−1 + ηwt (A.37)
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ε̃wt = ρwε̃
w
t−1 + (ρw − µw)ηwt (A.38)

and the covariance matrix of shocks, denoted by ηt with appropriate superscripts, is Σ =

diag([va vb vg vi vr vp vw]).

Compared to the original paper by Smets and Wouters (2007), we define the output

gap in the monetary policy feedback rule as the deviation of output from its deterministic

trend rather than from its hypothetical level in the absence of nominal rigidities and markup

shocks. This follows the practice in many policy making institutions and allows us to simplify

the model by leaving out the flexible price block, which anyway includes only parameters

that already show up in the main part of the model.16 Additionally, to fit the model to

our identification framework, and in particular to meet Assumption 2, we use a state-space

representation of the ARMA processes for markup shocks and rewrite the monetary policy

rule using an appropriately defined auxiliary variable. See Kociecki and Kolasa (2018) for

more details.

There are 41 deep parameters in the model, i.e. θ = [γ π l β δ gy σc λ ϕ φp $ ψ ιp

ξp εp σl φw ιw ξw εw ρ rπ ry r∆y ρa ρb ρg ρr ρr ρp ρw ρga µp µw va vb vg vr vr vp vw]′.17

While writing the model equations above using the semi-structural parameters, we have

defined the following objects: α1 = (γ−1+δ)$
β−1γσc−1+δ

, α2 = λγ−1

1+λγ−1 , α3 = (1−$)(σc−1)
φwσc(1+λγ−1)(1−α1−gy)

,

α4 = 1−λγ−1

(1+λγ−1)σc
, α5 = 1

1+βγ1−σc
, α6 = 1

(1+βγ1−σc )ϕγ2
, α7 = βγ−σc(1− δ), α8 = (1− δ)γ−1, α9 =

(1 − α8)(1 + βγ1−σc)ϕγ2, α10 = ιp
1+βγ1−σc ιp

, α11 = βγ1−σc

1+βγ1−σc ιp
, α12 = (1−βγ1−σcξp)(1−ξp)

(1+βγ1−σc ιp)ξp[(φp−1)εp+1]
,

α13 = 1
1−λγ−1 , α14 = ιw

1+βγ1−σc
, α15 = 1+βγ1−σc ιw

1+βγ1−σc
, α16 = (1−βγ1−σcξw)(1−ξw)

(1+βγ1−σc )ξw[(φw−1)εw+1]
. Applying them

substitutes the following elements of θ: γ, β, δ, σc, λ, ϕ, ιp, ξp, εp, φw, ιw, ξw, εw. The vector

of semi-structural parameters is then α = [α1 ... α16 π l gy φp $ ψ σl ρ rπ ry r∆y ρa ρb ρg

ρr ρr ρp ρw ρga µp µw va vb vg vr vr vp vw]′, and hence has three elements more than θ. This

is because we do not take into account all cross-equation restrictions implied by the model’s

deep parameters while defining α. This means that, if our identification conditions generate

any ᾱ 6= α, we will need to check if it is consistent with some θ̄ ∈ Θ.

Calculating the Gröbner basis associated with this identification problem at the posterior

mean reported in Smets and Wouters (2007), and for the seven observable variables that they

use, reveals that the only solution to the system (22)-(29) is such that ᾱ = α, which formally

proves that all semi-structural parameters that show up in equations (A.15)-(A.38) and in

16Without this simplification, memory requirements become prohibitively expensive and the Gröbner basis
cannot be calculated using a computing unit equipped with 16 GB of RAM.

17The notation follows exactly Smets and Wouters (2007), except that (i) we replace α with $ as the
former is already reserved in our paper to denote the vector of semi-structural parameters, (ii) we denote
the steady state levels of inflation and labor simply as π and l, i.e. without bars, as these we use to indicate
the observationally equivalent alternative parameter values, and (iii) we use variance v rather than standard
deviation σ to measure shock volatility as the latter are obviously identified only up to a sign.
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the shock covariance matrix Σ are globally identified. To formulate the conclusions about

the deep parameters, one needs to examine the analytical links between α and θ listed above.

This is relatively straightforward, especially if we take into account that γ, π and l can be

identified from the first moments, which leaves us with 38 deep parameters. In particular,

for given γ, α2 uniquely determines λ, then α4 pins down σc, α7 determines δ, while α5 pins

down β . This further allows to obtain uniquely ϕ from α6, φw from α3, ιp from α11, and ιw

from α14. Out of the remaining four deep parameters, ξp and εp are linked only to α12 while

ξw and εw show up only in the definition of α16, and hence they are not identified. To achieve

identification, one needs to fix one parameter in each of these two pairs.

A.7 Identification of open economy models

The richest version of the considered open economy model is given by the following 22 equa-

tions:

(1 + h)α1ct = α1Etct+1 + hα1ct−1 + (gt − Etgt+1)− (it − Etπt+1) (A.39)

(1−$) [(1− ω)ct + ωxt] = yt − (1−$)η$st +$λp∗H,t −$y∗t (A.40)

βat = at−1 + β[yt − (1− ω)ct − ωxt +$p∗H,t] (A.41)

(1 + ϕ)(yt − zt) + (1− ω)α1(ct − hct−1) = ωϕxt (A.42)

mct = ϕyt − (1 + ϕ)zt − ϕωxt +$st + (1− ω)α1(ct − hct−1) (A.43)

st − st−1 = πF,t − πH,t (A.44)

qt = ψF,t + (1−$)st (A.45)

π∗H,t = p∗H,t − p∗H,t−1 + π∗t (A.46)

πH,t − δHπH,t−1 = β(EtπH,t+1 − δHπH,t) + α2 [(1− γH)mct + γH$st] (A.47)

π∗H,t − δ∗HπH,t−1 = β(Etπ
∗
H,t+1 − δ∗HπH,t) + α3

[
(1− γ∗H)(mct − qt −$st)− p∗H,t

]
(A.48)

πF,t − δFπF,t−1 = β(EtπF,t+1 − δFπF,t) + α4 [(1− γF )ψF,t − γF (1−$)st] + cpt (A.49)

πt = πH,t +$(st − st−1) (A.50)

(it − Etπt+1)− (i∗t − Etπ∗t+1) = Etqt+1 − qt − χat − φt (A.51)

ĩt = ψiit − (1− ψi)ψ∆yyt − (1− ψi)ψeqt (A.52)

it = ĩt−1 + (1− ψi)ψππt + (1− ψi)(ψy + ψ∆y)yt + (1− ψi)ψe(qt − π∗t + πt) + ηmt (A.53)
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zt = ρzzt−1 + ηzt (A.54)

gt = ρggt−1 + ηgt (A.55)

cpt = ρcpcpt−1 + ηcpt (A.56)

φt = ρφφt−1 + ηφt (A.57) π∗t

y∗t

i∗t

 = AV

 π∗t−1

y∗t−1

i∗t−1

+

 ηπ
∗

t

ηy
∗

t

ηi
∗
t

 (A.58)

and the covariance matrix of shocks denoted by ηt with appropriate superscripts is

Σ =

[
ΣM 0

0 ΣV

]
ΣM = diag([ vm vz vg vcp vφ ]) ΣV =

 vπ∗ vπ∗y∗ vπ∗i∗

vπ∗y∗ vy∗ vy∗i∗

vπ∗i∗ vy∗i∗ vi∗


(A.59)

where AV and ΣV are 3 × 3 matrices with, respectively, foreign VAR coefficients and the

covariance structure of VAR innovations. Note that AV contains 9 independent elements,

while the number of independent elements in ΣV is 6. As in the case of the Smets-Wouters

model described in section A.6, the monetary policy rule is written using an appropriately

defined auxiliary variable to meet Assumption 2.

There are 47 deep parameters in the model, i.e. θ = [h σ $ ω η λ ϕ β δH ξH γH δ∗H
ξ∗H γ∗H δF ξF γF χ ψi ψπ ψy ψ∆y ψe ρz ρg ρcp ρφ vm vz vg vcp vφ vπ∗ vy∗ vi∗ vπ∗y∗ vπ∗i∗

vy∗i∗ vec(AV )’]′. While writing the model equations we define α1 = σ
1−h , α2 = (1−ξH)(1−βξH)

ξH
,

α3 =
(1−ξ∗H)(1−βξ∗H)

ξ∗H
and α4 = (1−ξF )(1−βξF )

ξF
. Using these auxiliary definitions eliminates σ, ξH ,

ξ∗H and ξF , respectively, so that the vector of semi-structural parameters is α = [h $ ω η λ

ϕ β δH γH δ∗H γ∗H δF γF χ ψi ψπ ψy ψ∆y ψe ρz ρg ρcp ρφ vm vz vg vcp vφ vπ∗ vy∗ vi∗ vπ∗y∗ vπ∗i∗

vy∗i∗ vec(AV )’ α1 α2 α3 α4]′, which also has 47 elements. Note that the mapping from α to

θ is straightforward, so by solving the identification problem for the former we immediately

obtain the outcome for the latter.

Compared to the original Justiniano-Preston setup, the equilibrium conditions (A.39)-

(A.58) feature several additional structural parameters.18 These are: ω, which is the share of

intermediate inputs in output, γH ,γ
∗
H , γF , which controls the degree of strategic complemen-

18Otherwise, the notation here follows exactly Justiniano and Preston (2010), except that (i) we replace
α with $ as the former is already reserved in our paper to denote the vector of semi-structural parameters,
(ii) we replace the Calvo probabilities θ with ξ as the former we use to denote the vector of deep parameters,
(iii) we use variance v rather than standard deviation sd to measure shock volatility, thus avoiding the need
to impose an additional sign restriction.
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tarity in domestic, export and import pricing, and ξ∗H , which measures the degree of price

stickiness in export sales.

We first analyze global identification for the model described in Justiniano and Preston

(2010), which obtains by setting ω = γH = γ∗H = γF = 0 and replacing the Phillips curve for

exports (A.48) with the law of one price for domestic production −$st = p∗H,t + qt. We check

identification at the point corresponding to the posterior median estimated by these authors

for Canada, see Table I in their paper. We next move to extensions, adding successively the

new features until we reach the full version described above. For all of these models, we find

that the only solution to our identification conditions (22)-(29) is such that ᾱ = α, and hence

(after restricting each ξH , ξ∗H and ξF to lie in the unit interval) θ̄ = θ.

We additionally consider a simpler case resembling the setup of Lubik and Schorfheide

(2007). Compared to the baseline Justinano-Preston model, it drops cost-push shocks cpt, risk

premium shocks φt and foreign interest rate i∗t , and treats the foreign VAR as unobservable.

Also for this variant, our identification analysis proves that the observational equivalence set

is a singleton that contains only the benchmark parameter vector.
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