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AAbbssttrraacctt::  recent years many scientific journals have widely explored the topic of machine 
learning interpretability. It is important as application of Artificial Intelligence is growing rapidly 
and  its excellent performance is of huge potential for many. There is also need for overcoming 
the barriers faced by analysts implementing intelligent systems. The biggest one relates to the 
problem of explaining why the model made a certain prediction. This work brings the topic of 
methods for understanding a black-box from both the global and local perspective. Numerous 
agnostic methods aimed at interpreting black-box model behavior and predictions generated by 
these complex structures are analyzed. Among them are: Permutation Feature Importance, Partial 
Dependence Plot, Individual Conditional Expectation Curve, Accumulated Local Effects, 
techniques approximating predictions of the black-box for single observations with surrogate 
models (interpretable white-boxes) and Shapley values framework. Our prospect leads toward the 
question to what extent presented tools enhance model transparency. All of the frameworks are 
examined in practice with a credit default data use case. The overview presented prove that each 
of the method has some limitations, but overall almost all summarized techniques produce reliable 
explanations and contribute to higher transparency accountability of decision systems. 
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1. Introduction 
 
Machine learning (ML) has been a powerful tool designed for many useful purposes. Many 

different books and articles present different definitions of it. Shai Shalev-Shwartz and Shai 

Ben-David (2014) state that machine learning refers to the automated detection of meaningful 

patterns in data. Weng (2019) defines it as an approach towards building intelligent machines 

for Artificial Intelligence (AI). More precisely, machine learning is a branch of Artificial 

Intelligence (AI),  presumably the most popular and widespread field of it, however Artificial 

Intelligence comprises of much more fields of study than just machine learning. It is pattern 

recognition, logic-based AI, search, knowledge representation, genetic programming, heuristic 

and others (Joshi, 2017). 

With increasing amount of data available popularity of machine learning algorithms has 

also increased. One could also say that nowadays it is hardly possible to analyze huge datasets 

only with the help of a single man. Even if it is, it would take a long time and could turn out to 

be useless. And now comes machine learning. It enables to analyze and process huge 

information about human behavior, human tastes, preferences. Mobile phones’ are designed to 

detecting human faces or fingerprints and unlocking themselves. Banks exploit machine 

learning for the purpose of defining creditworthiness of clients or detecting frauds. These are 

only few examples of using machine learning in the real world. 

Machine learning is about “making machines think like humans” (Joshi, 2017). 

Algorithms built through this concept are known to bring us with highly accurate predictions. 

Prediction is just a single result of the system based on a given set of information (features). 

However machine learning algorithms are not always as rational and intuitive as human beings. 

They are just machines built in some definite way, often with strong mathematics standing 

behind. In addition to that, they exploit wide range of statistic and programming concepts. Key 

idea that separates simple statistical linear models (such as logistic regression) from the 

complex ML models is their nested non-linear structure (Samek et al., 2017). It is customary to 

term these structures as black-box algorithms - black-box because no one is fully able to explain 

how these structures accomplish their results and what features stand behind the predictions. In 

other words, it is very challenging to understand inner-working of the machine learning systems 

(Honegger et al., 2018). Here comes another important distinction between machine learning 

and statistical models. The latter method allows to fit a project-specific probability model of a 

defined form. It usually requires fulfilling specified assumptions such as normal distribution or 
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equal variance of variables. Finally it is possible to explain how distinct features influence final 

predictions. On the other hand, ML methods find pattern in rich and unwieldy data with minimal 

assumptions behind (Bzdok et al., 2018). As a result, they end up with very complex form very 

difficult to peek inside. Recent years have brought us with a wide range of method trying to 

investigate Artificial Intelligence predictions. 

Interpretability of machine learning algorithms is especially important for decision 

makers who rely upon analytics and data scientists building sophisticated systems. Systems 

built on the machine learning foundations often earn huge money for companies. In case the 

systems break or earn no more money decision makers might want to explain why things go 

wrong and what can they do in order to improve the systems. Another group of people who 

might consider explainable AI (XAI) methods desired today are bank and financial regulators. 

Consider a client who was granted a big loan and then defaulted bringing losses for the bank. 

If the decision was made by system built upon ML foundations, a bank regulator might require 

explaining what features answered for a high score assigned to the clients. XAI methods are 

designed not only for explaining decisions and predictions made by the algorithms, but also 

improving our systems, debugging and fixing mistakes in the data or implementation of the 

models.  

Multiple methods have been already proposed. For example Friedman (2001) introduces 

Partial Dependence Plot (PDP) as a model agnostic tool for visualizing average predictions of 

a model along a specified independent feature. It shows whether a relation between a given 

feature and the outcome is linear, non-linear, monotonic etc. Another useful tool, in some 

manner similar to PDP is Individual Conditional Expectation (ICE) plot. It does the same as 

PDP but for individual observation – presents graphical relationship between the outcome and 

the feature, but for a single instance (Pitkin, 2014). Permutation Feature Importance – measures 

increase in the prediction error measure after permuting a given variable and calculating 

predictions with the new dataset. The higher the error increases, the more important the feature 

is. In other way, this method ranks all of the features by decreasing importance (Gregorutti et 

al., 2016). Ribeiro et.al (2016) propose LIME - yet another useful technique - deriving from the 

concept of local surrogate models. Authors emphasize that trusting an individual prediction is 

as important as trusting a model as a whole. Thus, they contributed an algorithm approximating 

a single instance with an interpretable model (for example linear regression). Finally Lundberg 

and Lee (2017) present a unified framework grounded in the game theory for explainable 

Artificial Intelligence, SHAP (SHapley  Additive exPlanations).  
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Adoption of XAI techniques can improve understanding complex structure of the black-

box inner working. In this work, different frameworks and methods enhancing explainability 

and transparency of AI models predictions are proposed. Explanation techniques are evaluated 

in practice with a credit default data use case. It is checked, to what extent do the methods 

enable understanding evaluated model. How deep are we able to peek into the complex model 

in order to capture dependencies among data traced by the algorithm. As post-hoc explanation 

tools are discussed only, all provided methods bring insight into information after the model is 

trained. Model interpretation is limited to agnostic approach, so universal for any black-box 

(but also interpretable white-box models) algorithms. This paper contributes to answering the 

question, to what extend XAI enables understanding black-box models. Do interpretable tools 

inform about relation between input variables and the outcome only in the global scope 

(regarding predictions in whole dataset) or locally (approximating a single observation). 

Among the goals of this work is also finding most informative and valuable framework that can 

be facilitated into fields where it is crucial to defend decisions made on the grounds on AI, such 

as credit scoring contributed in the paper. Overall, six approaches incorporating different 

theory-driven frameworks are discussed. Contribution of this work includes: Permutation 

Feature Importance, Partial Dependence Plot, Individual Conditional Expectation Curve, 

Accumulated Local Effects, techniques approximating predictions of the black-box for single 

observations with surrogate models (interpretable white-boxes) and Shapley values framework. 

The paper is organized as follows: first chapter discusses methodologies and concepts seeking 

to bring more transparency and confidence into the black-box models predictions. Second 

chapter focus is on data and model evaluated for the purpose of  investigating and understanding 

methods  discussed in chapter one. Finally results obtained with frameworks implemented in 

Python packages are presented.  

 

2. Methods 

 
This chapter brings the topic of methods available for explaining Artificial Intelligence. What 

does it exactly mean that the black-box structure is interpretable for a human or that we can 

easily explain why the model made a certain prediction? There is no standard criteria and 

definition for sure. Arrieta et al. (2019) underlie there is some urgent need for consensus 

regarding definition of Explainable Artificial Intelligence. Authors mention also common 

pitfall when confusing interpretability and explainability terms. While interpretability (often 
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referred as transparency) is the ability to express the model performance understandable for a 

human being, explainability refers to actions of peeking into the learning algorithm and 

understanding its inner structure. Once the functioning of a model is understood and inner 

connections between distinct predictors explored, building trust into the model is the 

consequence. It is crucial for decision makers in achieving success. Trustworthiness and 

confidence of the model is essential, as its outstanding performance might be only a matter of 

a few patterns found in the small subset of data. Interpretable techniques explored in this paper 

focus only on post-hoc explanations. For their evaluation a set of explanatory variables, 

prediction function (learning model generating predictions) and the target outcome is required 

(Arya et al., 2019). Afterwards each of the explanation method is applied. XAI frameworks are 

designed to trigger explanations from the global and local scope. The former concerns treating 

the model as a whole and explaining its outcomes across entire partitions of data. It not only 

visits significant features in the model, but also looks for prediction sensitivity with respect to 

single predictor values and interactions within two features. However these global relations 

often are measured in some approximate terms, such as average influence of the input variable 

for the output etc. Local explanations focus on analyzing predictions of single instances or 

promoting small subsets of the observations located in close neighborhood of each other. 

Usually purpose of the local method is to decompose prediction of the model for a given 

instance with  features contributions for each of the component (Hall and Gill., 2018). In this 

paper main focus is on model agnostic tools allowing inspecting any kind of machine learning 

model. In addition to that, most of the tools offer ability to explain more complicated deep 

learning algorithms implemented e.g. for image recognition. It is believed this approach is most 

useful as model agnostic tools can be applied to wide range of methods implemented through 

different packages and systems. These agnostic tools are often implemented in different 

programming languages in a similar approach, as theory standing behind them does not change. 

Model specific tools, on the other hand, are often developed on the grounds of a single 

implementation of the model that might differ among different computer systems.  

 

2.1. Permutation feature importance 
 
At first, a single representation of a model agnostic method is described. Variable importance 

was first introduced by Breiman (2001) in a random forest algorithm. Further research was done 

by Fisher et al. (2018) who proposed model agnostic tool for calculating contribution of 

individual features into prediction accuracy based on Breiman (2001) approach. Variable 
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importance is calculated by randomly permuting a variable 𝑋𝑋! and computing increase in 

prediction error with the newly created learning sample. 

Denote vector of 𝑘𝑘	independent variables 𝑋𝑋 = (𝑋𝑋", 𝑋𝑋#, … , 𝑋𝑋$),  𝑌𝑌 = (𝑌𝑌", 𝑌𝑌#, … , 𝑌𝑌$) is a 

vector of true outcomes (dependent variable) and so 𝐷𝐷% =	 {(𝑥𝑥", 𝑦𝑦"), (𝑥𝑥#, 𝑦𝑦#), … , (𝑥𝑥%, 𝑦𝑦%)} is 

a training set for the learning model. Once prediction function of a model 𝑓𝑓0(𝑥𝑥) is obtained, 

prediction error of the algorithm is denoted as 𝑅𝑅2𝑓𝑓03 = 	𝐸𝐸[(𝑓𝑓0(𝑋𝑋) − 𝑌𝑌)#]. Instead of 

compounding term  – absolute error, root mean squared error or any other metric such as R-

squared, adjusted R-squared, accuracy, Gini measure or any other scoring function 

incorporating predicted and true outcomes might be used in order to calculate performance of 

the model.   

Suppose an ensemble learning algorithm (e.g. random forest) composed of 𝑛𝑛 trees is 

trained. Because each of decision trees is built on different sample being only a fraction of the 

whole training set 𝐷𝐷%, prediction function 𝑅𝑅2𝑓𝑓03 cannot be computed directly. Hence the 

following estimator is proposed, where 𝐷𝐷9 denotes a validation set and n is the number of 

observations in the validation sample.  

𝑅𝑅:2𝑓𝑓0, 𝐷𝐷93 = 	
1

𝑛𝑛&'((
<(𝑓𝑓0&(𝑋𝑋)) − 𝑌𝑌))#
%!"##

&*"

, 𝑖𝑖 = 1,2, … , 𝑛𝑛	 (1) 

   
Function returning prediction error is aggregation of predictions returned by all of the 

ensemble tree estimators 𝑓𝑓0", 𝑓𝑓0#, … , 𝑓𝑓0%!"## into the average value. Alternatively for a model 

consisting of a single structure(e.g. logistic regression) 𝑛𝑛&'(( is set to one and estimator 

𝑅𝑅:2𝑓𝑓0, 𝐷𝐷93 can be derived in a similar manner. 

Once error measure function and original model error is obtained it is possible to 

formally define Permutation Feature Importance (PFI) of variable 𝑋𝑋!. Given an original learning 

sample 𝐷𝐷%, permute a feature 𝑋𝑋! by shuffling its values randomly. Instead of rearranging the 

values creating a new variable with a given distribution is also acceptable. After permuting the 

variable once again calculate prediction error with this newly created dataset denoted as 𝐷𝐷%+ .   

𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋)) = 	
1

𝑛𝑛&'((
<(𝑅𝑅: B𝑓𝑓0& , 𝐷𝐷%&

$CCCCD − 𝑅𝑅:2𝑓𝑓0& , 𝐷𝐷%&CCCC3)
%!"##

&*"

(2) 

 
Finally variable importance for predictor 𝑋𝑋) is the difference between prediction error 

of the estimator calculated with the shuffled data and prediction error with the original data. In 

order to compare significance of all training features 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋)) should be computed for all of 
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𝑖𝑖 = 1,… , 𝑘𝑘 features and sorted by descending values. Above formula state that there are 𝑛𝑛&'(( 

tree-based algorithms creating ensemble model (Gregorutti et al., 2016). 

There are some concerns regarding this method. First touches the issue whether 

importance should be calculated with training or testing sample. For the purpose of this paper 

importance will be computed with training sample, as it is used for model training and optimal 

parameter search. According to best practices the test set should serve only for the purpose of 

checking performance of the algorithm in terms of accuracy of predictions and so it is done 

here. Secondly, permutation of predictor values is arbitrary in every iteration. As a 

consequence, shuffling the feature for the first time might bring us with different importance 

than for the second time. Solution for eliminating this randomness component might be 

performing the action many times and taking the average result. Plotting standard deviation of 

calculations is also desirable. In addition to that, variable significance can be measured 

trustworthily only if the predictors are independent of each other. However it is common in 

practice that independent variables are strongly correlated. This doubt was raised by Tolosi and 

Lengauer (2011) who noticed that permutation feature importance depends strongly on the 

correlation between predictors. They contribute that features belonging to larger group of 

correlated features receive smaller importance weights even though they might significantly 

correlate with the dependent variable. Lastly, consider learning algorithm performing very well 

on the training sample. It can be so good that we can speak in terms of overfitting to the data. 

Such a machine learning structure might be missing some data properties when tested with the 

new data sample and PFI calculated on the testing set might completely different than PFI with 

training set. Mentch  and Hoker (2019) raise arguments against this technique more in detail. 

They mention also two meaningful alternatives. The first one suggested primarily by Strobl et 

al. (2008) involves permuting predictor taking into consideration distribution conditional on the 

other regressors. Second method studied by Lehmann and Romano (2006) is leave-one-

covariate-out (LOCO). In line with LOCO Feature Importance should be calculated by 

measuring predictor error after calculating the model without feature of interest. Nevertheless, 

all these methods seem to produce comparable results (Mentch  and Hoker, 2019). Yet another 

alternative of calculating Feature Importance is provided in Shapley values subchapter.  

 

2.2 Partial Dependence Plot  
 
Zhao and Hastie (2018) state that Partial Dependence Plot (PDP) depicting marginal effect of 

an input variable and the model outcome is a black-box visualization tool most commonly used. 
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This approach was primary introduced by Friedman (2001). With PDP relation between a model 

outcome and the feature values might be visualized on the plot and better understood. This 

graphical representation of predictions is another agnostic tool for global model inspection. 

What PDP does for a given variable is averaging model predictions keeping 𝑋𝑋! feature values 

constant. This toolbox is especially useful when direction of regressors influence on the model 

outcome is unknown and its assessment is required. 

Writing the procedure formally: let 𝑋𝑋 = (𝑋𝑋", 𝑋𝑋#, … , 𝑋𝑋$) represent a vector of 𝑘𝑘 variables 

and  there are 𝑛𝑛 observations in the learning sample. Suppose 𝑥𝑥, represents an interest set for 

which PDP is to be calculated and 𝑥𝑥- is its compliment. Compliment 𝑥𝑥- refers to the 

observations not included in set  𝑥𝑥, , so 𝑥𝑥- = 𝑥𝑥	\𝑥𝑥,. Prediction function of a model on dataset 

𝑥𝑥 is denoted as 𝑓𝑓0(𝑥𝑥). Partial dependence function on a set 𝑥𝑥, is defined as:  

 

𝑓𝑓./(𝑥𝑥,) = 𝐸𝐸0%G𝑓𝑓0(𝑥𝑥,, 𝑥𝑥-)H = I𝑓𝑓0(𝑥𝑥,, 𝑥𝑥-) 𝑑𝑑𝑑𝑑(𝑥𝑥-) (3) 

 
where 𝑑𝑑𝑑𝑑(𝑥𝑥-) refers to the marginal distribution of 𝑥𝑥- . Since it is not precisely known, Partial 

Dependence might be computed with the formula: 

 

𝑓𝑓./CCCC(𝑥𝑥,) =
1
𝑛𝑛<𝑓𝑓02𝑥𝑥,, 𝑥𝑥!,-3

%

!*"

(4) 

  
What this method does is simply averaging over features values keeping 𝑥𝑥,	constant 

(Greenwell, 2017) 

Idea behind constructing PD estimator is rather simple. Suppose we have the training 

set 𝐷𝐷% =	 {(𝑥𝑥", 𝑦𝑦"), (𝑥𝑥#, 𝑦𝑦#), … , (𝑥𝑥%, 𝑦𝑦%)}. First step in the calculations involves replacing all 

of the data points from set 𝐷𝐷% with the value for the first observation of that feature. Afterwards, 

predictions with newly created dataset (keeping 𝑥𝑥"! constant) are obtained and average value of 

the predictions is calculated. The procedure is repeated by replacing all of the feature values 

with the second observation value (keeping 𝑥𝑥#! constant) and again average prediction is 

obtained. Suppose number of unique values for predictor is equal to number of data points 𝑛𝑛. 

The procedure is repeated then 𝑛𝑛 times until all average effects are obtained. Finally plotting 

average values calculated for all of 𝑘𝑘-feature values is possible. 

Partial Dependence Plots are most popular for covariates in one dimensional space, 

because plotting them for more dimensions is difficult to analyze, although 2-dimensional PDP 

visualizing interactions between explanatory variables are popular too. Jerome (2001) suggests 
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that with large number of predictors it is recommended to have a measure of relevance such as 

permutation feature importance, because selecting a couple of useful variables and their 

combinations might be time consuming. Partial Dependence is also computationally expensive. 

Consider a feature 𝑗𝑗, number of data points 𝑛𝑛 and number of grid points 𝐼𝐼. For every predictor 

it is required to make 𝑛𝑛 ∗ 𝐼𝐼 predictions. Supposing there are hundreds of explanatory variables, 

it is reasonable to select a couple of most desirable features for visualization. Reducing 

computational burden is possible with setting confidence interval. Instead of selecting the whole 

range of data grids, one can define quantiles of the feature distribution for PD calculation.  

Certainly partial dependence plots the relation between model outcome and input 

variable both for categorical and continuous variables. The former is possible to obtain by 

simply plotting a single feature values against 𝑓𝑓./CCCC(𝑥𝑥,).	For the latter PD might be presented as 

a bar plot, where each bar denotes the unique categorical value and height of the bar corresponds 

to the PD function value (Jerome, 2011). For many unique values of predictor might be 

computationally expensive to calculate Partial Dependence estimator.  

Similarly as with PFI correctness of this method might be questioned in case of highly 

correlated features. Fortunately an alternative method to partial dependence was proposed. 

Accumulated Local Effects (ALE) takes the correlation bias into account and with slight 

modifications calculates average predicted outcome with respect to the predictor value. Another 

problem with PD is that averaging in equation (4) is computed over marginal distribution of 

other features. This inflates the results because observations with hardly probable numbers are 

created, thus creating fake and unrealistic data and inflating Partial Dependence curve shape. 

The problem is depicted in Figure 1(a).  
Figure 1. Left panel (a) presents calculation of Partial Dependence at 𝒙𝒙𝟏𝟏 = 𝟎𝟎. 𝟑𝟑 taking into account marginal 
distribution of  predictor 𝑿𝑿𝟐𝟐. PD keeps 𝒙𝒙𝟏𝟏 = 𝟎𝟎. 𝟑𝟑 constant for all of the observations creating fake and 
unrealistic data points. Marginal plot on the right panel (b) averages predictions only for those instances 
where 𝒙𝒙𝟏𝟏 = 𝟎𝟎. 𝟑𝟑. 

 
Source: Daniel W. Apley and Jingyu Zhu. “Visualizing the Effects of Predictor Variables in Black Box Supervised 
Learning Models.” Northwestern University, USA, 2019. 
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Plot illustrates two correlated features 𝑋𝑋" and 𝑋𝑋#. What PDP for feature 𝑋𝑋" = 0.3 does 

is calculating its effect on average prediction over marginal distribution of 𝑋𝑋#. Its consequence 

is making combinations of nonexistent pairs such as (𝑋𝑋" = 0.3, 𝑋𝑋# = 0.8) or (𝑋𝑋" = 0.3, 𝑋𝑋# = 0). 

Alternatively instead of marginal density conditional distribution might be used. In this manner 

Marginal Plot was proposed. It is illustrated in Figure 1(b). Function calculating MP values 

takes the form: 

𝑓𝑓2(𝑥𝑥,) = 	𝐸𝐸0%|0(G𝑓𝑓0(𝑋𝑋,, 𝑋𝑋-)R𝑋𝑋, = 𝑥𝑥,H = I𝑓𝑓0(𝑥𝑥,, 𝑥𝑥-) 𝑑𝑑𝑑𝑑(𝑥𝑥-|𝑥𝑥,) (5)	 

 
Analogously estimator of this formula is obtained: 

 

𝑓𝑓2CCC(𝑥𝑥,) =
1

𝑛𝑛(𝑥𝑥,)
< 𝑓𝑓02𝑥𝑥,, 𝑥𝑥!,-3

!∈5(0()

(6) 

 
In order to calculate 𝑓𝑓2CCC it is necessary to define some neighborhood of the feature of 

interest 𝑥𝑥,. 𝑁𝑁(𝑥𝑥,) ⊂ {1,2, … , 𝑛𝑛} is the subset of observations where 𝑥𝑥!,, is in close 

neighborhood of 𝑥𝑥, and 𝑛𝑛(𝑥𝑥,) denotes number of those instances (Apley and Zhu, 2019). Figure 

1(b) shows average predicted outcome over conditional density of 𝑋𝑋# under condition that 𝑥𝑥" =

0.3.	Difference between the plots is substantial. Marginal Plot resolves the problem of 

incorporating marginal distribution, however does not account for correlation bias, as averaging 

still incorporates dependence between two features. Solution for this phenomena was proposed 

by Zhu and Apley (2019) and is named as ALE plot. 

 
Figure 2. Calculation of Accumulated Local Effect at point 𝒙𝒙𝟏𝟏 = 𝟎𝟎. 𝟑𝟑. Conditional distribution is taken into 
account similarly as in Marginal Plots, however changes of predictions with respect to small changes of 
predictor 𝑿𝑿𝟐𝟐 are computed in close vicinity of predictor 𝒙𝒙𝟏𝟏 = 𝟎𝟎. 𝟑𝟑.  

 
Source: Daniel W. Apley and Jingyu Zhu. “Visualizing the Effects of Predictor Variables in Black Box Supervised 
Learning Models.” Northwestern University, USA, 2019. 
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For a given predictor Accumulated Local Effect calculates average changes in 

prediction for observations in close neighborhood to the original one. Formally ALE requires 

computing: 

 

𝑓𝑓89:(𝑥𝑥,) = 	 I 𝐸𝐸0%|0(

0(

0)*+,-(

G𝑓𝑓"X(𝑋𝑋,, 𝑋𝑋-)R𝑋𝑋, = 𝑧𝑧,	H𝑑𝑑𝑧𝑧, − 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 =

	 I I𝑓𝑓"X(𝑧𝑧,, 𝑥𝑥-)ℙ(𝑥𝑥-|𝑧𝑧,) 𝑑𝑑𝑥𝑥-

0(

0)*+,-(

𝑑𝑑𝑧𝑧, − 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 (7)

 

	where 𝑓𝑓"X(𝑥𝑥,, 𝑥𝑥-) =
;<=(0(,0%)
;<=(0()

 denotes the first derivative - change of 𝑓𝑓0(𝑥𝑥,, 𝑥𝑥-) with respect to 

small change of 𝑥𝑥, . When calulating local effect of 𝑥𝑥, ALE accumulates effect of the prediction 

for a given predictor with the gradient. For better understanding ALE plot idea Figure 3 with 

two features 𝑋𝑋" and 𝑋𝑋# is presented. 

 
Figure 3. Calculation of Accumulated Local Effect for predictor 𝑿𝑿𝟏𝟏 correlated with 𝑿𝑿𝟐𝟐. There are 30 
observations divided into 𝑲𝑲 = 𝟓𝟓 intervals. It is supposed that intervals ranges denoted as 𝒛𝒛𝒌𝒌,𝟏𝟏, 𝒌𝒌 =
{𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟒𝟒, 𝟓𝟓} are located in close vicinity of each other. Calculation of ALE main effect of the model 
prediction function 𝒇𝒇2 within interval 𝑵𝑵𝟏𝟏(𝟒𝟒) consisting of 𝒏𝒏𝟏𝟏(𝟒𝟒) = 𝟓𝟓 points involves computing prediction 
for these points pretending their 𝒙𝒙𝟏𝟏 is set to 𝒛𝒛𝟒𝟒,𝟏𝟏 minus predictions with 𝒙𝒙𝟏𝟏 = 𝒛𝒛𝟑𝟑,𝟏𝟏.Differences of predictions 
for five datapoints are summed and averaged.  

 
Source: Daniel W. Apley and Jingyu Zhu. “Visualizing the Effects of Predictor Variables in Black Box Supervised 
Learning Models.” Northwestern University, USA, 2019. 
 

Example requires computing ALE with respect to predictor 𝑋𝑋". For this purpose 

dividing the feature of interest in many intervals is needed. In Figure 3 predictor is divided into 

five partitions only, however in practice sufficiently large number should be taken, depending 

on the number of observations and unique values of explanatory variable. Intervals are 

designated as 𝑁𝑁>(𝑘𝑘) and number of  instances falling into 𝑘𝑘 − 𝑐𝑐ℎ interval is denoted as 𝑛𝑛>(𝑘𝑘), 
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where 𝑗𝑗 = 	 {1,2, . . , d}	denotes the feature index and 𝑘𝑘 = {1,2, . . , K}	 denotes the interval 

number. Ranges of intervals are set with following notation: 𝑁𝑁>(𝑘𝑘) = (𝑧𝑧$?",> , 𝑧𝑧$,>].  Authors 

Zhu and Apley state that 𝑧𝑧$,> are chosen as $
@
	 quantile of the data distribution. Subsequent data 

points are denotes as	𝑥𝑥!,>, where 𝑖𝑖 = 	 {1,2, . . , n}. Observations in all intervals sum to the total 

number of observations, so ∑ 𝑛𝑛>(𝑘𝑘)@
$*" = 𝑛𝑛. Additionally let 𝑘𝑘>(𝑥𝑥) indicates the range index 

number where a given observation 𝑥𝑥 falls, 𝑧𝑧A,> is set in close neighborhood to the smallest 

observation and just below it, whereas 𝑧𝑧@,> is equal to the largest 𝑥𝑥!,>. 

  

𝑔𝑔89:CCCCCC(𝑥𝑥) = <
1

𝑛𝑛>(𝑘𝑘)

$1(0)

$*"

< G𝑓𝑓02𝑧𝑧$,> , 𝑥𝑥!,\>3 − 𝑓𝑓02𝑧𝑧$?",> , 𝑥𝑥!,\>3H
C!:	0*,1	∈51($)F

(8) 

for each 𝑥𝑥 ∈ (𝑧𝑧A,> , 𝑧𝑧@,>].  
 

In (8) 𝑥𝑥!,\> denotes the observation with subscript 𝑖𝑖 including all predictors but 𝑗𝑗. Figure 

3 visualizes what ALE for feature 𝑋𝑋" does: after dividing predictor into 𝐾𝐾 = 5 intervals,  

𝑔𝑔89:CCCCCC(𝑥𝑥) replaces the original feature value with the upper and lower interval values, calculates 

difference in predictions with replaced values within each of the interval, aggregates the results 

and centers. Equation (8) presents uncentered effect of feature 𝑗𝑗 on the predictions. Uncentered 

in the sense that it is accumulated across all observations. It is possible to obtain formula for 

centered local effect:  

 

𝑓𝑓89:CCCCC(𝑥𝑥) = 	𝑔𝑔89:CCCCCC(𝑥𝑥) −	
1
𝑛𝑛<𝑔𝑔89:CCCCCC2𝑥𝑥!,>3

%

!*"

= 𝑔𝑔89:CCCCCC(𝑥𝑥) −	
1
𝑛𝑛<𝑛𝑛>(𝑘𝑘)𝑔𝑔89:CCCCCC2𝑧𝑧$,>3

@

$*"

(9) 

 

 "
%
∑ 𝑔𝑔89:CCCCCC2𝑥𝑥!,>3%
!*"  in the aforementioned equation accounts for average accumulated 

local effect for prediction, so the centered local effect measures how for a given predictor the 

prediction decreases or increases comparing to the prediction on average (Apley and Zhu, 

2019). For example, let 𝑋𝑋" = 10 and  𝑓𝑓89:CCCCC(𝑋𝑋" = 10) = −3.  If predictor one is equal to 10, 

then the model outcome is lower by 3 with respect to the average prediction.  

Creating partitions of data based on $
@
	 quantile of the data is easy for continuous 

variables, as these predictors often have some pre-defined order and dividing them into ranges 

is obvious. For categorical data, especially without exact hierarchy (for example marital status) 

computation of ALE effect of the predictor is possible, however it is necessary to somehow 
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define the values order (Zhu et al., 2019). As ALE plot for categorical features computes the 

effect across some definite intervals also, for this reason it is necessary to define some hierarchy 

of the feature levels, so that the effect can be accumulated through the categories and transmit 

information about the model behavior consistent with the human logic.   

2.3 Individual Conditional Expectation 
 

One more useful method designed in a similar manner as PDP, but for individual observations. 

It is designed for inspecting single observations of the model. Individual Conditional 

Expectation (ICE) curve is computed similarly as PDP, however the latter takes the effect of a 

given predictor for all observations and averages it. In other words, ICE requires plotting 

prediction as a function of 𝑥𝑥G conditional an observed 𝑥𝑥H . 

Remind model response function is 𝑓𝑓0(·). Consider observations set k2𝑥𝑥!,G, 𝑥𝑥!,H3l!*"
% .	For 

𝑛𝑛 data points and a predictor 𝑥𝑥,, 	𝑓𝑓IH:	CCCCCC2𝑥𝑥!,G3 calculates predicted outcome of the model keeping 

𝑥𝑥H  fixed and changing the feature of interest 𝑥𝑥, (𝑥𝑥- is different for all observations). As a result 

relation between prediction and predictor is shown for N observations. Taking average of the 

response results in Partial Dependence Plot. 

Comparing ICE curve with PDP might bring us with interesting insights into trained 

algorithms. As Friedman (2001) noticed, Partial Dependence might be reliable only in case of 

weak dependence between predictors. Balancing these two methods and their results against 

each other can help detecting correlation between the independent features. It might be true 

especially where ICE curves for many instances are significantly different than average of them 

(Partial Dependence).  

In terms of comparing the curves among many instances of the empirical data it might 

be desirable to set up centered ICE curve. It is helpful especially in a situation when 

observations start with different predictions and it is hard to capture differences among them. 

Centered ICE assigns a constant starting prediction for all instances (centers the observations) 

and then plots the curve with respect to the following equation (Goldstein et al., 2014).: 

 

	𝑓𝑓	9IH:.H:5K2𝑥𝑥!,G3 	= 	 	𝑓𝑓	9IH:2𝑥𝑥!,G3	−	↿ 	𝑓𝑓	9IH:2𝑥𝑥
∗, 𝑥𝑥!,H3	 (10) 

 

where 𝑖𝑖 denotes the observation index, so 	𝑓𝑓	9IH:.H:5K
(!)  presents formula for single centered ICE 

curve. ↿ accounts for a vector of 1’s and 𝑥𝑥∗is the anchor point, it might be either minimum or 
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maximum value of  𝑥𝑥G or another value. Goldstein (2014) assures that in case 𝑥𝑥∗ is set to 

minimum of 𝑥𝑥G, then all centered ICE curves are anchored at 0. This approach enables 

comparing predictions for single instances versus predictions for some fixed feature value.  

2.4 Local Surrogate Models (LIME) 
 

This kind of explanation tool has been designed by for visualizing significant features of single 

observation in data. It is an agnostic tool, so it might be used for any kind of black-box model 

no matter how complex its structure is. Key concept of local surrogate models is fitting an 

interpretable white-box model around the instance of interest. For a linear model (such as linear 

regression) it is possible to derive a vector of 𝛽𝛽 coefficients for each of the model feature. LIME 

(Local Interpretable Model-agnostic Explanations) as an explanation toolbox incorporating 

concept of local surrogate models does it indeed by perturbing the data around the observations 

and estimating an interpretable model with the perturbed samples. LIME checks correctness of 

the prediction in terms of local fidelity and tests whether predictions of the model are locally 

faithful .   

Mathematically, concept standing behind LIME computation is the following formula: 

 

𝐸𝐸(𝑥𝑥) =𝑐𝑐𝑎𝑎𝑔𝑔 𝑐𝑐𝑎𝑎𝑔𝑔𝐼𝐼𝑖𝑖𝑛𝑛
M∈N

		𝐿𝐿(𝑓𝑓, 𝑔𝑔, 𝜋𝜋0) + 𝛺𝛺(𝑔𝑔)	 (11) 

 

Aforementioned formula denoted as 𝐸𝐸(𝑥𝑥)	stands for explanation of an observation 𝑥𝑥. 

Consider an interpretable model denoted here as 𝑔𝑔 ∈ 𝐺𝐺, where 𝐺𝐺 is a class of explainable 

structures. It can be any model whose results might be clearly presented for a human, for 

example with the use of graph (such as decision tree) or whose features contribution can be 

computed as in linear models. 𝛺𝛺(𝑔𝑔) is defined as a measure of complexity of model 𝑔𝑔. It is 

required that 𝛺𝛺(𝑔𝑔) is small enough so that the 𝑔𝑔 is understandable for a human. Authors explain 

𝛺𝛺(𝑔𝑔) might point for the dept of the decision tree for example. With 𝑓𝑓(∙) model prediction 

function is given. Function 𝑓𝑓 takes as an argument an observation 𝑥𝑥 and calculates prediction. 

𝜋𝜋0(𝑧𝑧) stands for a measure of distance between observation of interest 𝑥𝑥 and another instance 

𝑧𝑧. 𝐿𝐿(𝑓𝑓, 𝑔𝑔, 𝜋𝜋0) calculated precision of the explanation by comparing it to the original prediction 

with some measure, for example mean squared error. Algorithm LIME is responsible only for 

loss function 𝐿𝐿. Complexity measure is defined by a human. 

LIME procedure involves the following steps: after picking an instance of interest 𝑥𝑥, 

LIME creates new, non-existing samples around the observation. After perturbations are made, 
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predictions for these observations with black-box algorithm are calculated. Newly created 

samples are weighted by proximity measure 𝜋𝜋0 and an interpretable model 𝑔𝑔 is fitted to them. 

Contribution of each predictor is calculated with respect to the result obtained with white-box 

model. Proximity measure is defined as an exponential kernel function as 𝜋𝜋0(𝑧𝑧) =

𝑒𝑒𝑥𝑥𝐼𝐼	(?/(0,O)
2

P2
), where 𝐷𝐷 is a distance metric (for example Euclidean measure) and 𝜎𝜎 is kernel 

width. Finally algorithm computes the following square loss function stated as: 

 

ℒ(𝑓𝑓, 𝑔𝑔, 𝜋𝜋0) = 	 < 𝜋𝜋0(𝑧𝑧)
O,O$Q	R

2𝑓𝑓(𝑧𝑧) − 𝑔𝑔(𝑧𝑧+)3# (12) 

 

𝑍𝑍 is a set of perturbed around an instance 𝑥𝑥 observations.  

Different implementations of LIME should allow for setting 𝐾𝐾- number of features that 

is used when explaining a prediction. When one considers higher number of predictors helps to 

explain the prediction better, it should be set with higher value. However in practice a few 

variables are enough. It is often possible to select different white-box model. Authors stress that 

it should not be random, as every interpretable model might have some drawbacks when 

explaining predictions of a black-box. They suggest using LASSO algorithm as it performs well 

comparing to other linear models (Ribeiro et al., 2016).   

2.5 Shapley values 

 

Shapley values is a kind of unified approach designated for model inspection. With Shapley 

values numerous model agnostic global and local techniques for visualizing the model 

predictions might be obtained. This XAI tool is derived from game theory that studies 

interaction and actions of self-interested agents in a game. There is no exact definition of a 

game, however in general this is a set of rules that push the players to make their moves taking 

into consideration actions of the others. An utility function also exists. It rewards every agent 

with some utility (payoff) taking all players strategies as given (Hotz, 2016). In terms of 

explainable AI game theory can be considered as follows: for every of 𝑘𝑘 participants 

(predictors) the payoff is understood as prediction assigned to every possible combination of 

the players’ move. It is assumed that agents have different strength in predicting the outcome 

For every possible combination of strategies (effects of the features) different payoffs are 
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possible. Shapley values purpose is: for a given set of features and prediction calculated for 

them Shapley values calculate contribution of each player payoff to the final outcome.  

Consider 𝑛𝑛 agents who represents predictors in the dataset. 𝑆𝑆 ⊆ 𝑁𝑁 = {1,2, … , 𝑛𝑛}  

denotes the subset of agents and their number is set as |𝑆𝑆|. 𝑣𝑣(𝑆𝑆) is the function assigning subset 

of agents 𝑆𝑆 with a total payoff contributed by co-working. For every possible game (prediction), 

according to the Shapley formula, 𝜙𝜙 is a function on the fixed set 𝑁𝑁 set and 𝜙𝜙(𝑣𝑣) =

(𝑐𝑐", … , 𝑐𝑐%) ∈ 𝑅𝑅%. 	𝑐𝑐! denotes the contribution of 𝑖𝑖 − 𝑐𝑐ℎ player to the final output 𝑣𝑣(𝑁𝑁) 

 

𝜙𝜙!(𝑣𝑣) = 	 <
|𝑆𝑆|! (|𝑁𝑁 − 𝑆𝑆| − 1)!

|𝑁𝑁|!
G⊆5\{!}

[𝑣𝑣(𝑆𝑆 + 𝑖𝑖) − 𝑣𝑣(𝑆𝑆)], 𝑖𝑖 = 1,… , 𝑛𝑛	 (13) 

 

where 𝑆𝑆 ⊆ 𝑁𝑁\{𝑖𝑖} is the subset of all but 𝑖𝑖 − 𝑐𝑐ℎ	features from subset S and 𝑣𝑣(𝑆𝑆 + 𝑖𝑖) is 

the function with the 𝑖𝑖 − 𝑐𝑐ℎ feature present. The function 𝜙𝜙!(𝑣𝑣) computes in some sense 

marginal contribution of each player. It is done by summing the effect of each possible coalition 

of agents drawn from the  𝑁𝑁\{𝑖𝑖} set. However it is done under assumption that all agents arrive 

randomly. In order to fairly distribute their power Shapley function averages the agents 

expected payoffs over 𝑁𝑁! possible combinations. Another important assumption is that an 

empty set 𝑣𝑣(∅) is also valid in the calculations. Shapley assumes that 𝑣𝑣(∅) = 0, as nothing is 

produced for free (Roth, 1988). In order to better capture the idea consider a set of two players  

𝑁𝑁 =	 {1,2}. There are possible four combinations consisting of the players; {∅}, {1}, {2}, {1,2}. 

Generally for subset consisting of 𝑁𝑁 players there are 25 possible combinations. Shapley 

function for each of the 𝑖𝑖 = {1,2} player is given by: 

 

𝜙𝜙"(𝑣𝑣) =
1
2
[𝑣𝑣({1,2}) − 𝑣𝑣({2})] +

1
2
[𝑣𝑣({1}) − 𝑣𝑣({∅})]	 (14) 

 

𝜙𝜙#(𝑣𝑣) =
1
2
[𝑣𝑣({1,2}) − 𝑣𝑣({1})] +

1
2
[𝑣𝑣({2}) − 𝑣𝑣({∅})] 

 

Thus, Shapley value for each of the player is weighted sum of marginal contributions 

calculated as the difference of the payoff with and without a given feature.  

Roth (1988) state that function 𝜙𝜙(𝑣𝑣) has some meaningful properties. The first one 

known as efficiency state that total output 𝑣𝑣(𝑁𝑁) is the sum of	𝑁𝑁 players contributions. In normal 
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terms 𝑣𝑣(𝑁𝑁) would denote prediction for a single instance, however for the purpose of Shapley 

value calculations it is stated as model outcome minus average model prediction.    

 

<𝜙𝜙!(𝑣𝑣)
5

!*A

= 𝑣𝑣(𝑁𝑁)	 (15) 

 

Second property – symmetry - assumes that for a given subset of players 𝑆𝑆 and two 

different agents	𝑖𝑖 and 𝑗𝑗, so that 

 

𝑣𝑣(𝑆𝑆 + 𝑖𝑖) = 	𝑣𝑣(𝑆𝑆 + 𝑗𝑗)		 (16) 

 

function 𝜙𝜙 is symmetric in the sense that it does not depend on the player name, only 

on its contribution to the function 𝑣𝑣. In other words, these two features contributions are equal 

(17). 

 

𝜙𝜙!(𝑣𝑣) = 	𝜙𝜙>(𝑣𝑣)	 (17) 

 

Third axiom of dummy player – for any player 𝑖𝑖 if 𝑣𝑣(𝑆𝑆 + 𝑖𝑖) = 𝑣𝑣(𝑆𝑆) for all 𝑆𝑆 ⊆ 𝑁𝑁\{𝑖𝑖} 

then 𝜙𝜙!(𝑣𝑣) = 0. If contribution of feature 𝑖𝑖 does not influence the prediction, then its Shapley 

value  𝜙𝜙!(𝑣𝑣) must be zero.  

 

Lastly Shapley values satisfy additivity, Consider two games and two contribution 

functions 𝑣𝑣 and 𝑤𝑤. The gain from combining these two functions is equal to sum of individual 

gains for every player 𝑖𝑖: 

 

𝜙𝜙!(𝑣𝑣 + 𝑤𝑤) = 𝜙𝜙!(𝑣𝑣) + 𝜙𝜙!(𝑤𝑤) (18) 

 

Additionally 𝜙𝜙!(𝑐𝑐𝑣𝑣) = 𝑐𝑐𝜙𝜙!(𝑣𝑣), where 𝑐𝑐 ∈ 𝑅𝑅. This last property is also known as 

linearity (Aas et.al., 2020, Štrumbelj and Kononenko, 2014). 

Explanations standing behind Shapley values might be compared to the linear model, 

where prediction function is given by: 
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𝑓𝑓0(𝑥𝑥) = 𝛽𝛽A +	<𝛽𝛽!𝑥𝑥!

$

!*"

	 (19) 

 

𝛽𝛽A in equation (19) denotes the intercept, so average model outcome calculated over 

data distribution. Shapley values decompose predictions for single instances in a similar manner 

like linear models do, however the formers approach is designed so that it is applicable for 

every class of models. Let 𝑥𝑥 be an instance of interest, 𝑓𝑓0(∙) prediction function and 𝜙𝜙A =

𝐸𝐸[𝑓𝑓(𝑥𝑥)]. Then prediction for the single data point is the sum of the expected outcome of the 

model and 𝑘𝑘 features contributions.  

𝑓𝑓0(𝑥𝑥) = 	𝜙𝜙A +	<𝜙𝜙!

$

!*"

(20) 

 

Actual idea behind presenting Shapley values for a given set of predictors is computing 

the difference between the feature effect and the average outcome. In order to calculate 

contribution of predictor 𝑖𝑖 to the score produced by the model for an observation 𝑥𝑥, it is 

necessary to derive formula for the difference when regressor value is not known. The 

difference in linear regression model (21) would be an equivalent to feature contribution 

obtained with Shapley approach.  

 

𝜙𝜙! = 𝛽𝛽!(𝑥𝑥! − 𝐸𝐸[𝑋𝑋!]) = 	𝛽𝛽!𝑥𝑥! − 𝐸𝐸[𝛽𝛽!𝑋𝑋!]	, 𝑖𝑖 = 1,… , 𝑘𝑘	 (21) 

 

However, in practice no such explicit equation for non-linear models exists. In addition 

to that linear models often assume no serial correlation of independent variables. In order to 

overcome this problem equation (13) has been proposed and it is representation of Shapley 

value definition. Consider final output 𝑣𝑣(𝑁𝑁) that stands for prediction of a single data point. 

|𝑁𝑁| denotes number of features for that object. Shapley value for each of the predictor 𝑖𝑖 from 

the set 𝑁𝑁 is defined as  𝜙𝜙!(𝑣𝑣), where 𝑣𝑣 is predictor value.  

As computing expression 𝜙𝜙!(𝑣𝑣) with 𝑘𝑘 number of features requires creating 2$ subsets 

and increases exponentially with the number of predictors, an alternative approach to (13) has 

been proposed by Strumbelj and Kononenko (2014). Its computation is based on Monte Carlo 

sampling. Consider an observation 𝑥𝑥, number of features in the model 𝑘𝑘, prediction function 

𝑓𝑓0(∙) and an integer number 𝐼𝐼 denoting the number of simulations,. Output of the simulation is 
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contribution of a given feature 𝑗𝑗 to the final prediction. Strumbelj and Kononenko present the 

following algorithm for Shapley value of a single predictor:  

 

for 1,… . ,𝐼𝐼: 

▪ pick a random observation 𝑤𝑤 from the dataset 

▪ pick a random permutation 𝑂𝑂	𝜖𝜖	𝜋𝜋(𝑛𝑛), where 𝜋𝜋(𝑛𝑛) is set of ordered permutations of 

the feature indexes 

▪ create two new instances of the data 𝑏𝑏" and 𝑏𝑏#	with the use of observations 𝑥𝑥 and 

𝑤𝑤: 

o first order 𝑥𝑥 and 𝑤𝑤 feature values according to the sequence of indices in 𝑂𝑂: 

𝑥𝑥+ = (𝑥𝑥", 𝑥𝑥#,… , 𝑥𝑥> , … , 𝑥𝑥%)	and 𝑤𝑤+ = (𝑤𝑤", 𝑤𝑤#,… ,𝑤𝑤> , … , 𝑤𝑤%)	 

o cerate instances 𝑏𝑏"and 𝑏𝑏# as follows: 

𝑏𝑏" = (𝑥𝑥", 𝑥𝑥#,… , 𝑥𝑥> , 𝑤𝑤>V", … , 𝑤𝑤%)	and 𝑏𝑏# = (𝑥𝑥", 𝑥𝑥#,… ,𝑤𝑤> , 𝑤𝑤>V", … , 𝑤𝑤%)	 

Instance 𝑏𝑏" is created by taking feature values of 𝑥𝑥+ for  𝑖𝑖 = 1,… , 𝑗𝑗 and features 

values of 𝑤𝑤+ for 𝑖𝑖 = 𝑗𝑗 + 1,… , 𝑛𝑛. Analogously instance 𝑏𝑏# takes feature 

values of 𝑥𝑥+ for  𝑖𝑖 = 1,… , 𝑗𝑗 − 1 and features values of 𝑤𝑤+ for 𝑖𝑖 = 𝑗𝑗, … , 𝑛𝑛. 

▪ calculate 𝜙𝜙>W(𝑥𝑥) of the m-th iteration from the formula: 𝜙𝜙>(𝑥𝑥) = 𝑓𝑓0(𝑏𝑏") −

𝑓𝑓0(𝑏𝑏#)		 

Calculate average from the m iterations: 𝜙𝜙>(𝑥𝑥) =
∑ Y1

)(0))
*34

W
. Shapley value for the feature 𝑗𝑗 . 

 

This approach has been implemented in iml package in R. Another approach has been 

proposed by Staniak and Biecek (2018). Authors state their approach as an approximation of 

Shapley values. For a given observation 𝑥𝑥 it also computes contribution of each feature value 

to the final model score f0(x). Its general idea is to start with an empty set, add all of the features 

one by one and calculate its highest contribution to the prediction. Features are added with 

respective to their predictive power. This model agnostic approach for explaining single 

predictions (Breakdown) has been presented in the algorithm below. It considers only step-up 

approach when calculations begin with an empty set and the features are added. Step-down 

approach also exist and requires calculating smallest distance between the full set of variables 

and the feature removed from it.  

Once again consider a set of 𝑘𝑘 features and an observation 𝑥𝑥. Define	𝑉𝑉 as an empty set 

storing variable indices. Features indexes are added one by one depending on their contribution 
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to the prediction. For the purpose of that it is necessary to define a function calculating distance 

between prediction for original instance 𝑥𝑥 and an instance with features from 𝑉𝑉. 

 

𝑑𝑑(𝑥𝑥, 𝑉𝑉) = R𝑓𝑓0(𝑥𝑥) − 𝑓𝑓02𝑥𝑥(𝑉𝑉)3R (22) 

 

𝑓𝑓02𝑥𝑥(𝑉𝑉)3 term measures prediction for 𝑥𝑥 with feature values fixed on variables from 𝑉𝑉. 

For the rest of the features it is assumed they follow the population distribution  

 

𝑉𝑉	ß	∅ 

for 𝑖𝑖 in 1,… . , 𝑘𝑘: 

 for 𝑗𝑗 in 1,… . , 𝑘𝑘			𝑉𝑉 

▪ for the observation 𝑥𝑥 calculate the distance with the feature 𝑗𝑗 added to set 𝑉𝑉 –  

𝑑𝑑(𝑥𝑥, 𝑉𝑉 + 𝑗𝑗) = R𝑓𝑓0(𝑥𝑥) − 𝑓𝑓02𝑥𝑥(𝑉𝑉 + 𝑗𝑗)3R	

▪ choose the feature that maximizes the distance and denote is as 𝑗𝑗WZ0 

▪ calculate contribution of the feature 𝜙𝜙!(𝑥𝑥) as difference of prediction made with the 

feature 𝑗𝑗WZ0 and without it: 

𝜙𝜙!(𝑥𝑥) = 𝑓𝑓0(𝑉𝑉 +	𝑗𝑗WZ0) − 𝑓𝑓0(𝑉𝑉)	  

▪ add the feature 	 𝑗𝑗WZ0 to the 𝑉𝑉 

 

Variable contributions in this procedure are ordered with their decreasing predictive 

power. Algorithm chooses the most powerful feature at first and then adds iteratively less 

important predictors (Staniak and Biecek, 2018). The main drawback of this method is that 

contribution of consecutive variable is dependent upon previously added predictors. This result 

might be upset in case of strongly correlated predictors.  

Shapley values used for the purpose of local model explanations are very similar in their 

destination to local surrogate models implemented in LIME. By contrast to surrogate models 

that assume linearity of the classifiers, the concept deriving from coalitional game theory has 

strong mathematical background. Efficiency, symmetry and additivity axioms assure that for 

each data points features contributions are distributed in a “fair way”. Feature contributions for 

all regressors must be distributed so that the sum of effects and the average adds up to the local 

prediction. Moreover, if a feature value is not present among regressors, its Shapley value is 

surely 0. Techniques incorporating Shapley values are not only powerful and reliable tools for 

machine leaning local model inspection, but can be used from different perspectives. Equation 
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(13) serves for local explanations, but by summing features contributions for all of the instances 

and averaging the effect, obtaining marginal contribution is possible. Visualizing the Shapley 

values with respect to a chosen predictor values and obtaining partial dependence plot is also 

possible. One has to bear in mind that once calculating feature contribution ϕ), all explanatory 

variables are taken into consideration. Explanations produced by local surrogate models often 

allow to specify number of predictors for the user. Comparing to LIME procedure, estimating 

(13) for k predictors requires 2[ combinations of payoffs. Calculations of feature effect would 

be time-consuming even for one observation, not mentioning the whole dataset.  There are some 

concerns regarding sampling feature values when calculating payoffs with and without the 

player. In order to predict the model outcome, missing regressor must be randomly sampled 

from the data. Slack et al. (2020) raise the issue that both LIME and Shapley values computed 

in different packages (such as SHAP in Python) are perturbation-based methods whose results 

are always biased in some way. However, in order to overcome this problem, m denoting 

number of Monte Carlo simulations in Štrumbelj and Kononenko (2013) algorithm might be 

set at sufficiently high level, what unluckily increases computational time.  

3. Dataset 

 

Assessment of the explainable tools for Artificial Intelligence has been performed for credit 

bank data from Kaggle – online community of data scientists, analysts and machine learning 

competitors. The data consists of past clients history and information such as length of 

employment, age, purpose of the loan, duration of the loan etc. Dependent variable – default – 

states whether the client managed to fulfill its obligations to the bank. There is no clear 

definition of the default given with this dataset. These definitions might be different under many 

regulators and as it is not the main purpose of this paper, further investigations are not made. 

Table 1 summarizes a total of 20 independent variables plus the binary dependent variable 

indicating whether a customer defaulted or no. There are no missing values in the data so 

handling the problem is not present here. The only transformation was converting non-numeric 

categorical features into numerical and creating dummies for categorical features with no order 

or hierarchy among their unique values. It is decided that checking balance, credit history, 

savings balance and employment length regressors will be fed into the learning algorithm as 

converted numerical features with pre-defined ordering. Hierarchy of the values is equivalent 

to the ordering from the details column in the table. For example, checking balance unknown 
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is set to 0, < 0 DM is equal to 1, 1 – 200 DM – 2 etc. Credit history critical is set to 0 and so on. 

Rest of the categorical input drivers are transformed to dummies. After feature encoding, there 

are 41 explanatory variables in total.  

 
Table 1. Description of explanatory variables fed into the random forest classifier. Label is the original 
feature name accepted by the algorithm and plotted in the explainable tools. If type of predictor is 
categorical, the feature is encoded as numerical or the dummy variable is created accordingly. Detailed 
description of features categories is included in last column.  

Label Description Type of variable Variable details 
checking_balance Amount that the borrower 

owes to the bank. 
Categorical unknown,  < 0 DM,  

1 – 200 DM, > 200 DM 
months_loan_duration Duration of the loan in 

months 
Numerical  

credit_history Payment history informing 
how timely one repays his 
debt. 

Categorical critical, delayed, repaid,  

purpose Purpose of the loan. Categorical radio/tv, car (new), furniture,    
car (used), business, education,                
repairs, others, domestic appliances,    
retraining 

amount Amount of the loan 
granted to the client. 

Numerical  

savings_balance Savings balance. Categorical unknown, < 100 DM,  
101 – 500 DM, 501 – 1000 DM,  
> 1000 DM 

employment_length Years of employment. Categorical unemployed, 0-1 yrs, 1-4 yrs, 4-7 
yrs, > 7 yrs 

installment_rate Installment rate. Numerical  
personal_status Marital status. Categorical single male, female, married male, 

divorced male 
other_debtors Debtor of a loan Categorical none, guarantor, co-applicant 
residence_history Residence history of a 

borrower. 
Numerical  

property Property owned by a 
borrower. 

Categorical unknown/none, other, real estate, 
building society savings 

age Borrower’s age. Numerical  
installment_plan Installment plan. Categorical none, bank, stores 
housing Type of housing. Categorical own, rent, for free 
existing_credits How many existing credits 

a borrower has. 
Numerical  

default Dependent variable – 
whether a borrower has 
defaulted. 

Categorical 0, 1 

dependents Number of people relying 
on borrower’s for support. 

Numerical  

telephone Whether borrower’s 
telephone number is 
known. 

Categorical yes, no 

foreign_worker Whether borrower is a 
foreign worker. 

Categorical yes, no 

job Categories defining 
employment of a borrower. 

Categorical skilled employee, management self-
employed, unskilled resident, skilled 
employee 

Source: own preparation. 
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For the purpose of presenting aforementioned tools, training a machine learning model 

is required. Since most of the explainable tools are model agnostic (designed for all kinds of 

models), random forest has been chosen as an example. Algorithm has been built in terms of 

classification problem, as only two possible outcomes (default or non-default) are possible 

Random forest parameters have been chosen with the grid search method. Tuning parameters 

of an estimator is done with 5-fold cross-validation in order to improve performance of the 

algorithm and preserve its stability. Since random forests belong to tree-based family of models 

that are resistant to feature scaling, no standard scaling or normalization of the features has been 

performed. Different combinations of the following parameters have been checked: number of 

estimators in the random forest, maximum number of features used in training has been set to 

‘auto’ or to squared value of number of features. Maximum depth of the trees, minimum sample 

split, minimum sample leaf and bootstrap parameters have been also searched for best values. 

Both the model and XAI methods have been performed with Python and its open-source 

packages. Finally model with the following parameters has been chosen as the best: maximum 

depth was set to 30, maximum number of features is automatically chosen by the random forest 

object, minimum sample leaf is 1, minimum sample split is 7 and overall number of estimators 

in the random forest is equal to 1200. For the purpose of validating the model on the 

independent test set not used for the model learning, before diving into parameters tuning the 

whole dataset has been split into training and test set. The former one is separated for the 

purpose of model learning process, and the latter sample is used with the fully-specified 

classifier for the evaluation only. Parameters are searched with respect to the training sample 

and criterion measuring quality of the split is Gini Impurity.  

4. Results 

4.1.Permutation Feature Importance 

 
It is often desirable to see what predictors account for the biggest part of variability of the data. 

Feature importance with permutation approach is a solution for that. Multiple libraries enable 

computing Permutation Feature Importance in Python. As random forest model has been 

performed with scikit-learn, obtaining feature importances straight from the trained object is 

possible. It should be noted that these values aren’t evaluated by permuting the feature values. 

Each random forest consists of many single decision trees. In order to split the variable so that 

it optimally discriminates two distinct sub-groups within a dependent feature, usually Gini 
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index or Information Gain and entropy is used. It serves as a impurity measure. After split of 

the variable into partition, reduction in Gini index (entropy) is calculated. Feature importance 

in random forest algorithm has been primary calculated by Breiman (1984) and employs these 

impurity gains. It is evaluated by computing how much the impurity decreases for all of the 

nodes and taking the average from all of the trees in the forest. Impurity decreases in single 

trees are weighted by ratio of samples reaching a distinct node to the total number of 

observations in the sample. This variable importance calculation is often referred as Mean 

Decrease Impurity importance. Subsequently, Mean Decrease Accuracy (MDA) has been 

proposed by Breiman (2001), that incorporates permutation. Feature values are  randomly 

shuffled in the out-of-bag data and decrease in accuracy measure is computed (Louppe et al., 

2013). 

Instead of Mean Decrease Impurity importance obtained from the trained random forest 

object, one can simply develop features ranking by permuting each of the dataset variable and 

measure how much this action influences a chosen metric. In order to get more reliable results 

this procedure should be repeated many times in order to average the random component from 

the trials. This simple simulation has been performed independently using AUC as a measure 

serving for importance ranking. Instead of AUC any metric could be defined as a scoring 

function. In case of a classification problem this metric must accept categorical outcomes of the 

model.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                 Kłosok, M. and Chlebus, M. /WORKING PAPERS 18/2020 (324)                                24 
 

 
 

Figure 4. Permutation Feature Importance results obtained with random forest classifier. Figure depicts 

scores for own implementation of PFI where AUC (Area Under the ROC Curve) is chosen as performance 

metric. Vertical axis is amount by which prediction error increases when randomly shuffling each predictor 

values. Weights for the method are obtained by randomly shuffling predictors 100 times.  

 
Source: own preparation. 
 

Results of the computations have been visualized for nine most influential variables in 

the boxplots in order to show distribution of changes in prediction AUC. On the vertical scale 

magnitude of predictor influence for prediction scores is located. Horizontal scale positions 

attributes according to their feature importance decreasing, so in this case checking balance is 

the most influential feature. In other words, after shuffling checking balance values one hundred 

times, calculating decrease in prediction AUC score and averaging them, this feature turns out 

to be the best in terms of discriminating the defaults and non-defaults. It seems to be reasonable 

as checking balance is highly correlated with probability of default. Highest value for prediction 

AUC decrease for this variable is as high as about 0.15. It can be understood that decision model 

depends on checking balance in about 15%, which is very high. Second most relevant predictor 

is amount of the loan granted to the client, however score for months loan duration is 

comparable. The former variable exhibits lower variability of the scores. For both features 

median effect of permuting their values is about 10%. Rounded decrease in prediction AUC for 

these three regressors is as many as 25% of total model AUC. Next important variable is credit 

history of the credit recipient. It is sensible as many banks derive knowledge about credit history 

of the clients from institutions gathering knowledge about credit obligations and loan 

repayments history. Mihai et al. (2018) confirm that credit history is one of the crucial drivers 
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of probability of default. Considering validity of age in the rank of most influential attributed it 

is confirmed by the literature that borrowers age and probability of default is strongly 

correlated. For example Debbaut, Ghent, and Kudlyak (2013) confirm this hypothesis. 

Moreover they find that risk of falling into default for middle-aged borrowers is highest. The 

youngest and elderly people, on the other hand, manage to fulfill obligations on time. Other 

important variables within learning set are: employment lengths, savings balance, installment 

rate and residence history. Polena and Regner (2018) proved significance of employment length 

in predicting borrower default, however Mihai et al. (2018)  confirm current occupational status 

to be significantly correlated with the probability of default for both mortgage and consumer 

loans. Most of the predictors obtained with PFI method seem to be consistent with human logic 

and the literature.  

When implementing this model explanation tool, it should be remembered that results 

might vary greatly for each single simulation. However the higher the number of simulation, 

the tighter error bounds are. Spread of the AUC prediction changes is represented in the 

boxplots, where distance between highest and lowest result as well as median is computed. It 

should be noted that an important feature for the system might be assigned with low average 

permutation score because of a small outlier and so reverse is true – irrelevant feature in practice 

might be become significant because of the outlier with high PFI value (Huang et al., 2016). 

For this reason plots visualizing  distribution of calculations are recommended. Another factor 

influencing the results is also a scoring function. Ranks obtained with accuracy would be 

undoubtedly different as they only measure correctness of classification for a given cutoff.  

After computing contribution of each predictor to the overall prediction AUC decrease, 

it is verified that nine most valuable features account for about 67% of total prediction error 

increase after permuting. Yet another interesting conclusion arriving from this method is that 

type of predictors considered as significant matters here. Numerical features are those giving 

the model most insights about the clients default. In other words, they have highest predictive 

power. Whether it is true in other cases, it should be tested empirically for sure, however in 

case of predicting clients default features such as borrower’s age, loan’s amount or duration of 

the loan seems to be reasonable in defining whether a client meets his obligations on time.  

Feature importance score informs how much prediction error increases when individual 

predictor is perturbed. If the score is high, input variable contribution is also substantial. This 

tool contributes first-hand knowledge about “scoring behavior” of the model in the global terms. 

If there is post-hoc knowledge about serious reliance on that feature, one could ascertain the 

same feature is essential in explaining a certain event, such as credit default. There could be a 
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case, when a random variable without no information value turns out to be meaningful 

according to PFI. This shall be a case when PFI is a mark of some bias in the model. Feature 

importance can be valuable not only when testing significance of regressors, but also with 

checking stability of the black-box model. It can be done by plotting mean decrease in 

prediction for the features in two samples – training set used for model estimation and 

parameters tuning and test set. The latter one should serve for evaluation purposes only. As 

machine learning models tend to overfit to the learning samples and thus, their evaluation 

metrics with independent datasets are usually smaller, it is obvious that PFI scores obtained 

with the two samples would be usually different. Nevertheless, in order that the model 

explanations could be perceived as stable, PFI scores should be comparable when computed 

with different samples. At least, feature ranks should be maintained.  

4.1.Partial Dependence Plot 

 

In this section plots revisiting model outcome sensitivity with respect to the explanatory 

variables grid values are presented. Only a couple of predictors will be plotted as the space is 

limited. Moreover it is believed that analyzing relationship between the outcome and most 

significant variables in the model is desirable, as these predictors have highest impact on 

predictors. 

In this section plots drawn with the use of PyCEbox Python package are presented. This 

module enables easy development of PDP as well as ICE (Figure 5) and centered ICE (Figure 

6). Apart from plotting relationship between predictions of individual observations versus 

predictors’ values in a standard way, PyCEbox makes it possible to choose a set of unique grid 

points of a predictor for the calculations. In the paper all of the features’ values are incorporated 

into visualizations. Apart from that, it is possible to specify whether original data points should 

be plotted. Presented graph illustrates ICE curves and Partial Dependence at once. As the 

package exploits original data points from the model training process (Python requires that all 

features are numeric), plotting ICE curves with PyCEbox would show relationships for encoded 

labels. In order to present original feature values (instead of encoded categorical values into 

numeric) slight modifications to the function plotting the ICE and PDP values have been done. 

Each line with different color points at different observation. Partial Dependence is marked 

with bold blue line. 
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Figure 5. Individual Conditional Expectation curves and Partial Dependence visualizations of predicted 
probability of default for nine most influential explanatory variables according to PFI. Thin colorful lines 
represent ICE, while bold blue accounts for Partial Dependence.  

 
Source: plots obtained with PyCEbox Python package.  
 

From the Partial Dependence some pretty conclusions might be drawn. There are some 

features for which ICE curves and Partial Dependence are rather constant for all feature values. 

In other words, predictions for the instances do not change a lot when different values of the 

variable are assigned to the observation. It is true for installment rate and residence history for 

example. No matter what the predictor value is, we would still assign the same binary result (1 

or 0) for most clients, taking into account predefined cut-off. However amount, checking 

balance or loan duration in months strongly influence predictions for presented instances not 

only in terms of local predictions but also for the whole analyzed set of observations. In terms 

of duration of the loan shape of ICE curves might indicate that granting long-term loans results 
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in higher probability of default for many cases. Considering savings balance probability of 

default increases for many instances when the balance is <100 DM. Once savings obtain higher 

rate probability of default decreases. The same is true with employment length. More risky 

clients (those with high probability of default) obtain lower score with higher job seniority. 

Consistent with the intuition properties are visible for Partial Dependence of age (relation 

between its shape and predictor values). Average prediction slowly decreases as the clients 

become older. This might be explained as lower riskiness of people with higher age comparing 

to younger and often unexperienced workers. The only relationship visible in the plots and 

contrasting with human logic is PD for credit history. In the figure it is visible that average 

score is higher when the client has repaid its obligation in the past, and lower when he is late 

with payments. It should be considered whether the feature categories have been encoded 

properly. Undoubtedly PD and ICE curves for that feature reveal some space where the model 

cannot be trusted and its reasoning should be improved.  

Perhaps more diversity among predictions can be seen in curves centered around some 

constant value. Next graph visualizes this approach with prediction centered around zero. This 

approach enables comparing predictions among all of the instances. What centered ICE curves 

show is that predictions for different length of employment do not increase a lot comparing to 

the centered value. They are almost stacked at each other. In terms of loan amount granted to 

the clients it is problematic to notice heterogeneity in the data in uncentered curves as the 

average prediction for the clients is more and less the same. Clear visible patterns in predictions 

are visible in the centered curve. It is observed that compared to amount 0 predictions remain 

unchanged till amount is less than 5000 and then probability of default increases. Cumulative 

effect of different checking balance levels is as follows: maximum average prediction is highest 

comparing to unknown value of that feature when balance is “<0 DM”. Once level of checking 

balance increases, prediction falls but still remains higher than in the initial unknown state. It 

should be considered whether the model reasoning is correct. Answering the question whether 

checking balance unknown value is indeed better than “<0 DM”, it’s the matter of data. Since 

no detailed description of the feature levels have been provided it is not within the scope of this 

paper to analyze the addressed question.  
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Figure 6. Centered Individual Conditional Expectation curves and Centered Partial Dependence 
visualizations of predicted probability of default for nine most influential explanatory variables according 
to own implementation of PFI. Thin colorful lines represent ICE, while bold blue accounts for Partial 
Dependence. All curves are fixed to 0 at the minimum feature values.  

 
Source: plots obtained with PyCEbox Python package.  

 
Partial Dependence Plots and Individual Conditional Expectation Curves reveal 

knowledge about discriminant power of explanatory variables. They should be produced once 

relevant features in the model are detected. Plots revisiting model outcome with respect to 

changing input values is crucial in terms of credit scoring. ICE shows how probability of default 

for a definite customer changes when the customer applies for a higher loan. PD shows the 

change in the whole sample. Visualizing average response of the learning structures by 

incorporating marginal distribution has some weaknesses. If collinearity among the variables 

exists, relationships captured by these tools will be upset by the interactions. Suppose trust in 
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the model is achieved because accuracy of the model is high and model performance is stable 

over variations in data. In such a case many would be misled that marginal effect detected by 

these methods is credible. In addition to that nonexistent data points are created when assigning 

a custom feature value to all observations. For the Partial Dependence of dependents (e.g. 

dependents=3) averaging is done over all possible observations. Take for example a single 

unemployed male, taking long for the education purposed. It is simply impossible to assign him 

with three dependents, as supposedly he is a poor student maintained by his parents. Although 

these two methods are very intuitive and their interpretation is easy, they carry potential risks 

in correct understanding credit default forecasting. PDP and ICE simply evaluate misleading 

information in case serious correlation in the data is detected.  An alternative to these methods 

is Accumulated Local Effect implemented in ALEPython package, that mitigates biases 

contributed by its predecessors 

ALEPython, as the author assures, deals with the problem of highly correlated features, 

as instead of marginal distribution, it takes into account conditional density of the variables. 

Apart from number of bins (intervals) used to split the feature’ values, it is also possible to 

select number of simulations in Monte Carlo. It is so as ALE plots are computed with Monte 

Carlo method. Proportion of randomly selected samples at each Monte Carlo iteration can be 

also set. Monte Carlo samples are shown with blue lines in the figures. The black line indicates 

what is the average value believed as the true impact of the feature on the prediction. The higher 

the number of Monte Carlo iterations, the more accurate are the estimations. Accumulated 

effect centered around the mean prediction is presented. It is believed that the shape of PDP 

and ALE curves do not differ significantly, so serial correlation within predictors exists in the 

data. Author of the package stresses, that first-order (presented in this paper ) and second-order 

ALE plots have been developed only. First-order and second-order ALE plots for categorical 

features are still in progress. Thus, in this paper only numerical continuous features have been 

incorporated into development of plots with the use of ALEPython. For categorical features 

from the range of most significant predictors (determined with PFI scores) own function 

calculating accumulated local effect across the categories have been developed. Centered 

effects showing how for a given predictor the prediction decreases or increases comparing to 

the average prediction have been visualized in the bar plots.  
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Figure 7. Accumulated Local Effects visualizations of predicted probability of default for five most 
influential numerical explanatory variables according to PFI. ALE are centered – at each point prediction 
minus average model outcome is shown. Thin blue lines represent Monte Carlo sampling results, while bold 
black line is estimated true predictor influence equal to the average value of  Monte Carlo iterations. Grid 
lines in the bottom of ALE plots show the distribution of feature values.  

 

 

 
Source: plots obtained with ALEPython Python package.  
 

Comparing the shape of the curves (for continuous variables) estimated with partial 

dependence and accumulated local effects, it seems that the former do not inflate significantly 

the average impact of regressors on probability of default. At least it estimates direction of 

predictions moves (increase or decrease) properly. Of course, the latter better reflects the pure 

effect of individual feature values on the outcome as the curves are not monotonic. PD curves 

are rather straight and do not reveal much asymmetry between observations when predictors 

change by a small value. ALE on the other hand make the changes visible even for small 
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movements of the predictors. Partial Dependence Plots are biased for almost all predictors at 

least locally, where nonexistent datapoints inflate the data distribution. It is clear that amount, 

months loan duration and checking balance influence the model outcome strongly. For the 

residence history ALE capture nonlinearity relationship between the model outcomes and 

residence history or installment rate. For the amount variable PDP is biased by the observations 

assigned with high loans. Because number of clients with loans exceeding 10000 is low and 

PDP does not correct for that fact, ALE estimates are more accurate. Yet another interesting 

relation that was not captured even by individual conditional curves but the arises from the ALE 

plot is impact of employment length on the probability score. It correctly reflects the fact that 

the average prediction rises when the client is unemployed or his working history is short. 

Probability score decreases for longer job seniority. Still influence of credit history is surprising. 

Undoubtedly this should be corrected in the model.  

 
 
Figure 8. Accumulated Local Effects visualizations of predicted probability of default for four most 
influential categorical explanatory variables according to scikit-learn PFI. ALE are centered – at each point 
prediction minus average model outcome is shown. Number of bins is set to unique values of predictor levels.  

    
 

 
Source: own preparation. 
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Suppose trust into estimated random forest is built and demonstrated ALE plots reveal 

how explanations withing predictors are generated. With this conceptual framework more 

insight about behavior of the risky clients can be deducted. Some hypothesis stated before 

modelling can be confirmed or rejected. Many discriminant patterns separating good and bad 

clients (bad are those delayed with loan repayment) can be verified. Discriminant power of the 

predictor is visible especially in case when Accumulated Local Effect curve is not flat, but for 

example monotonic and increasing. Slope of the months loan duration ALE curve could be  

approximated with a positive constant revealing that with increase of duration of a loan, the 

client becomes more risky.  ALE method can be successfully adopted for explanatory purposes 

of the credit scoring model.  

4.2.Local Surrogate Models  

 

Machine learning models are known with their predictive power superior to simple statistical 

structures. Main reason standing behind is their inner complex structure and no pre-defined 

assumptions about data density. As ML models usually succeed in high accuracy and evaluation 

metrics, it deceives the users into trusting them and believing black-box structures as correct 

and fair. Relying on the models in terms of accuracy of predictions is major, however once it is 

checked how the model predicts the outcome (if it predicts based on significant in our opinion 

patterns) it can be proved whether the algorithm can be trustworthy or not. Local model 

explanations have been developed in order to prevent misguided belief that the black-box 

structures can be always trusted. 

Key idea of local surrogate models is to fit an interpretable model in close vicinity of an 

instance of interest and explain what features decide about the model score. LIME is probably 

the most popular package exploited for these purposes. It a model agnostic tool for explaining 

single predictions of any classifier or regressor (Ribeiro et al., 2016). It supports both tabular 

and text data, as well as deals with image recognition problems. LIME accepts classifiers, 

regressors and handles multiclassification problems. As LIME perturbs instances locally around 

the point of interest, Python implementation of this toolbox enables setting the parameter 

defining number of samples to be created. For numerical features observations are taken from 

the standard normal distribution and inverse standardization is done, however for categorical 

predictors LIME samples from the original distribution. There is also parameter defining 

number of features to be used in the explanation. The higher number, the more accurate the 

explanation will be. Apart from adjusting number of features for the explanation, kernel width 
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in the exponential kernel defining proximity measure can be manipulated. The higher the width, 

the better LIME fits locally to the data. For example, consider LIME explainer applied to our 

random forest classifier on the training set with kernel width equal to 5. Predictions produced 

by the explainer bring us with R-squared of about 0.2. On the other hand, decreasing the 

parameter to 2 increases R-squared to 0.98. Defining own kernel function that incorporates the 

distance measure is also possible.  

Below example of LIME implementation is generated for an instance from the 

independent data set (testing sample) with high prediction error. We want to check what 

features decided of assigning this observation with a very low score, even though the client 

defaulted in reality. Features and values in the table show the actual client features. If the value 

is set to True or False, the feature is encoded as the dummy variable. Those predictors marked 

with blue  contribute negatively to the higher score (decrease probability of default), whereas 

orange feature values bring the observations with higher probability. Final prediction of the 

random forest equal to 0 (credit recipient is considered to be a nonhazardous person), however 

score produced by the local surrogate is usually different (in this case it is 0.24). This is the 

main drawback of this method comparing to Shapley values, whose properties assure that 

adding all features contributions and average model outcome produces final model score. Float 

numbers in the middle part are the weights assigned to each of the nine most important to LIME 

features. In the following case whether property is unknown or none for the surrogate is model 

most significant. The second predictor is negation of taking loan for the purchase of a used car. 

Third most influential is months_loan_duration variable. Its lengths of 36 months pushes the 

score higher. On the other hand, fact that credit recipient is not divorced male makes probability 

of default lower. Other important attributes values contributing positively are 

other_debtors_guarantor, foreign_worker_yes, property_real_estate, purpose_retraining, 

foreign_worker_no.  
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Figure 9. Local surrogate model (LIME) visualization of nine most influential in scoring features for an 
observation from the test set with high prediction error. Features in orange have positive and features in 
blue negative impact on increasing probability of default. Model predicted outcome, so calculated 
probability of default is 0.  

 
 
Source: plot obtained with LIME Python package.  
 

Thanks to the explanation function that fits an interpretable model and generates feature 

contributions for each instance, it is possible to obtain much more information about the model 

with this method. By aggregating explanations for all observations from the sample, it is 

possible to obtain methods in imitation of feature significance and partial dependence, however 

calculating approach is different. All one needs to do is to collect feature weights for all of the 

instances calculated with the use of LIME explainer. Then, feature weights are multiplied by 

the original feature values in order to obtain feature contributions (similarly as in linear 

statistical models). From the LIME package documentation we can read that the data taken into 

LIME explainer is scaled, so weights returned by the explainers should be multiplied by the 

scaled data. When obtaining final contributions calculated with an interpretable model and 

summing their absolute values withing predictors, overall feature distribution can be plotted as 

in the figure. Secondly, plotting distribution of each feature contribution and stacking them with 

original feature values results in sensitivity analysis of predictors and their impact on predictors. 

When calculating overall feature contribution to the prediction the weights for each predictor 

have been scaled so that contribution of all explanatory variables is 1. Distribution of feature 

weights for independent variables have been done for nine most significant regressors obtained 

in Figure 10. Feature importance computed with LIME weights bring us with the following 

conclusion: most of the variables visible in the figure are the same as those calculated with 

Permutation Feature Importance approach. LIME does not include amount, while favors 

dependents variable Comparing to Permutation Feature Importance the ordering is different. 

One cannot directly compare weights assigned in this approach with permutation scores as their 

calculation is absolutely different. LIME assigns higher rank for months loan duration, credit 
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history and employment because it does not recognize any discriminant patterns in amount 

variable. That conclusion is supported in feature contributions plotted in Figure 11 that 

illustrates dispersion of the data points weights centered around zero weight for amount 

variable. Dispersion of true default or non-default clients is marked with orange and blue 

appropriately. Based on the distribution of default and non-defaults in the figure it is months 

loan duration as well as checking balance and age discriminates instances pretty well. For the 

other variables it is not so obvious, as the orange and blue points are stacked with each other. 

Savings balance weights seem to mirror realistic behavior of the model, assigning observations 

with higher probability when the balance is unknown or “<100 DM”. The rest features weights 

do not show any logic behind them, especially that their influence on prediction trend is often 

not consistent with relations in PDP and ALE plots. It points to an important property of the 

local surrogate models – local fidelity. Local explanations of the model do not have to correctly 

replicate the model globally. In other words, if features are significant locally (for a small set 

of observations), this is not true that the features must be important in the global scale. Local 

approximations matter in case of the local surrogate models. 

 
Figure 10. Feature Importance results calculated by aggregating absolute values of weights obtained with 
LIME explainer applied with the training set observations. Values are scaled so that the sum of all feature 
importances is 1.  

 
Source: own preparation. 
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Figure 11. LIME feature contributions for local surrogate model applied over the training set. Each dot 
represents one instance. Observations being actual default as marked with orange, and non-default with 
blue . On the vertical axis weight for each instance is shown. Categorical predictors such as savings balance 
are not ranked with their order, however it does not inflate their contribution interpretation. 

 
Source: own preparation. 
 

Apart from LIME another toolbox has been developed by the authors of this package - 

submodular pick. It selects a number of instances and presents their explanations. These 

instances, according to Ribeiro et al. (2016), capture the trustworthiness of the model best. This 

addresses the issue, that even though the model predicts the instances well (model accuracy is 

high), the purpose why the model does so might not be in accordance with human logic. What 

is more, a model user might not have an idea how to capture instances that represent the 

reliability of an algorithm. Submodular pick does it for us in the following manner: once the 

explanations for a given dataset are obtained (with 𝑑𝑑+ number of features defined in LIME 

explainer), features are ranked with their significance (𝐼𝐼> denotes importance of the 𝑗𝑗 − 𝑐𝑐ℎ 
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variable in the explanation space). A predictor 𝑗𝑗 is more significant than predictor 𝑖𝑖 (𝐼𝐼> > 𝐼𝐼!) if 

it explains more observations than 𝑖𝑖. Having regressors ordered according to their contribution, 

submodular pick is assumed to pick up explanations with those important features (starting 

from the most important ), however it tries to omit instances with exactly the same or similar 

predictors. For example, suppose a set of 𝑑𝑑+=5 features. First explanation chosen by the toolbox 

contains feature 𝑥𝑥" and 𝑥𝑥\. By picking another instance submodular pick tries to look for a case 

with no features  𝑥𝑥" and 𝑥𝑥\, thus maximizing the coverage function.  

It is often desirable in credit scoring to zoom in on a specified customer and tell what 

feature attributes regarding personal characteristics or application data are flagged by the model 

as those contributing positively or negatively to the score. A novel technique involving fitting 

an interpretable white-box in close vicinity to a single observation has been unarguably a 

breakthrough in local explanation techniques developed further by many. LIME was 

presumable first framework developed on the grounds of local surrogate approach. As the goal 

of LIME is to fit an explainable structure for model predictions, scores produced by the white-

boxes are rarely exactly the same as for the black-box one. This bias is strictly dependent on 

local fidelity of the explanations. Local fitting of a white-box structure to prediction can be 

manipulated with different parameters, such as proximity measures in LIME explainer, 

however no standard recommendations have been provided. In addition to that, every 

interpretable model (especially models from linear class) have some limitations. They are 

usually not applied for capturing nonlinear structure of the data. They are sensitive to outliers 

and strong correlation of predictors. Lastly, common linear models must meet some 

assumptions, which broken, might result in unreliable model outcomes. This stands for another 

argument against approximating predictions of black-boxes with a white-box model. Although 

key idea standing behind LIME is disruptive, the way it addresses trust in single model 

predictions is a matter of discussion. I believe setting LIME parameters properly might bring 

optimal results, however how do we know whether these explanations can be trusted.  How do 

we know whether observations around the point of interest have been sampled so that they 

reflect complex dependencies in the data, what proximity measure should be used and what 

amount of features mirrors true behavior of the classifier. There are many aspects where LIME 

is susceptible to generating wrong explanations. Although it provides simple and intuitive tool 

that could make us human better off in explaining individual clients scores, there exist some 

alternative approaches for local model interpreting.  
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4.3.Shapley values 

 

Shapley values concept derived from the game theory has been a unified approach enabling 

peeking into the model in global and local scale. There is a great Python package including a 

variety of functions for machine learning interpretability calculated with the use of Shapley 

approach – SHAP (SHapley Additive exPlanations). This package supports both agnostic 

kernel explainers that can be a model of any time, but also model specific explainers. It supports 

different Python packages - scikit-learn, TensorFlow, Keras, PyTorch. It deals with different 

kind of predictions (regression, classification and multiclassification problems). Although 

computation time is greater as compared to LIME package, for some tree based models some 

speed up implementations are possible. SHAP enables explaining not only standard tabular 

data, but also text data and images. This useful toolbox enables inspecting the model from 

different perspectives. First, agnostic approach. With SHAP plotting significant features in the 

whole sample is possible. It not only shows average impact of predictors on the outcome, but 

plots distribution of the variables versus the outcome. Secondly, visualizing impact of 

individual predictors on predictions can be done with dependence plots. Inspecting the model 

locally is yet another functionality of the library. SHAP calculates contribution of variables into 

single predictions. In other words, it explains the model locally. Finally, stacking single 

observations for the whole dataset (for example training set) is possible. It is done with force 

plot that shows explanation for all these instances. Authors believe, that combining explanations 

of single instances allows for global insight into the model and checking whether it can be 

trusted. 

Now a brief visualization of the methods available in SHAP will be presented. As this 

work aims to present model agnostic solutions, KernelExplainer class from the package has 

been chosen for the purpose of the model inspection. Except for model agnostic, SHAP offers 

also model specific explainer dedicated for tree based model or models combining ideas from 

Integrated Gradients etc. More information can be found in latest SHAP documentation  
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Figure 12. SHAP feature importance (left panel) and SHAP summary plot (right panel) visualizing feature 
values contribution. Summary plot represented by  beeswarm plot apart from distribution of data points 
(represented by single dots) informs what is the relationship between impact on model output triggered by 
low, median or high value of predictor.  

  
Source: own preparation using SHAP Python package. 
 

With summary plots, global insight into the model is obtained. It shows how the given 

predictor contributes to the prediction on average - in other words, average SHAP value for a 

given feature. This is for bar plot. A beeswarm plot shows feature contribution for individual 

instances that in total sum up to the average impact shown in bars. Beeswarm plot is different 

from the bar plot as it distinguishes the features with respect to their values – positive or 

negative, so it’s slightly more informative than just simple bar plot. In addition distribution of 

Shapley values is visible through the overlapping points. For credit history for example 

beeswarm plot shows that observations with higher value of that feature (credit_history = 

“repaid”) are assigned with higher SHAP value (contributing positively to the probability of 

default). For more information about sensitivity of predictors with respect to the regressors 

SHAP dependence plots should be analyzed.  
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Figure 13. SHAP feature contributions called as dependence plot. Their visualization is similar to Partial 
Dependence or Accumulated Local Effects, however brings more information about model performance – 
enables capturing meaningful interactions in the data. On the x-axis feature of interest is presented, left-
hand vertical axis accounts for calculated Shapley values, and right-hand vertical axis captures explanatory 
variable that has strongest interaction with predictor chosen.  

 
Source: own preparation using SHAP Python package. 
 

Dependence plots are very similar to the Partial Dependence Plots and Accumulated 

Local Effects in their destination. This toolbox has one extra feature – it identifies interaction 

between distinct features. Apart from revealing the patterns between predictions and predictors’ 

values, dependence plot visualizes the dependency between a chosen predictor and another 

feature whose interaction with the feature of interest is highest according to calculated Shapley 

values. This enables verifying whether tree based model indeed capture non-linearity that is so 

often found in tabular data. (Lundberg and Lee., 2020). Take for example dependence plot for 

predictor age. In line with theory, the higher SHAP value, the higher contribution of the feature 

towards the default. According to calculated values there is strong interaction effect with the 

fact whether client takes the loan for a new car. Suppose he does and purpose_car(new)=1 (red 

dots in the plot). Younger credit recipients (about age 20 to 30) taking the loan so that they 

could purchase a new car are more risky as their SHAP values are greater than 0. On the other 

hand, the same group of clients but of age above 40 years are granted lower scores.  Intuition 

behind those explanations is very logical. It should be remarked that  



                                 Kłosok, M. and Chlebus, M. /WORKING PAPERS 18/2020 (324)                                42 
 

 
 

Model agnostic tools for local explanations are desirable as they enable peeking into 

any kind of model. However these model-agnostic techniques are often slow and their results 

differ among calculations. As Lundberg and others (2020) assure, TreeExplainer implemented 

in SHAP is designed for speed calculations with high precisions. What is more, all meaningful 

properties of SHAP explanations are preserved – efficiency, linearity, symmetry. Shapley 

values for single datapoints are designed with “force plots”. Length of each feature arrow 

measures how much a given predictor pushes model prediction from the base value (base is set 

to the average prediction computed from the set passed to the explainer). Variables with blue 

force prediction down and those with red force it higher. Bold value points for the regressor 

actual outcome. As SHAP accepts original training or testing sample with encoded features, 

categorical variables are shown with the numerical values. Explanation is presented for the 

same instance as in LIME. Months loan duration equal to 36 and installment rate equal to 4 

pushes prediction towards the higher score, however a set of regressors such as checking 

balance = “> 200 DM”, amount = 4210 and purpose_radio/rv=1 and housing_own = 1 drops 

prediction down. SHAP explanation advocates low score of the model, as the algorithm seems 

to reason in the following way: credit recipient is a young single male 

(personal_status_single_male=1) in the productive age (age=26), has own housing, he is a 

skilled employ so has good job perspectives. The last information is not visible in the figure, 

however from the explanation object SHAP weights for all predictors have been obtained and 

job_skilled employee = 1 contributes the lower score. Moreover credit amount is low (4210) 

and client takes the loan for the purpose of radio/tv purchase. Checking balance is high and is 

equal to > 200 DM. In accordance with this explanation it seems justified that the model scored 

the observation with low probability of default.  

 
Figure 14. SHAP representation of local model inspection Shapley values are computed for an observation 
from the test set with high prediction error. Model prediction is 0 and average model score is 0.2275. 
Variables in red support higher probability and blue color features decrease the score.  

 
Source: own preparation using SHAP Python package. 
 

By obtaining feature contributions for single instances it is possible to measure the 

strength of features interactions. Plotting these feature impacts for individual samples can help 

to look at the dependencies from the global scale.  And so the force plot (Figure 15) is obtained 

by stacking single instances explanations together. On the x-scale feature values are plotted. 

Vertical axis represents the output of the model, however it does not have to be so. Any other 
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feature (dependent or non-dependent) can be obtained on the horizontal or vertical scale by 

simply changing it with the drop down list. Once again SHAP presents another tool for easy 

and meaningful interaction detection of the analyzed sample. Looking at single instances 

feature contributions has yet another advantage. By looking at observations with surprisingly 

high or low score (detecting them can be done by simply measuring prediction error) previously 

undetected mistakes in the data can be noticed, as the plot shows exact values of the 

observations.  

Slack et al. (2020) tested empirically that in case of sensitive data application SHAP is 

a more reliable method than LIME. As both of these frameworks are perturbation based 

methods, authors underlie that they cannot truly mirror discriminant behavior of the classifiers, 

however SHAP does it indeed better than LIME in case of sensitive problems (e.g. with highly 

correlated predictors). 
Figure 15. With obtaining SHAP explanations for single instances and stacking them vertically interactive 
visualization stated as force plot is constructed. Different combinations of features on vertical and 
horizontal axis might be presented. By default observations are clustered according their position in a 
hierarchical clustering. Red feature values support higher probability and blue feature values decrease 
the score. Plot is interactive, so hovering over it enables showing some features of observations forming 
the clusters. Visualization of the training set points at two explicit clusters. It is possible to choose any 
predictor along the vertical and horizontal axis, so for example interaction effect between explanatory 
variables might be obtained. 
 

 
Source: own preparation using SHAP Python package. 
 

Explanations based on Shapley values provide not only model agnostic, but powerful 

methods enabling interpreting the model from both the global and local scale. One does not 

have to compute Feature Importance or plot Dependence Plots using different approaches, but 

implement single framework and exploit it efficiently. Many raise the key argument supporting 

SHAP packages among the others: framework is grounded on solid theoretical background 

inspired by Lloyd Shapley and satisfies axioms of efficiency, symmetry, additivity and dummy 

player. They assure that all predictors must contribute fairly to the explanation of an individual, 
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for example. This unified concept distinguishes important regressors in the model, relation 

between the model outcome and individual predictors’ values, captures correlated features, 

explains single instances asserting local interpretability of the classifier. By implementing 

SHAP package one can take a closer look at the model predicting a certain event and draw 

conclusions about its complexity.  

Interpretation of LIME and SHAP is different,  however both of the tools have similar 

purpose. They serve for local predictions interpreting. While LIME approximate solutions raise 

doubts about their results, SHAP provides method based on solid mathematical foundations. 

One does not have to contemplate on correctness of explanations established with SHAP. In 

addition to that SHAP is intuitive and according to Lundberg and Lee (2017), consistent with 

human intuition. This highly informative tool brings the user with methods supporting better 

understanding of the modelled process.  

5. Conclusions 

 
Answering the question what features pushed the model to make a certain prediction is crucial 

in terms of interpretability. It is especially important in systems demanding knowledge about 

the object or humans whose behavior is being modelled, such as credit scoring, but most 

importantly about the system itself. If there is some bias in the model because scoring system 

tends to increase score because of some unreasonable behavior of the clients, machine learning 

explainability tools should reveal these actions. In addition to that, banks under European 

supervision are obliged to inform the client why his/her loan application has been rejected. This 

“right to be informed” (Goodman and Flaxman, 2016) poses another challenge for people 

considering black-boxes as non-interpretable structures. Nevertheless XAI techniques for local 

model explanations serve as a solution in this decision process.  

Establishing interpretability of the model can be obtained from both the global 

perspective, but also in local terms, depending on the analyst needs. In particular cases 

interpretability might be obtained simply by application of single methods. However every 

entity might establish its own best practices in order to increase trust in decision systems. In 

order to gain insight into significant model predictors in the whole model, Feature Importance 

measuring contribution of predictors into the model output should be computed. Important thing 

is that the data must be labelled, so that prediction error can be calculated. For these purposes 

both Permutation based Feature Importance or any other technique calculating contribution of 
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input variables might be used. They show how on average the model score is pushed, but they 

do not reveal direction of that move. This is the very basic method giving insight how the model 

ranks the features. If more detailed relation between distinct feature values and algorithm 

response is required, Partial Dependence Plots should be applied to the algorithm predictions. 

In case problem of collinearity in the data has not been resolved before black-box has been 

implemented, Accumulated Local Effects should be preferred. Once important features and 

their relationship with model response function has been known, it would be also reasonable to 

understand how the model assigns single instances with the scores. In other words, even though 

predictors significant in the global scale are consistent and reasonable with expert knowledge, 

assuring model discriminates observations correctly as a whole and also for each observation 

separately is crucial for enhancing fairness of the model. If the model made a wrong decision 

when discriminating observations, local explanations based on local surrogate or Shapley value 

concept help to assure whether decision system took into account attributes compliant with 

humans. Sometimes methods inspecting small regions visualize shortcomings of the data in 

predicting false positive instances. It might contribute to pointing that replacing missing data 

of one attribute would result in a totally different score for example. Visualizing explanations 

for instances with high prediction error might help to detect outliers in the data that bias results 

of the model. This kind of local model inspection is known as local variable importance. In 

addition to that Individual Conditional Expectation curves are also perfect for capturing 

alternative scenarios. Consider a skilled and employed client assigned with high probability of 

default. He has not been given a loan now because his salary is low. Assuring with ICE his 

default score decreases once his salary increases poses a perfect occasion for the future that this 

man becomes our client.  

When picking up solutions for bringing trust in the model one should choose those 

techniques grounded on solid mathematical foundations, such as Shapley values or at least 

approaches that have been thoroughly empirically tested. In case of local surrogate 

implemented in LIME numerical concerns have been raised in the literature about sparse and 

not always accurate explanations produced with these explainers. Also Permutation based 

Feature Importance is criticized for inappropriate results in case of highly correlated predictors. 

However scientific area of machine learning interpretability have been recently broadly 

investigated and many useful alternatives (often built as an extension to existent techniques) 

have been proposed. Each of the method presented in this work entail some risk that the 

explanation of model predictions will be biased, however in most cases they contribute to higher 

transparency and accountability of decision systems built on the machine learning foundations.   
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