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lengths (from 300 to 2000 observations) for three Value-at-Risk models: historical simulation,
GARCH and CAViaR model for three different indexes: WIG20, S&P500 and FTSE100. Testing
samples contained 250 observations, each ending with the end of years 2015-2019. We have also
addressed the subjectivity of choosing the window’s size by testing change points detection
algorithms: binary segmentation and Pelt; to find the best matching cut-off point. Results indicate
that the size of the training sample greater than 900-1000 observations doesn’t increase the quality
of the model, while the lengths lower than such cut-off provide unsatisfactory results and decrease
model’s conservatism. Change point detection methods provide more accurate models. Applying
the algorithms with every model’s recalculation provides results better by on average 1
exceedance. Our recommendation is to use GARCH or CAViaR model with recalculated window
size.
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1 Introduction

According to the econometric modeling strategies, there always exists a minimum number of
observations that allows to draw any conclusions from estimated covariates. In an equation for con-
fidence intervals, we notice that the uncertainty decreases as the number of observations increases.
In terms of market risk forecasting, it suggests that the more data is fed to any model, the more

certain and accurate are its forecasts. But is it true?

VaR is one of the most popular measures of market risk presented in a form of maximum loss
over a target horizon that will not be exceeded with a given confidence level, given normal market
conditions (Philippe{ (2006), Dowd (2010)). There are many approaches to the VaR modeling, but
mostly it can be understood as a specific quantile of an assumed distribution of predicted rate of
return realizations. Our point of interest is to study how many observations should be used to
build such a distribution. Too few observations and the training sample’s distribution will be very
volatile, and vice versa - too many observations will expose the model to unnecessary bias that is not
observed at the day of modeling. Therefore the task of determining the size of the training window
is not as straightforward as it would seem. In addition to that there is no empirical consensus due
to a lack of broad studies in that area.

The document that regulates modeling approach to market risk in financial institutions is Basel
I11, laying out rules for internal models creation to be followed by any banks and funds (Lee|(2014)).
According to its newest complement (from 2017, which emerged due to 2010s crises), any market
risks should be defined by a measure of expected shortfall (which is conditional VaR) at 2.5%
confidence level for at least next 10 trading days. As for the necessary time series length used to
build the model, the necessary minimum number of observations is 250 trading days (approximately

one year).

Regardless of the predetermined rules, Basel III does not specify any particular approach to
VaR modelling. There are three main families of models to be considered: parametric approaches
that assume a specific distribution of rate of return realizations and aim to estimate its parameters
(eg. GARCH models); non-parametric approaches that do not assume any distributions, with es-
timates based only on empirical data (eg. historical simulation); semi-parametric approaches that
have characteristics of both former families (eg. CAViaR model). Due to such fruitfulness of ap-
proaches there exist many comparisons of different approaches in different scenarios, mentioning
best scenarios to use particular models (Abad et al.|(2014))).

In the field of empirical studies devoted to VaR, many researchers are focused on comparisons
of several different approaches. None of these papers state any model to be the best, but they specify

characteristics of market conditions in which particular models perform better. Most of the recent
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papers are in favor of semi-parametric methods, which are both accurate and flexible (Patton et al.
(2019), Wang and Zhao|(2016)), Abad and Benito (2013)),|[Martins-Filho et al.|(2018)), Taylor(2019)),
Abad et al.| (2016), Nozari et al.|(2010), Sener et al.|(2012)). However, there are researchers, who
find parametric methods better, claiming that modeling the distribution is more accurate (Buczynski
and Chlebus|(2018)),|Buczynski and Chlebus (2019), Ergtin and Jun| (2010)), Berkowitz and O’ Brien
(2002), Bao et al. (2006]), Consigli| (2002}, |Danielsson| (2002), |Sarma et al.[(2003))). In addition to
that most of the aforementioned studies compare favored models to the most popular non-parametric
method - historical simulation. These studies find that historical simulation might be worse than

other studied models.

Unfortunately, most of studies in this field assume the length of training window beforehand.
Very long training sample’s window is mostly assumed, with sizes of 1000 - 2000 obs. and more
(Bao et al.| (20006)), Danielsson| (2002)), Sarma et al.| (2003]), [Patton et al.[(2019), [Martins-Filho et al.
(2018)),|Nozari et al.|(2010), |[Buczynski and Chlebus|(2018)), [Buczynski and Chlebus|(2019), |[Ergiin
and Jun/(2010)). Some of the already mentioned researchers use a small range of different window’s
lengths, but do not draw any conclusions towards particular model’s sensitivity towards these val-
ues. Some comments are found in|Hendricks et al.|(1996)), saying that longer window sizes produced
forecasts of better quality. Researchers rather rarely try smaller window’s lengths (Wang and Zhao
(2016),/Abad and Benito|(2013)), |Sener et al. (2012}, Berkowitz and O’Brien!(2002)). Finally, some

researchers do not report the length of training sample at all.

Some attention recently has been given to automatic methods of detecting the appropriate sample
size. Most popular approach is to find the closest change point in the time series to train the model
on homogenic (in terms of expected value or volatility) series, assuming normal (stable) market
conditions. For example [Smith and Huang| (2019) explored two approaches to finding such point:
AMOC and binary segmentation. Their results indicate that these methods might be more precise
than fixed training sample size. Another researchers (Cizek et al. (2009)) argue that by employing
change point techniques one can achieve more accurate and flexible model that works over longer

periods of time.

The aim of this paper is to compare different VaR approaches for multiple sample sizes. Pri-
marily, we want to estimate VaR models for window lengths from 50 to 2000 and compare their
excess ratios to find out whether there is any level over which increasing sample size does not make
any betterment in terms of greater quality. Such analysis can provide a comprehensive overview of
sample size selection for a particular model. To create the most unconditional environment for these
models we have tested 15 different time series for each approach (five time periods for three dif-
ferent indexes). In addition to that, we specify a non-subjective criterion to find out the best fitting

sample size. By that we have selected two change point detection algorithms: binary segmentation
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and Pelt algorithm to find the most fitting window size. These algorithms are used both before and

during estimation process.

In the next section, methodologies of VaR approaches used in the paper, are presented. In section
three, we present the data and experiment setup. In section four we present the results and in the

last section main conclusions are presented.
2  Methodology

VaR is defined as a maximum loss over a given time horizon ¢, at a given level of confidence
« and normal market conditions. Importantly, VaR is also a quantile of the empirical distribution
of gains and losses over selected time horizon. Mathematical equation to define VaR could be
presented as follows (Philippe| (2006))):

P(ry < VaR,(t)|Q-1) = « (1)

where r; is the rate of return of the asset under consideration and §2;_; is an information set

given at time ¢ — 1.

It is also important to present how VaR models are backtested. One of the simplest approaches
is to count the number of occurrences when VaR forecast was lower than the realization of the rate
of return. Such measure is called an exceedance I, and when expressed in terms of relation to whole

backtested horizon of length NV, we may introduce excess ratio (Philippe (2006)):

N
a=1/N>_ 1. )
t=1

2.1 Historical simulation

The simplest non-parametric approach to VaR modelling is historical simulation (Dowd (2010)).
It is based on the aforementioned fact that VaR is a quantile of historical returns. VaR is summarized
by an « quantile of the empirical distribution of rates of return of the studied asset. In this approach,
very much depends on the sample size, due to intentional (or not) inclusion of time periods of
heterogenic volatility. The practice shows that the width of the window is fixed and usually ranges
from 6 months to 2 years (125 - 500 obs.) (Engle and Manganelli (2001)).

VaR,(t) = qa 3)
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2.2 GARCH model

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models are one the most
common parametric VaR models used in market risk modeling right now. Specifically in this paper
the GARCH model under consideration is GARCH(1,1) models with skewed student’s t distribution.
GARCH(1,1) is one of the simplest of the whole GARCH family models and can be described by
the two following equations (Engle|(1982)), Bollerslev| (1986)):

Tt|Qt71 ~ HD(Mt; h‘t)7

4)
hy = By + 515?—1 + y1hy—1,

where I1D(p, hy) is an identical and independent distribution with y; conditional mean and A
conditional variance, which on the other hand is explained by a sum of specific number of lagged

squared error terms and conditional variances weighted by two vectors of parameters 3 and ~.

Given these equations, we can define Value-at-Risk as Angelidis et al. (2004):

VaRa(t) = fis + ga\/ o, 5)

where ¢, is an « quantile of the assumed distribution, while /i; and ift are estimated conditional

mean and variance for time ¢.

Theoretically, only normal distribution should be used as the conditional distribution of the
model, however Bollerslev and Wooldridge (1992) have proven that if the model is not conditionally
normally distributed, but it specifies the first two conditional moments correctly, the estimates of
the quasi likelihood function will be consistent and asymptotically normal. Therefore the usage of
distributions of the underlying process other than normal is completely correct and desirable. Itis a
common characteristic of any time series with financial origin that the distribution of the returns is
skewed and has a tendency to have non-zero kurtosis, which drastically lowers the quality of models
based on normal distribution. Based on literature, most of the studies finds student’s t distribution

to be the most fitting, in particular the skewed version (Ergen| (2012)).
2.3 CAViaR model

One of the most common semi-parametric VaR models is CAViaR model introduced by [Engle
and Manganelli (2004)). CAViaR model estimates the quantile of the distribution of the data directly
instead of trying to model the whole distribution. The model is based on the quantile regression
methodology by Koenker and Bassett (1978)). The basic formula for CAViaR model (with one

lagged Value-at-Risk and one lagged observed value) can be expressed as:
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VaR,(t) = Bo + f1VaR.(t — 1) + (B, 1i—1, VaRs(t — 1)) (6)

where [(.) is a linking function of a lagged value of observables and VaR, while 3 is a vector of

parameters.

The point of using linking function within the CAViaR expression is to link the model outcome
to the level of rates of return at time ¢ — 1. In this study we have decided to use one of the CAViaR
specifications presented by Engle and Manganelli (2004) - indirect GARCH:

VaRa(t) = /fo + BiVaRa(t — 1) + Ba(re1)?, (7)

The indirect GARCH approach to CAViaR models is very similar to GARCH modeling. In fact,
it would be correctly specified model if the underlying data were GARCH(1,1) process with /1D

distribution.
2.4 Change point detection

Change point detection algorithms struggle to find an observation that determines an influential
change in the time series. The main objective of these algorithms is to build a non-overlapping
segmentation of the underlying model of time series, based on the detected shifts in its charac-
teristics. The area of research in this topic is very broad, as these techniques are widely used in
signal processing and have many applications in finance, bioinformatics, medicine and many more
(Aminikhanghahi and Cook! (2017)).

To provide a theoretical background, let us consider a non-stationary random process y =
{y1,...,4¢}. This process is also assumed to be piece-wise stationary, i.e. there are K unknown
instants £; < t, < ... < tg, at which some characteristics of this process change. The aim of the
change point detection algorithms is to find the best possible segmentation 7 of the series, accord-
ing to some general cost function V(7,y) := S5 ¢(Yy, -, Uiy, ) that is a summation over cost
functions for particular segments. In our scenario, we do not determine the number of segments K
beforehand, hence general cost function gets an additional penalty for the complexity of segmenta-
tion 7. Therefore, following Truong et al.[(2020) the optimization problem can be determined as:

mTin V(7) + pen(T)

The cost function under consideration in this study is based on kernel methods. The original
series is mapped onto Hilbert space . The mapping function ¢ : R — # is given implicitly by
&(y) = k(ys, ) € H. In such setting, the cost function of a particular segment can be defined as:
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tht1

C(ytk, --'7ytk+1) = Z ||¢<yt> - ﬂtk ----- tk+1||3—[ (8)

t=tr+1

where i, is the empirical mean of the process over sub-sample from ¢, to ¢ and || - ||

lea
is a norm in the Hilbert space. Of course the choice of the kernel function is unlimited, whereas
the most commonly used kernel for numerical data is either Gaussian or linear. In the Gaussian

scenario, we can define:

k(z,y) = exp(—|lz — y|1?) 9)

where z,y € R% and v > 0 is called a bandwidth parameter. The cost function is therefore
defined by (Truong et al. (2020))):

tr41
C(Ytns s Ytrin) = (e = te) = 1/ (tesr —te) D eap(=llys — vell*) (10)
s,t=tp+1
Regardless of the chosen cost function, there are several search method, which are procedures
for discrete optimization processes aimed at minimization of the formulated cost function. We have
two of such approaches: an optimal segmentation using Pelt algorithm and approximate by binary

segmentation.

To find the optimal number of segments K one could run the optimization for each K and
select the minimum. Fortunately, in case of linear penalties for the number of segments, high com-
putational cost can be avoided, by the usage of Pelt algorithm. The algorithm considers the series
sequentially and based on the pruning rule, may or may not include it in the set of potential change
points. The pruning rule may be determined by:

if [mTln V(7,90.4) + pen(T)] + c(yr.s) > [me V(7,v0.s) + pen(7)] then ¢ cannot be the last
change point prior to 7. In the literature there are several usages of Pelt algorithm for example in
DNA sequences and oceanographic data (Killick et al.| (2012), Hocking et al. (2013)), [Maidstone
et al. (2017)).

On the other hand, binary segmentation is more greedy sequential algorithm. First change point

t; is given by

2?1 = argminlStSTflcQ/Oa sy yt) + C(ytv ceey yT) (11)

which means that the algorithm searches for the change point ¢ that minimizes the sum of costs.
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The series is then split in two at the instant #; and the same operation is repeated on the resulting
sub-samples until no further improvement to the cost function can be done. The solution is only
an approximation of a perfect segmentation, since the detection of a change point is not based on
a homogeneous sample and every other detection is based on all previous ones. However that
doesn’t diminish the quality of algorithm as it was used in many applications in finance (Lavielle
and Teyssiere (2007), Bai| (1997), Fryzlewicz| (2014))), as well as bio-informatics and DNA sub-
sampling (N1u and Zhang (2012)), Olshen et al.|(2004)).

3 Data and experiment setup

The experiment has been conducted on a set of main stock indexes from three countries: WIG20
(Poland), S&P500 (USA) and FTSE 100 (United Kingdom). There were five distinctive testing
samples prepared, each consisting of 250 obs. and set to end with end of years: 2015 — 2019.
Therefore, for each studied Value-at-Risk approach (historical simulation, GARCH model with
skewed Student t distribution and CAViaR model), we tested three different indexes on five different
testing samples, resulting in fifteen different time series. Each of the models were used 250 times
to generate a one-day-ahead forecast using a sliding window technique with the length determined

as described below.

The training sample was our point of interest for the experiment. In this paper, we compare
VaR models in terms of out-of-sample one-step-ahead predictive ability. For each of the tested time
series, the 250th observation since the end of the year (very beginning of January) constituted as
a constant point and determined beginning of a testing sample. We have played with the length
of the training sample, described as number of observations to be included. The numbers that we
have tested are from a set {50, 100, ..., 1250}. We have also tested very large samples from a set
of {1500, 1750, 2000}. For each of the models, time series and training sample lengths we have
calculated number of exceedances, results of which are presented in tables In addition to
that we have calculated mean number of exceedances which is an average over tested years for a
particular model and training sample size. All the resulting numbers are compared to the assumed
number of exceedances, which for VaR at 2.5% confidence level and 250 testing sample obs. should
be equal to 6.25 £ 4 (90% CI).

We have also created a mechanism for the automatic training sample’s length selection by ap-
plying the change point detection techniques mentioned in section[2.4] The first part of the reported
results refers to the change point detection applied beforehand the model fitting procedure for all
forecasts in the testing sample. The second part refers to recalculation of the sample size using
change point detection algorithm right before training another model for one-day-ahead forecast,
hence the algorithm was also applied 250 times. For both methods we have used the aforemen-

tioned Pelt and binary segmentation algorithms. To create even more controlled environment we
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propose two approaches to the change point detection algorithms: liberal and conservative one.
Both approaches are based on all the change points detected in range from 500 to 1000, but for the
liberal approach we select the change point closest to the 500th obs. and the conservative approach
assumes the change point closest to the 1000th obs. Therefore liberal approach takes the shortest
sample size and conservative one takes the longest. This results in four different scenarios of train-
ing sample lengths in each setup: conservative Pelt and binary segmentation; liberal Pelt and binary
segmentation. Results for the automatic change point detection method are presented in tables
and[3

Table 1: Number of exceedances for particular training sample sizes in tested years (WIG
20)

historical sim. GARCH (skewed student t) CAViaR
L e T2 2 F e T x 2 F L e T =2 2 F
o o o o o ] o o o o o 2 o o o o O ]
A &8 &8 & & F A 8 a a8 a 2 A & a & & F
2000 1 1 0 8§ 5 3.0 8 § 1 8 5 6.0 9 7 0 7 5 56
1750 1 4 0 8 5 36 8 7 1 8 4 56 9 7 0 8 5 58
1500 5 7 0 8 5 50 8 9 1 8 4 60 9 8 1 8 6 64
1250 6 8 0 8 5 54 8 8 1 8 5 60 9 6 1 9 4 58
1200 6 8 0 8 5 54 8 8 1 8 5 60 9 7 1 7 4 56
1150 6 7 0 8 5 52 8 7 1 8 4 56 9 7 1 8 4 58
1100 o6 9 0 8 5 56 8 8 1 8 4 58 9 8 1 8 4 6.0
1050 7 9 0 8 5 58 8 9 1 8 4 60 9 8 1 8 4 6.0
1000 8 9 0 8 5 60 8 8 2 8 4 6.0 9 9 1 8 5 64
950 10 10 O 8 5 66 8 8 2 8 4 60 9 6 1 8 6 6.0
900 10 10 O 8 6 68 8 8 2 8 5 62 o 10 2 8 7 74
80 11 9 0 8§ 6 6.8 8 9 1 8 5 62 9 11 1 8 5 68
800 12 9 0 8 6 7.0 8 10 1 8 5 64 1T 9 1 8 6 70
750 13 9 0 8 6 72 8 10 1 8 5 o064 1m 10 1 11 5 76
700 12 9 0 8 6 170 8 11 1 8 5 6.6 12 10 1 13 6 84
650 11 9 0 9 6 70 8 10 0 8 5 62 11 10 1 16 6 88
600 13 9 o 11 6 78 9 10 2 9 - - 11 10 4 12 6 8.6
550 14 10 0 12 6 &84 o 1 1 9 - - 13 8 7 13 4 90
500 15 8 0 13 6 84 10 10 2 10 - - 12 9 6 14 6 94
450 16 8 1 15 5 9.0 0 8 2 - - - 13 8 4 16 5 92
400 17 8 2 15 5 94 m 9 2 - - - 11 6 4 15 5 82
350 16 8 2 19 5 100 9 6 2 - - - 136 4 19 6 96
300 15 8 2 18 5 96 1nm 6 2 - - - 13 5 2 17 5 84
250 14 8 2 17 5 92 - 6 - - - - - - - - - -
200 14 6 2 15 6 86 - 6 - - - - - - -
150 11 6 3 12 5 74 - - - - - - - - - - - -
100 12 6 7 9 4 76 - - - - - - - - - - - -
50 16 10 11 9 9 11.0 - - - - - - - - - - - -

The rows indicate the number of obs. in fixed size moving training window. In several cases
GARCH model couldn’t reach convergence, hence the results are not reported. The same applies
to CAViaR model, where limit of minimum 300 observations has been suggested by [Engle and
Manganelli (2004)) to avoid lack of convergence. Mean for these cases is not reported as well.
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4 Results
4.1 Fixed training sample’s size

The results indicate that for each of the tested indexes and models there is a downright tendency
of mean exceedances with increasing length of the training sample. For the smallest numbers of
obs. in the training sample, we can observe a very differing, often high number of exceedances
over the studied years. The stabilization of the number of exceedances, regardless of the underlying
time series and the model, starts with circa 900 — 1000 obs. It is a subjectively chosen point, but
having studied all the cases separately, we draw a conclusion that since this point, if we increase
the number of observations in the sample, we do not see any significant increase in the number of
exceedances. There is also a small, but worth noting upright trend of exceedances for the smallest

learning sample sizes (excluding the cases where the algorithm didn’t converge).

In the study, we have also researched very long spans of the training samples (up to 2000 obs.)
to prove that the information that is added to the model with such large lengths is not reflected in
an improvement in results. For each of the studied indexes we see very low improvement in the
number of exceedances, apart from the historical simulation’s results, which tend to score minimums
for lengths of 1500 — 2000, and we believe that such a tendency would apply for even larger training

samples.

Historical simulation’s results tend to be in accordance with literature. The lowest score for
each of the indexes belongs to historical simulation on a very long span of learning sample (2000
obs.), however such a score is below the assumed number of exceedances. For the shorter training
samples we observe much worse results than for the remaining models. In addition to that we do
not observe a ‘convergence’ in the number of exceedances, which is clearly seen in the results of
GARCH and CAViaR models. This leads to a conclusion that the assumed significance level of
VaR model is not important at all, because it can be easily affected by the number of obs. in the
training sample. Nevertheless, the assumed significance level is met for most of the series at 600 —
800 observations, but for some it is never met, and for some it is met even for very small training

samples.

The GARCH and CAViaR results are very similar, with CAViaR’s tendency to be slightly worse
in the number of the exceedances for the years that were more volatile. The results show that they
correctly estimate the risk to be more or less the assumed level for at least 500 - 700 obs. in the
training sample for GARCH model and 700 — 900 obs. in the training sample for CAViaR model.
The higher the number of obs. in training sample for these models, the lower the estimated number
of exceedances, of course, but the profit that we obtain from increasing the sample becomes lower.

The only flaw of both these models are problems with convergence for very small samples, which
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is very natural, but gives an advantage to the historical simulation if one needed to train on a little
training sample. In addition, both these models are better in terms of mean exceedances compared

at the same level of training sample size for all the tested sizes up to more or less 1000.

The downright tendency in the number of exceedances that we observe can be also subjectively
divided into two distinctive ranges of training sample lengths: the liberal one (from 500 — 600
obs. to the threshold of convergence — 900 — 1000 obs.); and the conservative one (the remaining
studied training sample sizes above the threshold of convergence). The division is based on the
differing results of number of exceedances in each range for particular years. For the liberal sample
size lengths we can observe large differences for years 2015 and 2018, which are characterized by
several excessive volatility shocks. As we increase the number of obs. in the training sample the
differences tend to diminish and the distribution of exceedances for particular year starts being more

uniform, which in our opinion is a characteristic of conservative models.
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Table 2: Number of exceedances for particular training sample sizes in tested years (S&P 500)

historical sim. GARCH (skewed student t) CAViaR

m e = x 2 g m e S x o F m e s x g

S S8 88 2 SE8585:s5s =g5:zgg <
2000 3 1 0 15 4 46 7 3 4 8 7 58 4 2 3 7 6 44
1750 3 3 0 19 5 6.0 7 4 4 9 7 62 4 3 3 9 6 50
1500 5 5 0 20 5 70 7 4 4 9 7 62 6 3 3 9 6 54
1250 6 5 1 18 4 638 7 4 4 8 7 60 6 4 3 9 6 56
1200 6 5 1 19 4 70 7 4 4 8 7 60 7 4 3 9 6 58
1150 6 6 1 19 4 72 7 4 4 8 7 60 7 4 3 9 7 60
1100 6 6 1 17 4 68 8 4 4 8 7 62 7 4 3 9 7 60
1050 7 8 1 17 4 74 8 4 4 8 7 62 7 4 3 10 7 62
1000 8 8 1 17 4 76 9 4 4 8 7 64 7 4 3 9 8 62
950 8 8 1 16 4 74 10 4 4 8 7 6.6 9 4 3 9 8 66
9200 9 8 1 15 4 74 10 4 4 8 7 6.6 9 4 3 9 8 6.6
80 10 7 1 15 4 74 10 4 4 8 7 6.6 9 4 3 10 8 6.8
800 10 8 1 17 4 8.0 10 4 4 9 7 68 8 4 3 10 7 64
750 10 8 1 17 4 8.0 10 4 4 9 6 6.6 9 4 4 9 8 68
700 10 7 1 20 4 84 10 4 4 9 6 6.6 9 4 3 11 7 68
650 10 7 1 19 4 82 10 4 4 9 6 6.6 9 4 3 10 6 64
600 10 6 1 20 4 82 10 4 4 9 6 6.6 9 4 3 11 7 68
550 10 5 0 21 4 80 10 4 4 9 6 6.6 9 4 4 12 6 70
500 10 5 0 24 4 86 10 4 4 10 6 6.8 9 4 4 13 6 72
450 10 5 0 22 4 82 10 - 4 10 6 - 9 4 5 12 6 72
400 10 5 3 19 4 82 - - 4 9 6 - 9 5 5 11 7 74
3% 9 5 3 18 4 78 9 - 4 9 6 - 9 5 5 12 6 74
300 10 5 3 18 4 80 9 - 4 11 6 - 8 5 5 12 6 72
250 9 5 6 17 4 82 - - 6 11 6 - - - - - - -
200 8 4 5 15 4 72 - - 7 10 7 - - - - -
150 8 5 7 16 3 1738 - - 8 - 7 - - - - - - -
100 8 4 8 13 4 74 - - 8 - - - - - - - - -
50 13 8 12 11 6 100 S - e

The rows indicate the number of obs. in fixed size moving training window. In several cases GARCH model
couldn’t reach convergence, hence the results are not reported. The same applies to CAViaR model, where
limit of minimum 300 observations has been suggested by [Engle and Manganelli| (2004])) to avoid lack of
convergence. Mean for these cases is not reported as well.
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Table 3: Number of exceedances for particular training sample sizes in tested years (FTSE
100)

historical sim. GARCH (skewed student t) CAViaR

22 T o2 2§ 2 e 5 x 2 F me s 2 2§

= o o o 2 o o o o o 2 o o o o o ]

A &8 &8 a & ¢ A & & & a 2 A &8 & & & 2
2000 4 3 1 3 4 30 8 4 4 7 7 6.0 8 4 2 6 5 50
1750 4 5 1 4 5 38 8 4 4 7 7 6.0 9 4 2 6 6 54
1500 9 6 1 4 4 48 9 4 4 6 7 6.0 9 4 2 6 5 52
1250 10 6 1 4 4 50 9 4 4 6 6 58 10 4 2 5 6 54
1200 10 6 1 4 4 50 9 4 4 6 6 58 10 4 2 5 5 52
1150 10 7 1 4 4 52 9 4 4 6 7 6.0 10 4 2 6 6 56
1100 10 7 1 4 4 52 9 4 4 6 7 6.0 10 4 2 6 6 56
1050 10 8 1 3 5 54 9 4 4 6 7 6.0 10 4 2 6 6 56
1000 11 8 1 3 5 56 9 4 4 6 7 6.0 10 4 3 6 7 6.0
950 13 7 1 4 5 6.0 9 4 4 6 7 6.0 10 4 2 7 7 6.0
9200 13 9 1 4 5 64 9 4 4 6 7 6.0 10 4 3 6 6 58
850 13 9 1 4 6 6.6 11 5 4 6 7 6.6 10 4 3 8 7 64
800 14 7 1 4 6 64 11 4 4 6 7 64 10 4 4 9 7 68
750 16 7 1 4 6 68 11 4 4 7 7 6.6 0 5 4 9 7 70
700 15 6 1 5 6 6.6 11 4 4 6 7 64 10 3 3 10 7 6.6
650 13 7 1 6 6 6.6 11 4 4 9 7 170 10 2 4 12 8 72
600 14 © 1 8 6 7.0 11 4 4 9 7 170 10 3 4 15 8 8.0
550 15 6 1 10 6 7.6 11 4 4 11 7 74 9 3 6 15 9 84
500 14 6 1 13 6 8.0 11 5 4 10 7 74 10 3 6 17 9 9.0
450 13 5 1 14 6 178 -5 4 11 7 - 11 3 6 15 8 8.6
400 12 4 1 15 6 176 11 5 4 11 7 176 10 3 4 - 9 -
350 11 4 2 14 6 74 11 4 4 12 7 176 12 3 4 - 8 -
300 11 4 2 14 6 74 12 - 4 11 7 - 9 4 5 - 8 -
250 8 3 2 14 6 6.6 2 - 5 11 7 - - - - - - -
200 7 4 5 13 6 7.0 0 - 3 13 7 - - - - - - -
150 8 3 8 12 6 74 - - - -7 - - - - - - -
100 9 6 9 14 6 88 - - - - - - - - - - - -
50 13 12 12 15 7 118 - - - - - - - - - - - -

The rows indicate the number of obs. in fixed size moving training window. In several cases
GARCH model couldn’t reach convergence, hence the results are not reported. The same applies
to CAViaR model, where limit of minimum 300 observations has been suggested by [Engle and
Manganellil (2004) to avoid lack of convergence. Mean for these cases is not reported as well.

4.2 Automatic training sample s length selection

The results of the automatically chosen lengths of the training sample’s for each studied index
are presented in tablesfd} [5] In addition to that, we report calculated sizes of windows for beforehand
application of change point detection algorithms in[6] The results indicate that the automatically
chosen span is in accordance with the previous conclusions about liberal and conservative samples.
Our method to determine the best point is more or less stable and fluctuates around 500 — 600 obs.
for the liberal method and around 900 — 1000 obs. for the more conservative one. It also needs to

be noted that there is not much difference in the training sample’s size determined by both of these
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models. We cannot determine, which one of them is better, given that it was not the aim of this
research.

The results for the automatically chosen lengths of the training sample’s indicate that the length
can be predetermined using an objective method and produce estimates of good quality and in ac-
cordance with previous conclusions. Mean number of exceedances for both methods fall very close
to the assumed number of exceedances for CAViaR and GARCH models, whereas for the historical
simulation the number of exceedances is slightly higher (7 to 8 on average). Such difference should
be attributed to the previously drawn conclusion that historical simulation needs longer training

sample to produce estimates of the same quality that other compared models.

Much better results are provided if the length of the training window is not predetermined,
but recalculated with every other model fitting. Mean number of exceedances is lower for almost
each of the methods in each setting (liberal, conservative). Even though the training sample did
not exceed 1000 obs. mean number of exceedances lowered by 1 — 2 exceedances. For GARCH
model mean number of exceedances is around 4 — 5 exceedances, with maximum of 9 exceedances.
CAViaR model obtained slightly worse results, with around 5 — 6 exceedances, but mostly in point
with assumed excess level. Maximum number of exceedances for CAViaR was 11. Historical

simulation’s results are still worse than for these two models, with 6 — 7 mean exceedances.



Buczynski, M. and Chlebus, M. /WORKING PAPERS 9/2020 (315) 14

Table 4: Number of VaR exceedances using automatic change point detection sample size for before-
hand sizes for WIG 20, S&P 500 and FTSE 100

historical sim. GARCH (skewed student t) CAViaR

m gD x®x 2 §F 22 ® 2 F 2L x o g

SEERES REEREEERE: BEEREEREZ =
WIG20
Pelt
liberal 14 9 0 13 6 84 10 10 1 9 5 70 1w 1 2 12 6 84
conservative 11 9 0 8 5 6.6 8 10 2 8 4 64 8 9 2 8 5 064
BinSeg
liberal 139 0 10 6 7.6 9 11 0 8 5 6.6 I 10 1 11 3 72

conservative 12 9 0 8 5 6.8 8 8 0 8 4 56 9 10 2 8 6 170
S&P 500

Pelt
liberal 10 7 1 24 4 92 10 0 4 10 7 6.2 9 4 3 12 6 68
conservative 8 8 1 18 4 7.8 10 4 4 8 7 6.6 8 4 3 9 8 64
BinSeg
liberal 10 7 0 24 4 9.0 10 0 4 10 7 6.2 9 4 3 12 6 68
conservative 8 8 1 18 4 7.8 10 4 4 8 7 6.6 8 4 3 9 7 62
FTSE 100
Pelt
liberal 15 6 1 11 6 178 11 4 4 10 7 72 10 3 3 14 9 78
conservative 13 7 1 4 5 6.0 9 4 4 6 7 6.0 10 5 3 9 7 6.8
BinSeg
liberal 15 6 1 14 6 84 11 4 4 10 7 7.2 10 3 3 14 9 178

conservative 13 7 1 4 5 6.0 9 4 4 6

|

6.0 10 5 3 8 6 64

BinSeg applies to binary segmentation algorithm, while liberal and conservative approaches are further ex-
plained in the text.
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Table 5: Number of VaR exceedances using automatic change point detection sample size for be-
forehand and recalculated sizes for WIG 20, S&P 500 and FTSE 100

historical sim. GARCH (skewed student t) CAViaR

m e S X §F 29D x o F Lo s 2 7

S &ERERE&:2 ERREER 2 &REEER:=
WIG20
Pelt
liberal 12 9 0 8 6 170 8 8 8 5 62 11 7 8 7 170
conservative 6 8 0 8 5 54 8 8 1 8 5 60 9 8 1 9 4 62
BinSeg
liberal 9 9 0 8 5 62 8 8 2 8 4 6.0 10 6 2 9 5 64
conservative 6 8 0 8 5 54 8 7 1 8 5 58 9 7 1 8 5 60
S&P 500
Pelt
liberal 9 8 1 15 4 74 10 4 4 9 7 628 9 4 3 10 7 6.6
conservative 6 5 1 19 4 7.0 7 4 4 8 7 6.0 8 4 3 9 6 6.0
BinSeg
liberal 10 8 1 15 4 7.6 10 4 4 9 7 6.8 9 4 3 10 8 6.8
conservative 6 5 1 19 4 7.0 7 4 4 8 7 6.0 7 4 3 9 6 58
FTSE 100
Pelt
liberal 15 9 1 4 5 68 11 4 4 6 7 64 10 5 3 9 7 68
conservative 10 6 1 4 4 5.0 9 4 4 6 6 58 10 4 2 6 6 5.6
BinSeg
liberal 14 8 1 4 6 6.6 10 4 4 6 7 62 10 5 3 9 7 68

conservative 10 6 1 4 4 50 9 4 4 6 7 60 10 4 2 6 7 58

BinSeg applies to binary segmentation algorithm, while liberal and conservative approaches are further
explained in the text.

5 Conclusions

In this study we have researched the impact of the training sample’s size on the results of several
Value-at-Risk models: historical simulation, GARCH model with skewed Student’s t distribution
and CAViaR model at 2.5% confidence level. Each of these approaches was tested 250 times on
the span of five distinctive years: 2015 — 2019. The training sample sizes that we have tested are
in a range from 50 to 1250, increasing by 50 (50, 100, ..., 1250) and three additional sample sizes:
1500, 1750, 2000. In addition to that we have created a setup for an automatic detection of necessary
sample size to provide sufficient results by utilization of change point detection algorithms: Pelt and
binary segmentation in liberal and conservative setting. These methods were applied to determine
the number of observations in training sample either before the whole fitting process or with each

one-day-ahead forecast.
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Table 6: Calculated number of observations using change point detection algorithms for
WIG 20, S&P 500 and FTSE 100

WIG 20 S&P 500 FTSE 100
Pelt BinSeg Pelt BinSeg Pelt BinSeg

] ] o o ]
2 2 B = = 2
= IS = kS = S = S = IS = IS
5 Z 5 Z 5 Z 5) Z 5] Z 8 Z
=2 2 2 2 2 2 5 2 2 2 2 2
— = — = — = — = — = — =
Q Q Q Qo Qo Q
] @] o O o [
2015 550 850 585 855 605 975 605 975 535 965 535 965

2016 680 800 695 625 945 625 955 590 955 590 955
2017 685 930 675 675 575 975 520 950 580 915 580 915
2018 530 945 635 945 525 995 525 995 520 825 510 835
2019 725 980 615 980 625 950 625 985 535 895 540 915

Mean 634 901 641 858 591 968 580 972 552 911 551 917

o]
W
(9]

BinSeg applies to binary segmentation algorithm, while liberal and conservative approaches
are further explained in the text.

Based on the results that we have obtained, our recommendation would be to use the GARCH or
CAViaR models with the proposed automatic training sample’s length selection that is recalculated
with every model’s refitting. Using this approach, one can get much better results than while using
a predefined window’s length, whilst still being in the range of 500 — 1000 obs. We would like to
emphasize that the mean number of exceedances for this method is below the assumed level, hence
for shorted training samples it would reach the assumed level. We recommend to reject model’s
based on the historical simulation approach, as their results are much worse compared to other
models trained on the same number of observations. In addition to that, it is easy to play with the
assumed excess level, just by increasing the number of observations, which in our opinion is not in

accordance with Basel rules.

In case when the automatically chosen lengths cannot be used or determined, we recommend
to use at least 900 — 1000 observations, as we have proven that since that number the number of
exceedances converges to the assumed excess level. In addition we recommend to use the training
sample’s size from the subjective division that we have created — in case the risk management tilts
towards liberal solutions, the number of exceedances should be lower than the threshold we have
set, and if the more conservative models are preferred the threshold should be risen to the levels
above the threshold.

In the end, we would like to highlight that the model’s accuracy is all about the information it
gets while in training. It is obvious that the more shocks the model ‘observes’, while in training, the

more biased towards conservatism it will be, and the other way around. Therefore, each decision
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about the length of the training sample, should be based on the thorough study of the underlying
time series, if applicable.
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