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1 Introduction

Hyperbolic geometry has been discovered by 19th century mathematicians
wondering about the nature of parallel lines. One of the properties of this
geometry is that the amount of area in distance d from a given point is expo-
nential in d; intuitively, the metric structure of the hyperbolic plane is similar
to that of an infinite binary tree, except that each vertex is additionally con-
nected to two adjacent vertices on the same level. Anyone who has tried to
draw a full binary tree of height 10 knows that there is not enough space in
the Euclidean space; exponential expansion typical to hyperbolic geometry
has found applications in visualization of hierarchical data [Lamping et al.,
1995,Munzner, 1998].

Figure 1: (a) order-3 heptagonal tiling, (b) the grid G7, (c) truncated
triangular tiling, (d) the grid G67.

Figure 1 shows two tilings of the hyperbolic plane, the order-3 heptagonal
tiling and the truncated triangular tiling, in the Poincaré disk model, together
with their dual graphs, which we call G7 and G67. In the Poincaré model,
the hyperbolic plane is represented as a disk. In the hyperbolic metric, all
the triangles, heptagons and hexagons on each of these pictures are actually
of the same size, and the points on the boundary of the disk are infinitely
far from the center.

Recently, hyperbolic geometry has found application in the analysis of
scale-free networks, which are ubiquitous in many fields, from network anal-
ysis to biology. [Papadopoulos et al., 2012]. In the hyperbolic random graph
(HRG) model, each vertex is randomly assigned a point in the hyperbolic
plane (according to some distribution), and then, we connect each pair of
vertices with probability depending on the distance between the two points.
HRGs turn out to have properties similar to that of scale-free networks. Effi-
cient algorithms have been found for generating HRGs in time O(n) [Bring-
mann et al., 2015] and for MLE embedding real world scale-free networks
into the hyperbolic plane in time Õ(n) [Bläsius et al., 2016], which was a
major improvement over previous algorithms [Papadopoulos et al., 2015,von
Looz et al., 2015].
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In this paper, we present efficient algorithms for calculating distances in
hyperbolic triangular grids, such as G67 and G7 from Figure 1. Our algorithm
can be applied to work efficiently with discrete analogs of HRGs, which we
call DHRGs, allowing us to compute the log-likelihood of an embedding in
time and memory O(nD2), where D is the radius of the grid and can be seen
as logarithmic; this is a very important step for MLE embedders. Further-
more, it is possible to dynamically remap a vertex v to another location and
compute the log-likelihood of the new embeddding in time O(D2+D deg(v)),
which yields an efficient local search algorithm to improve the embedding –
which might be useful on its own [Bringmann et al., 2016]. We can also gen-
erate DHRGs in time O(nD2 +mD). This matches the time and complexity
of the best continuous algorithms listed in the previous section up to DO(1)

factors.
We believe that such grid-based approach is interesting for the following

reasons:
Continuity is not essential in the HRG model. For example, the

Facebook graph from [Bläsius et al., 2016] has 4000 vertices, with typical
distances between pairs of vertices connected by an edge are around 10 abso-
lute units, which corresponds to roughly 18 steps in grid G67. Thus, moving
each point towards the nearest grid point does not significantly affect the
distances between points.

Approachability. By avoiding continuous computations, our model is
potentially more approachable to theoretical computer scientists who are
more focused on discrete problems.

Simplicity. It is worth to note that the major breakthrough in [Bring-
mann et al., 2015] and [Bläsius et al., 2016] was achieved by using geometric
structures based on partitioning hyperbolic disks into cells. This is in some
sense similar to our grids. However, we believe that our approach is more
elegant and simpler.

Hyperbolic grids have other applications. Regular grids in the hy-
perbolic plane have many applications, such as self-organizing maps [Ontrup
and Ritter, 2001] or game design [Kopczyński et al., 2017]; in particular,
we recommend playing our game HyperRogue as an intuitive introduction
to hyperbolic grids and hyperbolic geometry in general. Hyperbolic grids
arise naturally when working with bounded degree planar graphs; for ex-
ample, many constructions in [Dawar and Kopczynski, 2016] are based on
hyperbolic grids.

Precision errors. Radial coordinates as used in [Papadopoulos et al.,
2012, Gugelmann et al., 2012, Bläsius et al., 2016] are prone to precision
errors. This is unavoidable in any typical coordinate system because of the
exponential nature of hyperbolic geometry. Indeed, the circumference of a
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hyperbolic circle of radius r in 2π sinh(r) = Θ(er). Therefore, if we are
using b bits for the angular coordinate, two points on the circle of radius
b/ log(2)+Θ(1) will be smashed into a single point, even if their exact distance
is greater than 1. On the other hand, vertices in grids can be represented with
paths from some specific “origin” vertex, thus avoiding these problems. Even
if we are working with the continuous hyperbolic plane, a “hybrid” approach
where each point is represented by a vertex of our grid together with the
coordinates relative to that vertex. Such approach is used in HyperRogue
[Rogue, 2012].

Visualizations. We can visualize a graph by mapping each of its vertices
to a distinct vertex of our grid. Since the vertices in our grids are spaced regu-
larly, this allows for aesthetically pleasant representations of graphs [Celińska
and Kopczyński, 2017].

Hyperbolic grids are interesting on their own. It is well known
that many algorithmic problems can be easily solved on trees; it is also
well known that many graph problems admit very efficient algorithms on
graphs that are similar to a tree, where similarity is most commonly measured
using the notion of tree width [Robertson and Seymour, 1984]. For example,
every fixed graph property definable in the monadic second order logic with
quantification over sets of vertices and edges (MSO2) can be checked in linear
time on graphs of fixed tree width [Courcelle, 1990]. Hyperbolic metrics are
very tree-like – however, tree width might be not the best measure of this, as
the tree width of a neighborhood of radius r in our grids is linear in r rather
than constant; while this is small (logarithmic in the size of the graph), it is
not a constant. Other metrics, such as the Gromov hyperbolicity [Bermudo
et al., 2013], which is constant, or the tree length [Chepoi et al., 2008], which
is provably O(δ log n) on graphs with n vertices and Gromov hyperbolicity δ
[Chepoi et al., 2008], might be more appropriate.

In the next section we present the general definition of the hyperbolic
triangular grid we will be working with, and some basic facts about such
grids. In section 3 we focus on grids whose structure is regular. In Section 4
we introduce our algorithms calculating distances in the grid. In Section 5 we
study how the distances in our grids are related to distances in the underlying
hyperbolic plane. In Section 6 we recall the definition of the HRG model,
and define our own DHRG model, based on the intuitions from Section 5. We
analyze the DHRG model in Section 7, then show how to apply our algorithms
to work with DHRGs efficiently in Section 8. We have implemented some
of the algorithms presented in Sections 4 and 6; the experimental results
regarding the DHRG model are presented in Section 9. We discuss possible
directions for further work in Section 10.
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2 Hyperbolic triangular grids

In this paper by δ(v, w) we denote the distance between v and w; in case if v
and w are vertices of the graph it is the length of the shortest path between
v and w, and if they are points in the hyperbolic plane, it is their hyperbolic
distance.

Definition 2.1. A triangular grid is G = (V,E, v0) where:

• (V,E) is an infinite planar graph such that every face is a triangle,

• for every k > 0, the k-th ring Rk(G) = {v ∈ V |δ(v, v0) = k} is a cycle,

• limk→∞ |Rk(G)| =∞.

• for every v ∈ V except v0, there exists at least one w ∈ R1(G) such
that δ(v, w) > δ(v, v0).

We assume that all the rings Rk(G) are oriented clockwise around v0.
Thus, the i-th successor of v, denoted v+ i, is the vertex obtained by starting
from v and going i vertices on the cycle. The i-th predecessor of v, denoted
v − i, is obtained by going i vertices backwards on the cycle. A segment is
the set S = {v, v + 1, . . . , v + k} ( Rk(G) for some v ∈ V and k ≥ 0; v is
called the leftmost element of S, and v+ k is called the rightmost element of
S. By [v, w] we denote the segment such that v is its leftmost element, and
w is its rightmost element. For v, w ∈ Rk(G), let w− v be the smallest i ≥ 0
such that w = v + i. We also denote δ0(v) = δ(v, v0). By Bk(G) we denote
the k-th ball (neighborhood), i.e.,

⋃
i=0,...,k Rk(G) = {v ∈ V |δ(v, v0) ≤ k}.

We use tree-like terminology for connecting the rings. A vertex w is a
parent of v if {v, w} ∈ E and δ0(v) = δ0(w) + 1; in this case, v is a child
of w. Let P (v) be the set of parents of v ∈ Rk(G); it forms a segment of
Rk−1(G), and its leftmost and rightmost elements are called the left parent
pL(v) and the right parent pR(v) respectively. The set of children C(v),
leftmost child cL(v) and rightmost child cR(v) are defined analogously.

Figure 2 presents the grid G67 with named vertices. Both pictures use the
Poincaré disk model, but the left picture is centered roughly at v0 (labeled
with A in the picture), and the right picture is centered at a different location
in the hyperbolic plane. Points drawn close to the boundary of the Poincaré
disk are further away from each other than they appear – for example, vertices
T and U appear very close in the left picture, yet in fact all the edges are
roughly of the same length (in fact, there are two lengths – the distance
between two vertices of degree 6 is slightly different than the distance between
a vertex of degree 6 and a vertex of degree 7).
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Figure 2: Grid G67 with labeled vertices, in two perspectives.

Vertices X, Y , and Z are the children of T ; its siblings are S and U ,
and its parents are O and P . The values of P k([Y ]) for consecutive values
of k, i.e., the ancestor segments of Y , are: [Y ], [T ], [O,P ], [L,M ], [I,K],
[F,H], [D,E], [B,C], [A]. Vertex W has just a single ancestor on each
level: R, N , K, H, E, C, A. Vertex V has the following ancestor segments:
[Q,R], [M,N ], [J,K], [G,H], [D,E], [B,C], [A]. Note the tree-like nature
of our grid: [D,E] is the segment of ancestors for both V and Y , and [O,P ]
and [Q,R] are already adjacent. This tree-like nature will be useful in the
algorithms in the next section.

Definition 2.2. A triangular grid G is hyperbolic if:

• every vertex has at most two parents and at least two children,

• there exists a number t(G) (denoted with t for brevity) such that if
S ⊆ Rk(v) is a segment and |S| ≥ t, C(S) ≥ t+ 2.

Both grids G67 and G7 are hyperbolic. Probably the simplest, though
geometrically less regular, example of a hyperbolic triangular grid is obtained
by taking a full infinite binary tree, and additionally connecting each vertex
to its cyclic left and right sibling, and additionally the right child of its left
sibling.

Proposition 2.3. Let G be a hyperbolic triangular grid, and v, w ∈ Rk(G).
If w − v ≥ at− 1, then cR(w)− cL(v) ≥ at+ a.
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Proof. Let Si = {v+ it, v+ it+ 1, . . . , v+ it+ (t− 1)} for i ∈ {0, . . . , a− 1}.
From the definition of the hyperbolic triangular grid, |C(Si)| ≥ t + 2. The
segments C(Si) need not be disjoint, but the only case when they are not
disjoint is that the rightmost element of C(Si) equals the leftmost element
of C(Si+1). Hence, |

⋃
C(Si)| ≥ at+ a+ 1.

Proposition 2.4. Let G be a hyperbolic triangular grid, and v, w ∈ Rk(G).
There exists a number tk(G) such that if w−v ≥ tk(G), then pR(w)−pL(v) ≤
w − v − k.

Proof. Should be similar. Not written yet.

Proposition 2.5. For a hyperbolic triangular grid G, |Rk(G)| is at least
exponential in k.

Proof. From the definition (limk |Rk(G)| = ∞) and Proposition 2.3, we can
easily show that |Rk(G) = Ω((1 + 1

t
)k).

3 Uniform hyperbolic grids

Triangular grids as defined in the previous section did not necessarily have
any regular structure. In this section we define uniform triangular grids;
their structure allows us both to efficiently handle them algorithmically, and
to obtain combinatorial results.

By T ∗ we denote the set of all words over an alphabet T . A function
c : T → T ∗ can be naturally extended to a homomorphism, which we also
denote with c : T ∗ → T ∗. Let #(w) : T → N be the vector counting
the number of occurences of each letter in w ∈ T ∗. It is easy to see that
#(cw) = C#(w) for some matrix C. Since we already

Definition 3.1. We say that a triangular grid G is uniform iff there exists a
finite set of types T , a function c : T → T ∗, and an assignment t : V (G)→ T
of types to vertices, such that for each v ∈ V (G), the sequence of types of all
children of v from left to right except the rightmost child is given by c(t(v)).
Furthermore, there is a density function g : T → R such that, for each
t, u ∈ T , limn→∞#uc

n(t) = g(u).

For example, in the grid G7, we take T = {0, 1, 2}, where t(v) is the
number of parents of v. The root has no parents, and has seven children
of type 1. A vertex of type 1 has the leftmost child of type 2, followed by
two children of type 1. A vertex of type 2 has the leftmost child of type 2,
followed by a child of type 1.
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The situation is more complicated in the grid G67. We have 7 types,
with t(v) depending on: the degree of v, the number of parents of v, and
the degree of the left sibling of v. Given that each vertex of degree 7 has
7 neighbors of degree 6, and the neighbors of vertices of degree 6 alternate
between degree 6 and 7, we can compute the sequence of types of children
for each of the 7 types.

Proposition 3.2. In a uniform hyperbolic triangular grid G, for each v ∈ G,
|Ck(v)| = Θ(γk) for some γ, where γ depends only on G.

Proof. It is easy to see that |Ck(G)| = |ck(t(v))|+1, and #(cw) = C#(w) for
some matrix C. Since we already have an exponential lower bound from 2.5,
our result now can be obtained easily using well known properties of matrix
exponentiation. The existence of the density function g ensures that γ does
not depend on t(v).

We have γ ≈ 2.6180339 for G7 and γ ≈ 1.72208 for G67 [Kopczyński
et al., 2017].

It is not feasible to represent all vertices in, say, B100(G67) in computer
memory – there are more than 1023 of them! However, we can generate the
vertices in our uniform triangular grid lazily. that is, represent our vertices
with pointers, start from the root, and generate other vertices when asked
for them. In particular, each vertex v is represented with a pointer to a
structure which contains δ0(v), the type of v, the pointers to pL(v), pR(v),
v − 1, v + 1, cL(v), and the index of v among the children of pR(v); the last
three pointers are NULL if the given neighbor has not yet been computed.
Such a structure allows us to compute all the neighbors of the given vertex
in amortized time O(1) for a fixed grid. This is similar to the approach used
in [Margenstern, 2013] and [Rogue, 2012] for G7 (though in [Rogue, 2012]
a different algorithm is used for G67, based on subdividing G7 rather than
working with the rings in G67 directly).

4 Computing distances in hyperbolic grids

In this section we show how to compute distances in the hyperbolic grid,
based on the data structure outlined in the previous section.

Proposition 4.1. Let v, w ∈ V (G) for a hyperbolic triangular grid G, and
δ(v, w) = d. Then at least one of the following is true:

• v ∈ P d(w),
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• w ∈ P d(v),

• paR(v) + b = pcL(w), where a+ b+ c = d,

• paR(w) + b = pcL(v), where a+ b+ c = d.

Furthermore, b ≤ t3, where t3 is from Proposition 2.4.

In other words, the shortest path between any pair of two vertices (v, w)
can always be obtained by going some number of steps toward v0, moving
along the ring, and going back away from v0. The cases where one of the
vertices is an ancestor of the other one had to be listed separatedly because
it is possible that |P a(v)| > 2 for a > 1, thus w might be neither the leftmost
not the rightmost ancestor.

Such a situation happens in the grid G67 for the pair of vertices labeled
(J,O) in Figure 2, even though |P a(v)| ≤ 3 always holds. Let’s analyze
the grid G67 in more detail. Take vertices v and v + k, where k ≥ 0 and
δ0(v) = d. The distance δ(v, v + k) could be k, or it could be achieved by
an inner path, i.e., one that goes through Bd−1; denote the length of the
shortest inner path by δI(v, v + k). For k < 2 we have δ(v, v + k) = k <
δI(v, v + k), for k = 2 we have δ(v, v + k) = k ≤ δI(v, v + k), for k ≥ 4 we
have k ≥ δI(v, v+ k) = δ(v, v+ k). For k = 3 both k and δI(v, v+ k) can be
smaller – it is possible that pR(vd) = pL(vd+2) (e.g. V and V + 3 are both
children of R), but it is also possible that pR(vd)− pL(vd+2) = 2 (as happens
for U and W in Figure 2). The situation is similar, though a bit simpler,
in the grid G7. These observations allow us to create an efficient algorithm
computing distances between vertices of our grid, which can be generalized
to any uniform hyperbolic triangular grid.

Proof of Proposition 4.1. Not written yet.

Proposition 4.2. Fix a hyperbolic triangular grid G. Then δ(v, w) can be
computed for v, w ∈ G in time O(δ(v, w)).

Proof. Our algorithm uses five integer variables a, c, dv, dw, d and four vertex
variables vL, vR, wL, wR, satisfying the following invariant:

• δ0(vL) = δ0(vR) = dv, δ0(wL) = δ0(wR) = dw

• vL = paL(v), vR = paR(v), wL = pcL(w), wR = pcR(w)

• d is the upper bound on δ(v, w), more precisely, the length of the short-
est path between v and w among those which are of the form from
Proposition 4.1, and such that a and c from δ(vL, v0) = δ(vR, v0) = dv
are smaller than our a and c.
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Start by setting dv := δ0(v), dw := δ0(w), a := 0, c := 0, vL := v, vR := v,
wL = w and wR = w, d :=∞. The invariant is satisfied.

While dv > dw, we push v down, i.e., set a := a + 1, vL := pL(vL)
and vR := pR(vR). While dw > dv, we push w down, i.e., set c := c + 1,
wL := pL(wL) and wR := pR(wR). The invariant is still satisfied.

Now, dv = dw, hence vL, vR, wL and wR are all in dv-th ring. If a+ c > d,
we are sure that d is the correct value of δ(v, w), and thus we terminate
the algorithm. Otherwise, we can check in O(1) whether wL − vR ≤ f(t),
vL − wR ≤ f(t), w is between vL and vR, or v is between wL and wR – if
yes, this gives us a new upper bound on δ(v, w). However, it is still possible
that a better path is to be found on one of the following levels, thus we push
down both v and w. The invariant is still satisfied, and we repeat.

The algorithm runs in time O(δ(v, w)), because the values of both a and
c in the optimal path are smaller than δ(v, w), and we do at most t3 extra
iterations after finding the optimal path.

Remark: with some preprocessing, we can optimize to O(log δ(v, w)) per
query – precompute paL(v) for each v ∈ V and a ∈ N, or for each a that is a
power of two.

A distance tally counter for a graph G = (V,E) represents a function
f : V → R with the following operations:

• Initialize: f is initialized with the constant 0 function

• Add(v, k): add k to f(v)

• Tally(v): return an array A such that A[d] =
∑

w∈V :δ(v,w)=d f(w)

Theorem 4.3. If G is a hyperbolic triangular grid, a distance tally counter
can be implemented working in memory O(

∑
w∈W :f(w) 6=0 δ0(w)2), initializa-

tion in time O(1), and Add(v) and Tally(v) in time O(δ0(v)2).

It is also possible to optimize either memory or Add time by a factor of
δ0(v). In our applications δ0(v) is small, and thus could be considered to be
logarithmic in the size of the graph.

Proof. A segment is good if it is of form P d([v, v]) for some v ∈ V and
d ∈ N. Note that the algorithm from the proof of Proposition 4.2 can be
seen as follows: we start with two segments [v, v] and [w,w], and then apply
the operation P to each of them until we obtain good vertex pairs which are
close. Our algorithm will optimize this by representing all the good vertex
pairs coming from vertices v added to our structure.
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A vertex or good segment is called active if it is represented in the memory
of our algorithm. For each active vertex v ∈ V we keep two lists of active
segments S such that v is respectively the leftmost and rightmost element of
S. Each active segment S also has a pointer to P (S), which is also active
(and thus, all the ancestors of S are active too), and a dynamic array of
integers a(S). Initially, there are no active vertices or good vertex pairs;
when we activate a segment S, its a(S) is initially filled with zeros.

The operation Add(v, k) activates v, and S = [v, v] together with all its
ancestors. Then, for each c = 0, . . . , δ0(v), it adds k to a(pd(S))[c].

The operation Tally(w) activates w and S = [w,w] together with all its
ancestors. Then, we look at pa(S) for a = 0, . . . , δ0(v), and for each pd(S),
we look at close good vertex pairs q′ on the same level. The intuition here
is as follows: Algorithm 4.2, on reaching (vL, vR) = S and (wL, wR) = S ′,
would find out that these two pairs are close enough and return a + b + c;
in our case, for each c such that a(S ′) 6= 0, we will instead add a(S ′)[c] to
A[a+b+c]. Since Algorithm 4.2 stops in that situation and our a goes all the
way down to δ0(v), we also have to make sure that we do not count vertices
which have been already counted.

Remark. It easily follows from Proposition 4.1 that the uniform hyper-
bolic triangular grids are hyperbolic graphs in the sense of Gromov [Bermudo
et al., 2013]. (Should follow – not formally checked yet.) Our algorithms
could be seen as an algorithmic application of Gromov hyperbolicity.

5 Grid distances versus hyperbolic distances

We assume that our grid is mapped to the hyperbolic plane H2 via a function
j : V (G)→ H2; in case ofG67 andG7 this mapping corresponds to the regular
tesselation that these grids are based on; furthermore, j(v) is obtained by
applying d = δ0(v) isometries to j(v0), with i-th isometry depending only on
the type of pd−i+1

R (v) and the index of pd−iR (v) among its children.

Intuition 5.1. For v, w ∈ V (G), let d = δ(v, w), and r = δ(j(v), j(w)).
Then d and r are approximately proportional.

Stating and proving this intuition formally appears to be challenging, as
we have to deal both with the discrete structure of the triangular grid, and
the continuous hyperbolic geometry. From the regularity of our tesselation
we get that d = Θ(r); we cannot give a better estimate (e.g., d = αr+ Θ(1))
because the density of rings depends on the direction. However, we can guess
that, on average, r ≈ d log γ. This is because, in the hyperbolic plane, the
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area and circumference f a circle of radius r given in absolute units is given
by cosh(r) − 1 and sinh(r) respectively, which are Θ(er); from Proposition
3.2 we know that this corresponds to Θ(γd) elements of the grid, yielding
r ≈ d log γ after taking the logarithm of both sides.

We can also expect this approximation to be better than the correspond-
ing Euclidean one. Consider the regular triangular grid G6 on the Euclidean
plane, in the standard embedding wher every edge has length 1. Let v = v0
and W be a random vertex in Rd(G6). From basic geometry we obtain that

r ∈ [
√
3+1
2
d, d]. The standard deviation of r will be linear in d, because the

ratio r/d depends on the angle between the line (v0,W ) and the grid lines.
However, because of the exponential expansion in the hyperbolic plane, this
angle constantly changes as the line (v0,W ) traverses the grid, leading to the
following conjecture:

Conjecture 5.2. Let G = G67 or G7, and W ∈ Rd(G) be randomly chosen.
Then δ(j(v0), j(W )) = c1d+ c0 +X, where EX = o(1), Var X = Θ(d), and
the limit distribution of X/

√
d is normal.

The results of experimental verification agree with the conjecture both
for G67 and G7, although it appears that c1 is slightly larger than log γ in
both cases.

6 Hyperbolic random graphs

We start by presenting the hyperbolic random graph (HRG) model [Krioukov
et al., 2010, Gugelmann et al., 2012, Bläsius et al., 2016]. Then, we will use
our intuitions from the previous section to define the discrete hyperbolic
random graph model (DHRG).

Fix a radial coordinate system in the hyperbolic plane H2, where every
point is represented by two coordinates (r, φ), where r is the distance from
some fixed center, and φ is the angle. The hyperbolic random graph model
has four parameters: n, R, T , and α. Each vertex v ∈ V (H) = {1, . . . , n}
is independently randomly assigned a point µ(v) = (rv, φv), where the dis-
tribution of φv is uniform in [0, 2π], and the density of the distribution of

rv ∈ [0, R] is given by f(r) = α sinh(αr)
cosh(αR)−1 . Then, for each pair of vertices

v1, v2 ∈ V (H), they are connected with probability p(δ(µ(v1), µ(v2))), where
p(d) = 1

1+e(d−R)/2T .
It is known that, for correctly chosen values of n, R, T and α, the parame-

ters of hyperbolic random graph, such as its degree distribution and clustering
coefficient, are similar to those of real world scale-free networks [Gugelmann

11



et al., 2012]. We can also embed real world scale-free networks into the hy-
perbolic plane using the maximum likelihood (MLE) method, that is, for a
graph H representing a real world scale-free network we can find a mapping
µ : V (H)→ H2 which predicts the edges as accurately as possible.

DHRG model. In our model, we map vertices v ∈ V (H) not to points in
the continuous hyperbolic plane, but to the vertices of our uniform hyperbolic
triangular grid G, i.e., µ : V (H)→ V (G). The density function f(r) from the
HRG model cannot be reproduced exactly, but we can use f(r) = αeαr/(eαr−
1), which is a very good approximation (it only slightly changes the low
probability of placing a vertex very close to the center). To approximate
this in our grid, we choose m(v) such that δ0(m(v)) = d with probability
proportional to edα. The exact vertex µ(v) is then chosen uniformly from
Rd(G). The formula for edge probability remains the same, except that we
are using the grid distance now.

DHRG mappings can be converted to HRG by composing µ with j, and
the other conversion can be done by finding the nearest grid point to µ(v)
for each v ∈ V (G). From Conjecture 5.2 we expect tha DHRG parameters
α, R, T , and n to be related to the HRG parameters by the factor of log γ.

7 Properties of DHRGs

This section is not yet completed.
Conjecture 5.2 suggests that, if we take matching values of parame-

ters, the DHRG and HRG should have similar properties; in particular, for
DHRGs, the power law degree distribution, average degree, and clustering
coefficient should behave similarly as for HRGs [Gugelmann et al., 2012]. In
this section we are going to prove this formally. We work with a DHRG with
fixed parameters, over a fixed uniform hyperbolic triangular grid G.

(Should be relatively easy for regular trees. Our grids are more difficult
for two reasons: first, vertices of different types have different number of
children, and second, we can take shortcuts as stated in 4.1. However, these
complications should not affect the results qualitatively. Experimental results
on G67 and G7 should be helpful too.)

8 Algorithms for DHRG

We show how the algorithms from Section 4 allows us to deal with the DHRG
model efficiently.

12



Computing the likelihood. Let H = (V (H), E(H)) be a network. The
quality of an embedding m : V (H) → V (G) is measured with its likelihood,
which describes how good the given embedding is at predicting whether two
vertices are connected by an edge. The likelihood L(m) is the probability
that, if we connect vertices with edges according to the model outlined above,
we exactly obtain E(H); since this number is usually very small, we usually
compute its logarithm, or log-likelihood. The log-likelihood can be computed
with logL(m) =

∑
v,w∈V (H) log p{v,w}∈E(δ(µ(v), µ(w))), where pφ(d) = p(d) if

φ is true and 1− p(d) if φ is false.
Computing the log-likelihood in the continuous model is difficult, because

we need to compute the sum over O(n2) pairs; a better algorithm was crucial
for efficient embedding of large real world scale-free networks [Bläsius et al.,
2016]. The algorithms from the previous section allows us to compute it quite
easily in the DHRG model. To compute the log-likelihood of our embedding
of a network H with n vertices and m edges, such that δ0(v) ≤ D for each
v ∈ V (H), we:

• for each d, compute Tally[d], which is the number of pairs (v, w)
such that δ(v, w) = d – the distance tally counter allows doing this in a
straightforward way (simply by doing Add(µ(v), 1) for each v ∈ V (H)),
in time O(nD2).

• for each d, compute Edgetally[d], which is the number of pairs (v, w)
connected by an edge such that δ(v, w) = d – this can be done in time
O(mD) simply using the distance algorithm for each edge.

After computing these two values for each d, computing the log-likelihood
is straightforward. One of the advantages over [Bläsius et al., 2016] is that
we can then easily compute the log-likelihood obtained from other values of
R and T , or from a function p(d) which is not necessarily logistic.

Improving the embedding. A continuous embedding can be improved
by a spring embedder [Kobourov and Wampler, 2004]. Imagine that there
are attractive forces between connected pairs of vertices, and repulsive forces
between unconnected pairs. The embedding m will change in time as the
forces push the vertices towards locations in such a way that the quality of
the embedding, measured by log-likelihood, is improved. However, computa-
tionally, spring embedders are very expensive – there are O(n2) forces, and
potentially, many steps of our simulation could be necessary.

A similar effect can be obtained quite easily in our grid-based model,
and our algorithms allow us to do it efficiently. We use a local search al-
gorithm. Suppose we have computed the log-likelihood, and on the way we
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have computed the vectors Tally and Edgetally, as well as the distance
tally counter where every µ(v) has been added. Now, let v′ ∈ V (H) be a
vertex of our embedding, and w ∈ V (G). Let µ′ be the new embedding given
by µ′(v′) = w and µ′(v) = µ(v) for v 6= v′. Our auxiliary data allows us then
to compute the log-likelihood of µ′ in time O(D2 +D deg(w)).

This allows us to try to improve the embedding in the following way: in
each step, for each v ∈ V (G), consider all neighbors of µ(v), compute the
log-likelihood for all of them, and if for some µ′ we have logL(µ′) > logL(µ),
replace µ with µ′. Assuming the bounded degree of G, this can be done in
time O(D2n+Dm).

Our experiments have shown that the locally optimal mapping is achieved
after a small number of steps.

Generating a random graph.
Generating large HRGs is not trivial – a naive algorithm works in Θ(n2);

algorithms working in O((n3/2 + m) log n) and O(n) [von Looz et al., 2015,
Bringmann et al., 2015] are known. Our algorithms allow to generate DHRGs
quite easily in O(nD2 +mD).

The first step is to generate the vertices. For each vertex v of the gen-
erated graph H, we choose d = δ0(v) (according to the given distribution),
and then we have to randomly choose v from the |Rd(v)| possibilities. This
can be done iteratively: we create a sequence of vertices v0, . . . , vd, where
v0 is the root, and vk+1 is a non-rightmost child of vk. The probability of
choosing the particular v as vk should be proportional to ad−k(v), where
ai(v) = |Cd−k(v)|−1 = |cd−k(t(v))| can be obtained by matrix multiplication
(O(D) preprocessing).

The second step is to generate the edges. This can be done by modifying
the algorithm computing the vector Tally[d] – when we add k to Tally[d],
we now also add each of the edges with the probability p(d). Thus, we need
to choose a subset of S = {1, . . . , k} where each element is independently
chosen with probability p. minS has a geometric distribution Geo(p), except
in the cases where S = are represented by Geo(p)¿k; assuming that Geo(p)
can be sampled in O(1), this allows us to generate minS in time O(1), and
the rest of S can then be generated in the same way. Then, trace the elements
of S back to their original vertices, which can be done in O(D) per edge by
following the tree of active segments back. The whole algorithm works in
time O(nD2 +mD), where n is the number of vertices and m is the number
of generated edges.
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9 Experimental results

We have implemented the log-likelihood and local search algorithms outlined
in the previous section, and conducted experiments on real world network
data. The implementation is based on the routines implemented for Hy-
perRogue [Rogue, 2012]. The source code, data, and experimental results
are available at http://www.mimuw.edu.pl/~erykk/dhrg-v2.zip;here, we
present a short summary of the results.

Facebook social circle network. First, we test our model on a rel-
atively small network. We have chosen the Facebook social circle network,
coming from the SNAP database [Leskovec and Krevl, 2014] and included
with the hyperbolic embedder implementing the algorithm by Bläsius et
al [Bläsius et al., 2016], which we will refer to as BFKL. This network has
N = 4039 nodes and M = 88234 edges. BFKL has mapped this graph to
the hyperbolic plane, using parameters R = 12.576, α = 0.755, T = 0.1. We
have computed the log-likelihood as L1 = −516534. This looks extremely
bad at first, as it is worse than the log-likelihood of the trivial model where
each edge exists with probability M/

(
N
2

)
, which is L0 = −487133; however,

this is because the influence of the parameter T on the quality of the em-
bedding is small [Papadopoulos et al., 2015], and thus BFKL uses a small
value of T = 0.1, which does not necessarily correspond to the network.
The best log-likelihood of L2 = −176132 is obtained for R2 = 11.09358 and
T2 = 0.54336.

Now, we convert this embedding into the DHRG model, by finding the
nearest vertex of G67 for each v ∈ V (H). The best log-likelihood L3 =
179125 is obtained for R3 = 20.393945 and T3 = 1.012944; As predicted
in the previous section, T2/T3 ≈ R2/R3 ≈ log γ. Our log-likelihood L3 is
slightly worse than L2, but this is not surprising – first, our edge predictor
has lost some precision in the input because of the discrete nature of our
grid, and second, the original prediction was based on r while our prediction
is based on d, and the ratio of r and d depends on the direction. We also
compute the log-likelihood obtained by a model where the edge probability
is p(d) = Edgetally[d]/Tally[d], which corresponds to using the best
possible function p(d) (not necessarily logistic); we obtain L4 = −177033,
which is only slightly better than L3. This shows that the logistic function
is close to the optimum.

Now, we try our local search algorithm. The points stopped moving in
the k-th iteration, for k = 24. This allows us to improve the log-likelihood
of L5 = −167808, again for the best values of R5 = 20.837295 and T5 =
0.966040, and the optimal log-likelihood to L6 = −165154.

Now, we convert our mapping back to the HRG model, obtaining the
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log-likelihood of L7 = −168298 for the optimal values of R7 = 11.25917 and
T7 = 0.52659. Note that L7 is significantly better than L2; hence, despite
converting from HRG to DHRG and back, our method was successful at
finding a better continuous embedding.

The running time of parts of our algorithm were: t1=0.24 s (converting),
t2=0.3 s (computing Edgetally), t3=0.03 ms (computing Tally), t4=35
s (local search). The BFKL embedder computes the log-likelihood in 0.3
seconds, which is comparable. However, their spring embedder working in
quadratic time is much slower than our local search.1

We have also computed the log-likelihood of our vertex placement, as-
suming that a vertex is an element of Rd(G) with probability q(d) = |rd(G)∩
m(V (H))|/N , and that each element of Rd(G) is equally probable. We obtain
L8 = −63787 for the placement after the local search. (Since our local search
did not place an upper limit on δ0, we have decided to not compare against
the probability function q(d) used by the DHRG model.) This is interest-
ing from the information theoretic perspective: using arithmetic encoding,
an event with probability p could be encoded with − log2 p bits, and thus
(L6 +L8)/L0 = 0.475 could be interpreted as the compression ratio achieved
by representing the graph in our model; thus, our algorithm could be applied
as a method of compression of scale-free networks. This has no direct analog
in the continuous HRG model, since we have to choose the precision reported
for the coordinates. Note that our implementation optimizes L5 rather than
L6 + L8, so a better compression should be achievable.

The respective values obtained by the grid G7 were: t1 = 0.23s, t2 = 0.2s,
t3 = 0.02s, k = 18, t4 = 15s, L3 = −181919, L4 = −180201, L5 = −169205,
L6 = −167048, L7 = −170473, L8 = −59147. G7 is coarser than G67,
hence it is not surprising that its results are slightly worse; also the smaller
size and greater simplicity of the grid improves the running time. Yet, the
general qualitative effects are similar. The compression ratio is slightly better
at 0.469, suggesting that the coarser grid G7 is slightly more efficient at
compression.

GitHub following graph. To benchmark our algorithm on a large
network, we study the embedding of a social network observed in GitHub

1For T = 0.54336 and seed 123456789 the BFKL spring embedder reported the log-
likelihood of -131634, which is better than ours; however, our implementation reports
L1 = −211454 and L2 = −174465, which our local search still manages to improve to
L7 = −157026. This appears to to be a problem in their approximation (which also
affects the fast embedder, and smaller values of T ). Indeed, replacing their optimized log-
likelihood function with a Θ(n2) one from hyperbolic.cpp reports log-likelihood equal to
ours. [Actually, it reports double our result, but this seems to be caused by counting each
pair of vertices twice, which is easy to fix and irrelevant for the optimized embedder.]
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repository hosting service. In GitHub convention following means that a
registered user agreed to be sent notifications about other user’s activity
within the service. This relationship can be represented by the means of
the graph of following Gf . There is an edge in Gf between A and B if and
only if A follows B. Decision about following a particular user can be simul-
taneously driven by their popularity within the network and the similarity
to the interested user, which suggests hyperbolic geometry can be intrinsic
in development of Gf . Gf was also proved to show power-law-like scale be-
havior [Celińska, 2016], that is why we believe it is a sound benchmark for
our analysis. Since the complete download of GitHub data is impossible, our
dataset is combined from two sources: GHTorrent project [Gousios, 2013]
and GitHubArchive project [Grigorik, 2012]. The analyzed network contains
information about the following relationships that occurred in the service
from 2008 to 2009.

The graph has n=74946 vertices and m=537952 edges (since we are
working with an undirected graph, an edge appears between A and B if
either A follows B or B follows A). The BFKL embedder has chosen pa-
rameters R = 20.9037 and α = 0.855, and computes the log-likelihood in
5 seconds. The results for G7 grid are as follows: t1 = 6 s, t2 = 12 s,
t3 = 2s, L0 = −4364526, L3 = −3972006, T3 = 1.390037, R3 = 9.180628,
L4 = −3855721. After 6 iterations of local search (27 minutes) the results
have been improved to L5 = −3542063, L6 = −3520703, L8 = −1997284.
The time t2+t3 is still comparable to BFKL.2 The results are generally worse
than in the previous graph, which is probably caused by less order in data
(not all accounts correspond to real people, avoiding direction in a directed
graph, non-random missing data patterns).

Unfortunately, parts of the current implementation of our algorithm were
not designed for representing that large graphs, and thus are not memory
efficient for our use – this prevents us from running more iterations of local
search, or analyzing later years in GitHub. Some of the structures essential
for the game are irrelevant for us. Possible further improvements include:
freeing memory which is no longer used, or avoid allocating memory just for
temporary use; representing (some) dynamic arrays a as lists since most of
them are sparse; path compression to avoid using extra memory and time on
long paths which lead to a single vertex. Additionally, since the hyperbolic
distances between vertices are large, a grid coarser than G7 should be more
efficient. This is going to be improved in future work.

2As with the smaller graph, we suspect that our value is more accurate than BFKL.
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10 Conclusion

We have shown efficient algorithms for computing the distances between
points in hyperbolic triangular grids, and distances between a given point
and a set of points. We have shown how to apply these algorithms to work
with the DHRG model efficiently, and how our DHRG model can be used to
improve the results of the BFKL embedder.

The results in Sections 2 and 4 have been phrased for arbitrary hyperbolic
triangular grids, even though in our applications and implementation we
currently only use grids G67 and G7. It is interesting to what extend these
algorithms can be generalized to wider classes of hyperbolic graphs, such as
graphs with Gromov hyperbolic constant of at most δ [Bermudo et al., 2013].

We believe that an efficient embedder which embeds real world scale-free
networks in the DHRG model could be created; however, such embedder
would be probably based on ideas similar to those that BFKL is based on,
and for this reason we have decided to simply convert the results of BFKL in
this paper. Creating an efficient direct DHRG embedder is an area of further
research.

Finally, a combined approach could be used for HRGs, where each vertex
is mapped both to a point in H2 and the nearest vertex of our grid. Our
algorithms for computing log-likelihood and generating random graphs pro-
duce all pairs of vertices which are close enough that their contribution to
log-likelihood is significant, or they have a good chance of being connected.
This potentially allows to use the grid to efficiently compute log-likelihood
and generate HRGs in the continuous case.
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