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1. Introduction 

Volatility could be broadly defined as the degree of a time series variation over the specified 

time period. It could be considered as the new asset class (Jabłecki et al. (2015)) among both 

new asset types like cryptocurrency (Kość et al., 2019, Zenkova and Ślepaczuk) and classical 

ones like stocks, bonds, commodities or currencies (Ślepaczuk et al., 2018), given that 

nowadays market participants are able to have the direct exposure to volatility trading via the 

volatility-based liquid products. Despite being new and relatively more complex in comparison 

to the products related to traditional asset classes, the number of volatility products has been 

steadily growing and they have a great potential in risk management, asset allocation, and 

trading strategies development areas.  

The goal of this paper is to compare the performance of VIX futures trading strategies 

which were constructed  on the basis of different volatility forecasting techniques. To produce 

those forecasts, various GARCH model specifications have been used. The main hypothesis is 

as follows: Using approaches based on rolling GARCH models we are not able to obtain robust 

abnormal returns compared to the benchmark. For the purpose of the hypothesis verification 

the following research questions are formulated: 

1. Which rolling GARCH specification produces the most accurate volatility forecast?  

2. Does more frequent model refitting improve portfolio Information Ratio? 

3. How does the size of training window affect the strategy performance? 

4. Is the base model strategy performance stable with regards to different historical 

volatility estimators? 

We use the daily data of S&P 500 index from 2009-01-01 to 2019-10-03 and VIX index 

futures from 2013-01-02 to 2019-10-03, respectively. The longer period for S&P 500 index was 

required for GARCH model estimation in order to produce the first volatility forecasts. Four 

different GARCH model specifications (classical GARCH, EGARCH, GJR-GARCH, 

fGARCH-TGARCH) are implemented on the basis of the rolling forecast techniques: moving 

and expanding training windows. 

We believe that the value added of this work is the examination of the forecasting 

accuracy of GARCH models and the development of the empirical methodology of investing 

in VIX futures. Based on the evidence from the literature, we expect that GARCH models that 

account for volatility stylized facts with more frequent refitting will perform better.  
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The remainder of the paper is organized as follows. In Section 1 we provide the definition 

of volatility, its measurement, and the literature review of GARCH models. Section 2 is devoted 

to the description of the rolling approaches undertaken, along with the overview of the selected 

GARCH specifications and measures of forecasting errors. Section 3 contains the description 

of the data, research procedure and assumptions behinds investment strategies. The most 

important R functions used in the rolling forecasts are also described here. In Section 4 the 

outcomes for the base GARCH(1,1) model and the performance analysis of 432 combinations 

of strategies parameters and GARCH model specifications is provided. Section 5 discusses the 

outcomes of the sensitivity analysis. The paper ends with conclusions, and the propositions for 

further research.  

2. Theoretical background and literature review 

2.1. Volatility and its “stylized facts” 

Volatility lies at the heart of derivatives pricing making it one of the most important concepts 

in the whole of modern finance. Not only has it been the subject of many academic research 

papers, but it is also widely applied concept in risk management, hedging, and portfolio 

optimization areas.   

The task of volatility estimation and forecasting is not trivial as volatility is not directly 

observable.  There are many estimators developed therefore, but probably the most popular one 

is standard deviation of returns: 

𝜎 = √
1

𝑁 − 1
∑(𝑅𝑡 − 𝑅𝑚𝑒𝑎𝑛)2

𝑁

𝑡=1

(1) 

where: 

𝜎 – standard deviation,  

𝑅𝑡 – asset return at moment t, 

𝑅𝑚𝑒𝑎𝑛 – the arithmetic average of returns, 

𝑁 – the number of observations in the sample. 

We will refer to this approach as to the "Close-to-Close" estimator, as it involves asset 

returns measured with respect to its daily closing prices. It is relatively simple and intuitively 

understandable. It must be pointed out though that there exists an indirect link between risk of 

downturn moves and volatility measured as in formula (1) because it penalizes all large moves 
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and does not make distinctions between positive and negative ones. Among dispersion-based 

metrics, there are semi-variance proposed by Markowitz (1952) and inter-quantile range which 

are useful but difficult in implementation in portfolio construction.  

Alternatively, there are realized range estimators which use a wide range of information 

like “Open”, “Close”, “High”, “Low” prices to improve the estimator quality. Following the 

comparison of pros and cons of various volatility estimators described in Ślepaczuk and 

Zakrzewski (2013) we additionally decided to use estimators proposed by Parkinson (1980) and 

Garman and Klass (1980).  

In the approach proposed by Parkinson (1980), the highest and the lowest prices are 

incorporated, and the volatility (𝜎𝑃
2) is then given by: 

𝜎𝑃
2 =

1

4 ln(2)
∑ (𝑙𝑛

ℎ𝑖

𝑙𝑖
)2

𝑁

𝑖=1
(2) 

where: 

ℎ𝑖  and 𝑙𝑖 – highest and the lowest prices within the 𝑖-th interval, 

N – number of observations. 

Garman and Klass (1980) adjust the (2) by adding the close price (𝑐𝑖) in their estimator: 

𝜎𝐺𝐾
2 =

1

2

1

𝑁
∑ ln (

ℎ𝑖

𝑙𝑖
)

2𝑁

𝑖=1
− (2𝑙𝑛2 − 1)

1

𝑁
∑ ln (

𝑐𝑖

𝑐𝑖−1
)2

𝑁

𝑖=1
(3) 

Authors argue that their estimator (𝜎𝐺𝐾
2 ) is seven times more efficient in comparison to 

the “Close-to-Close”, when measured by variance ratio. However, there might be not enough 

time for the ‘true’ unobservable prices to reach their minimum and maximum, and statistics 

might be biased, therefore. 

Despite being not observable, volatility possesses some common characteristics which 

have been identified empirically across different asset classes. They are known as “stylized 

facts” (see Jabłecki et al. 2012 and Masset 2011). 

• Volatility clustering (grouping) 

Volatility is not constant, and it shows a tendency to form clusters likewise in an earthquake: 

once abnormal movement takes place it usually generates effects that persist through time. 

• Leverage effects (asymmetry) 
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Volatility exhibits asymmetry to news arriving to the market which is primarily related to 

stocks and equity indexes. It could be explained in the following way: when price goes up, 

volatility decreases but not as much as it increases when price goes down by the same amount. 

It happens because when price goes down, the debt increases in capital structure and the stock 

becomes more riskier and volatility increases. 

• Long memory 

There are number of studies (e.g. Ding et a., 1993, Baillie, 1996) which found out that 

changes in volatility, especially significant ones, have a long-standing effect on the way 

volatility evolves through time. 

• Mean reverting 

In the long-time horizon volatility is expected to revert to its historical mean level even 

when being currently diverged far away from it. In statistical terms volatility varies within some 

fixed range of values. 

Some authors say that volatility forecasting is a challenging task. Nevertheless, volatility 

is forecastable and can be used for investment purposes as was shown in Jabłecki et al. (2015). 

The question is how far ahead it could be accurately forecasted and to what extent its changes 

could be predicted.  

2.2. Literature review of GARCH models 

The primary motivations of using Autoregressive Conditionally Heteroscedastic (ARCH) 

models) is that they account for heteroscedasticity of returns.  There is a strong evidence of 

successful ARCH volatility fit on US, UK, Swedish stock markets according to Engle and 

Mustafa (1992), Loudon et al. (2000), and Frennberg and Hanson (1996), respectively. There 

are also examples of poor ARCH performance. Balaban and Bayar A. (2002) found out ARCH 

being the worst out-of-sample performer across exponential smoothing and other GARCH 

approaches for fourteen stock markets study. Generalized ARCH (GARCH) was proposed by 

Bollerslev (1986) to overcome some ARCH limitations like constraint restrictiveness and slow 

responsiveness to shocks. GARCH dominance over ARCH is pointed out by Akgiray (1989), 

or West and Cho (1995) for US stock index volatility and dollar exchange rate volatility, 

respectively.  

Poon and Granger (2003) conduct an extensive review of 93 studies related to volatility 

forecasting and found out that option implied standard deviation (ISD) models performed 
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relatively better primarily due to the usage of larger, and more relevant information datasets, 

whereas there is no clear favorite between historical volatility and GARCH models. However, 

ISD approach is less used in practice given that implied volatility is not available for all 

instruments. Nelson (1991) proposed EGARCH and GJR-GARCH models to address the 

leverage effect in volatility. From the theoretical standpoint EGARCH and GJR-GARCH 

models are more relevant than classical GARCH model. Poon and Granger (2003) summarize 

that GJR-GARCH, EGARCH models produce more accurate forecasts on the out-of-sample 

dataset. Ebeid et.al (2004) made same conclusion for Egyptian stock index (2004). Majmudar 

and Banerjee (2004) found out also that EGARCH outperforms other specifications and suggest 

respective options trading strategy for yield enhancement based on volatility forecasting using 

VIX data. In contrary, Ederington and Guan (1999) claim that there is no significant difference 

in accuracy forecasting between GARCH and EGARCH and more complex models exhibit 

over-fitting: predict well on training dataset, but – poorly on the test dataset.   

There are some papers that shed light on choice of appropriate GARCH model order, 

training-test data split, distribution choice, and market volume impact in forecasting. GARCH 

(1,1) is generally enough to capture heteroscedasticity and models with other lags combinations 

are rarely being tested in academic literature, according to Brooks (1998).  However, Casas and 

Cepeda (2008) conducted such research and found out that returns series on stock market 

indexes are best explained by EGARCH (2,1). Engle and Patton (2001) obtain results that 

forecasting quality depends on in-the-sample dataset frequency. Basic training-test split is not 

efficient, and better techniques exists. For example, Clark and McCracken (2004) prove that a 

combination of recursive and rolling schemes with a fixed window size overall improves the 

forecasting accuracy. One of a few papers that study the impact of distribution chosen in 

GARCH model is conducted by Ebeid et.al (2004). They found out that skewed t-Student is the 

most appropriate distribution for volatility modelling of Egyptian stock market index. For 

European stock indexes there is an empirical evidence that non-parametric GARCH models are 

not beating the standard GARCH models, see Franses and Van Dijk (1996).  

One of the fundamental shortcomings of ARCH and GARCH models proposed by Engle 

(1982) and Bollerslev (1986), respectively, is that these models poorly fit the situations when 

volatility increases abruptly (“volatility jumps”): conditional variance in GARCH (ARCH) 

process is slow in reaching the new level and it takes some time to “catch it up” given returns 

are the only ones used. The induction of realized measures tackles this problem and results in 

obtaining more statistical and economic gains according to Christoffersen et. al. (2014). The 
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concept of realized GARCH models lies in realized volatility and returns joint modelling basing 

on measurement equations which tie realized measure to latent conditional variance. Zakoian 

(1994) also addresses the volatility leverage effect and given its flexibility allows the 

conditional variance to fall into two different regimes: it could be stationary and non-stationary.  

Results show that these models improve forecast on stocks and SPY exchange-traded index in 

comparison to standard GARCH and EGARCH models, moreover, the simpler the more 

accurate – such conclusion is obtained across realized GARCH models, according to Xie and 

Yu (2019) and Hansen and Huang (2016). For some asset classes there is no evidence though 

that classical GARCH model is consistently outperformed by these ‘richer’ models that 

characterize better volatility stylized facts (see Hansen and Lunde (2005) that claim that nothing 

is beating GARCH (1,1) for exchange rate data, for example) 

To sum up, on the basis of the empirical evidence, GARCH dominates ARCH. There is 

no such clear dominance in terms of performance across different GARCH specifications as 

well as across distribution chosen, market volume inclusion, or lags order. However, the models 

that account for volatility stylized facts are more accurate than the ones that do not. Generally, 

rolling techniques produce better forecasts in comparison to the classical training/validation/test 

split. However, there are not many respective research papers for GARCH models. Therefore, 

we fill this gap by implementing different GARCH specifications on a rolling forecast basis. 

3. Methodology description 

3.1. GARCH model selection procedure 

The family of Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models 

tackles the issue of the irregular pattern of heteroscedasticity of returns in the real financial data. 

They are designed for capturing the autocorrelation patterns in returns and squared returns in 

dynamics, in particular – distributional parameters of the mean and variance given the variance 

depends on time.  

The common approach in GARCH model selection for the purposes of forecasting is as 

follows. The very first thing is to identify the autocorrelation patterns, possible ARCH effects, 

and possible anomalies in asset’s returns by analyzing their respective ACF functions and ACF 

of squared returns along with returns’ distributional properties (normality, skewness, and 

kurtosis). The next step is to choose the proper order of 𝐺𝐴𝑅𝐶𝐻 (𝑝, 𝑞) model and fit it on the 

training dataset and check the significance of the obtained parameter estimates. Then the 

normality and autocorrelation of squared standardized residuals are formally tested, and the 
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optimal model is selected on the basis of Information criteria (AIC, BIC) and forecasting errors 

estimation. An additional diagnostic of asymmetrical conditional variance reaction or the 

distribution of conditional error could be conducted by applying other GARCH extensions, i.e. 

EGARCH or GARCH-in-Mean, respectively. 

Now we provide the theoretical background of GARCH specifications that are used in an 

empirical part of our work. Since the time when the first GARCH model was developed, there 

have been many extensions proposed in order to overcome the basic version’s limitations (see 

comprehensive study by Bollerslev, 1986 for more details). 

3.1.1. GARCH by Bollerslev (1986)  

The 𝐺𝐴𝑅𝐶𝐻 (𝑝, 𝑞) was proposed by Bollerslev (1986) and it organically evolved from the 

ARCH model allowing the conditional variance (𝜎𝑡
2) to be dependent upon its own previous 

lags. Assuming that the mean equation for the series of logarithmic returns 𝑟𝑡 is described by 

the autoregressive moving average (ARMA) process and that the mean-adjusted logarithmic 

return is 𝑢𝑡 = 𝑟𝑡 − 𝜇𝑡, we may say that 𝑢𝑡 follows a classical 𝐺𝐴𝑅𝐶𝐻 (𝑝, 𝑞) process if (see 

Tsay 2002): 

{

𝑢𝑡 = 𝜎𝑡𝜖𝑡

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝑢𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽
𝑗
𝜎𝑡−𝑗

2

𝑝

𝑗=1

(4) 

where: 

𝜎𝑡
2 – known as the conditional variance as it is a one-period ahead variance estimator which 

depends on the past information given p and q lags, 

p – maximum lag for the conditional variance, 

q – maximum lag of the squared mean-adjusted (unexpected) return, 

𝜖𝑡 – random term which is independently and identically distributed with 0 mean and 1 variance.  

 The simplest and most frequently used specification if (4) is the GARCH (1,1) model, 

which could be written as follows: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽1𝜎𝑡−1
2 (5) 

given the constraints: 0 ≤ 𝛼1, 𝛽1 ≤ 1, (𝛼1 + 𝛽1)  < 1. Unlike the conditional variance that 

changes, the unconditional variance of 𝛼𝑡 is constant and for GARCH(1,1) is defined by: 

𝑣𝑎𝑟(𝑢𝑡) =
𝛼0

1 − (𝛼1 + 𝛽1)
(6) 
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If (𝛼1 + 𝛽1)  < 1 does not hold, then 𝑣𝑎𝑟(𝑢𝑡) is not defined in (6) which means that 

variance is not stationary. It must be pointed out though that non-stationarity in variance has 

little theoretical motivation for existence (as it would be for the mean non-stationarity in price 

series, for example). Brooks (2000) claims that GARCH models which coefficients implicit 

variance non-stationarity would have undesirable properties. 

There are two advantages of the GARCH model: it accounts for fatter tails of returns in 

comparison to the normal distribution and therefore considers the properties of times series 

under more realistic perspective, and it provides relatively simple parametric function that 

describes how volatility evolves. Given 𝑢𝑙 , 𝑎𝑛𝑑 𝜎𝑙
2are known of time for the one step-ahead 

volatility forecast at the moment of l can be given by: 

𝜎𝑙+1
2 = 𝛼0 + 𝛼1𝑢𝑙

2 + 𝛽1𝜎𝑙
2 (7) 

Although GARCH is believed to be a better version of ARCH it still makes an equal 

response to the positive and negative news impact. 

3.1.2. EGARCH by Nelson (1991) 

EGARCH was proposed by Nelson in 1991 to deal with the volatility leverage effect. The 

conditional variance (𝜎𝑡
2) is described by the following equation, see Brooks (2008): 

ln(𝜎𝑡
2) = 𝜔 + 𝛽 ln(𝜎𝑡−1

2 ) +  𝛾
𝑢𝑡−1

√𝜎𝑡−1
2

+ 𝛼 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
] (8) 

where: 

𝑢𝑡 = 𝜎𝑡𝜖𝑡 – mean-adjusted logarithmic return, 

𝜎𝑡 > 0,  

𝛾 – parameter that accounts for asymmetry, 

𝜖𝑡 – sequence of independently and identically distributed variables with 0 mean and 1 variance. 

The difference is that in classical GARCH model volatility is an additive function of past 

standardized innovations (𝜖𝑡 divided by their conditional standard deviations), whereas in 

EGARCH model volatility is an explicit multiplicative function of lagged innovations.  The 

non-negativity constraint does not apply in EGARCH because the logarithm of variances is 

modelled.   EGARCH can react asymmetrically to good or bad news: parameter 𝛾 takes into 

the account the sign and extent of innovation, for example, if the observed relationship between 

returns and volatility is negative, 𝛾 will be negative as well. Given stylized fact is considered, 
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EGARCH is expected to produce better forecasts. Brooks (2008) mentions that in the majority 

of EGARCH applications conditional normal errors are employed rather than Generalized Error 

Distribution (GED) due to their relative easiness in computations and intuitive interpretation.  

3.1.3. GJR-GARCH of Glosten et al. (1993) 

Glosten, Jagannathan, and Runkle (1993) proposed an extension which allows the seasonal 

patterns in volatility and considers the leverage effect in volatility. The negative and positive 

shocks on the conditional variance are asymmetrically modelled by introducing indicator 

function I. The conditional volatility (𝜎𝑡
2) is then described by, see Ghalanos (2019):  

𝜎𝑡
2 = (𝜔 + ∑ 𝜍𝑗𝑣𝑗𝑡) + ∑ (𝛼𝑗𝜀𝑡−𝑗

2 + 𝛾𝑗𝐼𝑡−𝑗𝜀𝑡−𝑗
2

𝑞

𝑗=1
) + ∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑝

𝑗=1

𝑚

𝑗=1
(10) 

where: 

𝜔, 𝛽, 𝛼 – coefficients, 

𝑣𝑗𝑡 – optional external regressors passed pre-lagged,  

𝛾𝑗 – the ‘leverage’ term,  

p – lag for the conditional variance and q is lag of the squared error.  

The indicator function 𝐼𝑡 is described as follows: 

𝐼𝑡−1 = 1 𝑖𝑓 𝜀𝑡−1 < 0 (11) 

𝐼𝑡−1 = 0 𝑓𝑜𝑟 𝜀𝑡−1 ≥ 0  

If the leverage effect 𝛾𝑗will be higher than 0, then the model allows for after the shock 

with the same magnitude different volatility value changes, given 𝛾𝑗 is significant. Thus, 

theoretically speaking given the leverage effect is considered GJR model should lead to 

forecasting performance enhancement. There is an empirical evidence for that: according to 

Laurent et al. and Brownlees et al. (2012) GJR produces better forecasts in comparison to 

classical GARCH specification.  

3.1.4. fGARCH – TGARCH (sub-model) by Zakoian (1994) 

The threshold volatility model (TGARCH) by Zakoian (1994) relates to the GARCH family 

models (fGARCH) of Hentschel (1995) which subsumes some of the most popular GARCH 

specifications. In regime switching TGARCH the state of the world is governed by an 

observable threshold variable and known therefore, while the conditional variance follows the 
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GARCH process within each state.  The general formula of the conditional variance (𝜎𝑡
𝜆) under 

fGARCH family could be written as, see Ghalanos (2019): 

𝜎𝑡
𝜆 = 𝑤 +  ∑ 𝛼𝑗𝜎𝑡−𝑗

𝜆
𝑞

𝑗=1
(|𝑧𝑡−𝑗 − 𝜂2𝑗| − 𝜂1𝑗(𝑧𝑡−𝑗 − 𝜂2𝑗))

𝛿

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
𝜆

𝑝

𝑗=1
(12) 

where: 

𝛼, 𝛽, 𝜔 – model coefficients, 

𝜆, 𝛿, 𝜂1, 𝜂2 – parameters described below. 

The decomposition of residuals is allowed, and it is driven by the different powers for 

𝑧𝑡 and 𝜎𝑡. Moreover, rotations and shifts are enabled in the news impact curve, namely the shift 

takes place when the small shocks occur, whereas the rotation is for the large shocks. The shape 

of the conditional variance is ruled by 𝜆 parameter. The absolute value function is transformed 

via 𝛿 parameter, 𝜂1 and 𝜂2 are parameters via which rotations and shifts are conducted. One of 

the advantages of the TGARCH is that linear restriction on the conditional variance dynamics 

is relaxed.  

TGARCH sub-model have the following parameters: 𝜆 = 𝛿 = 1, |𝜂1𝑗 ≤ 1|, 𝜂2𝑗 = 0 

which have to be input in the formula above (12). 

3.2. Rolling-based forecasting approaches 

The basic forecasting approach is to split the time series into : 1) training (in-the-sample), 2) 

validation, and 3) test (out-of-sample) datasets: 

Figure 1. Classical forecasting approach 

 

Source: Own example 

The model is fitted on the training set and the best one is selected on the basis of the 

accuracy of forecasts obtained on validation set (pre-test). Then one or multi period ahead 

forecasts are produced on the test dataset with respect to the fitted parameters estimated from 

the training dataset. There is still a continuous conceptual debate around choosing the proper 

training/test split. In practice 80/20 is often used, but there is no right answer and in most of the 

cases the split depends on the peculiarities of data and the model constructed. The second point 
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is that parameters usually change over time and information used in the initial training dataset 

does not account for the innovations – incoming data. 

Figure 2 and Figure 3 visualize the concept of LOOCV approach for an expanding and 

moving training windows. 

Figure 2. Rolling forecast technique: Expanding window 

 

Source: Own example 

Unlike the above, the rolling-based technique takes into the account the whole dataset: 

each data point falls into the training and test datasets depending on the moment of the model 

estimation. Thus, the time varying factor is considered, and the model is adjusted accordingly. 

Additionally, it is possible to refit the model, and the frequency of such refits depends on the 

training window size, distributional properties of time series, asset class type and its peculiar 

traits identified if any. Therefore, in the back-testing the ‘leave one out cross validation’ 

(LOOCV) technique is the powerful one making one day ahead forecast with the model re-

estimations across different GARCH specifications.  

Figure 3. Rolling forecast technique: Moving window 

 

Source: Own example 
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Expanding window includes all the previous data points and as the time goes by the new 

observations are included with the old ones remaining.  In contrast, there is the moving window 

which size is fixed at each estimation, and it is shifting by n-days ahead, one-day ahead here. 

There are also other forecasting methods based on neural networks and machine learning 

techniques, but they do require much time and power for computing and are beyond the scope 

of this paper. 

3.3. Forecasting errors and the economic loss function (ELF) 

The successful volatility model is primarily determined by its ability to accurately forecast on 

the out-of-sample dataset. Therefore, the prediction accuracy is one of the most important 

indicators. According to the ‘Ex post’ forecasting quality estimation the forecasted values are 

compared with the actual ones on the “post the event” basis. 

In the academic literature the metrics proposed are as follows: Mean Absolute Error 

(MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), Theil-U statistic and 

others, for example (see Ederington and Guan 1999 and Brooks 2008). 

It must be pointed out that a trading strategy based on the model with lower estimation 

errors does not necessarily produce higher profits than the one with higher errors, and vice versa 

– there are many empirical evidences Gerlow et.al (1993), for example. Some authors criticize 

deviation-based metrics (MAE, RMSE) and argue that models constructed on the percentage 

of correct sign or direction change lead to relatively higher profits, see Leitch and Tanner 

(1991). Given there are opposing views we compute forecasting errors based on RMSE and the 

percentage of the correct sign change prediction.  

The RMSE formula is as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑ (𝑉𝑜𝑙𝐹𝑡 − 𝑉𝑜𝑙𝐻𝑡)2

𝑇

𝑖=1
(13) 

where:  

T - the total number of observations, 

𝑉𝑜𝑙𝐹𝑡 – the forecasted volatility, 

𝑉𝑜𝑙𝐻𝑡 – the estimated volatility.  

The 𝑉𝑜𝑙𝐻𝑡 is calculated based on the formula (1) for close-to-close estimator with n=21. 
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The Economic Loss Function (ELF) will be defined as the percentage of the correct sign 

change prediction. The formula (Brooks, 2008) is given by: 

𝐸𝐿𝐹 =
1

𝑇 − (𝑇1 − 1)
∑ 𝑧𝑡

𝑇

𝑡=𝑇1

(14) 

𝑧𝑡 = 1 𝑖𝑓 (𝑉𝑜𝑙𝐹𝑡,𝑠 ∗ 𝑉𝑜𝑙𝐻𝑡,𝑠) > 0 

𝑧𝑡+𝑠 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

where: 

𝑧𝑡 – correct sign prediction at t moment, 

T – the total number of observations.  

This metric shows how many times correct sign change is predicted to the total number 

of observations. ELF is more appropriate error metric in comparison to RMSE when we want 

to focus on the correct prediction of direction only instead of accounting for large values of 

errors. 

4. Data and research description 

4.1. Data 

In our research there are two time series being observed and analyzed: daily OHLC quotes of 

S&P 500 index and VIX futures in the period between 2009-01-01 and 2019-10-03, and from 

2013-01-02 to 2019-10-03, respectively. All historical VIX futures data is downloaded from 

the CBOE Global Markets, Inc. website: 

https://markets.cboe.com/us/futures/market_statistics/historical_data/.1 We developed the R 

code that download automatically daily VIX futures prices with all available weekly and 

monthly expirations since January the 2nd, 2013 till October the 3rd, 2019. 

We filtered VIX data by contracts with monthly expirations only as they are the ones used 

in our investment strategies. In order to calculate profit and loss for investment strategy VIX 

futures with the shortest maturity were selected. On the trade day there are two contracts that 

are the closest to expiration among all contracts available (the first to be expired and the 

consecutive one) with their respective contract names, close prices and time to maturities. 

Figure 4 shows these VIX futures close prices. 

Volatility of VIX futures fluctuations can be very high and heavily affects the results of 

various investment strategies, see Table 1 and Figure 5. On 2018-02-5, nine days before its 

 
1 All available data on the website 

https://markets.cboe.com/us/futures/market_statistics/historical_data/
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expiration, the “G (Feb 2018) contract” experienced the largest daily price increase since its 

introduction. Measured as percentage and point change, it was respectively +112.4 % and 

+17.57. This day it reached its peak at $33.2 while on 2017-12-18 it was just traded at $9.88 

close price minimum.  

Figure 4. VIX futures with different maturities 

 

Note: The nearest to expiration (Close 1) and the 2nd nearest to expiration (Close 2) contracts. In most cases Close 

2 is (as expected) above the Close 1 on the whole time period observed 

Table 1. Descriptive statistics of nearest to expiration VIX futures returns. 

Mean Std. dev. Median Min Max Range Skewness Kurtosis 

-0.00151 0.05726 -0.0071 -0.28012 1.12412 1.14042 5.2866 5.3641 

Note: These descriptive statistics were calculated in the period from 2013-01-02 to 2019-10-03. The range 

exceeded 114%. Skewness was high due to these extreme movements 

Figure 5. The returns distribution of the nearest to expiration VIX futures 

 

Note: The distribution of returns is skewed towards the right and have high kurtosis. On 5th February return was 

112% (all-time record), whereas the minimum returns drop was 28% 
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Such periods, after sharp volatility jump are usually characterized by inverted curve of 

volatility term structure, see Figure 6, for example. Normal or inverted curves show futures 

close prices at different contract maturities in the specific point of time, whereas contango and 

backwardation compare the actual futures prices with the expected futures spot prices. If actual 

prices are higher than the expected spot ones, then we may say that over time prices’ structure 

is falling to converge to spot and market is in contango state. Vice versa is for normal 

backwardation given actual prices are lower than the expected futures spots. 

Figure 6. Term structure of VIX futures and spot prices (Inverted curve)  

 

Note: In all four trading days observed VIX spot exceeded VIX futures prices at different maturities 

In contrary, normal VIX futures curve is observed when there is relative VIX futures 

standstill, for example, for the very first four contract trading days, it looks like on Figure 7. 

Figure 7. Term structure of VIX futures and spot prices (Normal curve) 

 
Note: In all four trading days VIX spot was below VIX futures prices at different maturities 
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The daily observations of S&P 500 index have been downloaded from Yahoo Finance 

from 2009.01.03 to 2019.10.10 – 5029 time series data points in total. There are Table 2 with 

the descriptive statistics and Figure 8 below representing S&P 500 closing prices, its respective 

logarithmic returns along with the returns’ distribution. 

Table 2. Descriptive statistics of S&P500 returns over the period 2009-2019 
Mean Std. dev. Median Min Max Range Skewness Kurtosis 

0.00043 0.00938 0.00056 -0.06666 0.04959 0.11622 -0.3416 4.9753 

Note: The range of S&P500 returns is more than ten times less than VIX futures range 

Figure 8. S&P 500: close price, logarithmic returns, distribution 

 
Note: Overall eleven-year S&P500 upward trend is observed on the top graph, respective distribution of 

logarithmic returns (bottom graph) has high kurtosis and is skewed slightly towards the left 

It is clearly seen that after financial crisis in 2008 S&P 500 index has been growing 

steadily dropping only in December 2018 around 10%. In the last five-year period buy-and-

hold strategy produced 10.7 % of annualized return. The return distribution is leptokurtic and 

right-skewed slightly - normality is rejected by Shapiro-Wilk test as well (W=0.94387, p-value 

<  0.22 ∗ 10−15). The volatility of returns was the largest during the financial crisis 2008, the 

volatility clustering is observed in the middle graph in Figure 8 above. 

4.2. Research description 

The aim of this work is to compare the performance of VIX futures trading strategies across 

different GARCH specifications. The research stages are as follows. 
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1. The data is collected and prepared: S&P 500 index and VIX futures daily observations. 

The performance of the passive long and short volatility strategies in VIX futures along 

with the buy-and-hold S&P 500 index strategy is computed and referenced as the 

benchmark. Passive long and short volatility strategies assumes that we are always 

100% long or short in VIX futures, in the monthly contract which is the closest to 

maturity. 

2. Volatility of S&P 500 returns is forecasted by univariate GARCH models estimated on 

a rolling basis and forecasting errors are calculated across different metrics. In our 

research we exclusively use the rolling approach with one day ahead forecast. Rolling 

approach caused that we had to estimate each specification of GARCH model around 

2500 times on the S&P 500 data since 2009-01-01 to 2019-10-03. Obviously, we are 

not able to carry out the full diagnostics for each time we fit the model, as described in 

Section 2.1. Instead of this, we monitor model coefficients while refitting the model. 

They are presented in Figure 11. For example, for the classical GARCH (1,1) we 

visualize the sum of alpha and beta under unconditional variance constraint over time 

which must be less than 1. 

3. Trading strategy based on the rolling forecasts and different historical volatility 

estimators is constructed. Given that a signal might be sensitive to the historical 

volatility estimator we construct it under the following three volatility estimators: 

“Close-to-Close”, “Garman-Klass”, and “Parkinson”.  

4. The sensitivity analysis with special regards to training window size, refit frequency, 

model GARCH specifications, rolling parameters, and historical volatility estimators is 

conducted in the end in order to check whether the obtained strategy performance is 

robust or not. 

4.3. Investment strategy 

The key assumptions of investment strategy are the following. In the base case the degree 

of financial leverage (DFL) equals 25%, whereas initial amount of capital (capital) invested is 

constant and set to be 1 million USD. The multiplicator (mult) for one-point change of VIX 

futures is 1000 USD. 

We invest in the nearest to expiration monthly VIX futures contract. On the day before 

expiration of this contract we enter the second closest to expiration contract which becomes the 

next day the following first to expire, and so on. 
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The trading signal mechanism is as follows:  

𝑠𝑖𝑔𝑛𝑎𝑙𝑡 = {

1 if 𝑉𝑜𝑙𝐹𝑡+1 > 𝑉𝑜𝑙𝐻𝑡

−1 𝑖𝑓  𝑉𝑜𝑙𝐹𝑡+1 <  𝑉𝑜𝑙𝐻𝑡

𝑠𝑖𝑔𝑛𝑎𝑙𝑡−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15)

where 𝑉𝑜𝑙𝐹𝑡+1 and 𝑉𝑜𝑙𝐻𝑡  are volatility forecast and estimated historical volatility, 

respectively. 

If the forecasted volatility on a one day ahead (t+1) is higher/lower than the current (t) 

historical volatility (t), then long/short position in the nearest to expiration VIX monthly 

contract is undertaken. If there is no change – then we stay on the market with the previous 

position. This signal generation is a very important moment as the strategy performance will 

depend on when and which positions are entered. There are multiple ways of how to estimate 

historical volatility. Therefore, we test three estimators: “Close-to-Close”, “Garman-Klass”, 

and “Parkinson” – in order to check stability of signals.  

The special attention must be given to the absolute profit and loss (PnL) calculation at the 

trading days when contract rolling takes place. For example, there are two contracts F (Jan 

2013) and G (Feb 2013) and F (Jan 2013) expires first, while G (Feb 2013) – second. One day 

before F (Jan 2013) expiration (t-1) we close position in F (Jan 2013) and according to the 

current signal we open the position in G (Feb 2013). PnL on the following day (t) is calculated 

as the close price difference for G (Feb 2013) multiplied by the previous signal. 

Post that we calculate the number of positions available (𝑛𝑜𝑝𝑡):  

𝑛𝑜𝑝𝑡 =
𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑡 ∗ 𝐷𝐹𝐿

𝑐𝑙𝑜𝑠𝑒𝑡 ∗ 𝑚𝑢𝑙𝑡
(16) 

The equity line (portfolio) including transactional costs (TC) set at $2 level per one 

contract is given by: 

𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑡 = 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑡−1 + 𝑛𝑜𝑝𝑡−1 ∗ 𝑃𝑛𝐿𝑡 ∗ 𝑚𝑢𝑙𝑡 − 𝑇𝐶 ∗ |𝑛𝑜𝑝𝑡 − 𝑛𝑜𝑝𝑡−1| (17) 

The comparison of the performance of investment strategies based on the forecasted 

values could be conducted basing on the following metrics, (see Ryś and Ślepaczuk, 2019): 

1. Annualized rate of return (ARC) – shows annualized percentage return an investment generates 

each year over a time period specified (𝑡1, 𝑡2): 

𝐴𝑅𝐶(𝑉)𝑡1

𝑡2 = (
𝑉𝑡2

𝑉𝑡1

)
1

𝐷(𝑡1,𝑡2) − 1 (18) 

where: asset of value process is 𝑉𝑡, 𝐷(𝑡1, 𝑡2) is the time between 𝑡1 and 𝑡2 in years. 
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2. Annualized standard deviation (ASD) – the empirical standard deviation normalized, according 

to time: 

𝐴𝑆𝐷(𝑉)𝑡1

𝑡𝑛 = √
1

𝑛
∑ (𝑅𝑡 − 𝑅̅)2 ∗  

1

𝐷(𝑡1, 𝑡2)

𝑡𝑛

𝑡=𝑡1

(19) 

where: 𝑅𝑡 is series of returns,  𝑅̅ =
1

𝑛
∑ 𝑅𝑡

𝑡2
𝑡=𝑡1

𝑎𝑛𝑑 𝐷(𝑡1, 𝑡2) is the time between 𝑡1 and 𝑡2 in 

years. 

3. Maximum Drawdown (MD) is the maximum portfolio percentage loss (from a peak to the 

bottom before a new peak is attained) observed in equity line over a time period specified 

(𝑡1, 𝑡2) and for price series 𝑆𝑡 described by: 

𝑀𝐷𝐷(𝑆)𝑡1

𝑡2 = 𝑠𝑢𝑝(𝑥,𝑦)∈{[𝑡1,𝑡2]2∶𝑥 ≤𝑦}

𝑆𝑥 − 𝑆𝑦

𝑆𝑥

(20) 

4. Information Ratio represents how much units of annualized returns are obtained per one unit of 

annualized standard deviation:  

𝐼𝑅 =
𝐴𝑅𝐶(𝑉)𝑡1

𝑡2

𝐴𝑆𝐷(𝑉)
𝑡1

𝑡𝑛
(21) 

All metrics except IR are expressed as percentage values and were calculated by 

appropriate functions from the ‘Performance Analytics’ R package. We assumed 252 trading 

days for VIX futures annually, hence the scaling parameter is set accordingly to 252. 

4.4. Rolling forecast implementation  

The key functions used come from the ‘rugarch’ R package. The GARCH specification is 

chosen by ‘ugarchspec’ function. The key arguments to be defined are as follows: 

• variance.model  There is a wide variety of models (GARCH, EGARCH, GJR-GARCH, 

etc.) and their respective sub-models to be chosen from the proposed list. Additionally, there is 

an option to include external regressors and variance targeting approach; 

• garchOrder 𝑝 𝑎𝑛𝑑 𝑞 lags to be set for ARCH and GARCH, respectively. We use 𝑝 𝑎𝑛𝑑 𝑞 

both equal to 1 as it was enough to address heteroscedasticity in the data; 

•  mean.model specification of the expected mean equation. We included the mean parameter 

in our all four GARCH specifications;  

•  distribution.model type of conditional density to describe mean-corrected returns 

(normal, skewed-normal, normal inverse gaussian); 
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Once specification is chosen the rolling GARCH forecast is run by implementing 

‘ugarchroll’ function on the whole dataset with the following parameters. 

• spec the GARCH model specification by ‘ugarchspec’ function described above; 

• refit.window There are two types: expanding which includes all the previous data points 

and as the time goes by the new observations are included with the old ones remaining; and 

moving – when the size of the training window is fixed at each estimation, and it is shifted by 

n-days ahead; 

• window.size It determines the size of the training window in the rolling estimation, namely, 

the starting point of the forecast initialization (for example, window size which is set at 252 

means that the first forecast will be produced on 253rd trading day); 

• n.ahead. one day ahead forecast is set by default; 

• refit.every This argument defines the frequency of the model refitting: daily, weekly, 

monthly, etc.; 

• solver: type of solver to be used. We encountered an issue with the non-converged window 

estimations which has been successfully resolved by additionally using ‘resume’ function and 

passing the arguments to ‘gosolnp’ solver which appeared to be much more efficient compared 

to the other ones.  

5. Empirical results 

5.1.  The base model 

In this section we compare the strategy based on the GARCH model (referred as the base model) 

with the three benchmark strategies. The specified characteristics of the base model are as 

follows: 

1. specification: GARCH (1,1) by Bollerslev (1986)  

2. training window size: 252 days 

3. refit every: 21 trading day 

4. window type: moving 

5. distribution model: normal 

6. historical volatility estimator: "Close-to-Close" 
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7. degree of financial leverage (DFL): 0.25 

The benchmark is being compared with: 

• Passive long strategy in S&P 500 

• Passive long strategy in VIX futures 

• Passive short strategy in VIX futures 

Transactional costs are included for all strategies presented here and further. According 

to the passive strategy trading position (respective long or short) is entered on 2013-01-02 and 

remained unchanged until 2019-10-03. The performance of the strategies is presented on Figure 

9 and Table 3. 

Figure 9. Equity lines of the base model against three benchmark strategies: 1) passive 

long in VIX futures, 2) passive short in VIX futures and 3) passive long in S&P 500  

 

Note: Buy-and-hold S&P500 and passive short VIX futures strategies dominate over the rest. 

Table 3. The base model performance against the benchmark 

Strategy 

Annualized 

Return, in 

% 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of 

trades 

% of 

long 

signal to 

all 

signals 

RMSE 

Correct 

sign 

change 

prediction, 

in % 

Passive long 

S&P 500 

10.7 12.9 0.83 19.7 1 100 - - 

Passive long 

VIX 

-10.6 21.4 -0.498 56.7 1 100 - - 

Passive short 

VIX 

6.6 22.1 0.299 37.4 1 0 - - 

base model 1.00 22.0 0.045 39.9 159 57 0.232 53.7 
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Note: All GARCH models have notoriously large maximum drawdowns and are almost two times riskier than 

passive long S&P 500 strategy 

The portfolio value based on the long VIX strategy steadily declined, whereas - the S&P 

500 index grew consistently over the whole period observed. The short VIX exceeded the S&P 

500 until the beginning of 2018, and then dropped significantly when VIX futures experienced 

the all-time percentage close price decline. The base model dominated the passive short VIX, 

which performed little below the S&P 500 benchmark until the middle of 2017 and then 

dropped significantly following the same decrease as VIX short strategy in the beginning of the 

February 2018. 

Despite early relative success the strategy based on the base model ended up at around 

1% of annualized return and the slightly positive Information Ratio (0.045). Annualized 

standard deviations for all VIX-based strategies are similar and almost two times higher 

compared to S&P 500. According to the base model. More than 50% of the sign change has 

been accurately predicted, whereas RMSE value is 0.232%. Essentially, the investment strategy 

performance depends on the comparison between the historical volatility and sigma, what is 

presented in Figure 10. 

Over the eleven-year period of 2009-2019 the S&P 500 index showed an upward trend 

with relatively minor declines, whereas the volatility has been steadily decreasing. Given this 

the volatility strategies in which more long signals occur are expected to perform worse, and 

vice versa.  

Figure 10. Daily historical volatility by “Close-to-Close” estimator and volatility 

forecasted by the GARCH (1,1) model  

 
Note: Forecasted volatility does not significantly diverge from the historical volatility and significant moves are 

captured 
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Fitting coefficients for unconditional variance constraint in GARCH model are acceptable 

over the whole observed period as the sum of 𝑎𝑙𝑝ℎ𝑎1 and 𝑏𝑒𝑡𝑎 1 from the unconditional 

volatility constraint in equation (6) does not exceed the threshold: 

Figure 11. The sum of the rolling GARCH (1,1) parameter estimates over time.  

 
Note: We can see that the sum of  alpha1 and beta1 does not exceed one but sometimes is equal to one. If the sum 

is equal to 1, then current information remains important when forecasting the volatility for all time horizons and 

the correct model specification is integrated GARCH (I-GARCH), introduced by Engle and Bollerslev (1986). 

5.2.  Other strategies based on the GARCH volatility forecasts.  

In this section we compare performance of numerous trading strategies constructed on 

conditional variance forecasts from different GARCH models specifications. We also take into 

account a wide set of strategy assumptions. Our main aim is to identify the robustness of the 

results to initial assumptions and indirectly assess which model or set of models produces the 

best investment outcomes. 

The set of tested parameters is as follows: 

1. Specification: GARCH, EGARCH, GJR-GARCH, fGARCH-TGARCH2 (all are of 1,1 

order) 

2. Training window: 126 days, 252 days, 504 days 

3. Model refit frequency: 21, 63, 126 trading days 

4. Window type: moving, expanding 

5. Conditional distribution of returns: normal (norm), skewed-normal (snorm), normal 

inverse gaussian (nig) 

 
2 In rugarch package these specifications are denoted as follows: sGARCH, eGARCH, gjrGARCH, 

and fGARCH, respectively. We use these notations in the text. 
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6. Historical volatility estimator: “Close-to-Close”, “Garman-Klass”.  The Parkinson 

estimator was not included in the sensitivity analysis since its volatility forecasts were 

very close to those produced by the Garman-Klass estimator– respective outcomes do 

not make any substantial changes to the results.  

There are in total 4*3*3*2*3*2=432 combinations of the above parameters. The 

performance metrics, the forecasting errors, and the percentage of ‘long” signals of each model 

are computed in R via the custom written loop. In total we obtained 430 outcomes, as for two 

of them there were irresolvable issues with convergence of the optimization algorithm. The 

outcomes were filtered by “Close-to-Close” historical volatility estimator across all 

distributions. Given there were no obvious outliers, we computed the average of the 

performance metrics in each group of tested parameters. The three key observations are 

presented below. We compared the strategies with respect to the Information Ratio metric (IR), 

as described in formula (21) in Section 3.3.  

5.2.1. Model specification 

Table 4 and Figure 9 present results of strategies with respect to different GARCH model 

specification. The fGARCH-TGARCH and GJR-GARCH performed significantly better that 

the GARCH and EGARCH.  

Figure 12. Investment outcome across GARCH specifications 

 
Note: Annualized standard deviation and average of long signals proportion are quite similar across all GARCH 

specifications 
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Table 4. Investment outcome across GARCH specifications 

Specification 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average 

of trades 

Average of 

signal_long 

Average 

of ELF 
RMSE 

eGARCH 1.78 22.01 0.08 42.96 176.78 55.71 56.50 0.254 

fGARCH 9.15 22.17 0.41 31.21 196.52 56.23 58.01 0.302 

gjrGARCH 8.03 22.18 0.36 37.14 166.63 56.33 57.64 0.294 

sGARCH -0.22 21.63 -0.01 48.08 152.00 56.77 53.53 0.259 

Grand Total 4.69 22.00 0.21 39.85 172.98 56.26 56.42 0.852 

Note: The ELF (economic loss function) is the percentage of the correct sign change prediction as described in the 

formula (14) in Section 2.3. above. 

Despite having significantly higher RMSE in comparison to the classical GARCH model, 

strategies based on the fGARCH-TGARCH and GJR-GARCH model specifications perform 

better than those based on the GARCH models in terms of Information Ratio metric: 0.41 and 

0.36 against -0.01, respectively. The fGARCH-TGARCH model shows the outstanding 9.14% 

of the annualized return and 31.21% of the maximum drawdown. It has been also quite accurate 

in terms of the correct sign change prediction (58%), while the GJR-GARCH did slightly worse 

(57.6%). On average, the fGARCH-TGARCH generates the most signals (196.52), whereas 

GARCH – the least (152). The detailed results for model specification are summarized in Tables 

14-17 in Appendix. 

5.2.2. Training window size 

Results of the strategies with respect to different training window size are shown in the Table 

5. All strategies performed similarly, and we cannot identify any substantial differences among 

them.  

Table 5. Investment outcomes across trading window size 
Size Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of ELF 
RMSE 

126 4.56 21.78 0.21 39.55 177.31 54.46 54.75 0.32 

252 4.39 22.11 0.20 45.03 170.75 56.39 56.76 0.29 

504 5.11 22.10 0.23 34.95 170.89 57.92 57.75 1.9 

Grand Total 4.69 22.00 0.21 39.85 172.98 56.26 56.42 0.84 

Note: The longest training window produced the best outcomes under IR and was the most accurate for correct 

sign change prediction, but the differences are rather small 

The detailed results for various window size are presented in Tables 18-20 in Appendix. 

5.2.3. Refit window 

Table 6 presents results of the strategies with respect to the GARCH model refitting frequency. 

Again, we do not observe any significant differences among them.  
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Table 6. Investment outcomes across GARCH model refitting frequency 

Refit frequency 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average 

of trades 

Average of 

signal_long 

Average 

of elf 
RMSE 

21 4.97 21.81 0.22 37.69 186.31 54.40 55.95 1.52 

63 4.51 22.10 0.20 40.61 175.49 56.53 56.74 0.33  

126 4.58 22.08 0.21 41.24 157.15 57.84 56.57 0.41 

Grand Total 4.69 22.00 0.21 39.85 172.98 56.26 56.42 0.75 

The detailed results for different refitting frequencies can be found in Tables 21-24 in 

Appendix. 

6. Sensitivity analysis 

In this section we check whether the strategy based on the base model yields the robust results. 

The tested parameters take different values while the others remain unchanged. For each tested 

parameter we visualize the equity lines and provide the performance tables of the base model 

against three benchmark strategies. The parameters of the base model are presented in Table 7. 

Table 7. Sensitivity analysis: testing parameters stability 
Specification sGARCH eGARCH gjrGARCH fGARCH/TGARCH sub-model 

Training window 

size (days) 
126 252 504 756 

Refit every 21st 63rd 126th No refit 

Training window 

type 
Moving Expanding - - 

Distributional model Norm Skewed norm 
Normal inverse 

Gaussian 
- 

Historical volatility 

estimator 
Close-to-Close Garman-Klass Parkinson - 

Note: This table summarizes all parameters tested in the sensitivity analysis. We underlined starting parameters 

for the base model 

6.1.  GARCH specification  

As expected, across different GARCH specifications the base model is not stable at all, and its 

performance varies significantly, see Table 8. Surprisingly, according to Figure 13 the 

fGARCH-TGARCH specification outperformed both the passive long S&P 500 and passive 

short VIX futures strategies and produced outstanding annualized return on the level of 13.53% 

against 10.74% and 6.63%, respectively. The GJR-GARCH did similarly well: 9.49% of 

annualized return being the most accurate specification in terms of sign change prediction. Once 

risk is considered, the passive long S&P 500 is still far the best strategy: 0.83 IR against 0.61 

of fGARCH and 0.428 of GJR-GARCH, respectively. The exponential GARCH produced 

negative annualized return (-0.82%) with the highest percentage of long signals generated. 

Strategies based on EGARCH and GARCH models produced quite robust results though. 
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Figure 13. Sensitivity analysis: equity lines for strategies with different GARCH 

specifications 

 

Note:  fGARCH and gjrGARCH showed competitive outcomes in comparison to long S&P500 strategy, whereas 

sGARCH and eGARCH did not produced high risk-adjusted returns 

Table 8. Sensitivity analysis: strategy performance under different GARCH specifications 

Note: Except EGARCH all GARCH specifications produced positive IR, while passive long S&P500 strategy is 

the best in terms of IR metric primarily due to relatively low annualized SD and high annualized return 

6.2.  Training window type 

The obtained results let conclude that the strategy is robust to the window type. In the mid of 

2016 the strategy based on the expanding window performed slightly better. The similar results 

were obtained for almost all performance statistics. In terms of annualized returns, Information 

Ratio and maximum drawdown, the “moving” window did slightly better, though. RMSE is 

identical for both, but “moving” strategy is little more accurate with respect to the correct sign 

Strategy 

Annualized 

Return, in 

% 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of trades 

% of long 

signal to 

all signals 

RMSE 

Correct 

sign change 

prediction 

(ELF) 

Passive 

long S&P 

500 

10.7 12.9 0.83 19.7 1 100 - - 

Passive 

long VIX 
-10.6 21.4 -0.50 56.7 1 100 - - 

Passive 

short VIX 
6.6 22.1 0.30 37.4 1 0 - - 

SGARCH 1.0 22.0 0.04 39.9 159 57 0.232 53.7 

EGARCH -0.8 22.0 -0.04 54.9 206 53.5 0.294 56.5 

GJR-

GARCH 
9.4 22.1 0.49 38.2 184 55.8 0.287 57.5 

fGARCH-

TGARCH 
13.5 22.1 0.61 28.8 214 55.1 0.308 57.5 
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change prediction. The Strategy with the expanding window is more active in terms of the total 

number of trades generated: 167 against 159 given the higher long signals proportion. There 

was a minor difference in the equity lines observed in the middle of 2016, which anyway 

disappeared later, according to Figure 14. 

Figure 14. Sensitivity analysis: equity lines for expanding and moving rolling windows 

 
Note: Quite similar equity line pattern with slight divergence in the mid of 2016 

Table 9. Sensitivity analysis: strategy performance under different training window type 

Strategy 

Annualized 

Return, in 

% 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of 

trades 

% of 

long 

signal 

to all 

signal

s 

RMSE 

Correct 

sign 

change 

prediction 

(ELF) 

Passive long 

S&P 500 
10.7 12.9 0.83 19.7 1 100 - - 

Passive long 

VIX 
-10.6 21.4 -0.500 56. 1 100 - - 

Passive short 

VIX 
6.6 22.2 0.30 37.4 1 0 - - 

Moving 1.00 22.0 0.04 39.9 159 57 0.232 53.7 

Expanding 0.7 22.0 0.03 42.82 167 57.6 0.232 53.6 

Note: Relatively robust training window outcomes according to all performance metrics and forecasting accuracy 

6.3.  Training window size 

Surprisingly, the longer training window resulted in worse annualized returns (which were 

negative ones but significantly better than the passive long VIX futures though) and larger 

maximum drawdowns despite being the relatively more accurate under two forecasting metrics, 

see Table 10 above. At the same time the modification with the smallest training window 
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produced the largest maximum drawdown (56%), whereas one-year training window show near 

to the passive short VIX strategy maximum drawdown (40%). The trading volume of the 

strategy with training window of 126 days was the largest: 182 total trades in comparison to 

159 by the strategy with 252 training window size. According to Information Ratio, the best 

trading strategy is the one with 252 training days, while the worst results are obtained for the 

strategy with 504 training days. We conclude that the strategy is not stable under training 

window size. 

Figure 15. Sensitivity analysis: equity lines across different training window size 

 
Note: The base model occurred to be the best across the other training window size strategies, but was still far 

away from passive long S&P500 and passive short VIX strategies 

Table 10. Sensitivity analysis: strategy performance under different training window 

size 

Strategy 
Annualized 

Return, in % 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of 

trades 

% of 

long 

signal 

to all 

signal

s 

RMSE 

Correct 

sign 

change 

prediction 

(ELF) 

Passive 

long S&P 

500 

10.7 12.9 0.83 19.7 1 100 - - 

Passive 

long VIX 
-10.6 21.4 -0.50 56.7 1 100 - - 

Passive 

short VIX 
6.6 22.1 0.30 37.4 1 0 - - 

126 0.7 22.0 0.03 55.7 182 53.1 0.263 51.9 

252 1.00 22.0 0.04 39.9 159 57 0.226 54.3 

504 -4.3 21.8 -0.19 52.7 157 60.8 0.218 56.1 

756 -1.2 22.0 -0.05 55.3 143 62.8 0.207 56.8 

Note: 252-strategy showed only 39.914% of maximum drawdown, which is significantly better than the other 

GARCH models 
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6.4. Refitting frequency 

Surprisingly, the model that has been refitted the most frequently, ended up as the worst one 

from the Information Ratio perspective among its less frequently refitted peers despite having 

the lowest RMSE (0.226). Except annualized returns, the performance metrics are very similar, 

and none of the strategies outperformed neither the passive long S&P 500 nor the passive short 

VIX futures strategies. Therefore, we can say that our initial guesses with regards to refitting 

frequency have not been justified. 

Figure 16. Sensitivity analysis: equity lines across different model refitting frequencies 

 
Note: The 126-strategy performed better that those with the other GARCH models, but still was far behind passive 

S&P500 and VIX long and short strategies, respectively. 

Table 11. Sensitivity analysis: investment performance across different refitting 

frequency 
Strategy Annualized 

Return, in 

% 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of 

trades 

% of 

long 

signal 

to all 

signal

s 

RMSE Correct 

sign 

change 

prediction 

(ELF) 

Passive long 

S&P 500 
10.7 12.9 0.83 19.7 1 100 - - 

Passive long 

VIX 
-10.6 21.4 -0.50 56.7 1 100 - - 

Passive short 

VIX 
6.6 22.1 0.30 37.4 1 0 - - 

21 1.00 22.0 0.04 39.9 159 57 0.226 54.3 

63 2.6 22.0 0.12 42.7 165 58.5 0.269 55.0 

126 4.4 22.0 0.20 41.0 153 58.1 0.278 54.8 

no refit 2.6 22.0 0.12 46.7 170 57 0.239 54.1 

Note: More often model refitting does not improve Information Ratio 
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6.5. Distribution model 

The equity line pattern started to stabilize since the beginning of 2018 just post the significant 

portfolio value decline, see Figure 17. As expected, the normal inverse gaussian distribution 

improved the overall forecasting errors, however it performed slightly worse that the model 

with skewed-normal distribution: 2.5% of annualized returns against 2.86% - still far below the 

short VIX and long S&P 500 passive strategies. One of the reasons why these two outperformed 

the model with the normal distribution might be that they take into the account the volatility 

stylized facts.  

Figure 17. Sensitivity analysis: equity lines across different assumptions about conditional 

distribution of returns in the model. 

 
Note: Similar equity line pattern observed across all GARCH model distributions 

Table 12. Sensitivity analysis: investment performance across different assumptions 

about conditional distribution of returns in the model.  

Strategy 

Annualized 

Return, in 

% 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of 

trades 

% of 

long 

signal 

to all 

signal

s 

RMSE 

Correct 

sign 

change 

prediction 

(ELF) 

Passive long 

S&P 500 
10.7 12.9 0.83 19.7 1 100 - - 

Passive long 

VIX 
-10.6 21.4 -0.50 56.7 1 100 - - 

Passive short 

VIX 
6.6 22.1 0.30 37.4 1 0 - - 

Norm 1.00 22.0 0.04 39.9 159 57 0.226 54.3 

Snorm 2.8 22.1 0.13 40.4 151 55.1 0.217 55.2 

Nig 2.5 22.3 0.11 44.2 155 56.6 0.212 56.0 

Note: The strategies with snorm and nig model distributions produced more than two times higher IR outcomes in 

comparison to the strategy based on normal distribution 
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6.6. Historical volatility estimator 

Performance of the strategies based on the Garman-Klass and the Parkinson estimators are very 

similar, and the trading results are significantly worse: -11.5% and -9.8% of annualized returns, 

respectively, in comparison with 1.0% by the “Close-to-Close” estimator. There is not much 

left from the initial capital invested at the end of the trading period given the notorious 

drawdowns: 61.7% by Parkinson and 66.5% for Garman. The strategies also did poorly in terms 

of correct sign change predictions 50.9% against 54.3% of the base case. To investigate it 

further we plot the daily estimated historical volatilities (Figure 19). 

Figure 18. Sensitivity analysis: equity lines under different historical volatility estimators 

 
Note:  The strategies based on Garman-Klass and Parkinson estimators are the worst and initial capital invested 

eroded quickly as in a case of passive short VIX strategy 

Table 13. Sensitivity analysis: investment performance across different volatility 

estimators 

Strategy 

Annualized 

Return, in 

% 

Annualized 

SD, in % 

Information 

Ratio 

Maximum 

Drawdown, 

in % 

Total 

number 

of 

trades 

% of 

long 

signal 

to all 

signals 

RMSE 

Correct 

sign 

change 

prediction 

(ELF) 

Passive long 

S&P 500 
10.7 12.9 0.83 19.7 1 100 - - 

Passive long VIX -10.6 21.4 -0.50 56.7 1 100 - - 

Passive short 

VIX 
6.6 22.1 0.30 37.4 1 0 - - 

Close-to-Close 1.00 22.0 0.04 39.9 159 57 0.226 54.3 

Garman-Klass -11.5 21.93 -0.52 66.5 89 88.3 0.288 51.2 

Parkinson -9.7 21.8 -0.44 61.7 91 85.2 0.257 50.9 

Note: Garman-Klass based strategy is the worst according to IR, whereas Parkinson strategy is slightly better than 

passive long VIX strategy. Both strategies generated almost two times less signals than the Close-to-Close strategy 
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 The Parkinson and Garman-Klass estimators in 75% of all trading days are lower than 

the Close-to-Close estimator generating much more long signals (see Figure 19). Thus, the 

Parkinson and the Garman-Klass estimators generated almost two times less trading signals 

(most long ones) 91, 89, respectively, in comparison to 159 by the Close-to-Close estimator. 

This explains the relatively poor performance of strategies based on the Parkinson and the 

Garman-Klass estimators, the latter falling even below the passive long VIX strategy.  

Figure 19. Daily historical volatility across different volatility estimators 

 
Note: Garman-Klass and Parkinson generate significantly more buy signals almost replicating passive long VIX 

strategy 

Conclusions 

In the presented study we compared the performance of VIX futures trading strategies 

based on different GARCH model specifications. We used the daily observations of the S&P 

500 index and VIX futures (contracts) from the period of 2009-01-01 to 2019-10-03, and 2013-

01-02 to 2019-10-03, respectively. The rolling volatility forecasting techniques were applied 

across the different GARCH model specifications.  

Referring to the main hypothesis we can say that we were not able to obtain robust 

abnormal returns with comparison to the equity benchmark strategies. Further empirical 

findings support this statement. We found out that (see Table 8) across four GARCH model 

specifications considered, the strategy based on the threshold GARCH (fGARCH – TGARCH 

extension) was the most attractive one producing the highest value of Information Ratio, the 

highest annualized returns and the lowest maximum drawdown. Interestingly, the classical 
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GARCH model had the best predicting power under RMSE – much more accurate than 

fGARCH – TGARCH and GJR-GARCH.  The more frequent model refitting did not improve 

portfolio’s Information Ratio – not as it was initially expected. Regarding the size of the training 

window, we were unable to conclude that the longer or shorter one necessarily improves or 

diminishes Information Ratio. In our research based on the data used we obtained that there is 

no direct relationship – and the optimal training window size is within 126 and 252 trading days 

range. The performance of strategies under different volatility estimators differ considerably. 

The poor performance of the Garman-Klass and Parkinson estimators might be partially 

explained by relatively higher number of long signals generated during the overall seven-year 

downward volatility trend observed.  

The further research ideas which could be conducted within the scope of the presented 

study and result in the overall subject benefit are as follows. It would be interesting to see how 

performance would change if weekly expiries VIX futures had been also included in the 

investment strategy. Given there are turbulent periods in which VIX close prices change 

dramatically and all strategies have maximum drawdown exceeding 30%, implementing the 

tool (like stop-loss) which prevents such losses seems to be a reasonable idea. In addition to 

that it would be worth to account for the pattern of VIX volatility term structure and adjust the 

strategy accordingly, especially when the positions are rolled out. To sum up, although there is 

a space for improvement for presented GARCH based rolling strategies, they showed their 

potential in competing with the benchmark. 
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APPENDIX 

List of tables 

Table 14. The analysis of the performance of 432 GARCH model described in detail in Section 

4.2: Model specification – GARCH model 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

126 -1.28 20.82 -0.06 52.84 147.78 52.09 49.21 0.31 

expanding -1.81 19.57 -0.08 50.09 134.22 48.61 46.44 0.29 

21 -0.89 14.74 -0.04 36.19 116.00 34.90 34.41 0.18 

63 -3.54 21.99 -0.16 60.55 162.33 54.33 52.20 0.34 

126 -1.01 21.98 -0.05 53.53 124.33 56.60 52.70 0.37 

moving -0.75 22.07 -0.03 55.59 161.33 55.57 51.99 0.32 

21 -0.32 22.16 -0.01 54.91 184.00 53.93 51.72 0.27 

63 -0.94 22.14 -0.04 56.07 176.33 54.93 52.18 0.34 

126 -0.97 21.92 -0.05 55.80 123.67 57.83 52.08 0.36 

252 1.18 22.08 0.05 45.47 153.00 57.94 54.81 0.26 

expanding 1.29 22.08 0.06 44.67 154.56 57.49 54.72 0.26 

21 1.05 22.06 0.05 41.97 160.33 56.43 54.56 0.22 

63 -0.76 22.02 -0.03 48.91 160.33 57.83 54.78 0.27 

126 3.58 22.16 0.16 43.13 143.00 58.20 54.81 0.29 

moving 1.07 22.07 0.05 46.27 151.44 58.39 54.90 0.26 

21 2.12 22.15 0.10 41.51 155.00 56.23 54.78 0.22 

63 -0.18 22.06 -0.01 49.88 157.00 58.50 54.90 0.27 

126 1.25 22.01 0.06 47.44 142.33 60.43 55.01 0.28 

504 -0.55 22.00 -0.03 45.92 155.22 60.27 56.58 0.21 

expanding 0.09 21.99 0.00 45.74 153.89 60.11 56.56 0.21 

21 0.65 22.08 0.03 43.85 162.33 59.93 56.85 0.21 

63 -0.58 21.93 -0.03 47.63 156.33 59.93 56.72 0.21 

126 0.19 21.97 0.01 45.75 143.00 60.47 56.10 0.21 

moving -1.19 22.01 -0.05 46.11 156.56 60.43 56.60 0.21 

21 -1.29 21.99 -0.06 44.65 163.67 60.07 56.85 0.21 

63 -2.16 22.08 -0.10 50.06 159.67 60.30 56.78 0.21 

126 -0.11 21.97 -0.01 43.63 146.33 60.93 56.19 0.22 

Grand Total -0.22 21.63 -0.01 48.08 152.00 56.77 53.53 0.26 

Note: For GARCH model on average the strategies with 252 training window days (expanding) performed 

relatively better (IR = 0.06) than the other strategies 
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Table 15. The analysis of the performance of 432 GARCH model described in detail in 

Section 4.2: Model specification – fGARCH (TGARCH extension) model 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

126 7.67 22.14 0.35 31.85 214.22 56.75 57.62 0.33 

expanding 9.03 22.17 0.41 29.49 213.56 57.32 57.76 0.32 

21 8.59 22.17 0.39 30.15 238.00 55.53 58.14 0.29 

63 9.78 22.14 0.44 26.39 218.00 56.43 57.90 0.32 

126 8.71 22.20 0.39 31.92 184.67 60.00 57.24 0.35 

moving 6.31 22.12 0.28 34.21 214.89 56.18 57.48 0.33 

21 5.89 22.10 0.27 30.40 238.67 55.70 57.62 0.28 

63 8.00 22.11 0.36 29.20 220.67 55.07 57.56 0.36 

126 5.03 22.14 0.23 43.03 185.33 57.77 57.26 0.34 

252 11.52 22.20 0.52 32.25 190.67 55.12 58.03 0.31 

expanding 11.50 22.19 0.52 31.96 190.11 55.23 58.05 0.32 

21 14.73 22.27 0.66 27.76 201.33 54.87 58.37 0.30 

63 10.28 22.17 0.46 32.44 195.00 55.30 58.02 0.32 

126 9.49 22.12 0.43 35.69 174.00 55.53 57.75 0.33 

moving 11.53 22.21 0.52 32.54 191.22 55.01 58.01 0.31 

21 14.35 22.22 0.65 29.21 201.33 54.83 58.31 0.30 

63 11.54 22.23 0.52 31.60 190.33 54.73 58.21 0.31 

126 8.72 22.19 0.39 36.82 182.00 55.47 57.51 0.32 

504 8.27 22.16 0.37 29.52 184.67 56.83 58.39 0.27 

expanding 8.04 22.16 0.36 29.48 184.00 56.87 58.31 0.27 

21 7.21 22.16 0.33 29.19 193.33 56.83 58.09 0.27 

63 9.24 22.16 0.42 28.91 176.33 57.20 58.09 0.27 

126 7.66 22.17 0.35 30.33 182.33 56.57 58.75 0.27 

moving 8.50 22.16 0.38 29.57 185.33 56.79 58.46 0.27 

21 8.72 22.14 0.39 29.13 193.33 56.77 58.39 0.26 

63 9.13 22.21 0.41 29.15 181.00 56.73 58.48 0.27 

126 7.64 22.13 0.35 30.43 181.67 56.87 58.53 0.27 

Grand Total 9.15 22.17 0.41 31.21 196.52 56.23 58.01 0.30 

Note: For fGARCH – TGARCH the best IR (0.52) is obtained on 252 window training size (similarly for 

expanding and moving training window types)  
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Table 16. The analysis of the performance of 432 GARCH model described in detail in 

Section 4.2: Model specifications – EGARCH model 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average 

of trades 

Average of 

signal_long 

Average 

of elf 

Average of 

rmse 

126 4.93 22.02 0.22 36.98 171.33 55.11 55.21 0.31 

expanding 3.15 22.01 0.14 39.89 175.78 56.21 55.20 0.31 

21 2.99 22.00 0.13 46.95 212.67 50.57 55.20 0.26 

63 4.40 22.11 0.20 33.87 164.33 58.30 54.95 0.31 

126 2.07 21.90 0.09 38.84 150.33 59.77 55.44 0.38 

moving 6.70 22.04 0.30 34.07 166.89 54.01 55.23 0.32 

21 6.50 22.05 0.29 31.94 200.67 50.20 55.46 0.22 

63 8.87 22.11 0.40 31.47 162.67 54.30 54.73 0.37 

126 4.75 21.96 0.21 38.80 137.33 57.53 55.50 0.36 

252 -3.98 21.94 -0.18 58.10 173.56 57.28 56.36 0.46 

expanding -4.61 21.90 -0.21 60.39 175.78 57.29 56.40 0.46 

21 -1.86 22.01 -0.08 56.35 194.67 53.93 56.31 0.39 

63 -5.97 21.84 -0.27 62.12 182.00 57.63 56.79 0.46 

126 -6.01 21.86 -0.28 62.68 150.67 60.30 56.10 0.1 

moving -3.35 21.97 -0.15 55.81 171.33 57.28 56.33 0.46 

21 -2.40 21.94 -0.11 54.90 200.67 54.10 56.85 0.39 

63 -5.27 21.91 -0.24 58.83 175.33 57.87 56.42 0.46 

126 -2.39 22.05 -0.11 53.68 138.00 59.87 55.71 0.52 

504 4.41 22.06 0.20 33.80 185.44 54.72 57.92 6.84 

expanding 4.49 22.07 0.20 33.27 180.89 54.56 57.83 1.23 

21 6.14 22.09 0.28 27.14 186.00 54.13 57.68 0.28 

63 3.34 22.01 0.15 37.53 178.00 55.17 57.94 0.8 

126 3.98 22.11 0.18 35.12 178.67 54.37 57.89 2.61 

moving 4.33 22.04 0.20 34.34 190.00 54.89 58.00 12.45 

21 5.58 22.14 0.25 31.20 193.33 55.50 57.87 36.6 

63 2.62 21.97 0.12 39.38 193.33 54.80 58.22 0.35 

126 4.79 22.01 0.22 32.45 183.33 54.37 57.90 0.4 

Grand Total 1.78 22.01 0.08 42.96 176.78 55.71 56.50 2.54 

Note: For EGARCH the strategy based on moving training window with 126 training window days produced on 

average the best IR (0.3) 
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Table 17. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Model specifications – GJR-GARCH model 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

126 6.92 22.14 0.31 36.54 175.89 53.91 56.95 0.33 

expanding 6.87 22.16 0.31 37.26 172.22 54.06 56.94 0.32 

21 4.85 22.15 0.22 37.24 198.67 51.27 56.86 0.28 

63 7.50 22.16 0.34 38.74 168.67 54.27 57.36 0.32 

126 8.26 22.15 0.37 35.81 149.33 56.63 56.60 0.37 

moving 6.98 22.12 0.31 35.81 179.56 53.76 56.96 0.33 

21 1.33 22.06 0.06 39.37 206.67 50.53 56.42 0.29 

63 11.52 22.21 0.52 31.83 176.00 53.53 57.39 0.36 

126 8.08 22.09 0.37 36.22 156.00 57.20 57.07 0.35 

252 8.85 22.24 0.40 44.32 165.78 55.23 57.84 0.28 

expanding 8.56 22.22 0.38 44.44 164.67 55.11 57.77 0.29 

21 10.56 22.27 0.47 40.49 172.00 55.17 58.06 0.28 

63 7.69 22.24 0.35 43.68 169.33 54.83 57.77 0.28 

126 7.43 22.16 0.33 49.16 152.67 55.33 57.48 0.30 

moving 9.14 22.26 0.41 44.19 166.89 55.36 57.91 0.28 

21 9.87 22.26 0.44 40.07 176.00 55.03 58.00 0.28 

63 8.71 22.28 0.39 44.61 170.00 55.53 57.89 0.28 

126 8.83 22.23 0.40 47.90 154.67 55.50 57.86 0.28 

504 8.32 22.16 0.38 30.56 158.22 59.86 58.12 0.27 

expanding 9.36 22.15 0.42 26.71 158.89 59.70 58.23 0.27 

21 8.83 22.12 0.40 25.38 160.67 59.37 58.16 0.27 

63 8.09 22.11 0.37 27.69 160.00 59.73 58.29 0.27 

126 11.17 22.22 0.50 27.05 156.00 60.00 58.23 0.27 

moving 7.28 22.18 0.33 34.42 157.56 60.01 58.02 0.27 

21 6.07 22.15 0.27 34.56 162.00 59.83 57.83 0.27 

63 7.03 22.19 0.32 34.05 158.67 59.53 58.25 0.27 

126 8.74 22.19 0.39 34.64 152.00 60.67 57.97 0.27 

Grand Total 8.03 22.18 0.36 37.14 166.63 56.33 57.64 0.29 

Note: For GJR-GARCH the strategy based on expanding training window with 504 training window days 

produced on average the best IR (0.42) 
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Table 18. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Training window size – 126 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

eGARCH 4.93 22.02 0.22 36.98 171.33 55.11 55.21 0.31 

expandin

g 
3.15 22.01 0.14 39.89 175.78 56.21 55.20 0.31 

21 2.99 22.00 0.13 46.95 212.67 50.57 55.20 0.26 

63 4.40 22.11 0.20 33.87 164.33 58.30 54.95 0.31 

126 2.07 21.90 0.09 38.84 150.33 59.77 55.44 0.38  

moving 6.70 22.04 0.30 34.07 166.89 54.01 55.23 0.32  

21 6.50 22.05 0.29 31.94 200.67 50.20 55.46 0.22  

63 8.87 22.11 0.40 31.47 162.67 54.30 54.73 0.37 

126 4.75 21.96 0.21 38.80 137.33 57.53 55.50 0.36 

fGARCH 7.67 22.14 0.35 31.85 214.22 56.75 57.62 0.33 

expandin

g 
9.03 22.17 0.41 29.49 213.56 57.32 57.76 0.32 

21 8.59 22.17 0.39 30.15 238.00 55.53 58.14 0.29 

63 9.78 22.14 0.44 26.39 218.00 56.43 57.90 0.32 

126 8.71 22.20 0.39 31.92 184.67 60.00 57.24 0.35 

moving 6.31 22.12 0.28 34.21 214.89 56.18 57.48 0.33 

21 5.89 22.10 0.27 30.40 238.67 55.70 57.62 0.28 

63 8.00 22.11 0.36 29.20 220.67 55.07 57.56 0.36 

126 5.03 22.14 0.23 43.03 185.33 57.77 57.26 0.34 

gjrGARCH 6.92 22.14 0.31 36.54 175.89 53.91 56.95 0.33 

expandin

g 
6.87 22.16 0.31 37.26 172.22 54.06 56.94 0.32 

21 4.85 22.15 0.22 37.24 198.67 51.27 56.86 0.28 

63 7.50 22.16 0.34 38.74 168.67 54.27 57.36 0.32 

126 8.26 22.15 0.37 35.81 149.33 56.63 56.60 0.37 

moving 6.98 22.12 0.31 35.81 179.56 53.76 56.96 0.33 

21 1.33 22.06 0.06 39.37 206.67 50.53 56.42 0.29 

63 11.52 22.21 0.52 31.83 176.00 53.53 57.39 0.36 

126 8.08 22.09 0.37 36.22 156.00 57.20 57.07 0.35 

sGARCH -1.28 20.82 -0.06 52.84 147.78 52.09 49.21 0.31 

expandin

g 
-1.81 19.57 -0.08 50.09 134.22 48.61 46.44 0.29 

21 -0.89 14.74 -0.04 36.19 116.00 34.90 34.41 0.18 

63 -3.54 21.99 -0.16 60.55 162.33 54.33 52.20 0.34 

126 -1.01 21.98 -0.05 53.53 124.33 56.60 52.70 0.37 

moving -0.75 22.07 -0.03 55.59 161.33 55.57 51.99 0.32 

21 -0.32 22.16 -0.01 54.91 184.00 53.93 51.72 0.27 

63 -0.94 22.14 -0.04 56.07 176.33 54.93 52.18 0.34 

126 -0.97 21.92 -0.05 55.80 123.67 57.83 52.08 0.36 

Grand Total 4.56 21.78 0.21 39.55 177.31 54.46 54.75 0.32 

Note: The strategy with 126 training days is the most dominant on fGARCH – TGARCH specification: IR (0.35) 
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Table 19. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Training window size – 252 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

eGARCH -3.98 21.94 -0.18 58.10 173.56 57.28 56.36 0.46 

expandin

g 
-4.61 21.90 -0.21 60.39 175.78 57.29 56.40 0.46 

21 -1.86 22.01 -0.08 56.35 194.67 53.93 56.31 0.41 

63 -5.97 21.84 -0.27 62.12 182.00 57.63 56.79 0.46 

126 -6.01 21.86 -0.28 62.68 150.67 60.30 56.10 0.51 

moving -3.35 21.97 -0.15 55.81 171.33 57.28 56.33 0.46 

21 -2.40 21.94 -0.11 54.90 200.67 54.10 56.85 0.39 

63 -5.27 21.91 -0.24 58.83 175.33 57.87 56.42 0.46 

126 -2.39 22.05 -0.11 53.68 138.00 59.87 55.71 0.52 

fGARCH 11.52 22.20 0.52 32.25 190.67 55.12 58.03 0.31 

expandin

g 
11.50 22.19 0.52 31.96 190.11 55.23 58.05 0.32 

21 14.73 22.27 0.66 27.76 201.33 54.87 58.37 0.30 

63 10.28 22.17 0.46 32.44 195.00 55.30 58.02 0.32 

126 9.49 22.12 0.43 35.69 174.00 55.53 57.75 0.33 

moving 11.53 22.21 0.52 32.54 191.22 55.01 58.01 0.31 

21 14.35 22.22 0.65 29.21 201.33 54.83 58.31 0.30 

63 11.54 22.23 0.52 31.60 190.33 54.73 58.21 0.31 

126 8.72 22.19 0.39 36.82 182.00 55.47 57.51 0.32 

gjrGARCH 8.85 22.24 0.40 44.32 165.78 55.23 57.84 0.28 

expandin

g 
8.56 22.22 0.38 44.44 164.67 55.11 57.77 0.29 

21 10.56 22.27 0.47 40.49 172.00 55.17 58.06 0.28 

63 7.69 22.24 0.35 43.68 169.33 54.83 57.77 0.28 

126 7.43 22.16 0.33 49.16 152.67 55.33 57.48 0.30 

moving 9.14 22.26 0.41 44.19 166.89 55.36 57.91 0.28 

21 9.87 22.26 0.44 40.07 176.00 55.03 58.00 0.28 

63 8.71 22.28 0.39 44.61 170.00 55.53 57.89 0.28 

126 8.83 22.23 0.40 47.90 154.67 55.50 57.86 0.28 

sGARCH 1.18 22.08 0.05 45.47 153.00 57.94 54.81 0.26 

expandin

g 
1.29 22.08 0.06 44.67 154.56 57.49 54.72 0.26 

21 1.05 22.06 0.05 41.97 160.33 56.43 54.56 0.22 

63 -0.76 22.02 -0.03 48.91 160.33 57.83 54.78 0.27 

126 3.58 22.16 0.16 43.13 143.00 58.20 54.81 0.29 

moving 1.07 22.07 0.05 46.27 151.44 58.39 54.90 0.26 

21 2.12 22.15 0.10 41.51 155.00 56.23 54.78 0.22 

63 -0.18 22.06 -0.01 49.88 157.00 58.50 54.90 0.27 

126 1.25 22.01 0.06 47.44 142.33 60.43 55.01 0.28 

Grand Total 4.39 22.11 0.20 45.03 170.75 56.39 56.76 0.29 

Note: Same with 252-days training window – strategy based on fGARCH – TGARCH produced IR (0.52) which 

is far above the outcomes of remaining specifications 
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Table 20. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Training window size – 504 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average 

of trades 

Average of 

signal_long 

Average 

of elf 

Average of 

rmse 

eGARCH 4.41 22.06 0.20 33.80 185.44 54.72 57.92 6.84  

expanding 4.49 22.07 0.20 33.27 180.89 54.56 57.83 1.23 

21 6.14 22.09 0.28 27.14 186.00 54.13 57.68 0.28 

63 3.34 22.01 0.15 37.53 178.00 55.17 57.94 0.8 

126 3.98 22.11 0.18 35.12 178.67 54.37 57.89 2.61 

moving 4.33 22.04 0.20 34.34 190.00 54.89 58.00 12.45 

21 5.58 22.14 0.25 31.20 193.33 55.50 57.87 36.6  

63 2.62 21.97 0.12 39.38 193.33 54.80 58.22 0.35 

126 4.79 22.01 0.22 32.45 183.33 54.37 57.90 0.4 

fGARCH 8.27 22.16 0.37 29.52 184.67 56.83 58.39 0.27 

expanding 8.04 22.16 0.36 29.48 184.00 56.87 58.31 0.27 

21 7.21 22.16 0.33 29.19 193.33 56.83 58.09 0.27 

63 9.24 22.16 0.42 28.91 176.33 57.20 58.09 0.27 

126 7.66 22.17 0.35 30.33 182.33 56.57 58.75 0.27 

moving 8.50 22.16 0.38 29.57 185.33 56.79 58.46 0.27 

21 8.72 22.14 0.39 29.13 193.33 56.77 58.39 0.26 

63 9.13 22.21 0.41 29.15 181.00 56.73 58.48 0.27 

126 7.64 22.13 0.35 30.43 181.67 56.87 58.53 0.27 

gjrGARCH 8.32 22.16 0.38 30.56 158.22 59.86 58.12 0.27 

expanding 9.36 22.15 0.42 26.71 158.89 59.70 58.23 0.27 

21 8.83 22.12 0.40 25.38 160.67 59.37 58.16 0.27 

63 8.09 22.11 0.37 27.69 160.00 59.73 58.29 0.27 

126 11.17 22.22 0.50 27.05 156.00 60.00 58.23 0.27 

moving 7.28 22.18 0.33 34.42 157.56 60.01 58.02 0.27 

21 6.07 22.15 0.27 34.56 162.00 59.83 57.83 0.27 

63 7.03 22.19 0.32 34.05 158.67 59.53 58.25 0.27 

126 8.74 22.19 0.39 34.64 152.00 60.67 57.97 0.27 

sGARCH -0.55 22.00 -0.03 45.92 155.22 60.27 56.58 0.21 

expanding 0.09 21.99 0.00 45.74 153.89 60.11 56.56 0.21 

21 0.65 22.08 0.03 43.85 162.33 59.93 56.85 0.21 

63 -0.58 21.93 -0.03 47.63 156.33 59.93 56.72 0.21 

126 0.19 21.97 0.01 45.75 143.00 60.47 56.10 0.21 

moving -1.19 22.01 -0.05 46.11 156.56 60.43 56.60 0.21 

21 -1.29 21.99 -0.06 44.65 163.67 60.07 56.85 0.21 

63 -2.16 22.08 -0.10 50.06 159.67 60.30 56.78 0.21 

126 -0.11 21.97 -0.01 43.63 146.33 60.93 56.19 0.22 

Grand Total 5.11 22.10 0.23 34.95 170.89 57.92 57.75 1.9 

Notes: On the longer training window (504) the strategy based on GJR-GARCH model outperformed on the 

edge the fGARCH – TGARCH: 0.38 against 0.37, respectively 
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Table 21. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Refit window – 21  

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

126 3.62 21.18 0.16 38.39 199.42 50.33 53.23 0.27 

eGARCH 4.74 22.03 0.21 39.45 206.67 50.38 55.33 0.24 

expanding 2.99 22.00 0.13 46.95 212.67 50.57 55.20 0.26 

moving 6.50 22.05 0.29 31.94 200.67 50.20 55.46 0.22 

fGARCH 7.24 22.14 0.33 30.27 238.33 55.62 57.88 0.29 

expanding 8.59 22.17 0.39 30.15 238.00 55.53 58.14 0.29 

moving 5.89 22.10 0.27 30.40 238.67 55.70 57.62 0.28 

gjrGARCH 3.09 22.11 0.14 38.31 202.67 50.90 56.64 0.29 

expanding 4.85 22.15 0.22 37.24 198.67 51.27 56.86 0.28 

moving 1.33 22.06 0.06 39.37 206.67 50.53 56.42 0.29 

sGARCH -0.61 18.45 -0.03 45.55 150.00 44.42 43.06 0.22 

expanding -0.89 14.74 -0.04 36.19 116.00 34.90 34.41 0.18 

moving -0.32 22.16 -0.01 54.91 184.00 53.93 51.72 0.27 

252 6.05 22.15 0.27 41.53 182.67 55.08 56.91 0.27 

eGARCH -2.13 21.97 -0.10 55.63 197.67 54.02 56.58 0.39 

expanding -1.86 22.01 -0.08 56.35 194.67 53.93 56.31 0.39 

moving -2.40 21.94 -0.11 54.90 200.67 54.10 56.85 0.39 

fGARCH 14.54 22.25 0.65 28.48 201.33 54.85 58.34 0.30 

expanding 14.73 22.27 0.66 27.76 201.33 54.87 58.37 0.30 

moving 14.35 22.22 0.65 29.21 201.33 54.83 58.31 0.30 

gjrGARCH 10.21 22.26 0.46 40.28 174.00 55.10 58.03 0.28 

expanding 10.56 22.27 0.47 40.49 172.00 55.17 58.06 0.28 

moving 9.87 22.26 0.44 40.07 176.00 55.03 58.00 0.28 

sGARCH 1.59 22.10 0.07 41.74 157.67 56.33 54.67 0.22 

expanding 1.05 22.06 0.05 41.97 160.33 56.43 54.56 0.22 

moving 2.12 22.15 0.10 41.51 155.00 56.23 54.78 0.22 

504 5.24 22.11 0.24 33.14 176.83 57.80 57.72 3.71 

eGARCH 5.86 22.12 0.26 29.17 189.67 54.82 57.77 24.49 

expanding 6.14 22.09 0.28 27.14 186.00 54.13 57.68 0.28 

moving 5.58 22.14 0.25 31.20 193.33 55.50 57.87 36.60 

fGARCH 7.96 22.15 0.36 29.16 193.33 56.80 58.24 0.26 

expanding 7.21 22.16 0.33 29.19 193.33 56.83 58.09 0.27 

moving 8.72 22.14 0.39 29.13 193.33 56.77 58.39 0.26 

gjrGARCH 7.45 22.13 0.34 29.97 161.33 59.60 58.00 0.27 

expanding 8.83 22.12 0.40 25.38 160.67 59.37 58.16 0.27 

moving 6.07 22.15 0.27 34.56 162.00 59.83 57.83 0.27 

sGARCH -0.32 22.03 -0.02 44.25 163.00 60.00 56.85 0.21 

expanding 0.65 22.08 0.03 43.85 162.33 59.93 56.85 0.21 

moving -1.29 21.99 -0.06 44.65 163.67 60.07 56.85 0.21 

Grand Total 4.97 21.81 0.22 37.69 186.31 54.40 55.95 1.52 

Notes: The strategy refitted each 21st day produced the best investment outcomes on 252 days training window – 

IR (0.27) 
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Table 22. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Refit window – 63 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average 

of trades 

Average of 

signal_long 

Average 

of elf 

Average of 

rmse 

126 5.70 22.12 0.26 38.52 181.13 55.15 55.53 0.34 

eGARCH 6.64 22.11 0.30 32.67 163.50 56.30 54.84 0.34 

expanding 4.40 22.11 0.20 33.87 164.33 58.30 54.95 0.31 

moving 8.87 22.11 0.40 31.47 162.67 54.30 54.73 0.37 

fGARCH 8.89 22.12 0.40 27.79 219.33 55.75 57.73 0.34 

expanding 9.78 22.14 0.44 26.39 218.00 56.43 57.90 0.32 

moving 8.00 22.11 0.36 29.20 220.67 55.07 57.56 0.36 

gjrGARCH 9.51 22.18 0.43 35.29 172.33 53.90 57.37 0.34 

expanding 7.50 22.16 0.34 38.74 168.67 54.27 57.36 0.32 

moving 11.52 22.21 0.52 31.83 176.00 53.53 57.39 0.36 

sGARCH -2.24 22.07 -0.10 58.31 169.33 54.63 52.19 0.34 

expanding -3.54 21.99 -0.16 60.55 162.33 54.33 52.20 0.34 

moving -0.94 22.14 -0.04 56.07 176.33 54.93 52.18 0.34 

252 3.26 22.09 0.15 46.51 174.92 56.53 56.85 0.30 

eGARCH -5.62 21.88 -0.26 60.48 178.67 57.75 56.60 0.46 

expanding -5.97 21.84 -0.27 62.12 182.00 57.63 56.79 0.46  

moving -5.27 21.91 -0.24 58.83 175.33 57.87 56.42 0.46 

fGARCH 10.91 22.20 0.49 32.02 192.67 55.02 58.11 0.32 

expanding 10.28 22.17 0.46 32.44 195.00 55.30 58.02 0.32 

moving 11.54 22.23 0.52 31.60 190.33 54.73 58.21 0.31 

gjrGARCH 8.20 22.26 0.37 44.15 169.67 55.18 57.83 0.28 

expanding 7.69 22.24 0.35 43.68 169.33 54.83 57.77 0.28 

moving 8.71 22.28 0.39 44.61 170.00 55.53 57.89 0.28 

sGARCH -0.47 22.04 -0.02 49.40 158.67 58.17 54.84 0.27 

expanding -0.76 22.02 -0.03 48.91 160.33 57.83 54.78 0.27 

moving -0.18 22.06 -0.01 49.88 157.00 58.50 54.90 0.27 

504 4.59 22.08 0.21 36.80 170.42 57.93 57.85 0.34 

eGARCH 2.98 21.99 0.14 38.46 185.67 54.98 58.08 0.62 

expanding 3.34 22.01 0.15 37.53 178.00 55.17 57.94 0.8 

moving 2.62 21.97 0.12 39.38 193.33 54.80 58.22 0.35 

fGARCH 9.19 22.19 0.41 29.03 178.67 56.97 58.29 0.27 

expanding 9.24 22.16 0.42 28.91 176.33 57.20 58.09 0.27 

moving 9.13 22.21 0.41 29.15 181.00 56.73 58.48 0.27 

gjrGARCH 7.56 22.15 0.34 30.87 159.33 59.63 58.27 0.27 

expanding 8.09 22.11 0.37 27.69 160.00 59.73 58.29 0.27 

moving 7.03 22.19 0.32 34.05 158.67 59.53 58.25 0.27 

sGARCH -1.37 22.00 -0.06 48.84 158.00 60.12 56.75 0.21 

expanding -0.58 21.93 -0.03 47.63 156.33 59.93 56.72 0.21 

moving -2.16 22.08 -0.10 50.06 159.67 60.30 56.78 0.21 

Grand Total 4.51 22.10 0.20 40.61 175.49 56.53 56.74 0.33 

Notes: For the strategy refitted on 63rd day, the best investment outcomes were obtained for the shortest training 

window with 126 days  
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Table 23. The analysis of the performance of 432 GARCH model combinations described in 

detail in Section 4.2: Refit window – 126 

Strategy 
Average 

of ARC 

Average 

of ASD 

Average 

of IR 

Average 

of MD 

Average of 

trades 

Average of 

signal_long 

Average 

of elf 

Average 

of rmse 

126 4.36 22.04 0.20 41.75 151.38 57.92 55.49 0.36 

eGARCH 3.41 21.93 0.15 38.82 143.83 58.65 55.47 0.37 

expanding 2.07 21.90 0.09 38.84 150.33 59.77 55.44 0.38 

moving 4.75 21.96 0.21 38.80 137.33 57.53 55.50 0.36 

fGARCH 6.87 22.17 0.31 37.48 185.00 58.88 57.25 0.35 

expanding 8.71 22.20 0.39 31.92 184.67 60.00 57.24 0.35 

moving 5.03 22.14 0.23 43.03 185.33 57.77 57.26 0.34 

gjrGARCH 8.17 22.12 0.37 36.02 152.67 56.92 56.84 0.36 

expanding 8.26 22.15 0.37 35.81 149.33 56.63 56.60 0.37 

moving 8.08 22.09 0.37 36.22 156.00 57.20 57.07 0.35 

sGARCH -0.99 21.95 -0.05 54.67 124.00 57.22 52.39 0.36 

expanding -1.01 21.98 -0.05 53.53 124.33 56.60 52.70 0.37 

moving -0.97 21.92 -0.05 55.80 123.67 57.83 52.08 0.36 

252 3.86 22.10 0.17 47.06 154.67 57.58 56.53 0.31 

eGARCH -4.20 21.96 -0.19 58.18 144.33 60.08 55.91 0.52 

expanding -6.01 21.86 -0.28 62.68 150.67 60.30 56.10 0.1 

moving -2.39 22.05 -0.11 53.68 138.00 59.87 55.71 0.52 

fGARCH 9.10 22.16 0.41 36.25 178.00 55.50 57.63 0.33 

expanding 9.49 22.12 0.43 35.69 174.00 55.53 57.75 0.33 

moving 8.72 22.19 0.39 36.82 182.00 55.47 57.51 0.32 

gjrGARCH 8.13 22.19 0.37 48.53 153.67 55.42 57.67 0.29 

expanding 7.43 22.16 0.33 49.16 152.67 55.33 57.48 0.30 

moving 8.83 22.23 0.40 47.90 154.67 55.50 57.86 0.28 

sGARCH 2.42 22.09 0.11 45.28 142.67 59.32 54.91 0.29 

expanding 3.58 22.16 0.16 43.13 143.00 58.20 54.81 0.29 

moving 1.25 22.01 0.06 47.44 142.33 60.43 55.01 0.28 

504 5.51 22.10 0.25 34.92 165.42 58.03 57.70 0.56 

eGARCH 4.39 22.06 0.20 33.79 181.00 54.37 57.90 1.5 

expanding 3.98 22.11 0.18 35.12 178.67 54.37 57.89 2.61 

moving 4.79 22.01 0.22 32.45 183.33 54.37 57.90 0.4 

fGARCH 7.65 22.15 0.35 30.38 182.00 56.72 58.64 0.27 

expanding 7.66 22.17 0.35 30.33 182.33 56.57 58.75 0.27 

moving 7.64 22.13 0.35 30.43 181.67 56.87 58.53 0.27 

gjrGARCH 9.96 22.21 0.45 30.84 154.00 60.33 58.10 0.27 

expanding 11.17 22.22 0.50 27.05 156.00 60.00 58.23 0.27 

moving 8.74 22.19 0.39 34.64 152.00 60.67 57.97 0.27 

sGARCH 0.04 21.97 0.00 44.69 144.67 60.70 56.14 0.21 

expanding 0.19 21.97 0.01 45.75 143.00 60.47 56.10 0.21 

moving -0.11 21.97 -0.01 43.63 146.33 60.93 56.19 0.22 

Grand Total 4.58 22.08 0.21 41.24 157.15 57.84 56.57 0.41 

Note: For the strategy refitted on 126th day, the best investment outcomes were obtained for the longest training 

window – 504 (IR = 0.25) 
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