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Introduction 

Investing is the process of allocating capital to obtain future financial benefits. The investor 

expects the future cash flows to exceed the initial value of the investment. Investments in 

financial instruments are one of the methods of investing used by both individuals and 

institutional entities. One type of these instruments are securities traded on stock exchanges. 

Since the inception of stock exchanges, an increase in the value of equity instruments has been 

observed in the long run, which is associated with continuous economic growth. 

The main stock exchange index is an indicator measuring the value of shares of the largest 

companies traded on a given stock exchange. In Poland, WIG20 is such an index and it is valued 

as a synthetic portfolio of 20 largest companies listed on the Warsaw Stock Exchange (subject 

to the representation levels of individual industries in the index). 

Construction of investment portfolios reflecting the behavior of stock exchange indices 

is a method of passive capital management. In order to construct such a portfolio, it is necessary 

to purchase an appropriate number of shares included in the index portfolio and to buy or sell 

securities on an ongoing basis to best reflect its current composition. There are investment 

companies that create this type of index based instruments and offer them to both individuals 

and institutional entities. Investors may purchase investment certificates of closed-end ETFs 

(exchange-traded funds) traded on the stock exchange or purchase participation units of open-

end funds on the OTC market. 

An alternative to passive investing is active capital management. Investors can actively 

select equity instruments in their investment portfolio in order to achieve returns that exceed 

those achieved in the passive strategies. The selection can be made on the basis of the methods 

of fundamental analysis and technical analysis. Fundamental analysis is the classic form of 

assessing attractiveness of a company performed in order to assess the potential future value of 

its shares. Among others it consists of the analysis of the company's historical and current 

financial statements, its long-term development strategy, the situation of the industry and 

economy in which the company operates analyzed in the context of their development potential 

and possible threats, and analysis of possible impacts on the company's results caused by the 

geopolitical situation.  

The second family of stock selection methods is technical analysis, main assumption of 

which is the possibility of forecasting the behavior of the stock price based on its historical 

changes. Recurring patterns can be observed in the price charts, the ongoing identification of 

which is the basis for making investment decisions (Beechey et al. 2000). There are investors 
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on the capital markets who use the information obtained from the fundamental and technical 

analysis separately, as well as concomitantly. The way to assess whether a given active strategy 

is in fact profitable is to compare its results with the strategy of passive capital management. 

One method of benchmarking is by relating the results to a buy-and-hold strategy on an index 

portfolio. 

This thesis describes the selection of the best performing investment strategy in which 

investment decisions are based on signals generated by technical analysis indicators and 

machine learning techniques. Technical indicators such as Simple Moving Average, Moving 

Average Convergence Divergence, Stochastic Oscillator, Relative Strength Index and 

Williams’ Percent Range served as inputs to the machine learning models. The main aim of the 

thesis is to choose the best performing strategy among the strategies constructed using various 

machine learning techniques such as Neural Networks, K Nearest Neighbor, Regression Trees, 

Random Forests, Naïve Bayes classifiers, Bayesian Generalized Linear Models and Support 

Vector Machines in both Linear and Polynomial form. The second goal of the thesis is to 

compare the strategies with the method of passive capital management based on the buy-and-

hold mechanism. The strategies were compared using risk and return measures, such as the 

annualized rate of return, standard deviation of returns, maximum capital drawdown, Sharpe 

Ratio and Information Ratio. 

Thesis extends the current achievements of scientific research by employing the existing 

methods of machine learning and technical analysis to construct quantitative investment 

strategies, the profitability of which has been examined on the stock market indices of Poland 

(WIG20), two highly developed countries: Germany (DAX) and USA (S&P500) as well as six 

countries from Central and Eastern Europe: Bulgaria (SOFIX), Czech Republic (PX), Estonia 

(OMXT), Hungary (BUX), Latvia (OMXR) and Lithuania (OMXV). Data used in the research 

consisted of High, Low and Close daily prices of the indices in the period from 2002 to 2020, 

thus the scope of the research covers the periods of the great financial crisis of 2007-2009 and 

COVID-19 pandemic crisis. 

The main research hypothesis (RH1) states that active quantitative investment strategies 

based on the signals generated by machine learning models result in higher risk adjusted 

returns than buy-and-hold benchmark strategy. The additional research hypotheses were as 

follows: (RH2) Neural Networks generate the best (with regard to risk adjusted returns) 

investment signals compared to other machine learning techniques used in the research; (RH3) 

the very same machine learning strategy is considered best performing for all analyzed stock 

market indices; (RH4) returns obtained from signals generated by machine learning techniques 
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are resistant to changes in hyperparameters underlying the models and to changes in 

parameters underlying the technical analysis indicators. Based on the conclusions from the 

leading article developed by Dash and Dash (2016) which induced this thesis, the intuition 

behind the results was that machine learning based strategies can generate returns above 

benchmark with lower amount of investment risk. Moreover, Neural Networks strategies were 

suspected of being the best performing for every analyzed stock index and in every sensitivity 

analysis scenario. 

The structure of the thesis is composed of four chapters. The first chapter describes the 

subject of quantitative investment strategies and presents an overview of existing research in 

this field. The second chapter presents the description of the data along with the method of 

dividing it into subsets. The third chapter describes the research methodology, including the 

technical analysis indicators used, machine learning techniques, the strategy construction and 

measures of risk and return, which were used to compare the strategies. The fourth chapter 

contains results of the research, including  selection of the best performing strategy for each of 

the analyzed indices and assessment of the quality of estimation with sensitivity analysis of the 

selected model parameters. 

1. Investment management 

1.1. Historical overview 

Technical analysis is a tool for detecting recurring patterns in the prices of financial instruments 

and making investment decisions based on them. It includes many different theories and 

approaches such as candlestick patterns, Elliot wave theory and Fibonacci retracement levels 

(Reuters 1999). All these tools are based on separate assumptions and provide different output 

information. However, most of them have one feature in common - they are aimed at identifying 

a trend prevailing on the market and forecasting further price behavior. The vast majority of 

professional investors use technical analysis tools of their choice, but in the academic world it 

is considered unrelated to science, as it does not result directly from economic theory (Tian et 

al. 2002). A much more popular method among scientists is analysis of the macroeconomic 

environment known as fundamental analysis (Tian et al. 2002). In practice, investors combine 

these two methods, thus obtaining a whole picture of the market situation. 

Fama (1970) formulated his efficient market hypothesis claiming that prices of securities 

reflect all available information about them. In his work, he distinguished three types of market 

efficiency: weak, semi-strong and strong. The weak hypothesis states that the price of an 
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instrument contains all information about its past, and therefore it is not possible to forecast the 

future direction of price changes on the basis of historical data. The conclusion from this 

hypothesis is unequivocal - technical analysis is not able to bring benefits to investors. The 

semi-strong hypothesis states that price reflects all information from history as well as 

information in public circulation such as company’s financial statements. This means that 

neither technical nor fundamental analysis is helpful in forecasting and  generating positive 

return on investment. According to the last hypothesis, a strong hypothesis, price includes 

information from the past, public information as well as non-public information. It implies that, 

in addition to the conclusions from the semi-strong hypothesis, it is not possible to gain benefits 

from the so-called insider trading, i.e. basing investment decisions on hard-to-reach internal 

information about companies.  

Many scientific studies conducted before the formulation of efficient market hypothesis, 

have not rejected its weak form, among others Larson (1960), Osborne (1962), Mandelbrot 

(1963), Alexander (1964) and Fama (1965). Moreover, the assumptions of the theory of 

efficient markets were already discussed by Bachelier (1900) and the theory itself is in some 

manner a development of the theory about the behavior of prices being similar to the random 

walk process, and therefore their unpredictability, which was widely recognized in the financial 

world. 

Despite the situation in academia at the time, Brock et al. (1992), in their empirical study 

on the US stock index, showed positive financial results coming from a set of three strategies 

based on technical analysis indicators. Their work started a new wave of scientific research 

aimed to determine the effectiveness of price forecasting based on historical data. 

1.2. Review of the existing research 

The subject of effectiveness of investment strategies based on technical analysis and machine 

learning techniques has been widely analyzed in scientific research. As part of the literature 

review, several papers fundamental to this thesis were discussed in the following paragraphs. 

The foremost paper underlying this thesis was an article by Dash and Dash (2016) in 

which the authors discussed the profitability of investment strategy constructed by the 

computational efficient functional link artificial neural network (CEFLANN) with Extreme 

Learning Machine (ELM) learning approach and technical analysis indicators such as Moving 

Average, Moving Average Convergence Divergence, Stochastic Oscillator, Relative Strength 

Index and Williams’ Percent Range. Models generated three classes of trading signals i.e. buy, 

hold and sell. Signals were then used to identify the trend on the analyzed instruments which 
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along with several technical rules allowed for trading decision generation. Data used in the 

research consisted of daily quotes of two indices: BSE SENSEX and S&P 500 from 2010-2014 

period which was divided into training and testing subsets. Achieved returns were compared 

with those generated by alternative models such as Support Vector Machines, Naive Bayesian 

model, K Nearest Neighbor model and Decision Tree. Results showed that CEFLANN model 

produced the highest returns compared to the other models. 

In the paper by Jiang et al. (2012) Support Vector Machine model and Multiple Additive 

Regression Trees were used to solve classification problem of trend prediction in NASDAQ, 

DJIA and S&P 500 US stock indices daily prices. Additionally, the authors employed SVM 

model, linear regression and generalized linear model (GLM) as regression techniques aimed 

to predict the value of price movements. Research discussed the correlations between target US 

stock indices and other financial instruments such as Nikkei 225, Hang Seng, FTSE100, DAX 

and ASX indices, EURUSD, AUDUSD and USDJPY currency pairs and silver, platinum, 

palladium, oil and gold commodities which served as predictor variables in the models. Results 

showed a relatively high accuracy of trend prediction achieved bythe classification techniques. 

In case of regression techniques, strategies constructed in the research produced on average 

returns higher than the analyzed benchmarks. 

Huang et al. (2005) analyzed the predictive ability of Support Vector Machine models as 

well as other classification techniques such as Linear Discriminant Analysis, Quadratic 

Discriminant Analysis and Elman Backpropagation Neural Networks. Models were applied on 

weekly NIKKEI 225 stock index data and incorporated several macroeconomic variables as 

model inputs. Performance of the models was measured by the hit ratio calculated as percentage 

of correct predictions of price movement direction. SVM achieved the best results compared to 

the remaining models. Additionally, a model combining predictions from all of the analyzed 

techniques with corresponding weights estimated on training subset was analyzed with the 

resulting hit ratio exceeding that achieved by SVM solely. 

In the article written by Gerlein et al. (2016) six machine learning based models including 

the Naïve Bayes classifier were used to produce profitable quantitative strategies on the 

USDJPY, EURUSD and EURGBP currency pairs. Models incorporated technical analysis tools 

and a set of attributes related to among others price, seasonality and lagged price values. Several 

setups related to periodic retraining, training subset size and selected attributes were analyzed 

in order to calculate the model parameters as well as to measure the accuracy and returns. 

Despite the accuracy of the models being relatively low, models allowed to generate positive 

cumulative returns in several setups. 
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Madan et al. (2015) applied Generalized Linear Model, Support Vector Machine and 

Random Forest techniques to predict the Bitcoin price change in daily as well as high frequency 

intervals. Authors focused on models’ accuracy measurement which was relatively high for 

daily price change prediction in case of GLM and Random Forest models with the highest result 

obtained by the GLM. Random Forest model achieved higher accuracy on 10 minute price 

quotes. 

In an article by Chen et al. (2006), authors discussed the application of Support Vector 

Machines and Back Propagation Neural Networks on daily close prices of six Asian stock 

indices: Nikkei 225, All Ordinaries, Hang Seng, Straits Times, Taiwan Weighted and KOSPI. 

Models were constructed based on Exponential Moving Average and Relative Difference in 

Percentage of the price. Predictions were then evaluated using statistics such as Mean Squared 

Error, Normalized Mean Squared Error and Mean Absolute Error measuring the deviation of 

predicted price from the actual price as well as Directional Symmetry and Weighted Directional 

Symmetry measuring prediction accuracy of price movement direction with the latter also 

incorporating deviation component in its weights. Results showed that the analyzed models 

behaved better than benchmark with regard to predicted price deviation measures. 

Leigh et al. (2002) described a novel approach to technical analysis bull-flag pattern 

recognition aiming to predict price changes. Technical indicators served as inputs to Neural 

Network model which was then altered with genetic algorithm in order to improve the model’s 

coefficient of determination. Techniques were applied on New York Stock Exchange 

Composite Index. Calculated returns indicated the superiority of analyzed methods compared 

to buy-and-hold benchmark strategy. 

In a paper by Lin et al. (2006), authors investigated the performance of decision trees 

deployed on the ‘electronic stocks’ of Taiwan stock market and ‘technology stocks’ of 

NASDAQ market. Prices of selected stocks were adjusted to exclude effects of dividends. 

Filtering rule based on moving averages was applied to the dataset. Decision Tree algorithms 

were then used in order to cluster the information from four input variables: money supply, 

inflation rate, revenues and stock market index futures’ prices. Model performance was 

evaluated using averaged compound annual rate of return. Predictions yielded positive returns 

in case of both indices. 

Colianni et al. (2015) discussed construction of trading strategies based on qualitative 

data concerning Bitcoin cryptocurrency observed on the Twitter portal. Linear Regression 

models, Support Vector Machines as well as Bernoulli and Multinomial Naïve Bayes classifiers 

were used in two approaches: text classification and sentiment analysis, both aimed to predict 
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Bitcoin price change directions. Bernoulli Naïve Bayes classifier achieved the highest accuracy 

in the text classification approach while Linear Regression resulted in the highest accuracy in 

the sentiment analysis approach compared to the remaining techniques.  

The aforementioned studies present a scientifically and financially interesting problem of 

the effectiveness of technical analysis and machine learning techniques in the development of 

investment strategies. An interesting question is how the strategies constructed by the 

researchers would behave on stock markets in less developed countries and what is the impact 

of the great financial crisis of 2007-2009 as well as COVID-19 pandemic crisis on the final 

result. 

In this thesis, the research objective is to investigate predictive ability of a set of machine 

learning techniques proposed by Dash and Dash (2016), namely Neural Networks, K Nearest 

Neighbor, Naïve Bayes, Regression Tree, Support Vector Machines and additionally Random 

Forest and Bayesian Generalized Linear Model discussed in other papers. Technical analysis 

indicators proposed by Dash and Dash (2016) were used as inputs to aforementioned machine 

learning models. Analyzed set of indicators consisted of Simple Moving Average (SMA), 

Moving Average Convergence Divergence (MACD), Stochastic Oscillator (STOCH), Relative 

Strength Index (RSI) and Williams' Percent Range (WPR) with the underlying parameters 

similar to those proposed in the paper. 

One of the newest research (Kijewski and Ślepaczuk, 2020) testing the validity and 

efficiency of ML techniques compared the performance of classical techniques with LSTM 

model for S&P500 index on daily frequency for the last 20 years. They showed that the 

combination of strategies (ML and classical techniques) outperformed market significantly and 

that the combination of signals gave the best results by diversifying the risk of single strategy 

mistake. Finally, they showed that LSTM with selected hyperparameters outperformed ARIMA 

model but at the same time LSTM model results were not robust to initial hyperparameters 

assumptions. 

Thesis extends current scientific research by evaluation of strategies on stock markets of 

both developed (Germany, USA) and less developed countries from Central and Eastern Europe 

including Poland and by inclusion of the great financial crisis of 2007-2009 and COVID-19 

pandemic crisis data. Additionally, employment of dynamic estimation windows (periodical 

redevelopment of underlying parameters of the models to reflect current market behaviors) was 

introduced. Empirical study compared the generated set of strategies with the benchmark buy-

and-hold strategy. This was to check how much an investor would gain in excess of the market 



 Grudniewicz, J. and Ślepaczuk, R. /WORKING PAPERS 23/2021 (371) 8 
 

if he employed the tools discussed in this thesis. The study assumed the absence of transaction 

costs as in the work of Brock et al. (1992). 

1.3. Research hypotheses 

The main objective of this study is to verify the profitability of investment strategies based on 

the technical analysis indicators and machine learning techniques. Previous studies on similar 

matters discussed the above-average profitability of such strategies. The authors additionally 

wanted to transfer existing scientific findings into their domestic Polish capital market, as well 

as the markets of Central and Eastern Europe. For this purpose, an attempt was made to verify 

the following research hypotheses (RH): 

- RH1: Active quantitative investment strategies based on signals generated by machine 

learning models result in higher risk adjusted returns than buy-and-hold benchmark 

strategy, 

- RH2: Neural Networks generate the best (with regard to risk adjusted returns) investment 

signals compared to other machine learning techniques used in the research, 

- RH3: The very same machine learning strategy is considered best performing for all 

analyzed stock market indices, 

- RH4: Returns obtained from signals generated by machine learning techniques are resistant 

to changes in hyperparameters underlying the models and to changes in parameters 

underlying the technical analysis indicators. 

Verification of the research hypotheses should demonstrate the profitability of the 

quantitative investment strategies constructed using analyzed methods and deployed on the 

capital markets discussed in the study. Obtaining the instrument-robust answers would require 

research on all available stock indices as well as on other groups of financial instruments, which 

may become the subject of future research. 

2. Data 

2.1. Data description 

Data used in the research was downloaded from the website http://www.stooq.pl/ and contains 

information about HLC (High Low Close) prices of selected stock indices. For the analysis, 

authors chose the stock market index of their domestic market – WIG20 (Poland), two highly 

liquid global indices from developed countries – DAX (Germany) and S&P500 (USA) as well 

as a group of less liquid Central and Eastern European countries’ indices: SOFIX (Bulgaria), 
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PX (Czech Republic), OMXT (Estonia), BUX (Hungary), OMXR (Latvia) and OMXV 

(Lithuania). Data for each index contained quotes from 2002-01-01 to 2020-10-30. Due to 

suspension of quotation observed for certain indices as well as differing holiday calendars, there 

were dates with no quotes available. This limitation was remediated by omitting those dates in 

the analysis resulting in number of observations differing among indices. 

2.2. Sampling 

Research employed dynamic estimation windows which means that the underlying parameters 

of the models were periodically recalibrated to reflect current market behaviors. Observations 

from the beginning of the available period were initially trimmed in order for the overall number 

of observations for each index to be easily divisible into equal subsets. Calibration of models’ 

parameters was conducted on 200 trading day window (in sample) and then model predictions 

were applied onto next 20 trading day window (out of sample). For each subsequent dynamic 

window iteration, in sample and out of sample moved by 20 trading days. The process is shown 

on the Figure 2.1. 

Figure 2.1. Sampling process overview 

 
Note: Figure illustrates the sampling process showing how in sample and out of sample subsets are derived from 
the overall dataset. 

Table 2.1 presents the number of observations after aforementioned trimming process for 

each of analyzed indices with the corresponding number of in sample and out of sample subsets 

created as well as the start and end date of the overall sample period. 

In sample 1

Out of sample 1

In sample 2

Out of sample 2

In sample n

Out of sample n

… 
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Table 2.1. Data sampling overview 
Index Observations Subsets Start date End date 
WIG20 4680 224 2002-02-22 2020-10-30 
DAX 4740 227 2002-03-01 2020-10-30 
S&P500 4700 225 2002-03-05 2020-10-30 
SOFIX 4600 220 2002-03-06 2020-10-30 
PX 4680 224 2002-03-06 2020-10-30 
OMXT 4680 224 2002-03-18 2020-10-30 
BUX 4660 223 2002-03-04 2020-10-30 
OMXR 4680 224 2002-02-27 2020-10-30 
OMXV 4660 223 2002-03-06 2020-10-30 

Note: Table presents descriptive statistics for each stock index: number of observations, number of subsets, start 
date and end date of observation period in the dataset. 

2.3. Initial data analysis 

Initial data analysis was conducted in order to assess the distributions of input variables (High, 

Low and Close prices of indices) used for the calculation of technical analysis indicators and 

target variable (discrete returns derived from Close prices - target variable in the models 

described in detail at the beginning of the next section) used for modeling purposes. Table 2.2 

to Table 2.6 present mean, minimum, 25th percentile, 50th percentile (median), 75th percentile 

and maximum values of those variables for each of the analyzed indices. No outliers or data 

quality issues were identified. 

Table 2.2. Descriptive statistics of WIG20 and DAX data. 
Index WIG20 DAX 
Measure High Low Close Return High Low Close Return 
Mean 2263.68 2227.01 2245.56 0.0001 7830.33 7714.99 7774.54 0.0003 
Minimum 1043.70 1026.65 1039.20 -0.1328 2319.65 2188.75 2202.96 -0.1224 
25th percentile 1856.62 1823.44 1841.15 -0.0073 5398.34 5290.23 5347.39 -0.0062 
50th percentile 2308.79 2269.50 2290.88 0.0002 7151.88 7047.24 7093.06 0.0008 
75th percentile 2499.71 2468.12 2482.79 0.0076 10654.58 10492.26 10577.92 0.0072 
Maximum 3940.53 3910.96 3917.87 0.0850 13795.24 13754.04 13789.00 0.1140 

Note: Table presents descriptive statistics of High, Low, Close prices and returns for WIG20 and DAX indices: 
mean, minimum, 25th percentile, 50th percentile (median), 75th percentile and maximum. 
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Table 2.3. Descriptive statistics of S&P500 and SOFIX data. 
Index S&P500 SOFIX 
Measure High Low Close Return High Low Close Return 
Mean 1686.39 1666.72 1677.18 0.0003 587.82 582.27 585.03 0.0004 
Minimum 695.27 666.79 676.53 -0.1198 114.22 114.22 114.22 -0.1074 
25th percentile 1169.14 1151.57 1161.99 -0.0043 399.55 394.25 397.39 -0.0043 
50th percentile 1407.82 1394.69 1402.52 0.0007 490.20 485.38 488.26 0.0003 
75th percentile 2104.06 2087.14 2098.15 0.0056 661.65 655.49 658.53 0.0049 
Maximum 3588.11 3535.23 3580.84 0.1158 1981.80 1952.28 1952.40 0.0875 

Note: Table presents descriptive statistics of High, Low, Close prices and returns for S&P500 and SOFIX indices: 
mean, minimum, 25th percentile, 50th percentile (median), 75th percentile and maximum. 

Table 2.4. Descriptive statistics of PX and OMXT data. 
Index PX OMXT 
Measure High Low Close Return High Low Close Return 
Mean 1055.47 1044.99 1050.06 0.0002 742.21 735.31 738.75 0.0005 
Minimum 391.20 391.20 391.20 -0.1494 155.34 152.84 154.25 -0.1006 
25th percentile 905.06 891.68 898.33 -0.0054 543.49 535.05 539.70 -0.0033 
50th percentile 1018.08 1006.94 1012.86 0.0006 721.59 711.61 717.11 0.0005 
75th percentile 1169.33 1156.43 1162.40 0.0066 974.87 965.55 970.74 0.0043 
Maximum 1944.30 1918.10 1936.10 0.1316 1376.93 1370.27 1374.35 0.1286 

Note: Table presents descriptive statistics of High, Low, Close prices and returns for PX and OMXT indices: mean, 
minimum, 25th percentile, 50th percentile (median), 75th percentile and maximum. 

Table 2.5. Descriptive statistics of BUX and OMXR data. 
Index BUX OMXR 
Measure High Low Close Return High Low Close Return 
Mean 22721.77 22349.25 22537.90 0.0004 550.79 544.58 547.79 0.0004 
Minimum 6765.02 6546.35 6589.76 -0.1188 184.94 184.94 184.94 -0.1507 
25th percentile 17437.59 17129.42 17310.16 -0.0072 375.58 368.97 372.44 -0.0046 
50th percentile 21621.64 21232.95 21403.55 0.0005 447.62 442.84 445.08 0.0002 
75th percentile 27163.14 26796.30 27004.28 0.0080 694.65 685.17 689.44 0.0054 
Maximum 46476.20 45904.82 46230.22 0.1408 1143.82 1125.14 1138.74 0.1285 

Note: Table presents descriptive statistics of High, Low, Close prices and returns for BUX and OMXR indices: 
mean, minimum, 25th percentile, 50th percentile (median), 75th percentile and maximum. 

Table 2.6. Descriptive statistics of OMXV data. 
Index OMXV 
Measure High Low Close Return 
Mean 421.03 418.47 419.83 0.0005 
Minimum 82.87 82.87 82.87 -0.1125 
25th percentile 312.23 309.27 310.71 -0.0029 
50th percentile 419.19 417.52 418.09 0.0005 
75th percentile 534.40 532.02 532.97 0.0041 
Maximum 792.74 788.64 790.25 0.1163 

Note: Table presents descriptive statistics of High, Low, Close prices and returns for OMXV index: mean, 
minimum, 25th percentile, 50th percentile (median), 75th percentile and maximum. 
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3. Research methodology 

3.1. General model formula and target variable 

One of the general goals of the quantitative investment strategies development is to construct 

models with price predictive ability. Machine learning models developed in this research belong 

to the supervised models family which means that they are fed with pairs of input (technical 

analysis indicators) and target (stock indices returns) variables. Information coming from the 

input and target pairs was used to calibrate each models’ coefficients in each of the in sample 

periods. Those coefficients were then applied to the inputs in the following out of sample 

periods in order to predict the target variable in those periods. The general modeling matter can 

be described using Formula (1). 

 𝑓𝑓(𝑌𝑌) = 𝑓𝑓(𝑋𝑋) + 𝜀𝜀 (1) 

where: Y – vector of target variable (returns), 

 X – matrix of independent variables (set of technical indicators), 

f(.) – function applied to transform the variables (depending on the model), 

ε – vector of random errors.  

Target (dependent) variable in this research is defined as a discrete return on the asset 

calculated from the observed Close prices as described by Formula (2). 

 𝑟𝑟! =
𝐶𝐶! − 𝐶𝐶!"#
𝐶𝐶!"#

 (2) 

where: rt – discrete return in period t, 

 Ct – close price in period t. 

3.2. Technical analysis indicators 

Thesis focuses on strategies based on a set of 5 technical analysis indicators: Simple Moving 

Average (SMA), Moving Average Convergence Divergence (MACD), Stochastic Oscillator 

(STOCH), Relative Strength Index (RSI) and Williams' Percent Range (WPR) as proposed by 

Dash and Dash (2016). Technical indicators were then used as an input to machine learning 

models. The following section describes formulas used for calculation of each analyzed 

indicators. 
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3.2.1. Simple Moving Average (SMA) 

Simple Moving Average is an average price of an instrument calculated on historical 

observations up to the reference date. Formula (3) represents the method of SMA calculation 

(Feller 1950). 

 
𝑆𝑆𝑆𝑆𝑆𝑆! =

1
𝑛𝑛1𝑃𝑃!"$

%"#

$&'

 (3) 

where: SMA – Simple Moving Average, 

 n – number of periods included in calculation, 

 Pt – price on reference date. 

Base level analyzed for parameter n = 15 as proposed by Dash and Dash (2016) and for 

the purpose of sensitivity analysis, n = {14;16} were used in order to verify robustness of the 

models. Input used later in the models is derived with the usage of Formula (4). It is a measure 

of how distant the current price is from its SMA: 

 𝑆𝑆𝑆𝑆𝑆𝑆($)%*+ = 𝑃𝑃! − 𝑆𝑆𝑆𝑆𝑆𝑆 (4) 

3.2.2. Moving Average Convergence Divergence (MACD) 

MACD is an indicator developed by Appel (2005) which incorporates several Exponential 

Moving Averages (EMA) into its derivation. EMA is described as a moving average which 

assigns exponentially decreasing weights (older the observation, lower the weight) to each of 

the historical observations. Weights are dependent on a number of assumed periods which 

impacts the smoothing factor 𝛼𝛼 derived using Formula (5). EMA is then calculated according 

to Formula (6). 

 𝛼𝛼 =
2

𝑛𝑛 + 1 (5) 

where: α – smoothing factor, 

 n – number of periods included in calculation. 

 𝐸𝐸𝑆𝑆𝑆𝑆! = 6
𝑃𝑃! 𝑡𝑡 = 1

𝛼𝛼 ∗ 𝑃𝑃! + (1 − 𝛼𝛼) ∗ 𝐸𝐸𝑆𝑆𝑆𝑆!"# 𝑡𝑡 > 1 (6) 

where: EMA – Exponential Moving Average, 

 Pt – price on reference date. 

MACD indicator is composed of 2 distinct time series: MACD line and signal line. 

MACD line is defined as the difference between the long EMA and short EMA which are as 

proposed by Appel (2005) calculated using n = 26 and n = 12 periods. Signal line is defined as 

EMA with parameter n = 9. Formulas (7) and (8) describe derivation of both time series. 
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 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀	𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 = 𝐸𝐸𝑆𝑆𝑆𝑆(𝑛𝑛 = 26) − 𝐸𝐸𝑆𝑆𝑆𝑆(𝑛𝑛 = 12) (7) 

 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑠𝑠𝑙𝑙	𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 = 𝐸𝐸𝑆𝑆𝑆𝑆(𝑛𝑛 = 9) (8) 

Parameters proposed by Appel (2005) are considered base parameters in this thesis. For 

the purpose of sensitivity analysis, n = {25;27} for long EMA, n = {11;13} for short EMA and 

n = {8;10} for signal EMA were used in order to verify robustness of the models.  

Input used later in the models is derived with the usage of Formula (9). It is a measure of 

how distant the MACD line is from the signal line: 

 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀($)%*+ = 𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀	𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 − 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑠𝑠𝑙𝑙	𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 (9) 

3.2.3. Stochastic Oscillator (STOCH) 

Invented by Lane (1984), Stochastic Oscillator is incorporating HLC (High Low Close) data 

into its calculation. STOCH comprises of 3 time series derived using Formulas (10), (11) and 

(12). 

 
𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡	%𝐾𝐾 = 100 ∗

𝑃𝑃! −min	(𝐿𝐿!"%,#, . . , 𝐿𝐿!)
max	(𝐻𝐻!"%,#, . . , 𝐻𝐻!) − min	(𝐿𝐿!"%,#, . . , 𝐿𝐿!)

 (10) 

where: fast %K – unsmoothed %K indicator, 

 n – number of periods included in calculation, 

 Pt – close price on reference date, 

 Ht – highest price on reference date, 

 Lt – lowest price on reference date. 

 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡	%𝑀𝑀 = 𝑆𝑆𝑆𝑆𝑆𝑆!(𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡	%𝐾𝐾) (11) 

where: fast %D – simple moving average of fast %K. 

 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠	%𝑀𝑀 = 𝑆𝑆𝑆𝑆𝑆𝑆!(𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡	%𝑀𝑀) (12) 

where: slow %D – simple moving average of fast %D. 

Lane proposed that fast %K should be calculated with parameter n = 14 while fast %D 

and slow %D as SMAs with n =3 periods, those levels are treated as base levels in this thesis. 

Sensitivity analysis was conducted using n = {13;15} for fast %K and n = {2;4} for fast %D 

and slow %D. 

3.2.4. Relative Strength Index (RSI) 

RSI was developed by Wilder (1978) as a ratio incorporating average upward (U) and 

downward (D) movements of the close price tracked for n historical observations. U and D are 

calculated with Formulas (13) and (14), while averages of U and D are derived with Formulas 

(15) and (16). 
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 𝑈𝑈! = 6𝑃𝑃! − 𝑃𝑃!"# 𝑃𝑃! > 𝑃𝑃!"#
0 𝑃𝑃! ≤ 𝑃𝑃!"#

 (13) 

 𝑀𝑀! = 6 0 𝑃𝑃! ≥ 𝑃𝑃!"#
𝑃𝑃!"# − 𝑃𝑃! 𝑃𝑃! < 𝑃𝑃!"#

 (14) 

where: Ut – upward movement in period t, 

 Dt – downward movement in period t, 

 Pt – price in period t. 

 

𝑠𝑠𝑎𝑎𝑠𝑠𝑈𝑈! =

⎩
⎪
⎨

⎪
⎧ 1

𝑛𝑛1𝑈𝑈!"$

%"#

$&'

𝑡𝑡 = 𝑛𝑛

𝑠𝑠𝑎𝑎𝑠𝑠𝑈𝑈!"# ∗ (𝑛𝑛 − 1) + 𝑈𝑈!
𝑛𝑛 𝑡𝑡 > 𝑛𝑛

 (15) 

 

𝑠𝑠𝑎𝑎𝑠𝑠𝑀𝑀! =

⎩
⎪
⎨

⎪
⎧ 1

𝑛𝑛1𝑀𝑀!"$

%"#

$&'

𝑡𝑡 = 𝑛𝑛

𝑠𝑠𝑎𝑎𝑠𝑠𝑀𝑀!"# ∗ (𝑛𝑛 − 1) + 𝑀𝑀!
𝑛𝑛 𝑡𝑡 > 𝑛𝑛

 (16) 

where: avgUt – average of upward movements in n periods, 

 avgDt – average of downward movements in n periods, 

 n – number of periods included in calculation. 

Relative Strength Index is then calculated as a ratio of avgUt and avgDt using Formula 

(17). 

 𝑅𝑅𝑆𝑆𝑅𝑅! = 100 ∗
𝑠𝑠𝑎𝑎𝑠𝑠𝑈𝑈!

𝑠𝑠𝑎𝑎𝑠𝑠𝑈𝑈! + 𝑠𝑠𝑎𝑎𝑠𝑠𝑀𝑀!
 (17) 

Base level parameter n = 14 was employed as proposed by Wilder (1978). In sensitivity 

analysis, n = {13;15} were used in order to verify robustness of the models. 

3.2.5. Williams' Percent Range (WPR) 

Developed by Williams (1979), WPR is a form of a price oscillator using HLC (High Low 

Close) data. It is calculated similarly to fast %K in Stochastic Oscillator. Formula (18) 

represents calculation process for WPR. 

 
𝑊𝑊𝑃𝑃𝑅𝑅 = 100 ∗

max(𝐻𝐻!"%,#, . . , 𝐻𝐻!) − 𝑃𝑃!
max	(𝐻𝐻!"%,#, . . , 𝐻𝐻!) − min	(𝐿𝐿!"%,#, . . , 𝐿𝐿!)

 (18) 

where: WPR – Williams' Percent Range, 

 n – number of periods included in calculation, 

 Pt – close price on reference date, 

 Ht – highest price on reference date, 
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 Lt – lowest price on reference date. 

Similarly to RSI indicator, base level analyzed for parameter n = 14 as proposed by 

Williams (1979) while sensitivity analysis is conducted using n = {13;15}. 

All analyzed technical indicators are lagged by one period before being used as predictors 

for returns in the models in order to avoid the so-called look ahead bias involving making 

decisions in the same period for which the given signal was generated. 

3.3. Machine learning techniques 

Thesis analyzed eight supervised machine learning models with majority of them proposed in 

the paper by Dash and Dash (2016) and other discussed in the remaining papers. Employed 

techniques included Neural Networks, K Nearest Neighbor, Random Forest, Regression Tree, 

Naïve Bayes, Bayesian Generalized Linear Model and Support Vector Machines in both Linear 

and Polynomial form. Following subsections describe each of the models and discuss the 

hyperparameters used to conduct one of the sensitivity analysis exercises. 

3.3.1. Neural Networks (NN) 

Models and corresponding strategies referred in this research as Neural Networks were 

developed using the Extreme Learning Machine (ELM) approach as proposed by Dash and 

Dash (2016). ELM in the configuration applied is a feedforward neural network with only one 

hidden layer which is the reason why this approach is computationally efficient compared to 

other neural network related techniques. Number of neurons in input layer is equal to the 

number of input technical analysis indicators. In each of the in sample estimations, model is 

trained using a number of neurons in hidden layer varying from 1 to twice the size of input layer 

and the best performing in sample variant is then chosen. Activation function in a tansig 

(tangent-sigmoid transfer function) form producing continuous values in the range from -1 to 1 

(intuitive for return prediction) was applied to compute the output trading signal in the output 

layer consisting of one neuron. Model was implemented in the form discussed by Huang et al. 

(2006). Output from Extreme Learning Machine algorithm has a form described by Formula 

(19).  

 
𝑓𝑓%(𝑋𝑋) =1𝛽𝛽$ℎ$(𝑋𝑋)

%

$&#

 (19) 

where: fn – predicted output from the model, 

 X – matrix of independent variables,  

 n – number of neurons in hidden layer, 
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 βi – weight of hidden neuron i, 

 hi – output of hidden neuron i. 

The base activation function analyzed was the tansig transformation and, for the purpose 

of sensitivity analysis, two alternative functions producing outputs in the same range were 

chosen: sin (sine transfer function) and satlins (symmetric saturating linear transfer function). 

3.3.2. K Nearest Neighbor (KNN) 

Research employs K Nearest Neighbor model in its regression version. The output prediction 

of the model is the average value of observed target variable for k nearest neighbors identified 

based on the levels of input independent variables. Models were implemented in a form 

proposed by Altman (1991). KNN algorithm is described with Formula (20). 

 
𝑝𝑝 =

∑ 𝑦𝑦$-
$&#

𝑘𝑘  (20) 

where: p – predicted output from the model, 

 yi – observed target variable for nearest neighbor observation i,  

 k – number of nearest neighbors included in the calculation. 

Identification of k nearest neighbors is based on determination of high dimensional 

Euclidean distance between independent variables of analyzed observations as described in 

Formula (21). 

 
𝑑𝑑$,/0 =1(𝑥𝑥+,$ − 𝑥𝑥+,/)0

%

+&#

 (21) 

where: d2i,j – high dimensional Euclidean distance between observations i and j, 

 xl,i – independent variable l for observation i,  

 n – number of independent variables. 

The hyperparameter chosen for sensitivity analysis was an optimization metric with the 

Root Mean Square Error (RMSE) as the base metric and alternative metrics being the 

coefficient of determination (Rsquared) and Mean Absolute Error (MAE). 

3.3.3. Random Forest (RF) 

Random Forest model in a regression form used in this thesis is a statistical modelling 

framework consisting of random generation of multiple decision trees with each of the trees 

producing a distinct prediction for target variable. Those predictions are then averaged to 

calculate the final output. Models were implemented in a form discussed by Breiman (2001). 

Process of the output generation is described by Formula (22). 
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𝑝𝑝 =

∑ ∑ 𝑊𝑊(𝑥𝑥$ , 𝑥𝑥1)𝑦𝑦$%
$&#

2
/&#

𝑚𝑚  (22) 

where: p – predicted output from the model, 

 yi – observed target variable for observation i, 

 xi – vector of independent variables for observation i, 

 x’ – vector of independent variables for observation in testing sample, 

 W(xi, x’) – weight function of xi relative to x’,  

 n – number of observations in training sample, 

 m – number of generated random trees. 

The hyperparameter chosen for sensitivity analysis was an optimization metric with the 

RMSE as the base metric and alternative metrics being the Rsquared and MAE. 

3.3.4. Regression Tree (RT) 

Recursive partitioning Regression Trees are a version of Decision Trees from the Classification 

and Regression Trees (CART) family with continuous target variable. Data is split in recursive 

manner in order to generate optimal decision algorithm for target variable prediction. Model 

inputs (independent variables) are reflected in the tree branches from which, after a set of 

recursive partitioning, final leaves with the computed target variable are produced. Models were 

implemented in a form proposed by Breiman et al. (1984). Fundamental algorithms of 

Regression Tree are similar to those of Random Forest model. The hyperparameter chosen for 

sensitivity analysis was an optimization metric with the RMSE as the base metric and 

alternative metrics being Rsquared and MAE. 

3.3.5. Naïve Bayes (NB) 

Naïve Bayes is a probabilistic classifier incorporating the assumption of naïve independence 

between input variables. As a classification method, it produces binary outputs (classes) 

computed from conditional a posteriori probabilities. Thesis used {-1;1} classes representing 

buy and sell trading signals thus the Naïve Bayes model was the single model implemented 

without an additional ‘neutral’ signal. Model was implemented in a form proposed by 

Narasimha Murty and Susheela Devi (2011). Output from the model is described by Formula 

(23). 

 
𝑝𝑝 = argmax

-∈{#,..,6}
𝑞𝑞(𝐶𝐶-)j𝑞𝑞(𝑥𝑥$|𝐶𝐶-)

%

$&#

 (23) 

where: p – predicted output from the model, 
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 q(.) – probability of (.), 

 Ck – class k, 

 xi – independent variable i,  

 n – number of independent variables. 

The hyperparameter chosen for sensitivity analysis was an optimization metric with 

Accuracy (number of correct predictions divided by the total number of predictions) as the base 

metric and one alternative metric being the Cohen’s kappa (Kappa).  

3.3.6. Bayesian Generalized Linear Model (BGLM) 

Generalized Linear Model is a generalization of linear regression models which among others 

allows for target variable transformations via a link function e.g. logit which was used in this 

thesis. Target variable prediction is computed as a linear combination of input variables. BGLM 

uses the Bayesian approach to model fitting instead of the Frequentist approach. A priori 

distributions of inputs and the likelihood function are used for a posteriori estimation of model 

parameters. Models were implemented in forms discussed by Nelder and Wedderburn (1972) 

and Dempster et al. (1977). Model output is described by Formula (24). 

 𝑝𝑝 = 𝑙𝑙"#(𝑋𝑋𝛽𝛽) (24) 

where: p – predicted output from the model, 

 l – link function, 

 X – matrix of independent variables, 

 β – vector of coefficients fitted by the model using the Bayesian approach.  

The hyperparameter chosen for sensitivity analysis was an optimization metric with 

RMSE as the base metric and alternative metrics being Rsquared and MAE. 

3.3.7. Support Vector Machine Linear (SVML) 

Regression version of Support Vector Machine models was analyzed in this research. SVM 

models generate multiple hyperplanes aiming to separate input independent variables and 

search for the most optimal solution allowing for the best prediction of the continuous target 

variable. Linear type of SVM was implemented in a form discussed by Cortes and Vapnik 

(1995). The objective function of the model is described by Formula (25). It has to be 

determined by identification of the optimal hyperplane using the minimization problem 

presented in Formula (26). Additionally, all of the model residuals have to fulfill the condition 

described by Formula (27). 

 𝑓𝑓(𝑋𝑋) = 𝑋𝑋1𝛽𝛽 + 𝑏𝑏 (25) 
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 1
2𝛽𝛽′𝛽𝛽 (26) 

 ∀𝑙𝑙 ∶ |𝑦𝑦$ − (𝑋𝑋$1𝛽𝛽 + 𝑏𝑏)| ≤ 𝜀𝜀 (27) 

where: f(X) – function of X, target to determination, 

 X – matrix of independent variables, 

 β – vector of coefficients, 

 b – offset intercept, 

 yi – observed dependent variable for observation i, 

 Xi – vector of independent variables for observation i, 

 ε – random error. 

The hyperparameter chosen for sensitivity analysis was an optimization metric with 

RMSE as the base metric and alternative metrics being Rsquared and MAE. 

3.3.8. Support Vector Machine Polynomial (SVMP) 

Polynomial Support Vector Machine models employed in the research are a version of SVM 

models incorporating the polynomial kernel function transforming model inputs and computing 

high-dimensional hyperplanes. Polynomial type of SVM was implemented in a form discussed 

by Boser et al. (1992). Polynomial kernel function has a form described by Formula (28).  

 𝑘𝑘p𝑥𝑥$ , 𝑥𝑥/q = (1 + 𝑥𝑥$1𝑥𝑥/)8 (28) 

where: k(.) – kernel function, 

 xi, xj – vectors of independent variables, 

 d – degree of the polynomial. 

The hyperparameter chosen for sensitivity analysis was an optimization metric with 

RMSE as the base metric and alternative metrics being Rsquared and MAE. 

3.4. Investment strategies construction 

Construction of quantitative investment strategies required multiple computational steps and 

definition of trading rules. This section describes the process of inputting technical analysis 

indicators into the machine learning models as well as the process of generation of trading 

signals from the models’ outputs. 

3.4.1. Extended model formula 

The general model Formula (1) can be further extended to Formula (29) to present each 

particular independent variable described in detail in the Technical Analysis Indicators section. 
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 𝑓𝑓(𝑦𝑦) = 𝑓𝑓p𝑆𝑆𝑆𝑆𝑆𝑆($)%*+q + 𝑓𝑓p𝑆𝑆𝑆𝑆𝐶𝐶𝑀𝑀($)%*+q + 𝑓𝑓(𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡	%𝐾𝐾) + 𝑓𝑓(𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡	%𝑀𝑀)

+ 𝑓𝑓(𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠	%𝑀𝑀) + 𝑓𝑓(𝑅𝑅𝑆𝑆𝑅𝑅) + 𝑓𝑓(𝑊𝑊𝑃𝑃𝑅𝑅) + 𝜀𝜀 
(29) 

where: y – vector of target variable (returns), 

 f(.) – function applied to transform the variables (depending on the model), 

ε – vector of random errors.  

3.4.2. Model inputs transformation 

Input independent variables (technical analysis indicators) were rescaled before being fed to the 

models. Process was conducted using a version of min-max normalization technique which 

produces outputs in range from -1 to 1. This technique was chosen for two reasons: it is intuitive 

as the machine learning models produce output variable that is also ranging from -1 to 1 and 

because it causes the input data to be more comparable. Process of min-max normalization 

(rescaled to range from -1 to 1) is described by Formula (30) as proposed by Han et al. (2011). 

 
𝑥𝑥!1 =

𝑥𝑥! −min	(𝑥𝑥)
max(𝑥𝑥) − min	(𝑥𝑥) ∗ 2 − 1 (30) 

where: xt’ – transformed value of variable in period t, 

 xt – original value of variable in period t, 

 min(x)/max(x) – minimum/maximum value of the variable in all analyzed periods. 

3.4.3. Model outputs transformation (investment signals creation) 

Machine learning models used in this research can be divided into two groups: classification 

models (Naïve Bayes) and regression models (remaining techniques). Outputs (returns 

predictions) and corresponding trading signals for each of the incorporated models constitute a 

distinct investment strategy. Classification models produce a binary output {-1;1} while 

regression models produce continuous output ranging from -1 to 1. The question to be answered 

is how to translate the outputs into trading signals.  

For classification models a simplistic approach was undertaken: -1 output translates to 

sell signal while +1 output translates to buy signal. Due to the binary output, this technique does 

not allow to produce neutral investment signals.  

In case of regression models, the outputs were highly dispersed and non-comparable 

among the models in the sense of distribution measures therefore not allowing to set a fixed 

signal thresholds based on absolute values of the outputs. The decision was made that the most 

universal approach to signal generation will be to calculate quantiles of the output distributions 

for each of the analyzed models. 40th quantile and 60th quantile were applied as the thresholds 
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for buy, sell and neutral signals. Signal +1 translates to buy signal, -1 to sell signal and 0 to 

neutral signal. Process of signal generation for regression models is described by Formula (31). 

 
𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑠𝑠𝑙𝑙! = r

1 𝑦𝑦! ≥ 𝑞𝑞'.9
0 𝑞𝑞'.: < 𝑦𝑦! < 𝑞𝑞'.9
−1 𝑦𝑦! ≤ 𝑞𝑞'.:

 (31) 

where: signalt – trading signal in period t, 

 yt – output (prediction) generated by the model for period t, 

 qα – quantile of particular out of sample outputs corresponding to probability α. 

The process of entering a financial position was based on buy, sell and neutral signals. 

Neutral signal is interpreted as not taking a position or exiting an existing one. To calculate the 

return from a given strategy for each date, signal was multiplied by the observed discrete return 

of a given financial instrument which is described by Formula (32). 

 𝑟𝑟!
(!;*!<)= = 𝑟𝑟!$%8<> ∗ 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑠𝑠𝑙𝑙!"#

(!;*!<)= (32) 

where: rtstrategy – discrete return from the strategy in period t, 

 rtindex – discrete return from stock index (financial instrument analyzed) in period t, 

 signaltstrategy – signal generated by the strategy in period t. 

Returns from the strategies were aggregated for every out of sample period in order to 

produce return time series and compare the strategies among each other and additionally with 

the benchmark strategy. Research investigates which of the models (strategies) gives the most 

desired results. The effectiveness of the quantitative strategies was compared to that of a buy-

and-hold strategy which is based on a market portfolio (benchmark). The buy-and-hold strategy 

involves buying an instrument at the beginning of the period under analysis and selling at the 

end of the period, so it can be interpreted as an absolute measure of market movements. 

3.5. Risk and return measures 

Thesis incorporates a wide range of performance indicators used to assess the quality of 

developed investment strategies. In order to appropriately compare the strategies, not only the 

accumulated profits but also the risks should be taken into account. Measures and ratios used 

in the analysis included the compound annual growth rate, standard deviation of returns, 

maximum capital drawdown, Sharpe Ratio and Information Ratio. 

3.5.1. Compound Annual Growth Rate (CAGR) 

The rate of return is the most frequently used measure in portfolio efficiency studies. When 

choosing an investment, it is important to analyze not only the rate of return from the last period, 
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but from the entire history of the strategy. For this purpose, the compound annual growth rate 

is used which can be interpreted as an annualized rate of return. It is a measure illustrating how 

much on average capital has grown in each year of the investment. To calculate it, the following 

Formula (33) is used (Anson et al. 2010): 

 
𝑅𝑅 = 𝐶𝐶𝑆𝑆𝐶𝐶𝑅𝑅(𝑡𝑡', 𝑡𝑡%) = (

𝑉𝑉(𝑡𝑡%)
𝑉𝑉(𝑡𝑡')

)
#

!!"!" − 1 (33) 

where: CAGR(t0,tn) – Compound Annual Growth Rate, 

 V(t0) – initial value of an investment, 

 V(tn) – closing value of an investment, 

 t0 – calculation start year, 

 tn – calculation end year. 

3.5.2. Adjusted Sharpe Ratio (SR) 

The rate of return itself does not contain any information about risk. The solution to this problem 

was proposed by Sharpe (1966) who introduced Sharpe’s coefficient. This thesis used its 

simplified version, which does not contain information about the risk-free rate. It is calculated 

by dividing the annulized rate of return by the annualized standard deviation of rates of return 

in a given period. The standard deviation illustrates volatility of returns and is considered as 

a risk measure in which greater volatility indicates a higher investment risk. Considering the 

aforementioned information, when comparing strategies, the better performing one is the one 

with the higher Adjusted Sharpe Ratio. For the purpose of this thesis, the measure was floored 

at 0 as the negative values are often deemed meaningless in the scientific world. It is calculated 

with Formula (34). 

 𝑆𝑆𝑅𝑅 = max	{
𝑅𝑅
𝜎𝜎𝑅𝑅 ; 0} 

(34) 

where: SR – Adjusted Sharpe Ratio, 

 R – annualized rate of return, 

 σR – annualized standard deviation of returns. 

3.5.3. Maximum drawdown (MDD) 

The maximum drawdown represents the maximum decrease in accumulated capital over the 

entire investment horizon. When analyzing the rate of return, it is worth investigating whether 

the portfolio has not recorded significant drops in value in the analyzed horizon, which would 

indicate its instability. The most frequently used measure for this purpose is the maximum 
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drawdown which describes that risk. It is a difference between the value of capital at the lowest 

point and the value at the previous highest peak divided by the value at that peak. The final 

value is usually shown as a percentage. In this thesis, the measure is always presented as 

positive value, so in superior investment strategies the maximum decline should be as low as 

possible. This situation will represent a lower risk of a managed portfolio. Measure is calculated 

as follows (Magdon-Ismail et al. 2003) using Formula (35): 

 𝑆𝑆𝑀𝑀𝑀𝑀 = −
𝑇𝑇𝑆𝑆𝑙𝑙𝑛𝑛 − 𝑃𝑃𝑆𝑆𝑠𝑠𝑥𝑥

𝑃𝑃𝑆𝑆𝑠𝑠𝑥𝑥  (35) 

where: MDD – maximum drawdown, 

 TMin – minimum price level, 

 PMax – previous maximum price level. 

3.5.4. Calmar Ratio (CR) 

The Calmar Ratio is a very useful extension of the maximum drawdown described before. It is 

another risk and return measure that results from dividing the annualized rate of return by the 

maximum drawdown expressed in absolute value. Due to its structure, it is a measure that has 

a priority in application before the maximum drawdown (Bacon 2012). As in the case of the 

Sharpe Ratio, the better performing strategies are those with the higher value of the Calmar 

Ratio. The applied formula (Young 1991) is described by Formula (36). 

 𝐶𝐶𝑅𝑅 =
𝑅𝑅

𝑆𝑆𝑀𝑀𝑀𝑀 (36) 

where: R – annualized rate of return, 

 MDD – maximum drawdown. 

3.5.5. Information Ratio* (IR*) 

For the purpose of this thesis, an adjusted Information Ratio definition was introduced. Risk 

weighted performance measured by both Sharpe Ratio and Calmar Ratio are combined into one 

ratio described in Formula (37) as proposed by Kość et al. (2019). The measure was floored at 

0 as the negative values are often deemed meaningless in the scientific world. 

 
𝑅𝑅𝑅𝑅∗ = 𝑆𝑆𝑅𝑅 ∗ 𝐶𝐶𝑅𝑅 =

(max	{𝑅𝑅; 0})0

𝜎𝜎𝑅𝑅 ∗ 𝑆𝑆𝑀𝑀𝑀𝑀  (37) 

where: IR* – Information Ratio*, 

 R – annualized rate of return, 

 σR – annualized standard deviation of returns, 

 MDD – maximum drawdown. 
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There are many measures of risk and return used by researchers to compare the 

perfromance of investment strategies, but each of them is suitable for analyzing different types 

of instruments contained in a portfolio (Bacon 2010). The aforementioned measures and ratios 

fully cover the needs of this thesis and will allow for an objective assessment of the quality of 

discussed strategies. 

4. Empirical Research 

4.1. Identification of the best performing strategy 

In order to determine the best performing strategy for a given stock index, the out of sample 

results produced by eight analyzed machine learning models were translated into trading signals 

and compared using risk and return measures. Trading signals produced by each machine 

learning model constitute a separate investment strategy. This section describes the results 

obtained by the strategies for each analyzed stock index. Results for the most liquid indices in 

the analyzed group i.e. WIG20 (Poland), DAX (Germany) and S&P500 (USA) are described in 

detail whereas the results from remaining CEE stock indices are presented in an aggregated 

approach. The evaluation of the obtained results was based on a graphical analysis i.e. equity 

lines (presenting how 1$ of initial investment would grow over the analyzed time period), daily 

returns and drawdown lines as well as the calculated values of risk and return measures. The 

main measure selected for strategy comparison was IR* as it contains the highest amount of 

information about the performance (it combines information about returns, standard deviation 

and maximum drawdown). Eight strategies built from eight machine learning models are also 

compared with the benchmark strategy i.e. buy-and-hold which in the following sections is 

always presented with the name of the relevant index. Results presented in this section were 

referred to as a base scenario in the following sensitivity analysis sections.  

4.1.1. Investment strategies comparison for WIG20 (Poland) 

As described in the data section, in case of WIG20 index, 224 subsamples were created with 

dates ranging from 2002-02-22 to 2020-10-30. Out of sample results were aggregated into 

a time series of discrete returns for every analyzed strategy and compared with each other as 

well as with the benchmark. 

Figure 4.1 presents the equity lines for all analyzed strategies. Support Vector Machine 

strategies are dominant in case of WIG20 index with its Polynomial version outperforming the 

rest of the strategies significantly. 



 Grudniewicz, J. and Ślepaczuk, R. /WORKING PAPERS 23/2021 (371) 26 
 

Figure 4.1. Equity lines for WIG20 (Poland) 

 
Note: Figure shows equity lines for every strategy constructed on WIG20 index in the period from 2002-12-11 to 
2020-10-30. 

Comparing Figure 4.1 to Figure 4.2, an interesting relationship was observed - in most of 

the periods of increased index volatility, the equity lines are also increasing (e.g. in 2007-2009 

great financial crisis period) while in COVID-19 pandemic crisis period this relationship is 

contradictory. 

Figure 4.2. Daily returns for WIG20 (Poland) 

 
Note: Figure shows daily returns of WIG20 index in the period from 2002-12-11 to 2020-10-30. 

Another measure worth graphical analysis is the drawdown lines chart, i.e. the decline in 

the value of the portfolio calculated from the previous peak to the current trough achieved in 

the analyzed periods. Figure 4.3 presents those lines. The red line represents the buy-and-hold 

strategy which achieved the highest equity drops from all analyzed strategies mostly in the 

2007-2009 great financial crisis period and COVID-19 pandemic period. Naïve Bayes and 

Random Forest strategies obtained the worst drawdowns from the group of machine learning 

strategies. The remaining strategies behaved in a more efficient manner. Portfolio value drops 

are inevitable in active investment management, but it is always worth to minimize them. 
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Figure 4.3. Drawdown lines for WIG20 (Poland) 

 
Note: Figure shows drawdown lines for every strategy constructed on WIG20 index in the period from 2002-12-
11 to 2020-10-30. Legend is inherited from Figure 4.1. 

In the further step of the analysis, risk and return measures obtained by each investment 

strategy were compared among each other. The summary of those measures is presented in 

Table 4.1. In case of annualized returns (CAGR), Support Vector Machine models obtained the 

highest results with 47.96% for the Polynomial model and 26.19% for the Linear model. All 

remaining machine learning strategies besides Naïve Bayes and Regression Tree obtained 

CAGR higher than the benchmark (1.88%). The highest standard deviation of returns was 

observed for the benchmark strategy (22.67%) while the lowest was observed for Linear 

Support Vector Machine strategy (19.92%) which suggests that benchmark strategy is 

characterized by the highest risk. Results for Adjusted Sharpe Ratio are in line with those 

observed for CAGR measure. Highest Adjusted Sharpe was obtained by Polynomial Support 

Vector Machine (2.37) whereas NB and RT models scored lower than the benchmark strategy 

(0.08). In case of maximum drawdowns of capital, highest MDD was obtained by Random 

Forest model (70.45%) while the benchmark reported 65.75%. The lowest MDD was observed 

for Linear SVM model amounting to 23.85%. For the IR* measure, the best score of 3.69 was 

obtained by Polynomial SVM model whereas the result for the benchmark strategy was 0.002. 

As IR* was chosen as the most decisive in this research, Polynomial SVM was considered the 

best performing from all analyzed strategies. In the following sections strategies will be 

compared for the remaining indices. 

Table 4.1. Risk and return measures for WIG20 (Poland) 
Measure WIG20 NN KNN RF RT NB BGLM SVML SVMP 
CAGR 1.88% 8.85% 2.61% 3.94% 0.15% -2.99% 17.02% 26.19% 47.96% 
Annual. Std Dev 22.67% 20.00% 20.42% 20.42% 22.57% 21.04% 20.26% 19.92% 20.26% 
Adj Sharpe 0.0830 0.4427 0.1278 0.1931 0.0065 0.0000 0.8398 1.3149 2.3672 
MDD 65.75% 33.14% 46.62% 70.45% 62.18% 70.11% 38.65% 23.85% 30.79% 
IR* 0.0024 0.1183 0.0072 0.0108 0.0000 0.0000 0.3698 1.4440 3.6864 

Note: Table shows risk and return measures for strategies constructed on WIG20 index. The first column represents 
buy-and-hold strategy. Presented measures include: CAGR, annualized standard deviation, adjusted Sharpe Ratio, 
Maximum Drawdown and IR*. Bolded font indicates the best performance measure for all tested methods. 
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4.1.2. Investment strategies comparison for DAX (Germany) 

For DAX index, 227 subsamples were created with dates ranging from 2002-03-01 to 2020-10-

30. Figure 4.4 presents equity lines, daily returns and drawdown lines for all analyzed strategies. 

Bayesian Generalized Linear Model produced equity line with the highest overall return. The 

next best strategies were those produced by Linear Support Vector Machine and Random Forest 

models. 

Figure 4.4. Equity lines, daily returns and drawdown lines for DAX (Germany) 

 
Note: Figure shows equity lines, daily returns and drawdown lines for every strategy constructed on DAX index 
in the period from 2002-12-11 to 2020-10-30. 

As in case of WIG20 index, in most of the periods of increased volatility of returns, the 

equity lines are also increasing e.g. in 2007-2009 great financial crisis period while in COVID-

19 pandemic crisis period, this relationship is contradictory. 

Highest equity drops from all analyzed strategies are observed mostly in the 2007-2009 

great financial crisis period and COVID-19 pandemic period. Naïve Bayes, Polynomial Support 

Vector Machine, Regression Tree and K Nearest Neighbor models produced drawdowns worse 

than the benchmark strategy. 

Table 4.2 presents risk and return measures calculated for all analyzed DAX strategies. 

In case of annualized returns (CAGR), Bayesian Generalized Linear Model obtained the highest 

results (15.53%). Second best model was the Linear Support Vector Machine (8.79%) and third 

– Random Forest model (8.75%). Benchmark buy-and-hold strategy obtained 7.42% CAGR. 

The highest standard deviation of returns was observed for the benchmark strategy (22.05%) 

while the lowest was observed for Naïve Bayes strategy (19.00%) which suggests that 
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benchmark strategy is characterized by the highest risk as in case of WIG20 index. Results for 

Adjusted Sharpe Ratio were again in line with those observed for CAGR measure. Highest 

Adjusted Sharpe Ratios were obtained by BGLM (0.80), SVML (0.46) and RF (0.38) models, 

benchmark strategy scored 0.37. In case of maximum drawdowns, highest MDD was obtained 

by Naïve Bayes model (79.91%) while the benchmark reported 55.08%. The lowest MDD was 

observed for Random Forest model amounting to 27.72%. The best score of 0.31 for IR* 

measure was obtained by BGLM model whereas the result for the benchmark strategy was 0.05, 

therefore BGLM model was considered best performing from all analyzed strategies. 

Table 4.2. Risk and return measures for DAX (Germany) 
Measure DAX NN KNN RF RT NB BGLM SVML SVMP 
CAGR 7.42% 3.66% -2.01% 8.75% 8.26% -5.60% 15.53% 8.79% 7.88% 
Annual. Std Dev 22.04% 19.89% 19.76% 19.82% 21.98% 19.00% 19.48% 19.23% 19.78% 
Adj Sharpe 0.3368 0.1841 0.0000 0.4416 0.3759 0.0000 0.7973 0.4569 0.3986 
MDD 55.08% 49.70% 60.40% 27.72% 64.73% 79.91% 40.48% 42.60% 70.39% 
IR* 0.0454 0.0136 0.0000 0.1395 0.0480 0.0000 0.3059 0.0943 0.0446 

Note: Table shows risk and return measures for strategies constructed on DAX index. The first column represents 
buy-and-hold strategy. Presented measures include: CAGR, annualized standard deviation, adjusted Sharpe Ratio, 
Maximum Drawdown and IR*. Bolded font indicates the best performance measure for all tested methods. 

4.1.3. Investment strategies comparison for S&P500 (USA) 

In case of S&P500 index, 225 subsamples were created with dates ranging from 2002-03-05 to 

2020-10-30. Figure 4.5 presents equity lines, daily returns and drawdown lines for all analyzed 

strategies. Situation was similar to that observed for WIG20, both variations of Support Vector 

Machine strategies were dominant also for S&P500 index. The next best overall return was 

observed for Bayesian Generalized Linear Model which was also dominant for DAX index. 
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Figure 4.5. Equity lines, daily returns and drawdown lines for S&P500 (USA) 

 
Note: Figure shows equity lines, daily returns and drawdown lines for every strategy constructed on S&P500 index 
in the period from 2002-12-17 to 2020-10-30. 

As in case of WIG20 and DAX indices, in most of the periods of increased volatility of 

returns, the equity lines are also increasing. For S&P500 index it was observed not only in 

2007-2009 great financial crisis period but also in COVID-19 pandemic crisis period. The worst 

capital drawdown was observed for Naïve Bayes model, while the remaining models behaved 

better than benchmark in that matter. 

Risk and return measures for S&P500 strategies are presented in Table 4.3. In case of 

annualized returns (CAGR), SVMP model obtained the highest result (34.29%). The second 

best model was SVML (31.29%) and the third – BGLM model (27.39%). Benchmark buy-and-

hold strategy obtained 6.94% CAGR. The highest standard deviation of returns was again 

observed for the benchmark strategy (19.21%) while the lowest was observed for Neural 

Networks strategy (17.01%). Results for Adjusted Sharpe Ratio were again in line with those 

observed for CAGR measure. The highest Adjusted Sharpe Ratios were obtained by SVMP 

(1.97), SVML (1.84) and BGLM (1.58) models whereas benchmark strategy scored 0.36. In 

case of maximum drawdowns, the highest MDD was observed for NB model (70.38%) while 

the benchmark reported 58.02%. The lowest MDD was observed for BGLM model amounting 

to 23.09%. The best score of 2.38 for IR* measure was obtained by SVML and the next best 

was observed for SVMP (2.32) whereas the result for the benchmark strategy was 0.04. Linear 

Support Vector Machine model was therefore considered best performing from all analyzed 

strategies. 
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Table 4.3. Risk and return measures for S&P500 (USA) 
Measure S&P50

0 NN KNN RF RT NB BGLM SVML SVMP 

CAGR 6.94% 16.01% 7.70% 12.62% 10.02% -3.39% 27.39% 31.29% 34.29% 
Annual. Std Dev 19.21% 17.01% 17.49% 17.37% 19.17% 18.04% 17.32% 17.03% 17.44% 
Adj Sharpe 0.3613 0.9411 0.4406 0.7266 0.5226 0.0000 1.5815 1.8381 1.9657 
MDD 58.02% 26.77% 42.92% 41.85% 49.71% 70.38% 23.09% 24.12% 29.02% 
IR* 0.0432 0.5628 0.0791 0.2191 0.1053 0.0000 1.8759 2.3847 2.3224 

Note: Table shows risk and return measures for strategies constructed on S&P500 index. The first column 
represents buy-and-hold strategy. Presented measures include: CAGR, annualized standard deviation, adjusted 
Sharpe Ratio, Maximum Drawdown and IR*. Bolded font indicates the best performance measure for all tested 
methods. 

4.1.4. Investment strategies comparison for CEE indices 

Results calculated for remaining CEE indices are described in this section in an aggregated 

manner. For the purpose of this thesis, strategies were compared only by the usage of the most 

decisive risk and return measure (IR*). Table 4.4 presents the strategies that received the highest 

IR* measure for each of the analyzed indices.  

Naïve Bayes model was considered best performing for three out of six CEE indices with 

IR* value of 0.36 for SOFIX index (Bulgaria), 0.49 for OMXT index (Estonia) and 0.93 for 

OMXV index (Lithuania). BGLM model which was dominant in case of DAX index was also 

considered best performing for PX index (Czech Republic) with the score of 0.20 and OMXR 

index (Latvia) with the score of 0.82. SVML strategy obtained the highest IR* value (0.12) in 

case of BUX index (Hungary). SVML was also the best performing model for S&P500 index. 

Table 4.4. Best performing models and corresponding IR* measures for CEE indices 
Index SOFIX PX OMXT BUX OMXR OMXV 
Strategy NB BGLM NB SVML BGLM NB 
IR* 0.3594 0.2019 0.4898 0.1153 0.8185 0.9250 

Note: Table shows IR* measure for the best performing strategies constructed on CEE indices: SOFIX, PX, 
OMXT, BUX, OMXR and OMXV. 

The next section summarizes the results from all analyzed indices and aims to propose 

a robust approach for the best performing model selection. 

4.1.5. Summary of investment strategies comparison for all indices 

As shown in the previous sections, results varied across all analyzed indices. There was no 

strategy that could be considered the best performing for all instruments. Table 4.5 similarly to 

Table 4.4 presents the strategies for which the highest IR* score was observed and the 

corresponding names of the models (strategies) for every index analyzed in this research. It is 

worth noting that the IR* values for benchmark buy-and-hold strategy were in all cases lower 

than those obtained by best performing machine learning models. 
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Bayesian Generalized Linear Model performed best for three indices i.e. DAX, PX and 

OMXR and the same situation applies to Naïve Bayes model which performed best for SOFIX, 

OMXT and OMXV indices. Linear Support Vector Machine model received the best IR* score 

for two indices i.e. S&P500 and BUX. Polynomial variation of SVM was considered the best 

for WIG20 index. 

Table 4.5. Best performing models and corresponding IR* measures for all analyzed indices 
Index WIG20 DAX S&P500 SOFIX PX OMXT BUX OMXR OMXV 
Strategy SVMP BGLM SVML NB BGLM NB SVML BGLM NB 
IR* 3.6864 0.3059 2.3847 0.3594 0.2019 0.4898 0.1153 0.8185 0.9250 

Note: Table shows IR* measure for the best performing strategies constructed on all analyzed indices: WIG20, 
DAX, S&P500, SOFIX, PX, OMXT, BUX, OMXR and OMXV. 

In order to compare 9 analyzed strategies (8 machine learning models strategies plus the 

benchmark buy-and-hold strategy) across indices, a rank approach was introduced. Alternative 

comparison approaches were initially analyzed including different implementations of the 

ranking process (e.g. focusing on absolute differences between the values before the ranking 

process) but were rejected due to the outcomes not providing any additional information and 

being more biased than in the proposed approach. For each index and for each risk and return 

measure, strategies were ranked from 1 to 9 where 9 constitutes the highest score. For example 

in case of WIG20, SVMP strategy had the highest CAGR measure and received score equal to 

9 in CAGR category whereas for MDD measure SVMP received score equal to 8 as NN strategy 

had the lowest maximum drawdown. Ranks were then averaged across all analyzed indices and 

presented in Table 4.6. The second column of the Table corresponds to benchmark buy-and-

hold strategy (B&H). 

Table 4.6. Ranked risk and return measures averaged across all analyzed indices 
Measure B&H NN KNN RF RT NB BGLM SVML SVMP 
CAGR 5.33 4.56 3.44 5.78 5.22 3.78 6.44 6.11 4.33 
Annual. Std Dev 1.06 5.89 5.61 6.50 1.94 3.78 6.50 7.33 6.39 
Adj Sharpe 5.33 4.33 3.17 6.00 4.89 3.83 6.44 6.28 4.72 
MDD 2.44 6.00 5.89 6.44 4.56 4.67 6.78 5.33 2.89 
IR* 5.22 4.56 3.39 6.22 4.89 3.83 6.44 6.28 4.17 

Note: Table shows ranked risk and return measures: CAGR, annualized standard deviation, adjusted Sharpe Ratio, 
Maximum Drawdown and IR* averaged across all analyzed indices. Bolded font indicates the best performance 
ranked measure for all tested methods. 

In case of annualized returns (CAGR), BGLM model obtained the highest averaged rank 

(6.44). The second best model was SVML (6.11) and the third – RF model (5.78). Benchmark 

buy-and-hold strategy obtained 5.33 averaged rank for CAGR. The worst averaged ranked score 

for standard deviation of returns was observed for the benchmark strategy (1.06) while the best 

was observed for SVML strategy (7.33). Results for the Adjusted Sharpe Ratio averaged ranks 
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were in line with those observed for CAGR measure. The highest Adjusted Sharpe Ratio 

averaged ranks were obtained by BGLM (6.44), SVML (6.28) and RF (6.00) models whereas 

benchmark strategy scored 5.33. In case of maximum drawdowns, the worst MDD averaged 

rank was observed for the benchmark strategy (2.44) while the best result was obtained by 

BGLM model (6.78). The best score of 6.44 for IR* averaged rank was obtained by BGML, 

the second best was observed for SVML (6.28) and the third best for RF (6.22) whereas the 

result for the benchmark strategy was 5.22. Based on this analysis Bayesian Generalized Linear 

Model (BGLM) was considered producing the most robust results across all analyzed indices. 

The following sections describe sensitivity analysis performed to investigate if this conclusion 

changes when underlying models’ parameters are altered. 

4.2. Sensitivity to technical analysis indicators 

Technical analysis indicators served as inputs for machine learning models and therefore their 

levels are impacting trading signal generation in the analyzed strategies. Each technical 

indicator was calculated based on its underlying parameters which in all cases determine how 

many periods of observable stock index quotes were included in the calculation. Base 

parameters used in previous sections as well as parameters used for sensitivity analysis were 

described in Technical Analysis Indicators section. Sensitivity analysis was performed in two 

scenarios. In the first scenario each base parameter was decreased by 1 which means that one 

period less was considered in computing technical indicators. In the second scenario each base 

parameters was increased by 1, which means that one period more was considered in computing 

the indicators. In order for the results to be comparable with the previous section, similar 

approach to presentation of the results was implemented. 

4.2.1. Scenario with decreased technical indicators’ parameters 

Table 4.7 presents the strategies for which the highest IR* score was observed and 

corresponding names of the models (strategies) for each analyzed index. Bayesian Generalized 

Linear Model strategy performed best for four indices i.e. DAX, PX, BUX and OMXR. SVML 

model was considered the best for BUX. Naïve Bayes strategy once more performed the best 

for three indices i.e. SOFIX, OMXT and OMXV. Polynomial Support Vector Machine strategy 

received the best IR* score for two indices i.e. WIG20 and S&P500. 
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Table 4.7. The best performing models and corresponding IR* measures for all analyzed indices 
in scenario with decreased technical indicators’ parameters 
Index WIG20 DAX S&P500 SOFIX PX OMXT BUX OMXR OMXV 
Strategy SVMP BGLM SVMP NB BGLM NB BGLM BGLM NB 
IR* 3.2691 0.2845 2.2332 0.5500 0.3012 0.8015 0.2214 0.9658 1.0345 

Note: Table shows IR* measure for the best performing strategies constructed on all analyzed indices in the 
sensitivity analysis scenario with decreased technical indicators’ parameters. 

Ranks averaged across all indices analogous to those described for the base scenario are 

presented in Table 4.8. In case of annualized returns (CAGR), BGLM model once again 

obtained the highest averaged rank (6.78). The second best model was SVML (5.78) and the 

third – the benchmark strategy (5.67) which performed better compared to base scenario. The 

worst averaged ranked score for standard deviation of returns was observed for the benchmark 

strategy (1.06) while the best was observed for SVML strategy (7.44). Results for Adjusted 

Sharpe Ratio averaged ranks were in line with those observed for CAGR measure. Highest 

Adjusted Sharpe Ratio averaged ranks were obtained by BGLM (6.61), SVML (5.61) and the 

benchmark strategy (5.56). In case of maximum drawdowns, the worst MDD averaged rank 

was observed once again for the benchmark strategy (2.67) while the best result was obtained 

by RF model (6.78). In the base scenario BGLM model received the best score for MDD 

averaged rank. The best score of 6.61 for IR* averaged rank was obtained by BGML, the second 

best was observed for SVML (5.61) and the third best for NN (5.56) whereas the result for the 

benchmark strategy was 5.44. The final conclusion from the base scenario also applies to this 

scenario as the Bayesian Generalized Linear Model (BGLM) received the most robust results 

across all analyzed indices. 

Table 4.8. Ranked risk and return measures averaged across all analyzed indices in scenario 
with decreased technical indicators’ parameters 
Measure B&H NN KNN RF RT NB BGLM SVML SVMP 
CAGR 5.67 5.33 2.89 5.00 5.33 3.78 6.78 5.78 4.44 
Annual. Std Dev 1.06 6.22 6.33 6.11 1.94 3.89 5.89 7.44 6.11 
Adj Sharpe 5.56 5.33 3.11 5.11 5.17 3.72 6.61 5.61 4.78 
MDD 2.67 6.33 5.44 6.78 4.56 4.56 6.56 5.00 3.11 
IR* 5.44 5.56 3.11 5.33 5.17 3.72 6.61 5.61 4.44 

Note: Table shows ranked risk and return measures: CAGR, annualized standard deviation, adjusted Sharpe Ratio, 
Maximum Drawdown and IR* averaged across all analyzed indices in the sensitivity analysis scenario with 
decreased technical indicators’ parameters. Bolded font indicates the best performance ranked measure for all 
tested methods. 

4.2.2. Scenario with increased technical indicators’ parameters 

Strategies for which the highest IR* score was observed in this scenario and the corresponding 

names of the models (strategies) are presented in Table 4.9. Bayesian Generalized Linear Model 

strategy performed the best for two indices i.e. DAX and S&P500 which is a downgrade from 
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results obtained in base and decreased parameter scenarios. Naïve Bayes strategy again 

performed the best for three indices i.e. SOFIX, OMXT and OMXV. Linear Support Vector 

Machine strategy received the best IR* score for two indices i.e. BUX and OMXR. Polynomial 

variation of SVM was considered the best for WIG20 index as in the base scenario. Neural 

Networks strategy was for the first time identified as the best performer for PX index.  

Table 4.9. The best performing models and corresponding IR* measures for all analyzed indices 
in scenario with increased technical indicators’ parameters 
Index WIG20 DAX S&P500 SOFIX PX OMXT BUX OMXR OMXV 
Strategy SVMP BGLM BGLM NB NN NB SVML SVML NB 
IR* 3.0824 0.1668 2.3904 0.3986 0.1331 0.5323 0.1555 0.9080 0.7854 

Note: Table shows IR* measure for the best performing strategies constructed on all analyzed indices in the 
sensitivity analysis scenario with increased technical indicators’ parameters. 

Averaged ranks for increased parameters scenario are presented in Table 4.10. In case of 

annualized returns (CAGR), SVML (instead of BGLM in the previous scenarios) strategy 

obtained the highest averaged rank (6.11). The second best model was BGLM (6.00) and the 

third –NN strategy (5.89). Benchmark buy-and-hold strategy obtained 5.56 averaged rank for 

CAGR. The worst averaged ranked score for standard deviation of returns was observed for the 

benchmark strategy (1.11), while the best was observed for RF (instead of SVML in the 

previous scenarios) strategy with the score equal to 7.00. Results for Adjusted Sharpe Ratio 

averaged ranks in this scenario were not in line with those observed for CAGR measure. The 

highest Adjusted Sharpe Ratio averaged ranks were obtained by BGLM (6.17), SVML (6.06) 

and RT (5.67), while the benchmark strategy scored 5.44. In case of maximum drawdowns, the 

worst MDD averaged rank was observed for SVMP (instead of the benchmark in the previous 

scenarios) strategy with the score of 2.44 while the best result was obtained by RF model (7.00) 

similarly to the decreased parameters scenario. In the base scenario BGLM model received the 

best score for MDD averaged rank. The best score of 6.17 for IR* averaged rank was obtained 

by both BGML and SVML strategies and the third best amounting to 5.67 for both NN and RT 

strategies whereas the result for the benchmark strategy was 5.11. Despite BGLM and SVML 

models receiving equal IR* scores, after a comparison of adjusted Sharpe Ratio averaged ranks 

for these models (6.17 for BGLM vs 6.06 for SVML), it can be concluded that BGLM was the 

most robust strategy as in previous scenarios. 
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Table 4.10. Ranked risk and return measures averaged across all analyzed indices in scenario 
with increased technical indicators’ parameters 
Measure B&H NN KNN RF RT NB BGLM SVML SVMP 
CAGR 5.56 5.89 3.22 4.78 5.67 4.00 6.00 6.11 3.78 
Annual. Std Dev 1.11 5.78 5.89 7.00 1.89 3.67 6.56 6.89 6.22 
Adj Sharpe 5.44 5.56 3.11 4.67 5.67 4.28 6.17 6.06 4.06 
MDD 2.67 6.67 4.67 7.00 5.00 4.44 6.33 5.78 2.44 
IR* 5.11 5.67 3.22 4.89 5.67 4.28 6.17 6.17 3.83 

Note: Table shows ranked risk and return measures: CAGR, annualized standard deviation, adjusted Sharpe Ratio, 
Maximum Drawdown and IR* averaged across all analyzed indices in the sensitivity analysis scenario with 
increased technical indicators’ parameters. Bolded font indicates the best performance ranked measure for all 
tested methods. 

4.3. Sensitivity to machine learning optimization metrics 

Every machine learning technique used in this research has a broad set of underlying 

hyperparameters which differs across the models. As there was no universal hyperparameter to 

be altered, the models were divided into three categories i.e. Neural Networks (considered 

a distinct category due to the implemented model algorithm not allowing for alteration of 

optimization metrics contrary to the other regression models), classification models 

(comprising of NB model) and regression models (comprising of the remaining six models). 

This sensitivity analysis exercise focused on assessing each model category separately in order 

to investigate if the strategies constructed from machine learning models’ outputs are prone to 

changes in hyperparameters. Sensitivity assessment was based solely on IR* risk and return 

measure results as it was considered the most decisive in this thesis.  

Model outputs as well as the corresponding trading signals were computed for all forms 

of the altered hyperparameter. It allowed for calculation of IR* measure in multiple scenarios 

for each of the analyzed stock indices. IR* was then compared and scenarios were ranked, with 

the highest score regarded as the best. Rank was then averaged across all analyzed indices. 

4.3.1. Sensitivity of Neural Networks 

In case of NN models, hyperparameter altered in sensitivity analysis was the activation function 

which was investigated in three different forms (scenarios) i.e. tansig (base function used in this 

thesis), sin and satlins as described in Machine Learning Techniques section, results of which 

are presented in Table 4.11. 
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Table 4.11. Ranked IR* measure averaged across all analyzed indices for Neural Networks in 
three activation function scenarios 
Activation Function Neural Networks 
Tansig 1.72 
Sin 2.33 
Satlins 1.94 

Note: Table shows ranked IR* measure for tansig, sin and satlins activation functions applied in NN models 
averaged across all analyzed indices. Bolded font indicates the best performance ranked measure for all tested 
methods. 

Activation function sin received the best averaged rank (2.33) for all tested indices, satlins 

received 1.94 and tansig received 1.72 score. Those results can be interpreted in the following 

manner: by altering the activation function to sin, on average the NN models produce returns 

with higher IR* measure than those obtained from the employment of satlins and tansig 

functions. 

4.3.2. Sensitivity of classification models 

Naïve Bayes model is the only classification model described in this thesis. Hyperparameter 

that was altered in sensitivity analysis was the optimization metric investigated in two different 

versions (scenarios) i.e. accuracy (base metric used in this thesis) and kappa as described in 

Machine Learning Techniques section, results of which are presented in Table 4.12. 

Table 4.12. Ranked IR* measure averaged across all analyzed indices for classification models 
in two optimization metric scenarios 
Optimization metric Naive Bayes 
Accuracy 1.50 
Kappa 1.50 

Note: Table shows ranked IR* measure for accuracy and kappa optimization metrics applied in NB models 
averaged across all analyzed indices. Bolded font indicates the best performance ranked measure for all tested 
methods. 

Although the metric ranks differed on index levels, both optimization metrics received 

the same averaged rank (1.50) which means that Naïve Bayes model is on average resistant to 

optimization metrics alteration. 

4.3.3. Sensitivity of regression models 

Regression models category comprises of six models i.e. KNN, RF, RT, BGLM, SVML and 

SVMP. As in case of classification models the hyperparameter altered in sensitivity analysis 

was the optimization metric. As described in Machine Learning Techniques section, 

optimization metrics for regression models differed from those that could be applied for Neural 

Networks and classification models. Metrics were therefore investigated in three different 

versions (scenarios) i.e. RMSE (root mean square error – base metric used in this thesis), 
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Rsquared (coefficient of determination) and MAE (mean absolute error), results of which are 

presented in Table 4.13. 

Table 4.13. Ranked IR* measure averaged across all analyzed indices for regression models in 
three optimization metric scenarios 
Optimization metric KNN RF RT BGLM SVML SVMP 
RMSE 2.22 2.22 2.22 2.00 2.00 1.89 
Rsquared 1.83 1.78 1.72 2.00 2.00 2.44 
MAE 1.94 2.00 2.06 2.00 2.00 1.67 

Note: Table shows ranked IR* measure for RMSE, Rsquared and MAE optimization metrics applied in regression 
models averaged across all analyzed indices. Bolded font indicates the best performance ranked measure for all 
tested methods. 

Models computed with the RMSE metric generated on average the best IR* values for K 

Nearest Neighbor, Random Forest and Regression Tree models (2.22 score). In case of 

Bayesian Generalized Linear Model and Linear Support Vector Machine, models obtained the 

same averaged rank (2.00) for every metric which means that they are resistant to optimization 

metric alteration. Polynomial Support Vector Machine model obtained the highest averaged 

rank of 2.44 when computed with Rsquared metric which means that on average SVMP models 

produce higher IR* when Rsquared metric is applied. 

4.4. Summary of the empirical research 

Researching the set of nine different investment strategies allowed to obtain answers to the 

research hypotheses stated in the thesis. With the employment of risk and return measures such 

as CAGR, standard deviation, maximum drawdown, adjusted Sharpe and adjusted Information 

Ratio as a the selection criteria, it was possible to select best performing strategy. Eight machine 

learning based strategies served as the subject of the research along with the benchmark buy-

and-hold strategy. It was assessed whether it is possible to generate excess profits by investing 

using technical analysis indicators and machine learning methods. 

Models were fitted and applied on dynamic windows of in sample and out of sample 

subsets with the dates ranging from 2002 to 2020 for multiple global and CEE stock indices. 

For WIG20 index (Poland) the Polynomial Support Vector Machine strategy achieved a 47.96% 

annualized rate of return, which is materially superior to 1.88% obtained by the benchmark 

strategy. Moreover, the main risk and return measure – adjusted Information Ratio also showed 

better results for SVMP strategy with the score of 3.69 compared to 0.002 achieved by the 

benchmark. 

The results for DAX (Germany) and S&P500 (USA) machine learning strategies were 

also above the benchmark. For DAX, the best performing strategy was based on Bayesian 
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Generalized Linear Model with 15.53% CAGR and 0.31 IR* while benchmark achieved 7.42% 

CAGR and 0.05 IR*. In case of S&P500, the Linear Support Vector Machine strategy obtained 

the best results with CAGR and IR* amounting to 31.29% and 2.38 respectively while 

benchmark buy-and-hold strategy resulted in 6.94% CAGR and 0.04 IR*.  

As part of the research, results for six CEE stock indices were also analyzed. In all cases, 

a strategy superior to the benchmark was identified. Naïve Bayes strategy was considered as 

the best performing for three indices with IR* value of 0.36 for SOFIX index (Bulgaria), 0.49 

for OMXT index (Estonia) and 0.93 for OMXV index (Lithuania). BGLM strategy was 

considered the best performing for PX index (Czech Republic) with the IR* of 0.20 and OMXR 

index (Latvia) with the IR* of 0.82. SVML strategy obtained the highest IR* value (0.12) in 

case of BUX index (Hungary). 

Strategies were ranked according to the value of IR* for each index separately and the 

ranks were then averaged among indices. The best score of 6.44 for IR* averaged rank was 

obtained by BGML, the second best was observed for SVML (6.28) and the third best for RF 

(6.22) whereas the result for the benchmark strategy was 5.22. 

Based on the evaluation of achieved returns over time for each analyzed index, it was 

observed that in periods of the highest market volatility i.e. 2007-2009 great financial crisis and 

COVID-19 pandemic crisis periods; returns obtained by the best performing strategies tended 

to fluctuate significantly. In case of WIG20 (Poland), DAX (Germany) and SOFIX (Bulgaria) 

cumulative returns from the strategies increased during 2007-2009 great financial crisis and 

decreased during COVID-19 pandemic crisis. Opposite situation was observed for BUX 

(Hungary) and OMXR (Latvia). The best performing strategies for S&P500 (USA), OMXT 

(Estonia), OMXV (Lithuania) and PX (Czech Republic) indices recorded cumulative return 

increase in both 2007-2009 great financial crisis and COVID-19 pandemic crisis. 

Sensitivity analysis was conducted in order to investigate whether a change (decrease and 

increase) in the parameters underlying technical analysis indicators which serve as inputs to the 

models would impact the results. In case of the decreased parameters scenario, the best score 

of 6.61 for IR* averaged rank was obtained by BGML, the second best was observed for SVML 

(5.61) and the third best for NN (5.56) whereas the result for the benchmark strategy was 5.44. 

In the increased parameters scenario, the best score of 6.17 for IR* averaged rank was obtained 

by both BGML and SVML strategies and the third best amounting to 5.67 for both NN and RT 

strategies whereas the result for the benchmark strategy was 5.11. Based on this analysis 

Bayesian Generalized Linear Model (BGLM) was considered to be producing the most robust 

results across all analyzed indices in all scenarios. 
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The second part of sensitivity analysis investigated the impact of changing the 

hyperparameters underlying machine learning models. As there was no universal 

hyperparameter to be altered, activation function was chosen for Neural Networks strategies 

and optimization metric was chosen for the remaining strategies. Results were again ranked and 

averaged across indices. By altering the activation function to sin, on average, NN models 

produced returns with higher IR* measure than those obtained from the employment of tansig 

(base function used in this research) and satlins functions. Naïve Bayes models were on average 

resistant to optimization metric (Accuracy and Kappa) alteration. In case of the remaining 

strategies, models computed with the RMSE metric generated on average the best IR* values 

for K Nearest Neighbor, Random Forest and Regression Tree models. Polynomial Support 

Vector Machine model obtained the highest averaged rank when computed with Rsquared 

metric which means that on average SVMP models produce higher IR* when Rsquared metric 

is applied. In case of Bayesian Generalized Linear Model and Linear Support Vector Machine, 

models obtained the same averaged rank for every metric which means that they are resistant 

to metric alteration. 

Results obtained for all of the analyzed stock market indices indicated that quantitative 

investment strategies achieved better results measured by adjusted Information Ratio (IR*) than 

the benchmark buy-and-hold strategies and therefore the first research hypothesis cannot be 

rejected. Neural Networks strategies were not considered as the best performing for any of the 

analyzed indices thus the second research hypothesis was rejected. Analysis of each index 

allowed to select the best performing strategies which were not consistent among indices and 

therefore the third research hypothesis was rejected, although at the same time analysis 

indicated that BGLM model on average produced the best results. Fourth research hypothesis 

was also rejected as the results changed for most of the analyzed machine learning techniques 

when computed in different sensitivity analysis scenarios. On average however, the Bayesian 

Generalized Linear Model generated the best results in all sensitivity analysis scenarios in 

which the technical analysis indicators’ parameters were altered. In case of altering the machine 

learning models’ hyperparameters, the BGLM model was considered to be resistant to changes. 

Conclusion 

New technologies allowed for transfer of stock exchange trading from the trading floor to the 

computer screen, and also opened the possibility of automating the investment process i.e. 

concluding transactions with limited or even without human intervention. Automated 

investment strategies are now widely used by hedge funds and rely among others on rules 
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derived from technical analysis. Technical analysis is a rich set of tools supporting investment 

decision making. An investor can use them directly in the construction of buy and sell signals 

as well as indirectly by treating them as inputs to more sophisticated models. Employment of 

machine learning techniques allows to generate weights for every technical analysis indicator 

used and therefore producing trading signals based on both the levels and the weights estimated 

for the technical indicators. 

A set of five technical analysis indicators was analyzed in this thesis and consisted of: 

Simple Moving Average (SMA), Moving Average Convergence Divergence (MACD), 

Stochastic Oscillator (STOCH), Relative Strength Index (RSI) and Williams' Percent Range 

(WPR) as proposed by Dash and Dash (2016). Technical indicators were then used as an input 

to eight machine learning models. The techniques analyzed were: Neural Networks (NN), K 

Nearest Neighbor (KNN), Regression Tree (RT), Random Forest (RF), Naïve Bayes (NB), 

Bayesian Generalized Linear Model (BGLM), Linear Support Vector Machine (SVML) and 

Polynomial Support Vector Machine (SVMP). 

The purpose of this study was to investigate the profitability of machine learning-based 

quantitative investment strategies. Performance of the strategies was determined by comparison 

of the risk and return measures among models and the benchmark buy-and-hold returns. 

Annualized rate of return (CAGR), annualized standard deviation of returns, adjusted Sharpe 

Ratio (SR), maximum drawdown (MDD) and the adjusted Information Ratio (IR*) were used 

as the aforementioned risk and return measures with the IR* considered as the most decisive. 

The thesis was based on the current scientific achievements describing the mechanisms 

of generating trading signals from machine learning models employing technical indicators as 

inputs. As part of the extension of this branch of science, this research was conducted on the 

Polish stock market index WIG20, two highly liquid equity indices: DAX (Germany) and 

S&P500 (USA) as well as the indices of six Central and Eastern European countries: SOFIX 

(Bulgaria), PX (Czech Republic), OMXT (Estonia), BUX (Hungary), OMXR (Latvia) and 

OMXV (Lithuania). Data used for the calculations included the daily High, Low and Close 

prices of the indices in 2002-2020 period thus including the 2007-2009 great financial crisis 

and COVID-19 pandemic crisis. Models were fitted in dynamic window in sample and applied 

on out of sample subsets separately for each of the analyzed indices. 

All calculations underlying the results presented in this thesis were produced in R 

statistical software. Each scenario (base scenario and scenarios representing sensitivity 

analyses) took ca. 5 hours of computation on 2.8GHz processor with 2 cores.  
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Results showed that in case of each index, machine learning techniques-based strategies 

achieved better returns than the benchmarks. The best performing (based on IR* measure) 

strategy was constructed from Polynomial Support Vector Machine model in case of WIG20 

index (Poland), Bayesian Generalized Linear Model for DAX (Germany) and Linear Support 

Vector Machine for S&P500 (USA). Comparison of those results with the ones obtained for six 

CEE indices showed that on average the BGLM strategy generated the best risk adjusted 

returns. 

Evaluation of cumulative returns over time indicated that the impact of increased market 

volatility periods i.e. 2007-2009 great financial crisis and COVID-19 pandemic crisis varied 

between analyzed indices. Returns increased during 2007-2009 great financial crisis and 

decreased during COVID-19 pandemic crisis for WIG20, DAX and SOFIX strategies whereas 

opposite situation was observed for BUX and OMXR. In case of S&P500, OMXT, OMXV and 

PX strategies, returns increased in both 2007-2009 great financial crisis and COVID-19 

pandemic crisis. 

In order to investigate the robustness of analyzed quantitative strategies, the sensitivity 

analysis was conducted. It was checked whether the change (decrease and increase) in the 

parameters underlying technical analysis indicators which served as inputs to the models would 

impact the results. Altering the parameters in both directions showed that on average the 

Bayesian Generalized Linear Model (BGLM) produced the most robust results across analyzed 

indices. The second part of sensitivity analysis investigated the impact of changing the 

hyperparameters underlying the machine learning models. In case of Bayesian Generalized 

Linear Model, results showed that returns generated by the model are resistant to optimization 

metric alteration. 

The returns obtained from the trading signals generated by machine learning models 

indicated that quantitative investments strategies achieved better performance measured by 

adjusted Information Ratio than the benchmark buy-and-hold strategies for all of the analyzed 

stock market indices and therefore the main research hypothesis cannot be rejected. It should 

be stated that the range of financial instruments available for investment is very wide and in 

order to unequivocally assess this hypothesis, a larger number of instruments could be tested. 

The additional research hypotheses stated in this thesis were formulated with the aim to assess 

the best performing machine learning techniques across the analyzed indices. The analysis of 

each index allowed to select the best performing strategy which differed among indices but it 

was observed that on average the Bayesian Generalized Linear Model produced the best risk 

adjusted returns thus the second and the third hypothesis were rejected. The sensitivity analysis 
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results showed that the fourth hypothesis also needs to be rejected. On a strategy level, results 

changed in each analyzed scenario for most of the analyzed models. On average however, the 

Bayesian Generalized Linear Model generated the best results in all sensitivity analysis 

scenarios in which the technical analysis indicators’ parameters were altered. In case of altering 

the machine learning models’ hyperparameters, the BGLM model was considered to be 

resistant to changes. 

In order to obtain a comprehensive overview of the topics presented in this thesis, future 

research could be expanded to include financial instruments from other categories e.g. stocks, 

bonds, options or currency futures. An interesting research direction would also be to 

investigate how the results would change if  an assumption of the existence of transaction costs 

was taken, which has not been the case in this thesis.  
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