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1. Introduction 
 

The modern approach of portfolio optimization has started from the works of Harry Markowitz 

(1952) and until now is a topic of continuous development. Works that contributed to the 

development of the topic include the works by Merton (1969), Magill (1976), Lopez de Prado 

(2016), Alipour (2016), and many other scientists who have studied the problem of optimal 

asset allocation both theoretically and empirically. 

 The variety of techniques and approaches for portfolio optimization include various 

programming methods, optimization methods, and machine learning approaches. Some of the 

popular methods are the equal weighting (EW), mean-variance (MV), inverse variance parity 

(IVP), critical line algorithm (CLA) and the hierarchical risk parity (HRP). Each of these 

approaches has its own drawbacks, as discussed in the works of Lopez de Prado (2016) and 

Jain (2019). Many papers on the topic don’t describe how the performance of a portfolio 

optimization algorithm is affected by transaction costs, slippage, and other elements that can 

decrease returns and substantially affect the benchmarks of the algorithm, as shown in the work 

by Chavalle (2019).  

 The hierarchical risk parity algorithm was chosen as a basic algorithm in this work to be 

analyzed and modified as it possesses a unique characteristic of not requiring the covariance 

matrix of the portfolio assets to be invertible. This requirement must be fulfilled in order to use 

the methods created by Markowitz and their modifications, as stated in Lopez de Prado (2016). 

However, this is often impossible for real-life data, as the covariance matrices are estimated 

from empirical observations and pose bad numerical characteristics such as a high conditional 

number. This makes the practical use of these algorithms complicated, especially when the 

portfolio consists of a high number of financial instruments. From Lopez de Prado (2020), these 

problems are solved by clustering the instruments into sub-portfolios, de-noising, and de-toning 

the covariance matrix, using different covariance matrix estimators, or shrinking the covariance 

matrix.  

 The HRP algorithm was first presented in works by Marcos Lopez de Prado (2016) and 

Alipour (2016). In the original and following works of the authors, the basic algorithms are 

described in detail, however, the possible modifications are only briefly mentioned, as potential 

fields of study for future researchers. The possibilities of modifications are present in multiple 

steps of the algorithm and are described further in this work. After researching the literature no 

works were found that cover these particular modifications, their comparison, and how are they 

affecting the performance of the algorithm and how is it affected by the introduction of the 
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transaction costs. The purpose of this work is to extend the results of authors and explore the 

ways the algorithm is applicable to optimizing the portfolio of ETFs over the course of the 

previous 13 years. 

 Algorithms developed for asset allocation may have different optimization goals, which 

go in line with the interests of a portfolio manager, such as maximization of the returns, 

minimization of the volatility, or maximization of the Sharpe ratio – a combination of both 

previous goals. The goal of the chosen HRP algorithm is the minimization of the portfolio 

variance, however, even with this mentioned, it can outperform other algorithms, which strive 

to achieve the highest Sharpe ratio, due to differences in the algorithms.  

 The way to measure the portfolio profitability relative to risk was introduced by William 

Sharpe in the year 1966 and described in the work of Sharpe (1994). The Sharpe ratio is 

measuring the average excess revenue over a benchmark in relation to the variance of portfolio 

profits. Choosing the portfolio that is positioned on the efficient frontier (set of portfolios that 

pose the highest expected return for a given level of risk) with the highest Sharpe ratio, is the 

way the optimal portfolios are chosen.   

 In this work, a multi-period problem of portfolio optimization is analyzed, as in the 

approaches by Magill (1976). The investor is constructing a portfolio at time 𝑡𝑡	and after a short 

period 𝑒𝑒, the portfolio turns from optimal one to sub-optimal. This results in the need for 

reconstruction of the portfolio when it’s no longer optimal. 

 Approaches to the timing of rebalancing the portfolio are different, they include – “time-

only” (rebalancing at a specific time once every period), “threshold-only” (rebalancing after a 

certain threshold of revenue is reached, i.e. if a value of a portfolio has changed 1%), “time-

and-threshold” which is a combination of the two mentioned approaches, as described in the 

work of Jaconetti (2010). In terms of time rebalancing, usual practices are applying rebalancing 

annually, quarterly, monthly, weekly, and daily. In terms of the threshold, the values can vary 

from 0-1% to 5-10%, as discussed in the work of Jaconetti (2010).  

 As stated in the above work, a choice of a rebalancing method depends on the individual 

characteristics of a portfolio, however, a too frequent rebalancing will lead to a significant 

increase in costs. For a portfolio consisting of diversified instruments, a 5% threshold or 

reasonable time frequency is assumed to be delivering an optimal balance between risk control 

and costs. In this particular work, the time-only rebalancing with monthly time frequency is 

used to test the modifications of the portfolio optimization algorithms. 
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 This work assumes transaction costs to be equal to the Interactive Brokers rate, which is 

available in Appendix C. The sensitivity of profitability and other metrics to transaction costs 

increase for the chosen strategies are also analyzed, however, it’s not the main goal of this work. 

 It is considered that the portfolio manager can only open long positions and not short ones 

(a long-only portfolio). This is the approach supported by the HRP algorithm, it simplifies the 

modeling and takes into account that the algorithm is minimizing the variance of the portfolio 

and not maximizing the returns. Short positions and leverage can be added to the HRP by 

creating the corresponding instruments from the currently available ones and adding them to 

the portfolio. 

 The structure of this work consists of the following parts: Methodology briefly specifies 

the problem being solved in mathematical terms as the steps of the HRP algorithm, 

Codependence matrices and distance metrics part describes the theory behind the modifications 

applied to the HRP algorithm and others used for comparison, Data set used describes the origin 

and the character of data used. Finally, the Results of the research are presented and the 

Conclusions are drawn.  

 

2. Methodology 

 

In this section the general problem of portfolio optimization will be described, the steps of the 

HRP algorithm are briefly covered as places where modifications will take place. Only the main 

ideas of other algorithms used in the comparison – MV, IVP, and CLA are mentioned, as 

investigating their structure is not the main goal of this work. Finally, this part includes the 

details on how the transaction costs are counted, how the portfolio is being rebalanced, and the 

way metrics used to compare the performances of the algorithms are calculated. 

 

2.1. The optimization problem 
 
As described in the work of Markowitz (1952), an investor is choosing a portfolio with a 

minimum level of risk for a given level of return, thus solving an optimization problem. 

According to Mitchell (2002), the portfolio optimization problem that takes transaction costs 

into account is described by the following set of conditions: 

 

 



                                   Barziy, I. and Chlebus, M. /WORKING PAPERS 21/2020 (327)                                  4 

 min{𝑤𝑤! ∙ 𝐶𝐶 ∙ 𝑤𝑤} (1) 

 Subject to: 𝐸𝐸[𝑅𝑅]! ∙ 𝑤𝑤	 ≥ 𝐸𝐸 (2) 

 𝑒𝑒! ∙ 𝑤𝑤 = 1 (3) 

 𝑤𝑤3 − b + s = w (4) 

 (𝐶𝐶" + 𝑒𝑒)! ∙ 𝑏𝑏 + (𝐶𝐶# + 𝑒𝑒)! ∙ 𝑠𝑠 = 0 (5) 

 𝑏𝑏, 𝑠𝑠, 𝑤𝑤	 ≥ 0 (6) 

where: 

𝑤𝑤 - vector of weights for instruments, 

𝑒𝑒    - vector of ones, 

𝐶𝐶     - estimation of the covariance matrix based on the historical returns, 

𝐸𝐸[𝑅𝑅]    - vector of expected returns of the instruments based on the historical returns, 

𝐸𝐸    - expected return of a portfolio, 

𝑤𝑤3     - vector of new weights for instruments in a new portfolio after rebalancing, 

𝑏𝑏, 𝑠𝑠    - vectors of amounts bought and sold of each instrument during rebalancing, 

𝐶𝐶" , 𝐶𝐶#    - vectors of transaction costs at rebalancing for each instrument. 

  

 In the above problem, conditions (1) – (3), (6) are representing a standard portfolio 

problem, as described by Markowitz. According to Mitchell (2002), this formulation of 

portfolio problem “minimizes a quadratic risk measurement with a set of linear constraints 

specifying the minimum expected portfolio return and enforcing a full investment of funds”.  

The conditions (4) – (6) are showing the rebalancing problem. The proportional brokerage fees 

are assumed, the transaction costs used in this paper are following this requirement. The weights 

of the securities are non-negative, which means that the portfolio is long-only.  

 In the first period 𝑡𝑡, a basic optimization problem is being solved and the efficient frontier 

is constructed. From the efficient frontier, a portfolio with the highest Sharpe ratio should then 

be chosen.  

 For the next periods 𝑡𝑡 + 𝜀𝜀, the investor needs to solve a full optimization problem to 

obtain the new efficiency frontier. The goal is again to get the portfolio with the highest Sharpe 

ratio and repeat the steps above for all the moments the portfolio rebalances are needed. 
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2.2. The Hierarchical Risk Parity approach 
 
The algorithm was originally developed by Lopez de Prado in 2016. This method allows the 

rebalancing of a portfolio in the conditions in which it would be impossible to do so under the 

MV method due to numerical issues – codependence matrix is impossible to invert. It consists 

of three stages, namely the tree clustering, quasi-diagonalization, and the recursive bisection. 

The stages are described below as well as points where modifications are introduced. 

 

2.2.1. Tree clustering 
 
The input of the algorithm is a series of returns with 𝑁𝑁 observations for each of the securities 

𝑀𝑀. From this data, an empirical codependence matrix is calculated. Based on the correlation 

matrix, a distance matrix is calculated using a defined distance metric.  

 On this first step, there is a modification to apply to the algorithm. There are multiple 

ways to calculate the codependence matrix and the distance to use. The classical and most 

widely used correlation metric is the Pearson correlation, however, there are also other metrics 

that are being used in this work – distance correlation, mutual information, variation of 

information. They are described in more detail later. As for the distance metric, there are also 

multiple options available. 

 To make the comparison fair – so each of the optimization algorithms has access to the 

same information regarding the codependences between the instruments in a portfolio, the same 

type of codependence metric will be used in each one of them. This modification only changes 

the codependence matrix provided to the MV, IVP, and CLA algorithms. 

 The distance matrix, calculated from the codependence matrix is showing how each of 

the elements in the portfolio is related to other elements. From the book of Arkhangel'skii 

(1990), the distance is a metric, in a sense that it obeys the three properties of a metric – non-

negativity (8), identity of indiscernibles (9), symmetry (10), and these three metrics imply 

subadditivity (11): 

 𝑑𝑑: 𝑋𝑋	 × 𝑋𝑋 → [0,∞); 	𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝑋𝑋 (7) 

 𝑑𝑑(𝑖𝑖, 𝑗𝑗) ≥ 0 (8) 

 𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 0 ⇔ 𝑖𝑖 = 𝑗𝑗 (9) 

 𝑑𝑑(𝑖𝑖, 𝑗𝑗) = 𝑑𝑑(𝑗𝑗, 𝑖𝑖) (10) 

 𝑑𝑑(𝑖𝑖, 𝑗𝑗) ≤ 𝑑𝑑(𝑖𝑖, 𝑘𝑘) + 𝑑𝑑(𝑘𝑘, 𝑗𝑗) (11) 
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where: 

𝑋𝑋 - set of elements, 

𝑑𝑑(𝑖𝑖, 𝑗𝑗)    - distance between elements 𝑖𝑖 and 𝑗𝑗, 

 

 From a distance matrix a hierarchical structure of the securities is drawn using the 

clustering algorithm. The default clustering algorithm used in the work of Lopez de Prado 

(2016) is the single-linkage clustering. As shown in Pfitznger (2019), other clustering 

algorithms can be applied such as Ward, DIANA, and Genetic Permutation. It was also shown 

that these clustering techniques outperform the standard single-linkage one when used in HRP 

on the Pearson correlation codependence metric in terms of the diagonalization measure of the 

resulting correlation matrix. In this work, the single-linkage clustering method is used to 

compare the performance of codependence metrics. 

 

2.2.2. Quasi-diagonalization 
 
In this step, order of the elements in a portfolio is changed according to the hierarchical structure 

discovered in the previous step. It is done by replacing each cluster consecutively with the 

elements included inside of it, the order of the clustering is preserved. This allows positioning 

the highest values in the correlation matrix along the main diagonal, thus reducing the condition 

number and making the portfolio more stable according to Lopez de Prado (2016).  

 The similar elements are also placed near each other after this step in terms of correlation 

close to each other. The change of the correlation matrix before and after the quasi-

diagonalization can be seen in Appendix A.  

 

2.2.3. Recursive bisection 
 
In this step, the algorithm is assigning the weights to the securities in a portfolio. The main idea 

is to unpack each cluster (consisting of two elements – left and right) one by one while assigning 

weights to each part until all clusters are unpacked and each individual asset in a portfolio has 

an assigned weight. The weights are assigned based on the variance of left and right elements 

in a cluster unpacked. The more variance the element has, the less weight it gets.  

 Modifications to the algorithm can also be applied on this step. For example, if one of the 

securities in a portfolio possesses a substantially lower level of variance, a higher portion will 
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be allocated to this security in comparison to others. One might want to limit this by setting a 

threshold of maximum allowed weight for a single asset and redistribute the excess. 

 Two ways of the redistribution of the excess weight may be applied. One is redistributing 

it among all other elements in direct proportion to their current weights. The other is to 

redistribute it only between the elements in the same cluster (using the built hierarchical 

structure) in direct proportion to weight already distributed by the HRP algorithm. These 

redistribution approaches weren’t mentioned in other literature and are an interest for future 

research. 

 

2.3. Alternative portfolio optimization methods 
 
The allocation of weights for the MV algorithm is done by solving the equations (1) - (3) and 

is described in more detail in the notes by Bruke (2020). 

 The IVP method, as mentioned in Alipour (2016), takes into account only the variance of 

individual instruments and not the covariance between them. This is one of the popular 

frameworks used in financial literature. 

 The CLA, as well as the MV method, was developed by Markowitz. The main idea behind 

the approach is also setting inequality conditions to the weights of each individual instrument 

in a portfolio. The implementation of the algorithm used in this work is described in Bailey and 

de Prado (2013). The CLA outputs multiple weights sets that satisfy the optimization problem 

conditions. The set of weights that results in the highest Sharpe ratio is chosen from the possible 

solutions, as this is the main benchmark used for comparison.  

 When the HRP algorithm is tested using another dependence metric instead of the Pearson 

correlation, the MV, IVP, and CLA are also used with that same metric. This is done to test if 

it’s the metric used is being more informative or the HRP actually uses this information better 

in comparison to other metrics. Also, this allows to test the effectiveness of each codependence 

metric by looking at the average results of the optimization algorithms. 

 

2.4. Metrics for performance comparison 

 

In the same way, as described in the work of Markowitz (1952), it is assumed that an investor 

is aiming to minimize the risk of a portfolio at a given level of return.  
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 The portfolio is being initially constructed during the first period and is reconstructed at 

the end of each of the next rebalancing periods. Rebalancing used in this work is time-only and 

is set to monthly. To estimate a codependence matrix of elements a 6-month rolling window is 

chosen, as in Clarke (2006) and Alipour (2016). After each rebalancing, the transaction costs 

from Appendix C are recorded.  

 The transaction costs are assumed to be symmetric – equal for buying and selling an 

instrument. Taxes are not paid from the profit and can be added easily – they will be 

proportional to the returns and therefore the sensitivity of the algorithms to them is not 

calculated in this work. The constructed portfolio is long-only, it allows only buying and 

holding the assets and selling at a profit, short sales are not allowed. The price of a portfolio is 

recalculated after each observation – in our case daily.   

 Input data is a time series of prices that are being transformed into a series of returns in 

the following way: 

 𝑅𝑅$ =
𝑃𝑃$ − 𝑃𝑃$%&

𝑃𝑃$%&
 (12) 

where: 

𝑅𝑅$ - return value at the observation 𝑡𝑡, 

𝑃𝑃$ , 𝑃𝑃$%&   - price values at observations 𝑡𝑡 and 𝑡𝑡 − 1. 

 

 The performance of the algorithms is compared using the following measures: The 

annualized Sharpe ratio, average daily return, a standard deviation of daily returns, annualized 

rate of return, maximum drawdown, total returns including cost. The costs incurred are analyzed 

by: average cost of rebalancing, standard deviation of costs, and total returns including costs. 

 It is also possible to test the significance of differences between the metrics such as 

annualized Sharpe ratios and annualized volatilities using the approach described in the works 

of Ledoit and Wolf (2008, 2011). 

 As for the risk-free rate used in the annualized Sharpe ratio formula, 0% was chosen as it 

has changed over the previous few decades. Changing the risk-free ratio won’t affect the 

comparison of performances of actual algorithms, as it will decrease the Sharpe ratios with 

equal proportion. For comparison to the results of other researchers, the results of this work can 

be easily changed to annualized Sharpe ratios with fixed risk-free rates. For example, in the 

work of Zakamulin (2016), the risk-free rate for the period 1989-2017 was assumed to be fixed 

at 2% annually. 
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3. Codependence matrices and distance metrics 

 

In this work, various dependence measures were used. The classical one is the Pearson 

correlation. The same metric used since the works of Markowitz. The measures used are 

described in detail in this part of work, the type of dependencies that they are measuring will 

be stated. The dependence metrics used are: 

• Pearson correlation 

• Distance correlation  

• Mutual information 

• Variation of information 

And the distance metrics compared in the tree clustering step of the HRP algorithm: 

• Angular distance 

• Absolute angular distance 

• Squared angular distance 

 

3.1. Pearson correlation 

 

Originally the correlation coefficient was developed by Pearson, the mathematical formula for 

the correlation was first published by Bravais (1844). It’s a widely used statistic in theoretical 

and practical applications for codependence measurement between elements.  

 The Pearson correlation is a measure of linear codependence between the two random 

variables, but is not a metric since it doesn’t satisfy the conditions of non-negativity (8) and 

subadditivity (11).  As mentioned in Lopez de Prado (2020), keeping the metric conditions 

allows for inducing a topology on a set of data. Lack of such a topology can make the outcomes 

of the measurements being incoherent. The example stated in the above work is that the 

difference between correlations (0.9, 1.0) and (0.1, 0.2) is the same, but the second pair poses 

a higher difference of codependence. For this reason, in the HRP algorithm, a distance matrix 

is calculated from the correlation matrix, as the distance is a metric.  

 

 The Pearson correlation coefficient for the sample is calculated as: 

 
𝜌𝜌'( =

∑ (𝑥𝑥) − �̅�𝑥)(𝑦𝑦) − 𝑦𝑦U)*
)+&

V∑ (𝑥𝑥) − �̅�𝑥),*
)+& V∑ (𝑦𝑦) − 𝑦𝑦U),*

)+&

 (13) 
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where: 

𝜌𝜌'( - Pearson correlation coefficient between variables 𝑥𝑥 and 𝑦𝑦, 

𝑥𝑥) , 𝑦𝑦)    - 𝑖𝑖-th observation of variables  𝑥𝑥 and 𝑦𝑦, 

�̅�𝑥, 𝑦𝑦U    - average value of observations for 𝑥𝑥 and 𝑦𝑦, 

𝑁𝑁   - number of observations. 

 

 The value of statistic falls in the range of (−1,+1), where a coefficient of +1 means that 

the relationship between variables can be described using a linear equation and with an increase 

of one variable, the other increases too. With the coefficient of −1, the relationship is also 

linear, but with an increase of one variable, the other one decreases.  The range of values is 

from +1 to −1, with 0 is no linear correlation, 1 is a truly positive, and -1 is a true negative. 

Correlation between 0  and +1 means that the observations of variables lie on the same side of 

distributions in relation to the means. As mentioned in Lopez de Prado (2020), this statistic is 

also sensitive to outliers. 

  

3.2. Distance correlation 

 

The distance correlation codependence measure was first introduced by Szekely in 2005 and is 

described in the work of Szekely (2007) as a generalization of Pearson correlation to take non-

linear codependences into account. As mentioned in Lopez de Prado (2020), it is a 

computationally expensive statistic. In contrast to the Pearson correlation, the distance 

correlation equal to zero implies that the variables are independent. 

 The approach of Szekely also allows for a calculation of analogs for ordinary moments 

in the Pearson correlation, such as distance variance, distance standard deviation, and the 

distance covariance. The distance correlation statistic is calculated in the following way: 

 
𝜌𝜌-).$[𝑋𝑋, 𝑌𝑌] = 	

𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑[𝑋𝑋, 𝑌𝑌]
Z𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑[𝑋𝑋, 𝑋𝑋]𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑[𝑌𝑌, 𝑌𝑌]

 (14) 

 
𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑,[𝑋𝑋, 𝑌𝑌] =

1
𝑛𝑛, \\𝐷𝐷^𝑥𝑥) , 𝑥𝑥/_ ∗ 𝐷𝐷^𝑦𝑦) , 𝑦𝑦/_

0

/+&

0

)+&

 (15) 

 𝐷𝐷^𝑥𝑥) , 𝑥𝑥/_ = 𝑎𝑎),/ −	𝑎𝑎U). − 𝑎𝑎U./ + 𝑎𝑎U..	, 𝐷𝐷^𝑦𝑦) , 𝑦𝑦/_ = 𝑏𝑏),/ −	𝑏𝑏U). − 𝑏𝑏U./ + 𝑏𝑏U.. (16) 

 𝑎𝑎),/ =	b𝑋𝑋) − 𝑋𝑋/b	, 𝑏𝑏),/ =	b𝑌𝑌) − 𝑌𝑌/b	, 𝑖𝑖, 𝑗𝑗 = 1, 2, …𝑁𝑁. (17) 

where: 
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𝜌𝜌-).$[𝑋𝑋, 𝑌𝑌] - distance correlation between random variables 𝑋𝑋 and 𝑌𝑌, 

𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑[𝑋𝑋, 𝑌𝑌]   - sample distance covariance between variables 𝑋𝑋 and 𝑌𝑌, 

𝐷𝐷^𝑥𝑥) , 𝑥𝑥/_   - doubly centered Euclidean matrices of variables 𝑋𝑋 and 𝑌𝑌, 

𝑎𝑎, 𝑏𝑏   - Euclidean distance matrices between observations of 𝑋𝑋 and 𝑌𝑌 respectively, 

𝑎𝑎),/   - element of 𝑎𝑎 matrix that is placed on the 𝑖𝑖-th row and the 𝑗𝑗-th column, 

𝑎𝑎U).    - mean of 𝑖𝑖-th row of matrix 𝑎𝑎, 

𝑎𝑎U./    - mean of 𝑗𝑗-th column of matrix 𝑎𝑎, 

𝑎𝑎U..	    - grand mean of matrix 𝑎𝑎, 

𝑋𝑋) - 𝑖𝑖-th observation of the 𝑋𝑋 variable, 

‖. ‖   - Euclidean norm, 

𝑁𝑁   - number of observations. 

 

 This statistic falls in the range of (0	, +1), where the value 0 is observed if and only if 

variables 𝑋𝑋 and 𝑌𝑌 are independent, it also allows to measure the codependence between the two 

random vectors that not necessarily have equal dimension. If the statistic value 1 is observed 

and it is assumed that the subspaces spanned by 𝑋𝑋 and 𝑌𝑌 are equal, then: 

 𝑌𝑌	 = 𝐴𝐴 + 𝑏𝑏 ∗ 𝐶𝐶 ∗ 𝑋𝑋 (18) 

where: 

𝑋𝑋, 𝑌𝑌 - vectors of observations of variables 𝑋𝑋 and 𝑌𝑌, 

𝐴𝐴   - vector, 

𝑏𝑏   - scalar, 

𝐶𝐶   - orthonormal matrix. 

 

 As the distance correlation is always positive, it’s impossible to use it to find negative 

codependences between variables. Due to the need for the calculation of the distance matrices 

for each of the variables, the space complexity of the calculation increases to 𝑂𝑂(𝑛𝑛,) in 

comparison to 𝑂𝑂(𝑛𝑛) for Pearson correlation. This makes it harder to use this statistic for large 

samples of data. In this work a rolling window approach is used to estimate the codependence 

matrix, so the difficulties related to calculations are omitted.  
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3.3. Mutual information 

 

Mutual information is a measure of mutual dependence between the two random variables. It 

arises from the information theory of Shannon, which was originally described in the work by 

Shannon and Weaver (1949) and later developed further in the work by Cover and Thomas 

(1991). Mutual information determines the difference between the joint distribution of the pair 

(𝑋𝑋, 𝑌𝑌) and the product of the marginal distributions 𝑋𝑋 and 𝑌𝑌, it allows quantifying how much 

information is obtained about one variable through only observing the second one. 

 From the Cover and Thomas (1991), the mutual information can be calculated as: 

 𝐻𝐻[𝑋𝑋] = − \ 𝑝𝑝[𝑥𝑥]log	[𝑝𝑝[𝑥𝑥]]
'∈#!

 (19) 

 𝐻𝐻[𝑋𝑋, 𝑌𝑌] = − \ 𝑝𝑝[𝑥𝑥, 𝑦𝑦]log	[𝑝𝑝[𝑥𝑥, 𝑦𝑦]]
',(∈#!×#"

 (20) 

 
𝐼𝐼[𝑋𝑋, 𝑌𝑌] = 	𝐻𝐻[𝑋𝑋] + 𝐻𝐻[𝑌𝑌] − 𝐻𝐻[𝑋𝑋, 𝑌𝑌] = \ \ 𝑝𝑝[𝑥𝑥, 𝑦𝑦]𝑙𝑙𝑑𝑑𝑙𝑙 q

𝑝𝑝[𝑥𝑥, 𝑦𝑦]
𝑝𝑝[𝑥𝑥]𝑝𝑝[𝑦𝑦]r

(∈#"'∈#!

 (21) 

where: 

𝐻𝐻[𝑋𝑋] - entropy of random variable 𝑋𝑋, 

𝑝𝑝[𝑥𝑥]   - probability of random variable 𝑋𝑋 being equal to 𝑥𝑥, 

𝑆𝑆'   - set of values that that the random variable 𝑋𝑋 can be equal to, 

𝐻𝐻[𝑋𝑋, 𝑌𝑌]   - joint entropy of variables 𝑋𝑋 and 𝑌𝑌, 

𝑝𝑝[𝑥𝑥, 𝑦𝑦]   - probability of pair of random variables (𝑋𝑋, 𝑌𝑌) being equal to (𝑥𝑥, 𝑦𝑦), 

𝐼𝐼[𝑋𝑋, 𝑌𝑌]    - mutual information between variables 𝑋𝑋 and 𝑌𝑌. 

 

 The entropy is interpreted as the amount of uncertainty associated with variable 𝑋𝑋, it is 

equal to zero if the probability of one element from 𝑆𝑆' is 1 and equal to maximum value 

log	[‖𝑆𝑆'‖] when the probability is distributed uniformly across elements in 𝑆𝑆'. The mutual 

information measurement falls in the range of (0	, min	{𝐻𝐻[𝑋𝑋], 𝐻𝐻[𝑌𝑌]}), is non-negative (8) and 

symmetric (10), but it’s not a metric since it doesn’t satisfy the subadditivity property (11). 
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 As the entropy is finite only in case of discretizing the random variables, the calculation 

of it includes limiting density to discrete points, the same way they are calculated in the work 

of Lopez de Prado (2020): 

 
𝐼𝐼[𝑋𝑋, 𝑌𝑌] = \\

t𝑈𝑈) ∩ 𝑉𝑉/t
𝑁𝑁 𝑙𝑙𝑑𝑑𝑙𝑙

𝑁𝑁t𝑈𝑈) ∩ 𝑉𝑉/t
|𝑈𝑈)|t𝑉𝑉/t

|6|

/+&

|7|

)+&

 (22) 

where: 

|𝑈𝑈|, |𝑉𝑉| - number of bins in the discretization for variables 𝑋𝑋 and 𝑌𝑌 respectively, 

|𝑈𝑈)|   - number of elements in a 𝑖𝑖-th bin from total bins 𝑈𝑈, 

t𝑈𝑈) ∩ 𝑉𝑉/t   - sum of elements in 𝑖𝑖-th bin from 𝑈𝑈 and 𝑗𝑗-th bin from 𝑉𝑉, 

𝑁𝑁   - total number of elements in bins 𝑈𝑈 and 𝑉𝑉. 

 

 As for the number of bins to use for the discretization of variables  𝑋𝑋 and 𝑌𝑌, the optimal 

binning formula for the joint entropy case from the work of Hacine-Gharbi and Ravier (2018), 

as discussed in Lopez de Prado (2020) was used:  

 

|𝑈𝑈| = |𝑉𝑉| = 	𝑟𝑟𝑑𝑑𝑟𝑟𝑛𝑛𝑑𝑑

⎣
⎢
⎢
⎡ 1
√2

�1 + Ä1 +
24𝑁𝑁

1 − 𝜌𝜌89
⎦
⎥
⎥
⎤
 (23) 

where: 

|𝑈𝑈|	, |𝑉𝑉| - number of bins to use in the discretization for variables 𝑋𝑋 and 𝑌𝑌 respectively, 

𝑁𝑁   - number of observations of variables 𝑋𝑋 and 𝑌𝑌, 

𝜌𝜌89   - Pearson correlation between observations of variables 𝑋𝑋 and 𝑌𝑌. 

 In order to use this measure in the chosen portfolio optimization algorithms, it is being 

normalized to the range of (0	, +1): 

 
𝐼𝐼0:;<=>)?@-[𝑋𝑋, 𝑌𝑌] =

𝐼𝐼[𝑋𝑋, 𝑌𝑌]
min	{𝐻𝐻[𝑋𝑋], 𝐻𝐻[𝑌𝑌]} 

(24) 

 

3.4. Variation of Information 
 

The variation of information is the measure of the distance between two random variables and 

according to Lopez de Prado (2020) can be interpreted as the uncertainty that is expected from 

one variable if the other variable is known. The same as with the mutual information measure, 

it’s closely related to Shannon’s information theory.  
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 The variation of information was originally presented in a work by Meila (2006). This is 

a true metric as it follows the subadditivity (11) rule. This measure is calculated as: 

 

 𝑉𝑉𝐼𝐼[𝑋𝑋, 𝑌𝑌] = 𝐻𝐻[𝑋𝑋] + 𝐻𝐻[𝑌𝑌] − 2𝐼𝐼[𝑋𝑋, 𝑌𝑌] (25) 

where: 

𝑉𝑉𝐼𝐼[𝑋𝑋, 𝑌𝑌] - variation of information between variables 𝑋𝑋 and 𝑌𝑌, 

𝐻𝐻[𝑋𝑋]   - entropy of variable 𝑋𝑋, 

𝐼𝐼[𝑋𝑋, 𝑌𝑌]   - mutual information between variables 𝑋𝑋 and 𝑌𝑌. 

 

 This metric falls in the range of (0	, 𝐻𝐻[𝑋𝑋	, 𝑌𝑌]). If one wants to compare the variances of 

information across populations of different sizes, the problem occurs. As the 𝐻𝐻[𝑋𝑋	, 𝑌𝑌] doesn’t 

have a firm upper bound. Alternative metrics with upper bounds are mentioned in Lopez de 

Prado (2020). As for the number of bins to use in the discretization of variables 𝑋𝑋 and 𝑌𝑌, the 

same approach as in the mutual information calculation was used. The entropy of discretized 

variables was calculated as: 

 
𝐻𝐻[𝑋𝑋] = −\

|𝑈𝑈)|
𝑁𝑁

|7|

)+&

𝑙𝑙𝑑𝑑𝑙𝑙
|𝑈𝑈)|
𝑁𝑁  (26) 

where: 

|𝑈𝑈| - number of bins in the discretization for variable 𝑋𝑋, 

|𝑈𝑈)|   - number of elements in a 𝑖𝑖-th bin from total bins 𝑈𝑈, 

𝑁𝑁   - total number of elements in bins 𝑈𝑈. 

 In the same way as mutual information metric, the variation of information is being 

normalized to the range of (0	, +1): 

 
𝑉𝑉𝐼𝐼0:;<=>)?@-[𝑋𝑋, 𝑌𝑌] =

𝑉𝑉𝐼𝐼[𝑋𝑋, 𝑌𝑌]
		𝐻𝐻[𝑋𝑋	, 𝑌𝑌] (27) 

 

3.5. Angular distance 

 

The angular distance is the measure used to transform Pearson correlation into a metric as it’s 

a linear multiple of the Euclidean distance between the vectors. It was introduced in the work 

of Lopez de Prado (2016). 

 According to the author, this metric is well suited in the tasks of building long-only 

portfolios, exactly the ones that the HRP algorithm builds, as well as other algorithms that are 



                                   Barziy, I. and Chlebus, M. /WORKING PAPERS 21/2020 (327)                                  15 

used for the comparison. Angular distance is calculated based on Pearson correlation coefficient 

as: 

 
𝑑𝑑A[𝑋𝑋, 𝑌𝑌] = Ä1

2 (1 − 𝜌𝜌89) (28) 

where: 

𝑑𝑑A[𝑋𝑋, 𝑌𝑌] - angular distance between variables 𝑋𝑋 and 𝑌𝑌, 

𝜌𝜌89   - Pearson correlation coefficient between variables 𝑋𝑋 and 𝑌𝑌. 

 

 This metric transforms values from range (−1	, +1) to range of (0, +1). To use this 

metric on other types of codependences, they have to be also scaled (−1	, +1). It makes the 

variables that have a negative correlation have a greater distance between them. In the long-

only portfolio the instruments that have a negative correlation can only offset risk and it’s not 

possible to use them to capture the same direction movements of the market, therefore they are 

treated as different for diversification purposes. The graph below shows how this metric 

transforms the range of Pearson correlation coefficient to (0, +1). 

 

 
Figure 1: Transformation of Pearson correlation using the angular distance metric 
Source: Own calculations. 

 

3.6. Absolute angular distance 
 

The absolute angular distance is a measure similar to the angular distance but is more suited for 

tasks of building the long-short portfolios, as the elements with high negative correlations are 

set to have smaller distances between them. In the long-short portfolios, the highly negatively-

correlated securities can be treated as similar, as it’s possible to invest in the second security 
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with a negative sign. This measure was introduced in the work of Lopez de Prado (2016). 

Absolute angular distance is calculated based on Pearson correlation coefficient as: 

 
𝑑𝑑|A|[𝑋𝑋, 𝑌𝑌] = Ä1

2 (1 − |𝜌𝜌89|) (29) 

where: 

𝑑𝑑|A|[𝑋𝑋, 𝑌𝑌] - absolute angular distance between variables 𝑋𝑋 and 𝑌𝑌, 

𝜌𝜌89   - Pearson correlation coefficient between variables 𝑋𝑋 and 𝑌𝑌. 

 

 The graph below shows how this metric transforms the range of Pearson correlation 

coefficient to (0, +1). 

 

 
Figure 2: Transformation of Pearson correlation using the absolute angular distance 
metric 
Source: Own calculations. 

 

3.7. Squared angular distance 

 

The squared angular distance is almost the same as the absolute angular distance in terms of 

properties and transformation of the correlation. However, it assigns slightly larger distances to 

correlations in comparison to the absolute angular distances. This measure was introduced in 

the work of Lopez de Prado (2016). Squared angular distance is calculated based on Pearson 

correlation coefficient as: 

 
𝑑𝑑A#[𝑋𝑋, 𝑌𝑌] = Ä1

2 (1 − 𝜌𝜌89,) (30) 

where: 

𝑑𝑑A#[𝑋𝑋, 𝑌𝑌] - squared angular distance between variables 𝑋𝑋 and 𝑌𝑌, 
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𝜌𝜌89   - Pearson correlation coefficient between variables 𝑋𝑋 and 𝑌𝑌. 

 

 The graph below shows how this metric transforms the range of Pearson correlation 

coefficient to (0, +1). 

 

 
Figure 3: Transformation of Pearson correlation using the squared angular distance 
metric 
Source: Own calculations. 

 

4. Data set used 
 

In order to test the performance of portfolio algorithms with different distance metrics, it was 

decided to use a diversified portfolio consisting of exchange-traded funds (ETFs). The picked 

ETFs are representing different asset types – stocks, bonds, and commodities. The stocks ETFs 

are chosen in a way to represent different regions of the world – USA, Asia, Europe, etc., and 

specific industries of the economy. The work of Schlanger (2018) describes how various ETFs 

can be used to construct portfolios with different investment goals in terms of risk-return 

balance.  

 The first criterion used when choosing a set of ETFs was the diversification of the 

investments, but also the liquidity of the ETFs was taken into account. This is done to ensure 

the simulations done will be less affected by biases of price slippage and low activity on the 

market, making it impossible to execute trades at the available prices. These biases can 

transform a profitable strategy during the backtesting process into an unprofitable one on real 

world-tests. However, the modeling of the slippages is not the goal of this work, as the 

comparison between algorithms and modifications is being done and these biases will affect the 

result of each algorithm in the same way. The threshold set to the liquidity of the ETF is 300000 

average daily traded contracts based on the previous three months. This criterion has resulted 

in more than 600 ETFs to choose from in a portfolio. The instruments to be used in the portfolio 
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are listed in Appendix B. The annualized Sharpe ratios and the time frame for which data is 

available for each ETF is also included to compare to the results of each portfolio optimization 

algorithm. 

 The data used was purchased from Kibot data provider and has a 30 minutes’ interval of 

observations. The values representing the prices 30 minutes before market close were used as 

daily prices, as in practice it’s impossible to execute orders exactly at close prices. This makes 

the modeling in this work closer to a bias-free one.  

 The period of time used in the simulation is from 01.01.2007 to 20.12.2019, as it reflects 

the recent changes in asset price movement and dependencies as well as a period of a crisis. 

This period also covers a full cycle of expansion and contraction according to the National 

Bureau of Economic Research. This will show how each of the algorithms with the 

corresponding codependence metrics can handle periods of recessions. 

 For some of the instruments in a chosen set data was not available from the start of the 

observation period – 01.01.2007, as they were created later. This is taken into account in a way 

that during each rebalancing only those instruments are used for which a codependence matrix 

can be estimated, which means that data should be available for at least 6 months before the 

rebalancing time. 

 As it was discussed previously, a rolling window approach was used for rebalancing with 

6 months to estimate the codependence matrix and this matrix is used for the next month of 

daily data. It’s being controlled that at the time of rebalancing the algorithm has no access to 

the data from the next month, in order to omit the look-ahead bias.   

 

5. Results of the research 
 

In this section first, the results regarding the distance metrics will be discussed, then the 

comparison of performances of each of the algorithms for different codependence metrics will 

be presented. Finally, the sensitivity of the algorithm performances to changes in transaction 

costs will be mentioned. 

 

5.1. Distance metrics 

  

For each of the codependence metrics, the HRP algorithm was used with different distance 

metrics. The results among the distance metrics were similar for each codependence metric. 
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This was expected as distance metrics have similar properties when used on a set of positively 

correlated instruments. As seen from the formulas described in the methodology part, the 

differences between the angular distance and the absolute/squared will be seen only if the assets 

are negatively correlated.  

 The results of portfolio optimizations are just slightly different, so a conclusion can be 

drawn that at some periods of time the dependencies between the elements were negative. Full 

table comparing the annualized Sharpe ratio, the average daily returns, and the standard 

deviation of returns is presented below.  

 

Table 1: Comparison of distance metrics results 

Codependence metric Distance metric 

Annualized 

Sharpe 

Ratio 

Average 

daily return 

Standard 

deviation of 

returns 

Pearson correlation 

Angular 0.644110 0.000253 0.006234 

Absolute 

angular 
0.6524116 0.000256 0.006238 

Squared angular 0.6524116 0.000256 0.006238 

Distance correlation 

Angular 0.427612 0.000288 0.010702 

Absolute 

angular 
0.427612 0.000288 0.010702 

Squared angular 0.427612 0.000288 0.010702 

Mutual information 

Angular 0.423383 0.000289 0.010702 

Absolute 

angular 
0.423383 0.000289 0.010702 

Squared angular 0.423383 0.000289 0.010702 

Variation of 

information 

Angular 0.424777 0.000289 0.010786 

Absolute 

angular 
0.424777 0.000289 0.010786 

Squared angular 0.424810 0.000289 0.010786 
Source: Own calculations. 

Note: The table above presents the results of running HRP portfolio optimization algorithm with multiple 

combinations of metrics. The total number of models created was 12. 
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 The best results in terms of annualized Sharpe ratio are achieved using the Pearson 

correlation and the absolute or squared angular distance. The average daily returns are higher 

when using the alternative codependence metrics, but that is being offset with a substantially 

higher variation of returns.  

 The higher Sharpe ratio with the Pearson correlation using the squared or absolute angular 

distance can be explained by the fact that some of the instruments in a portfolio while having a 

negative correlation but clustered closer are offsetting the risk. 

 For the codependence metrics – distance correlation, mutual information, and the 

variation of information, the average returns are 12,5% higher, which is a significant increase 

in the observed period. But the variance of the returns is 71,5% higher, resulting in 34,5% lower 

annualized Sharpe ratio. The figure below shows side by side comparison of the portfolio 

rebalanced by HRP using various codependence metrics. 

 

 
Figure 4: Accumulated returns for angular distance and various codependence metrics. 
Source: Own calculations. 

 In the next comparisons the absolute angular distance is used as the distance metric for 

the HRP algorithm, as it’s showing the best results with the Pearson correlation metric and the 

same results as other distance metrics when other codependence metrics are used. 
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5.2. Codependence metrics 

 

The MV, IVP, CLA, and the HRP algorithms will be used on the data set with different 

codependence metrics to compare their performance. The results of the algorithms in terms of 

annualized Sharpe ratios, average daily returns, standard deviations of the daily returns, 

annualized rate of returns, and maximum drawdowns are shown in the table below. The way 

accumulated returns compare and how the weights are distributed among the instruments with 

each rebalancing for the optimization methods is also displayed. The results for the MV 

algorithm on the alternative codependence metrics is left blank as the obtained codependence 

matrices were impossible to use in the convex optimization problem being solved by the 

algorithm. 

 

Table 2: Comparison of the optimization algorithms with different codependence metrics 

Codependence 

metric 

Optimiz-

ation 

algorithm 

Annualized 

Sharpe 

Ratio 

Average 

daily 

return 

Returns 

standard 

deviation 

Annualized 

rate of 

return 

Maximum 

drawdown 

Pearson 

correlation 

MV 0.395689 0.000231 0.009243 4.95% 47.38% 

IVP 0.512581 0.000274 0.008481 6.31% 40.69% 

CLA 0.446839 0.000248 0.008805 5.53% 43.14% 

HRP 0.652416 0.000256 0.006238 6.19% 26.16% 

Distance 

correlation 

MV - - - - - 

IVP 0.418334 0.000298 0.011323 6.20% 52.19% 

CLA 0.328224 0.000348 0.016814 5.45% 68.48% 

HRP 0.427612 0.000288 0.010702 6.12% 48.56% 

Mutual 

information 

MV - - - - - 

IVP 0.418334 0.000298 0.011323 6.20% 52.19% 

CLA 0.378348 0.000365 0.015297 6.33% 65.77% 

HRP 0.423399 0.000289 0.020831 6.09% 49.03% 

Variation of 

information 

MV - - - - - 

IVP 0.418334 0.000298 0.011323 6.20% 52.19% 

CLA 0.377542 0.000337 0.014159 6.27% 61.49% 

HRP 0.424810 0.000289 0.010786 6.10% 48.83% 
Source: Own calculations. 
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Note: The table above presents the results of running each portfolio optimization algorithm with multiple 

codependence metrics. The total number of models created was 13. 

 

 
Figure 5: Accumulated returns for each algorithm using the Pearson correlation. 
Source: Own calculations. 

 
Figure 6: Accumulated returns for CLA algorithm using different codependence. 
Source: Own calculations. 
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Figure 7: Bar plots of weights distribution for HRP (top left), CLA (top right), MV 
(bottom left), IVP (bottom right) algorithms using Pearson correlation. 
Source: Own calculations. 

 

 For every codependence metric used the HRP algorithm has shown better results in terms 

of the annualized Sharpe ratios as a comparison measure. Unfortunately, the alternative 

codependence metrics as distance correlation, mutual information, and the variation of 

information show worse results than the standard Pearson correlation. On the other side, the 

average returns for alternative methods are higher. 

 From graphs of weights redistribution for different algorithms using the Pearson 

correlation, it can be concluded that the allocations of the IVP and the HRP are more robust 

than the MV and the CLA ones. This means that rebalancing the portfolio using the latter ones 

may result in more difficulties and higher rebalancing costs as the amounts of traded 

instruments are higher with each rebalancing. The CLA and the HRP have very similar average 

returns, but the CLA has a 41,1% higher standard deviation of returns. 
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5.3. Sensitivity to transaction costs 

 

Figure 7 shows that algorithms have different robustness and as a result, different transaction 

costs. These transaction costs were calculated on a portfolio with a starting value of 

1’000’000 USD and monthly rebalancing. The total number of rebalances is 148. Transaction 

costs for further analysis are presented in the table below. 

 
Table 3: Comparison of transaction costs and total returns for different algorithms 

Codependence 

metric 

Optimization 

algorithm 

Total transaction 

costs 

Average 

transaction 

costs 

Total returns 

including costs 

Pearson 

correlation 

MV 12`596.63 USD 85.11 USD 828`751.47 USD 

IVP 5`536.39 USD 37.41 USD 1`148`367.88 USD 

CLA 13`251.52 USD 89.54 USD 958`677.03 USD 

HRP 8`075.74 USD 54.57 USD 1`118`506.66 USD 

Distance 

correlation 

MV - - - 

IVP 4`765.66 USD 32.20 USD 1`123`421.40 USD 

CLA 13`371.45 USD 90.35 USD 941`352.91 USD 

HRP 6`833.08 USD 46.17 USD 1`101`353.83 USD 

Mutual 

information 

MV - - - 

IVP 4`765.66 USD 32.20 USD 1`123`421.40 USD 

CLA 13`375.41 USD 90.37 USD 1`217`025.64 USD 

HRP 6`591.98 USD 44.54 USD 1`095`891.03 USD 

Variation of 

information 

MV - - - 

IVP 4`765.66 USD 32.20 USD 1`123`421.40 USD 

CLA 13`585.20 USD 91.79 USD 1`139`257.87 USD 

HRP 6`283.94 USD 42.46 USD 1`097`521.01 USD 
Source: Own calculations. 

Note: The table above presents the transaction costs incurred by each portfolio optimization algorithm with 

multiple codependence metrics. The total number of models created was 13. 

 

 In each rebalance the transaction costs are relatively low in comparison to the total value 

of a portfolio. All the transaction costs recorded for each individual ETF are either a minimum 
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transaction cost of 1 USD or a fixed cost. This means that increase in transaction cost per 

individual order will increase total transaction costs in the same proportion. 

 For the chosen size of a portfolio the transaction costs are small compared to the returns 

generated. In order for transaction costs to severely affect the performance either the costs have 

to be higher or the rebalancing has to occur more frequently. For example, moving to weekly 

rebalances would increase the total transaction costs by around 4 times. 

 In terms of robustness, the IVP algorithm shows the best result. The MV and the HRP 

algorithms have similar robustness of weights and place the second place. The lowest 

robustness is shown by the CLA algorithm. This goes in line with the results obtained from 

Figure 7. 

 

6. Conclusion 
 

In this work, the performance of the HRP portfolio optimization algorithm was tested using the 

modifications of codependence metrics of the instruments in a portfolio, and distance metrics 

to transform the codependence matrix into the distance matrix. In order to determine whether 

the alternative metrics possess an advantage over the standard Pearson correlation, the other 

widely used optimization algorithms, the MV, IVP, and the CLA were applied to the same data 

with these metrics. 

 The performance of algorithms was tested on a portfolio of highly liquid ETFs 

representing such assets as stocks, bonds, and commodities. The stocks ETFs were picked to 

provide exposure to different world regions and various sectors of the economy. The time 

period used for testing was 2007 – 2019. Backtesting was made on 30-min data transformed 

into daily data using the price records 30 minutes prior to the close of trades. Data used was 

purchased from Kibot data provider. The transaction costs were included in the testing and the 

numbers were used from the Interactive Brokers platform.  

 The performances of the algorithms were compared based on the following metrics – 

annualized Sharpe ratio, average daily return, standard deviation of daily returns, annualized 

rates of return, maximum drawdowns, and the transaction costs incurred by the algorithm. 

 Results show that the HRP algorithm performs better on each of the codependence 

metrics. The Pearson correlation codependence metric has shown the highest Sharpe ratio 

results for each of the compared algorithms, which raises doubts about the effectiveness of 



                                   Barziy, I. and Chlebus, M. /WORKING PAPERS 21/2020 (327)                                  26 

using the distance correlation, mutual information, and the variance of information metrics for 

the portfolio optimization purposes, at least in the standard form. 

 The optimal modification of the HRP algorithm in terms of the distance metric was found 

to be either the absolute or the squared angular distance, as it offsets some risk in comparison 

to the standardly used angular distance metric. This result may be different for another type of 

portfolio where the instruments have higher negative correlations. In that situation, the angular 

distance is expected to give better performance. 

 The algorithms have shown different robustness in terms of weights allocations and as a 

result different transaction costs. The IVP and the HRP algorithms are more robust in 

comparison to the MV and the CLA algorithms. 

 In the future, this research can be extended by using another dataset with negatively 

correlated instruments and allowing short positions for the optimization algorithms. Also, 

deeper modifications to the algorithms can be made to use the data obtained from the alternative 

codependence metrics in a more efficient way. When using a portfolio with a higher number of 

instruments also the effectiveness of the de-noising and de-toning techniques can be used to 

improve the performance of the algorithms, as proposed by Lopez de Prado (2019).  
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Appendix A 
 
Example of a dendrogram of instruments in a portfolio – a result of the tree clustering stage of 

the HRP algorithm on Figure 8 and the comparison of the Pearson correlation matrices before 

and after the quasi-diagonalization step on Figure 9. 

  
Figure 8: Dendrogram of instruments in a portfolio based on the whole period of data. 
Source: Own calculations. 

 
Figure 9: Comparison of correlation matrices before and after the quasi diagonalization 
step. 
Source: Own calculations. 
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Appendix B 
 
Tickers, full names, description of the representations, periods for which the information is 

available, and the annualized Sharpe ratios of each ETF available in Table 4. 

Table 4: Information about ETFs used in a portfolio. 

Ticker Full name Represents 

Period for 

which data is 

available 

Annualized Sharpe 

ratio 

Average 

daily return 

DIA 

SPDR Dow Jones 

Industrial Average 

ETF 

US industrial 

equity 

01.01.2007 – 

20.12.2019 
0.413794 0.000295 

EEM 

iShares MSCI 

Emerging Markets 

ETF 

Emerging 

markets equity 

01.01.2007 – 

20.12.2019 0.179114 0.000216 

FEZ 
SPDR EURO 

STOXX 50 ETF 
EU top equity 

01.01.2007 – 

20.12.2019 
0.046078 0.000050 

FVD 

First Trust Value 

Line Dividend 

Index 

Dividend equity 
01.01.2007 – 

20.12.2019 
0.420422 0.000275 

GDX 
VanEck Vectors 

Gold Miners ETF 
Gold mining 

01.01.2007 – 

20.12.2019 0.138073 0.000225 

GLD SPDR Gold Trust Physical gold 
01.01.2007 – 

20.12.2019 
0.256152 0.000156 

HYG 

iShares iBoxx $ 

High Yield 

Corporate Bond 

ETF 

US Corporate 

bonds 

11.04.2007 – 

20.12.2019 -0.060984 -0.000028 

IGV 

iShares Expanded 

Tech-Software 

Sector ETF 

US Technology 

sector 

01.01.2007 – 

20.12.2019 
0.636762 0.000566 

IWB 
iShares Russell 

1000 ETF 

US broad top 

equity 

01.01.2010 – 

20.12.2019 
0.747228 0.000435 

IYR 
iShares U.S. Real 

Estate ETF 
US real estate 

01.01.2007 – 

20.12.2019 0.183211 0.000222 

QQQ Invesco QQQ 
US top tech 

sector 

01.01.2007 – 

20.12.2019 0.658965 0.000535 

SDY 
SPDR S&P 

Dividend ETF 

US dividend 

equity 

01.01.2010 – 

20.12.2019 0.671095 0.000352 



                                   Barziy, I. and Chlebus, M. /WORKING PAPERS 21/2020 (327)                                  31 

SMH 

VanEck Vectors 

Semiconductor 

ETF 

US 

semiconductor 

companies 

21.12.2011 – 

20.12.2019 0.953392 0.000799 

TLT 

iShares 20+ Year 

Treasury Bond 

ETF 

US long-term 

bonds 

01.01.2007 – 

20.12.2019 0.311598 0.000173 

VT 
Vanguard Total 

World Stock ETF 
World equity 

01.01.2010 – 

20.12.2019 0.436400 0.000275 

XBI 
SPDR S&P 

Biotech ETF 
US biotech 

01.01.2007 – 

20.12.2019 0.578194 0.000665 

XHB 
SPDR S&P 

Homebuilders ETF 

US home 

building 

01.01.2007 – 

20.12.2019 0.207929 0.000263 

XLB 
Materials Select 

Sector SPDR ETF 
US materials 

01.01.2007 – 

20.12.2019 0.282171 0.000267 

XLE 
Energy Select 

Sector SPDR Fund 
US energy 

01.01.2007 – 

20.12.2019 0.143413 0.000158 

XLF 
Financial Select 

Sector SPDR Fund 
US financial 

01.01.2007 – 

20.12.2019 0.150885 0.000193 

XLI 
Industrial Select 

Sector SPDR Fund 
US industrial 

01.01.2007 – 

20.12.2019 0.396373 0.000329 

XLK 
Technology Select 

Sector SPDR Fund 
US technology 

12.04.2007 – 

20.12.2019 0.571830 0.000463 

XLP 

Consumer Staples 

Select Sector 

SPDR Fund 

US consumer 

staples 

01.01.2007 – 

20.12.2019 0.542954 0.000290 

XLU 
Utilities Select 

Sector SPDR Fund 
US utilities 

01.01.2007 – 

20.12.2019 0.328570 0.000227 

XLV 
Health Care Select 

Sector SPDR Fund 
US health care 

01.01.2007 – 

20.12.2019 0.543429 0.000357 

XLY 

Consumer 

Discretionary 

Select Sector 

SPDR Fund 

US consumer 

discretionary 

01.01.2007 – 

20.12.2019 0.517679 0.000431 

XRT 
SPDR S&P Retail 

ETF 
US retail 

01.01.2007 – 

20.12.2019 0.361500 0.000357 

MCHI 
iShares MSCI 

China ETF 
China equity 

31.03.2011 – 

20.12.2019 0.174572 0.000160 

USMV 

iShares Edge 

MSCI Min Vol 

USA ETF 

US low volatility 

equity 

20.10.2011 – 

20.12.2019 1.121525 0.000460 
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MTUM 

iShares Edge 

MSCI USA 

Momentum Factor 

ETF 

US high 

momentum 

equity 

18.04.2013 – 

20.12.2019 0.940691 0.000541 

QUAL 

iShares Edge 

MSCI USA 

Quality Factor 

ETF 

US quality factor 

equity 

18.07.2013 – 

20.12.2019 0.812114 0.000420 

DGRO 

iShares Core 

Dividend Growth 

ETF 

US dividend 

equity 

12.06.2014 – 

20.12.2019 0.753542 0.000370 

Source: Own calculations. 

Note: The table above describes each of the ETFs included in the portfolio. The period for which data was available 

as well as the annualized Sharpe ratios help to understand how each individual asset has performed. 

 

Appendix C 
 
Transaction costs used in the backtesting of the algorithm are the Interactive Brokers’ 

commissions for ETFs according to the fixed pricing structure. 

Table 5: Transaction costs used in a backtest. 

Action Fixed cost Minimum cost per order 
Maximum cost per 

order 

Buy an ETF USD 0.005 USD 1.00 1.0% of trade value 

Sell an ETF USD 0.005 USD 1.00 1.0% of trade value 

Holding a 

position 
No transaction fees 

Source: Interactive Brokers’ Commissions https://www.interactivebrokers.ca/en/index.php?f=45251&p=stocks1 
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