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AAbbssttrraacctt::  There are several competing empirical approaches to identify factors of real economic 
convergence. However, all of the previous studies of cross-country convergence assume a linear 
model specification. This article uses a novel approach and shows the application of several 
machine learning tools to this topic discussing their advantages over the other methods, including 
possibility of identifying nonlinear relationships without any a priori assumptions about its shape. 
The results suggest that conditional convergence observed in earlier studies could have been a 
result of inappropriate model specification. We find that in a correct non-linear approach, initial 
GDP is not (strongly) correlated with growth. In addition, the tools of interpretable machine 
learning allow to discover the shape of relationship between the average growth and initial GDP. 
Based on these tools we prove the occurrence of convergence of clubs. 
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1. Introduction and literature overview 
 
Seeking for factors of economic growth or income convergence between countries has been 
a topic of empirical research for decades. One of the most common methods used in empirical 
research is the analysis of conditional beta convergence (Barro and Sala-i Martin, 2007). It 
looks for a relationship between the average annual growth rate and initial income, often 
conditioned on some additional factors. The choice of said factors has a crucial impact on the 
inference about the occurrence of convergence (Durlauf, 2009). Conclusions regarding the 
importance of individual factors often vary between different empirical approaches. 
 

Several approaches were proposed so far. Most of the approaches were linear ones (i.e. 
they seek for a linear relationship between growth and explanatory variables) (e.g. Sala-i Martin 
(1997) or Hendry and Krolzig (2004)), often incorporating Bayesian averaging with different 
priors in order to take into consideration the uncertainty of the correct form of the model (e.g. 
Sala-i Martin, Doppelhofer, and Miller (2004), Ley and Steel (2007), Doppelhofer and Weeks 
(2011)). Above mentioned approaches confirmed the existence of beta convergence – initial 
GDP was one of the most important factors of growth. However, Ciccone and Jarociński (2010) 
questioned those methods both on theoretical and empirical grounds – Bayesian Model 
Averaging require arbitrary assumptions and can lead to incorrect conclusions, and only the 
correct identification of growth factors would allow to form a credible recommendation for 
economic policy. Moreover, He and Xu (2019) show that identifying a variable to be 
a statistically relevant factor of growth in a linear specification might be a result of an 
inappropriately specified model. In the correct non-linear specification, it might not be 
correlated with growth. 
 

We propose a novel approach. Its main purpose is to identify important determinants of 
growth and extend the previous research in two ways. First, the article attempts to identify 
potential non-linearities. Second, it uses methods that allow to select variables relevant for 
growth and explain the relationship in any specification. This is where commonly used machine 
learning algorithms come on the stage. We considered LASSO (Tibshirani, 1996), support 
vector regression (SVR), (Vapnik, 1995), random forests (Breiman, 2001), gradient boosting 
machines (GBM), (Friedman, 2001) and two instances of extreme gradient boosting (XGBoost) 
(Chen and Guestrin, 2016). All of the above-mentioned approaches have the advantage of 
dealing successfully with both linear and non-linear relationships. Leave-One-Out cross 
validation is used for tuning model parameters based on minimization of the Mean Absolute 
Error (MAE), as we are not using any specified priors. In addition to successful prediction, the 
ability to interpret what a model has learned is of equal importance. 
 

The research hypothesis verified in the article states that machine learning tools 
allowing for non-linearity explain cross-country growth rates with higher accuracy than linear 
models. In addition, these tools still allow for model interpretation and measuring feature 
importance, thus they are helpful in formulating policy recommendations. 
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In this article, two datasets widely used before were considered, to make results 
comparable with other studies – first, the dataset used in Fernandez, Ley, and Steel (2001), 
second, the dataset introduced in Sala-i Martin, Doppelhofer, and Miller (2004). 
 

This article is structured as follows. In the first section, the methods used in the empirical 
part are briefly described. In the second section, the results of the analysis are presented on the 
two above-mentioned datasets. The results are then compared with the findings of previous 
research. The last section summarizes the conclusions. 
 
2. Methods 
 
In this section, machine learning tools applied in the empirical part are briefly introduced in 
a non-technical, intuitive way. Before applying algorithms, all variables were standardized, as 
the literature suggests. 
 
2.1. LASSO (Least Absolute Shrinkage and Selector Operator) 
 
LASSO (Tibshirani, 1996) is one of several regularization methods. It can be viewed as the 
extension of Ordinary Least Squares (OLS) model. It differs from OLS because of its cost 
function – it not only minimizes the sum of squared residuals, but also takes into account the 
sum of absolute values of the parameters of the linear model as an additional constraint. Adding 
such penalty in the optimization results in searching for parameters that fit the data well, but 
additionally are as small as possible. Parameters at less important variables will shrink towards 
zero, some of them will even be set to be equal to zero. At the expense of a certain bias (LASSO 
estimates are biased), LASSO often allows to obtain more precise forecasts on the test sample 
(Hofmarcher, Crespo Cuaresma, Grün, and Hornik, 2015). 
 

What is crucial in the case of growth regressions, LASSO can be considered as variable 
selection method, which can be used even when the initial number of variables exceeds the 
number of observations. It is often used by researchers as a preliminary stage of analysis, 
combined with a subsequent model estimation on selected variables using OLS (Schneider and 
Wagner, 2008). No a priori assumptions or selection of a subset of variables are needed. One 
has only to determine the optimal weight for the additional constraint λ, which can be done via 
cross validation. 
 
2.2. SVR (support vector regression) 
 
Similarly to OLS, SVR (Vapnik, 1995) fits a hyperplane that is positioned as close to all data 
points as possible. However, while OLS minimizes the sum of squared errors, SVR tries to fit 
the errors within a specified distance from the hyperplane (Smola and Schölkopf, 2004). 
Moreover, the setup includes additional regularization hyperparameter C, which controls how 
much one wants to avoid misclassifying each observation. The most important advantage of 
SVR over OLS is the ability to model non-linear relationships between variables using selected 
kernel functions. SVR applies an implicit non-linear mapping into a higher dimensional feature 
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space, where it is more probable to find an appropriate hyperplane (Vapnik, 1995). Thus, one 
can think of SVR as a process of performing a linear regression in a more dimensional space. 
Two widely used types of kernels are radial basis function and polynomial kernel. We applied 
both kernels in the empirical part of the article. 
 
2.3. Decision tree regression 
 
Decision tree regressions are predictive models structured in a tree-like way. The model breaks 
data into smaller sub-datasets with respect to the values of explanatory variables. The process 
of such a break can be viewed as asking a series of questions whether observations satisfy 
specified conditions. Each question creates separate nodes, which narrows the possible output 
value. The whole process starts in the so-called root, where on has no boundaries for the 
variables, and stops in the leaf, where observations satisfying the set of conditions with respect 
to explanatory variables obtains their final prediction. The decision of how to make splits 
heavily affects tree’s accuracy. Decision tree regressions often use Mean Squared Error (MSE) 
metric to decide whether to split a node in two sub-nodes. The decision to split the data has to 
take into consideration two factors – first, whether the decision to split is a correct one, second 
– with respect to which variable the split should be performed and what should be the optimal 
threshold value. Tree models require some stopping criterion to set – one can use the maximum 
depth of the tree. 
 
2.4. Bagging (Bootstrap Aggregating) and random forests 
 
Bagging is an ensemble technique. It combines multiple models – called weak learners – trained 
on different bootstrap subsamples of the original dataset. The process of sampling is done 
randomly with replacement. On each of the subsamples, only one model is trained. Then, the 
prediction from the bagging model is obtained by the majority voting from all models in case 
of classification problem, or by averaging the predicted values from all models in case of 
regression problems. 
 

Bagging approach is therefore often used to decrease the variance of predictions. The 
weak learner is a simple predictive model, which predictions might not be strongly correlated 
with the real values. However, combining multiple weak learners can create a strong learner – 
the predictive model, which predictions might be correlated with the real values much stronger. 
The common examples of weak learners are decision trees or OLS models. We used both of 
those models as weak learners for selected models in the empirical part of the research.  
 

Random forests are a particular case of bagging algorithms. They were first introduced 
by Breiman (2001). In simple words, they are a combination of tree models. Each tree is trained 
on a different bootstrap subsample of the original dataset, just like in bagging. In addition, at 
each split of each tree, only a random subset of all predictors is considered. This way, the trees 
are decorrelated, which is the main advantage of random forests over other bagging approaches 
with tree models used as weak learners. 
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Random forests are robust to the problem of multicollinearity and can be applied to 
a large number of potential predictors without initial selection. In addition, they are indifferent 
to non- linear interlinkages between the data. They require tuning of two parameters – the 
number of trees and the number of predictors considered at each split. 
 
2.5. Boosting 
 
Boosting is another type of ensemble. However, its’ principle is quite different than the one 
from the bagging technique. While bagging averages the predictions from multiple weak 
learners, boosting approach combines them iteratively. One can imagine that during each step, 
weak learner is trained on the weighed sample. The weights are set with respect to the prediction 
error from the previous iteration – the higher the error, the higher the weight in the following 
step. Thus, this approach ensures that the model obtained after several iterations has the lowest 
possible prediction error. 
 

There are multiple boosting methods considered in the literature. One of the most 
popular is gradient boosting. It became popular after Friedman (2001) described the algorithm 
of gradient descent in the function space, and then applied it to the cost functions of popular 
predictive models. 
 

The parameters to optimize in the gradient boosting approach is the learning rate, which 
is a kind of shrinkage parameter – it shows how quickly the errors are corrected between the 
weak learners. Other hyperparameters are those that are needed by the selected weak learners. 
Nowadays, the extension of gradient boosting, called eXtreme Gradient Boosting (XGBoost) 
(Chen and Guestrin, 2016) is widely used. XGBoost extends gradient boosting by different 
penalization of trees, adding a shrinkage to the leaf nodes and the extra randomization 
parameter. 
 
2.6. Cross validation 
 
Machine learning algorithms require selection of hyperparameter values, i.e. parameters that 
are not optimized in the model training procedure (e.g. penalty for too large parameters in the 
LASSO approach, the cost of incorrect classification in SVR, the number of trees in random 
forest, or the learning rate in gradient boosting approach). Hyperparameters can be chosen 
arbitrarily, but it’s better to choose them consciously. In the empirical part of the article, we use 
a Leave-One-Out cross validation (LOOCV) procedure. For each combination of values of 
hyperparameters, each model is estimated n times on the sample without the 1st, 2nd, 3rd... 
observation, respectively. The single observation left aside is used as a test sample – for 
assessing the quality of prediction. Based on all predictions for a specific combination of 
hyperparameters, Mean Absolute Error (MAE) is calculated. Finally, we select and apply the 
model with the hyperparameters that minimize the MAE for prediction. 
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2.7. Variable importance and interpretable machine learning 
 
Many machine learning algorithms have their own specific way to measure the importance of 
each feature. But the lack of model interpretability is the most important limitation of many 
machine learning tools. The quality of predictions is important in research, but it is even more 
important to understand the mechanism that drives the prediction of the particular phenomenon. 
In recent years, a field called Interpretable Machine Learning (IML) or eXplainable Artificial 
Intelligence (XAI) has been developing rapidly (Molnar, 2019). It offers additional tools to 
overcome the black-box dilemma and allow for easy comparability of variable importance 
across different models. 
 

In the empirical part of this paper, we used the measure called model reliance (Fisher, 
Rudin, and Dominici, 2019), inspired by the permutation-based approach of Breiman (2001). 
It describes how much the model’s performance relies on different covariates. In the 
permutation-based approach, to assess the importance of a selected feature, one calculates the 
error of the prediction from the model on the original dataset, eorig, and on the artificial dataset, 
with the values of said feature randomly permutated, eperm. The higher the ratio eperm / eorig, the 
more important the feature, as it describes how much the error arose when the feature became 
non-informative. Model reliance generalizes such approach by taking into consideration not 
one, but all permutations that permute values of the selected feature. 
 

After identifying influential variables, one has to understand the relationship between 
these variables and the response from the model. On the level of each observation, ceteris 
paribus profile can be analyzed. In essence, they show how a conditional expectation of the 
dependent variable changes with the values of a particular explanatory variable, while all other 
variables are kept constant (Goldstein, Kapelner, Bleich, and Pitkin, 2013). Averaging ceteris 
paribus profiles over all observations shows how the expected model response behaves as 
a function of a selected feature. This procedure, called Partial Dependence Profile, was first 
introduced by Friedman (2001). 
 
2.8. Methods used in the empirical part 
 
In the empirical part of the research, we estimated several machine learning models on two 
datasets, mentioned in the introduction. Selected models are LASSO, OLS model with variables 
selected via LASSO, SVR models with radial basis function and polynomial kernels 
(individually), random forest, gradient boosting machine with decision trees selected as weak 
learners, and XGBoost models with two different weak learners – OLS models and decision 
trees. Hyperparameters of the models were selected via Leave-One-Out cross validation, with 
exception of the number of boosting rounds for boosting algorithms, which was arbitrarily set 
to 50. After the estimation process, we assessed the importance of features using model reliance 
approach. And finally, we analyzed the Partial Dependence Profiles for the initial level of GDP, 
to verify the possible occurrence of beta convergence. 
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3. Empirical results 
 
The above-mentioned methods – LASSO, OLS, SVR, random forest and boosting algorithms 
– were applied on two widely studied datasets. The first of the datasets was used by Fernandez, 
Ley, and Steel (2001) and includes 41 explanatory variables for 72 countries. This dataset was 
referred to hereafter as FLS. The second one was used by Sala-i Martin, Doppelhofer, and 
Miller (2004) and includes 67 explanatory variables for 88 countries – referred to hereafter as 
SDM. 
 

Schneider and Wagner (2008) applied LASSO type regression on these datasets and 
claim that estimation results were in line with the findings of the original paper. However, it is 
not confirmed below, especially for SDM data. 
  

In each case, the results are reported and compared with the results of the original papers 
and some of their follow-ups. Variable importance ranking (based on the model reliance 
measure) is provided to show results in a consistent way and compare them with previous 
studies. 
 
3.1. Analysis on FLS data 
 
Tables 1 and 2 show the ranking of important variables identified originally in Fernandez, Ley, 
and Steel (2001), additionally compared with following Hendry and Krolzig (2004) and 
previous Sala-i Martin (1997). The convention is that the lower the ranking, the more important 
the variable. We show only the first most important 20 variables, according to Fernandez, Ley, 
and Steel (2001). 
 

Based on Table 1, it appears that all approaches confirm the occurrence of conditional 
convergence, although, in ensemble-techniques (random forest and boosting algorithms), the 
initial level of GDP has a lower ranking. On the contrary, for LASSO, OLS based on LASSO 
and SVR models, initial GDP level is the most important factor. Most of the approaches also 
agree on the importance of Fraction Confucian, Life expectancy and Equipment Investment 
factors. However, machine learning tools do not confirm 5-10 out of 20 most important 
variables indicated by Fernandez, Ley, and Steel (2001). 
 

The results of LASSO and SVR models seem very consistent with Hendry and Krolzig 
(2004) – among top 13 variables in their model, 12 are also the most important in LASSO, and 
among their top 11 variables, 10 are also the most important in both SVR approaches. 
 

Besides that, most of the machine learning algorithms indicated Non-Equipment 
Investment as an important convergence factor, which is in contrary to original articles. There 
are also important growth determinants, missed by original approaches, but confirmed by other 
methods (including Hendry and Krolzig (2004)) – Size labor force, Ethnolinguistic 
Fractionalization and Higher education enrollment. 
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We can also spot some similarities between ensemble models. Random forest and three 
boosting approaches acted quite similarly – all of those models neglected Sub Saharan dummy, 
Rule of Law, Latin American dummy and Fraction Hindu factors, which were high in rankings 
for other models. Similarly, for all of the above-mentioned models, Number of Years open 
economy was listed as an important variable, which is in line with Fernandez, Ley, and Steel 
(2001) and Sala-i Martin (1997), but was neglected by LASSO, OLS and SVR models. 
 
 
Table 1: Rank of importance of growth determinants for FLS data 
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Table 1: Rank of importance of growth determinants for FLS data (cont’d) 

 
 
Based on the estimation results of all machine learning models and replicated Hendry and 
Krolzig (2004) results, Partial Dependence Profiles for initial income were calculated. We 
plotted them on Figure 1a). 
 

Profiles show that the relationship between the expected growth rate and initial GDP 
seems to be linear in the case OLS, LASSO and SVR models (as expected), but it turned out to 
be non-linear (but partially linear) for the ensemble algorithms (Figure 1b) ). The relationship 
is negative, but, again, much flatter for the ensemble algorithms. 
 

If we look closely at ensemble algorithms, we could spot some contrary conclusions. 
For instance, if we take into consideration GBM or XGBoost with Decision Trees learners, we 
can see that the strongest convergence occurs for the poorest countries, it does not occur for 
countries with middle-ranged initial income, and then it occurs again for some of the richest. 
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However, for the XGBoost model with OLS learners, it appears that countries have similar 
growth pace for a wide range of initial GDP, and the only downward trend appears for the low-
to-middle income countries. In the case of random forest model, the downward trend is 
consistent, but rather flat, compared to other ensemble methods. 
 
Figure 1: Partial Dependence Profiles for initial income for models estimated on FLS data 

 
 
 
In the end, for all estimated models, fit to data measures were compared – see Table 2. All 
models explain more than 90% of the variability of growth on the whole sample. Moreover, 
each of machine learning algorithms is better than a linear model in terms of every considered 
measure. Boosting approaches explain the relationship the best among all models, with the 
lowest prediction errors, which was to be expected looking at their specification. Although the 
best model in terms of R2 or the metrics is the XGBoost with OLS learners, we can say that 
such results confirm our research hypothesis – models that allow for non-linearities explain 
more of the variability of growth and have lower prediction errors compared to the linear 
models like LASSO or OLS. 
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Table 2: Measure of models’ fit for FLS data 

 
 
3.2. Analysis on SDM data 
 
The differences in conclusions between machine learning models and original studies are more 
striking in the case of the second dataset. Table 3 shows the ranking of important factors 
identified originally in Sala-i-Martin, Doppelhofer, and Miller (2004) and in a follow-up study 
by Doppelhofer and Weeks (2011), who used a “robust” version of Bayesian Model Averaging 
technique, which was the main approach of Sala-i-Martin, Doppelhofer, and Miller (2004), 
however, they obtained identical results. 
 
Table 3: Rank of importance of growth determinants for SDM data 

 



Wójcik, P. and Wieczorek, B./WORKING PAPERS 38/2020 (344)              11 
 

Table 3: Rank of importance of growth determinants for SDM data (cont’d) 

 
 
Some of the conclusions based on the ranking are in line with Sala-i-Martin, Doppelhofer, and 
Miller (2004). East Asian dummy and Investment price – 1st and 3rd, respectively, most 
important factor in Sala-i-Martin, Doppelhofer, and Miller (2004) – were confirmed as 
important by all machine learning tools. Moreover, 2nd most important factor, Primary 
schooling in 1960 was low in ranking just for GBM and XGBoost with OLS learners. Several 
other variables seem to have a strong impact on the growth rate, according to most machine 
learning algorithms: Malaria prevalence in 1960s, Fraction Buddhist, Fraction Confucian 
(which is consistent with earlier analysis on FLS data, however, it is low in ranking for GBM), 
Life expectancy in 1960 (it is again in line with the analysis on FLS data, but this time, it was 
excluded by LASSO model). 
 

We can also spot some inconsistencies. For instance, Population density coastal 1960’s 
was high in the rankings for LASSO and SVR methods, but much lower for the ensemble 
models. Moreover, Population Density 1960 was considered as important for ensemble models, 
especially for GBM, but it was neglected by SVR models and excluded from the analysis by 
LASSO. 
 

And finally, the most striking result is the ranking of GDP in 1960 (log). Initial GDP 
was one of the most important variables for models estimated on FLS data. It is also the key 
factor for the convergence analysis. However, it was excluded from the analysis by LASSO, 
and in the case of other machine learning approaches, it is in a very far position in the 
importance ranking. This might suggest the lack of conditional convergence, which was 



Wójcik, P. and Wieczorek, B./WORKING PAPERS 38/2020 (344)              12 
 

observed in earlier studies. Such a conclusion is in line with He and Xu (2019), who suggested 
that such significance might have been a result of inappropriate model specification. In a correct, 
non-linear specification, initial GDP can be not (strongly) correlated with growth. 
 

Partial Dependence Profiles for initial income for SDM dataset are plotted on Figure 
2a). We discussed that we cannot draw any conclusion about the relation for LASSO model. 
Only SVR models show a linear, negative relationship between growth rate and initial GDP, 
which was to be expected. 
 
Figure 2: Partial Dependence Profiles for initial income for models estimated on SDM data 

 
 
In the case of ensemble models (Figure 2b), one can see some interesting phenomenon. If we 
look at the GBM model and XGBoost model with Decision Trees learners, we can spot that 
there are plenty of intervals for initial GDP with the same annual growth rate. However, 
countries that belong to the “poorer” interval generally grow faster than those which belong to 
the “richer” interval. We can say that countries with the initial GDP in the given interval, belong 
to the same convergence club. In the case of XGBoost with OLS learners, we can see only 
3 such intervals, with 2 among them that do not differ significantly. In the case of random forest, 
the relation is not consistent – we can spot the convergence only among the richest countries. 
 

In the end, we again show the measures of fit to data for all models (Table 4). Here, only 
ensemble models explain more than 90% of the variability of growth. Again, the best model is 
the XGBoost with OLS learners. However, again, we see the confirmation that models that 
allow for non-linearities perform better than their linear counterparts (LASSO, OLS or SVR). 
 
 



Wójcik, P. and Wieczorek, B./WORKING PAPERS 38/2020 (344)              13 
 

 
Table 4: Measure of models’ fit for SDM data 

 
 
4. Conclusions 
 
The main purpose of the article was to identify the important factors of economic growth by 
applying machine learning tools. We applied models that allow identifying non-linearities in 
the data, namely support vector regression, random forests and boosting algorithms. The models 
were estimated without any prior assumptions with the use of Leave-One-Out cross validation 
procedure. Moreover, we used the model reliance measure, which allows to easily assess the 
importance of features for any model type in a consistent and comparable way. To estimate our 
models, we used two common datasets – FLS data introduced in Fernandez, Ley, and  Steel 
(2001) and SDM data introduced in Sala-i Martin, Doppelhofer, and Miller (2004). Machine 
learning tools confirmed the importance of several growth factors, such as life expectancy, 
investment in the equipment and its price. They also pointed at some factors that were low in 
the rankings of previous studies using purely linear approach, i.e. ethnolinguistic 
fractionalization, which measures the ethnic and linguistic diversity in the country. The most 
striking result from our analysis was the difference between the conclusion about the 
importance of initial GDP when allowing for nonlinearity of its relationship with the growth 
rate. For FLS data, this factor was one of the most important, which was consistent with the 
previous studies. In turn, it dropped down the ranking for SDM data, and was even excluded in 
the case of LASSO approach. This suggests that when using a simplified linear approach one 
can incorrectly conclude about the occurrence of conditional convergence, while when 
correctly identifying the non-linear relationship, cross-country convergence is not observed. 
 

When analyzing Partial Dependence Profiles for initial GDP, we could also identify 
convergence clubs – groups of countries similar in terms of initial GDP per capita for which 
convergence is observed. We also showed that models that allow for non-linearities generally 
have higher predictive power and explained more variability of growth rates. 
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