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Introduction 

Machine learning (ML), since its growth in the 1980s, has attracted the attention of many 

disciplines based on quantitative methods. Machine learning uses automated algorithms to 

discover patterns from data and enable high-quality forecasts, although the relations between 

input data have not been widely studied. This is contrary to classic statistics and econometrics, 

which are designed to make inferences and test hypotheses to conclude on population having 

a sample and using equations, while forecasts are of secondary importance. ML often works as 

a black-box, not as an explicitly defined commonly-used statistical and econometric model. ML 

has three primary purposes: clustering of data into unknown a priori groups, classification of 

data to known groups based on a trained model, and prediction. According to Google Ngrams, 

its current applications are ca. ten times more frequent than econometrics, but still ca. seven 

times less frequent than statistics. In many research areas (such as epidemiology, geology, 

ecology, climate, etc.), it has become a standard, but we still wait for that wave in regional 

science.  

Spatial methods need spatial data. Recent assessment is that around 80% of all data can 

have a geographic attribute, and many of them can be geo-referenced (VoPham et al., 2018). 

Spatial information can stem from conventional sources such as statistical offices regional 

databases, grid datasets and geo-located points. One can also easily get data from 

OpenStreetMap and GoogleMaps as background maps, points of interest (POI), roads, traffic, 

etc., as well as from geo-referenced images such as satellite photos, night light photos, drone 

photos, and also geotagged social media posts on Twitter or climatic sensors. This type of data 

requires powerful computational methods due to its complexity, diversity and volume.  

Machine learning is commonly linked to big data, artificial intelligence and deep 

learning1, but it also works alone. One may implement the simple self-standing machine 

learning forecast on ready-to-use data, or use it with workflow and data processing or end up 

with artificial intelligence where algorithms make decisions2. From the current standard 

narrative, one can have an impression of ML methods' inaccessibility for a wider audience. 

 
1 Artificial intelligence (AI) is often defined as a “moving target” with regards to technological challenges; its 

main feature is to make decisions. Early examples of AI include computers playing chess, and nowadays it is an 

autonomous car. Deep learning is a part of machine learning. It does not require specifying parameters as in 

machine learning, as it discovers these through self-teaching with a multi-layered neural network. 
2 The popularity of Artificial Intelligence (AI) results in its overuse; e.g. VoPham et al. (2018) calling a standard 

predictive model of environmental exposure (for PM2.5 air pollution) geospatial AI (geoAI).  
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However, ML has a vast potential in non-big data analyses by using those methods as 

supplements to spatial statistics and econometrics. 

The goal of this paper is to present the methodological overview of machine learning in 

the spatial context. First, it shows what information ML gives and concludes if ML is 

substitutive or complementary to the traditional methods. Secondly, it presents two ways that 

ML has been incorporated into spatial studies – by using typical ML on spatial data and 

developing new ML methods dedicated to spatial data only. Thirdly, it aims to promote the 

transfer of ML to regional science. The paper concentrates only on selected ML methods: 

unsupervised learning, which is closer to traditional statistics and encompasses clustering; and 

supervised learning, which is closer to econometrics and encompasses classification and 

regression3. A general overview of these methods was presented in Appendix 1 and their 

R implementation in Appendix 3. Other ML methods as dimension reduction, association rules, 

reinforcement learning, neural networks and ensemble methods are not addressed. 

 

1. Statistical applications of machine learning in regional science 

Unsupervised learning is the collection of machine learning methods that are equivalent to 

statistics. Like data mining, it does not study the relations or causality but looks for unknown 

but meaningful data patterns. Unsupervised learning covers mainly clustering, dimension 

reduction and association rules. In spatial data analysis, of course, the core interest is in 

geographical location. The methodological question is how to address this unique specificity of 

spatial data. The separation between observations is measured with distance. It can be an 

intuitive shortest (Euclidean) distance from a point to point on the plane but can also be a multi-

dimensional distance between quantitative and qualitative variables. This is why machine 

learning, in addition to Euclidean distance, also uses Manhattan, Minkowski, Gower, 

Mahalanobis, Hamming, cophenetic and cosine distances (see Appendix 1).  

One should remember that the remarkable progress observed in recent years related to 

ML has caused the methodological standards to change - new developments replace previous 

innovations, and some solutions have transpired to be a dead end. The discussion below presents 

 
3 In review of ML in the spatial context, Du et al. (2020) limit machine learning to regression models only, which 

is not true, and they forget about clustering tasks.  
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an overview of these diverse methods, with their development track and usefulness in spatial 

analysis4.  

Clustering of points in space 

Geo-located points, independently of having features assigned, are characterised by the 

longitude and latitude (x,y) of projected coordinates. Based on this information, one can group 

observations into spatial clusters, which will be spatially continuous and covering all analysed 

points. In the case of a small or medium-size sample n, one can use the k-means algorithm, 

mostly with Euclidean distance metrics. It works well for limited n, as it requires the 

computation of resource-consuming n x n mutual distance matrix and solves the problem as an 

optimisation model5. Centroids of k-means clusters are artificial points (potentially not existing 

in a sample), located to minimise distances between points within a cluster. In larger datasets, 

one applies the CLARA (Clustering Large Applications) algorithm, which is the big data 

equivalent of PAM (Partitioning Around Medoids). Both methods also apply distance metrics 

(such as Euclidean) but work iteratively in search of the best real representative point (medoid) 

for each cluster. In CLARA, the restrictive issue of the n x n distance matrix is solved by sample 

shrinking with sampling; PAM suffers the same as k-means. Quality of clustering is typically 

tested with silhouette or gap statistics (see Appendix 1). This mechanism can be applied to 

design catchment areas (e.g. for schools, post offices, supermarkets) or to divide the market for 

sales representatives – both challenges are to organise individual points around centres, with 

possible consideration of capacity and/or fixed location of the centre. Aside from statistical 

grouping, clustering has a huge potential for forecasting. A calibrated clustering model enables 

the automatic assignment of new points to established clusters. The prediction mechanism 

works based on k nearest neighbours.   

In a portfolio of clustering methods based on a dissimilarity matrix (being equivalent to 

a matrix of distances between points), one can assign hierarchical grouping. For n observations, 

it builds the dendrogram – continuous division into 1 to n clusters. It is based on the k nearest 

neighbours (knn) concept and can be applied to clustering points or values. The hierarchical 

clustering algorithm works iteratively, starting from the state in which each observation is its 

own cluster. In the next steps, the two most similar clusters are combined into one until the state 

 
4 Increasingly one can find in the literature the comparison of different spatial clustering methods, e.g. Jégou et al. 

(2019) in an empirical example, and Yuan et al. (2020) in looking for outliers. 
5 The nxn distance matrix can be simplified by the Fastmap and modified Fastmap algorithm.  
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when a single cluster is created. The final result – is the assignment of points to clusters, which 

is the same as in k-means or PAM and CLARA. 

Clustering with the k-means algorithm has the significant advantages of ease of 

interpretation, high flexibility and computational efficiency; however, its main disadvantage 

lies in the need to specify a priori the number of k clusters. If it does not result from analytical 

assumptions (e.g. known number of schools to define catchment areas), it can be optimised by 

checking partitioning quality measures for different k values, or it can follow density. 

Brimicombe (2007) proposed a dual approach to cluster discovery, which is to find density 

clusters ('hot spots') using for example, GAM or kernel density, and use these as initial points 

in k-means clustering. This automates the selection of k and speeds up the computations by 

setting starting centroids.  

In other applications, k-means helps to build irregular non-overlapping spatial clusters to 

run spatially stratified sampling from those clusters (e.g. Russ & Brenning, 2010; Schratz et al., 

2019). This solves the problem of inconsistency in bootstrapping (Chernick & LaBudde, 2014; 

Kraamwinkel et al., 2018) and addresses the autocorrelation in cross-validation (discussed 

further). K-means irregular partitioning can also be applied in the block bootstrap (Hall et al., 

1995; Liu & Singh, 1992). Sampling blocks of data from spatially pre-defined subsamples 

allows for drawing independent blocks of data but lowers the computational efficiency.  

Clustering of features regardless of location 

Features measured in regions (or territorial units) can also be clustered to form possibly 

homogenous clusters, which are later mapped. A very interesting example of a spatial study 

with hierarchical clustering visualised with a dendrogram analyses fire distribution in Sardinia. 

It evidences phenological metrics as well as spatio-temporal dynamics of the vegetated land 

surface (NVDI, Normalized Difference Vegetation Index from satellite photos) (Bajocco et al., 

2015) of each territorial unit. Hierarchical clustering groups the territorial units into similarly 

covered areas. For each cluster group, one checks the fire frequency to assess the natural 

conditions that increase and decrease fire-proneness6.  

 
6 Clusters are not always derived with a partitioning procedure. An example of detecting spatial clusters is a study 

on local obesity in Switzerland. Joost et al. (2019) mapped the local Getis-Ord Gi statistics for body mass index 

(BMI) and sugar-sweetened beverages intake frequency (SSB-IF) and concluded “optically” from visualisation 

about spatial agglomeration of high and low values of Gi. 
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Non-spatial k-means clustering may also help in the detection of urban sprawl. Liu et al. 

(2018) proposed a-spatial partitioning of local spatial entropy H calculated for a gridded 

population. Local spatial entropy is expressed as 𝐻 = ∑ 𝑝!ln	(𝑝!)! , where pi is the relative 

population in the analysed cell and eight neighbouring grid cells and ∑ 𝑝! = 1!"#
!"$ . Clustering of 

entropy, when mapped, may delineate areas with high and low local density.  

Clustering assignments may reveal uncertainty, which can be addressed. Hengl et al. 

(2017) mapped soil nutrients in Africa, by selecting a number of clusters through running 

hierarchical clustering for parameterised Gaussian mixture models and optimising Bayesian 

Information Criterion. Clustering itself is run on Aitchison compositions of data which helps to 

avoid highly skewed variable space. They use fuzzy k-means, which may classify observations 

to a few clusters with some probabilities. This multi-cluster-assignment uncertainty can be 

mapped with Scaled Shannon Entropy Index (SSEI). In the Hengl et al. (2017) study, SSEI 

reflected the density of sample points and extrapolation effects.  

Clustering of locations and values simultaneously 

The clustering of locations and values in individual procedures presented above can be linked. 

In literature, one can find a few concepts of spatially-restricted clustering. All of them deal with 

the issue of integrating spatial and non-spatial aspects. In general, they take two approaches: 

order of clustering – spatial issues first and then data (spatial-data-dominated generalisation), 

or the opposite (nonspatial-data-dominated generalisation); or evaluating a trade-off by mixing 

or weighting dissimilarity matrices of data and space. As Lu et al. (1993) show, the order of 

spatial and non-spatial clustering matters for the result.  

Historically, the oldest application is SKATER (Spatial "K"luster Analysis by Tree Edge 

Removal) by Assunção et al. (2006), extended as REDCAP (Regionalisation with dynamically 

constrained agglomerative clustering and partitioning) by Guo (2008), and recently improved 

as SKATER-CON (Aydin et al., 2018). It is based on pruning the trees. For each region, it 

makes the list of contiguity, and for each neighbour, it calculates the cost – total distance 

between all variables attached to areas. For each region, an algorithm chooses the two closest 

neighbours (in terms of data) and finally groups areas into the most coherent spatially 

continuous clusters. SKATER can be used in dynamic data analysis for robust regionalisation 

– as in drought analysis in Pakistan (Jamro et al., 2019). It is also used to group GWR 

coefficients (see below).  
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Among the latest solutions is ClustGeo (Chavent et al., 2018) which examines the 

potential clustering of data and locations by studying the inertia of parallel hierarchical 

grouping of space and values. It derives two inertia functions (for space and values) depending 

on division. A compromise, when both inertia functions cross, sets the proportion of both 

groupings expressed with mixing parameter α. It weights both dissimilarity matrices7, D0 for 

values, and D1 for locations, to increase the clusters' spatial coherence. ClustGeo (CG) by 

Chavent et al. (2018) was extended as Bootstrap ClustGeo (BCG) by Distefano et al. (2020). 

The bootstrapping procedure generates many CG partitions. Spatial and non-spatial attributes 

are combined with Hamming distance based on dissimilarity measures (Silhouette, Dunn, etc.) 

and used in CG to obtain final partitioning, which minimises the within-cluster inertia. The 

BCG approach out-performs CG, as proved by dissimilarity measures. However, the algorithms 

are very demanding due to the dissimilarity matrix, which limits their application in the case of 

big data.  

Clustering of locations and values jointly is also possible with k-means. It was applied to 

seismic analysis of the Aegean region (Weatherill & Burton, 2009), for which not only the 

location of earthquakes but also their magnitude is essential. Proposed k-means clustering of 

locations refers to the magnitude in a quality criterion – the k-means optimisation requires 

minimising the total within-cluster sum of squares, which is to subtract within the clusters the 

individual values from the cluster average. This cluster average was replaced by a magnitude-

weighted average, which shifts the centroids of a cluster into the strongest earthquakes.  

Spatially-oriented k-means appears not only in regional science but also in biostatistics. 

In mass spectrometry brain analysis, the imaging is based on pixels, in which one observes 

spectra - technically being equivalent to time-series. Alexandrov and Kobarg (2011) proposed 

a spatially-aware k-means clustering. As with every k-means, it is based on a dissimilarity 

(distance) matrix between pixels. To compare the distance between pixels, they derive 

a composite distance between their spectra. Instead of a direct comparison of two spectra of 

both pixels, it compares two weighted spectra, each averaging the neighbouring spectra in 

radius r, similarly to the spatial lag concept. Even if k-means clustering itself has no spatial 

component, the distances used in clustering include neighbourhood structure. 

  

 
7 In the traditional a-spatial approach, clusters for observations are created based on a set of attributes assigned to 

these observations, while their diversity is reflected in the dissimilarity matrix D0.  



Kopczewska, K. /WORKING PAPERS 16/2021 (364)                                   7 
 

Clustering of regression coefficients 

Clustering procedures are more frequently applied to values than to geo-located points. 

In regional science, a popular approach is to cluster beta coefficients from Geographically 

Weighted Regression (GWR). GWR operates as multiple local regressions on point data, which 

estimate small models on neighbouring observations. This generates individual coefficients for 

each observation and variable and makes those values challenging to summarise traditionally. 

Mapping of the clustered regression coefficients enables its efficient overview. As many studies 

show (e.g. Lee et al., 2017), clusters are predominately continuous over space, even if 

computations do not include explicitly locational information.  

This output – clustered GWR coefficients – can be used in a few ways in further analysis. 

Firstly, they can be used in profiling the locations assigned to different clusters – a study by Chi 

et al. (2013) uses k-means clusters to present the obesity map. Secondly, one can model spatial 

drift (Müller et al., 2013), which addresses heterogeneity and autocorrelation. In the global 

spatial econometric model, which typically controls autocorrelation, one includes dummies for 

each cluster assignment, reflecting spatial heterogeneity. Müller et al. (2013) applied this 

approach to model public transportation services. Third, one can model spatio-temporal 

stability (Kopczewska & Ćwiakowski, 2021). For each period, GWR coefficients are estimated 

and clustered separately. Next, they are rasterised, and for each raster cell one calculates 

median, or mode values of cluster ID. Finally, one applies the Rand Index and/or Jaccard 

similarity to test the temporal similarity of the median/mode cluster ID in each cell. This 

approach, originally applied to housing valuation, can test spatio-temporal stability of clusters 

in any context. Fourth, one can try to generalise clusters based on inter-temporal data. Soltani 

et al. (2021) applied GTWR (Geographically and Temporally Weighted Regression) to obtain 

single-period local coefficients and used the SKATER algorithm, which clusters both locations 

and values, to delineate submarkets. Helbich et al. (2013) derived MGWR (mixed GWR), 

which keeps coefficients with non-significant variation constant for inter-temporal housing 

data. For fully spatial coverage, they kriged coefficients, reduced dimensions with PCA and 

clustered with SKATER, which allowed for deriving robust submarket division. 

It is not only GWR coefficients that can be clustered. In general, clustering requires 

multiple values to be grouped. This appears in bootstrapped regression. The majority of 

literature runs bootstrapped OLS models with a single explanatory variable only, enabling 

a simple summary of beta in one-dimensional distribution. However, for more than one 

explanatory variable, derivation of "central" coefficient values requires multi-dimensional 
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analysis, which was not presented in the literature until now. A solution to this problem is 

a PAM algorithm in the one-cluster study. As it searches for the in-sample "best representative", 

it finds the best model, which is most central with regard to all its beta coefficients. This 

approach was presented in Kopczewska (2020, 2021) in bootstrapped spatial regression to solve 

big data limitations.  

Clustering based on density 

The above-discussed clustering has three main features: a) an algorithm used a distance matrix; 

b) all points or regions were classified to one of the clusters; c) user assumed a priori a number 

of clusters. Density-based clustering differs in all those aspects. Its goal is to detect hot-spots, 

defined as a localised excess of some incidence rate and understood as locally different density 

(e.g. dense and sparse areas). The implication of the hot-spot approach is an automatic 

partitioning mechanism that assigns observations to clusters and leaves others as noise.  

One of the most commonly-used solutions is the DBSCAN algorithm (Density-Based 

Spatial Clustering of Applications with Noise) (Ester et al., 1996), which detects the local 

density of a point pattern. In simplification, it screens the surroundings of each point iteratively 

by checking if the minimum number of points is located in a specified radius. If yes, points are 

classified as the core; if not, points are classified as border points when the given point belongs 

to the core point radius or as noise if the point is located outside the radius of the core point. 

This algorithm works mostly in 2D (on the plane) or 3D (in the sphere); broader applications 

are rare but are slowly appearing (as 6D DBSCAN) (Czerniawski et al., 2018). What is 

essential, is that it does not use a mutual n x n distance matrix, which automatically increases 

its efficiency in big data applications. It also does not assume any parametric distributions, 

cluster shapes or the number of clusters and is resistant to weak connections and outliers. 

DBSCAN was extended in different directions, e.g. as C-DBSCAN (Density-Based Clustering 

with Constraints) (Ruiz et al., 2007), which controls for "Must-Link" and "Cannot-Link", ST-

DBSCAN (spatio-temporal DBSCAN) (Birant & Kut, 2007), K-DBSCAN (Debnath et al., 

2015) and OPTICS (Ankerst et al., 1999) for different density levels, and HDBSCAN 

(Hierarchical DBSCAN) (Campello et al., 2013) which finds epsilon automatically (Wang et 

al., 2019). Joshi et al. (2013) run multi-dimensional DBSCAN for polygons, in which spatial ε-

neighbourhood (points in a radius of ε) is substituted with spatio-temporal neighbourhood. 

Khan et al. (2014) and Galán (2019) review the newest advances in DBSCAN and their 

applications.  
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DBSCAN finds many applications. Pavlis et al. (2017) estimate with DBSCAN the retail 

spatial extent. To address local variability, they use individual radii in subsets derived from 

a distance‐constrained k‐nearest neighbour adjacency list. Cai et al. (2020) estimate tropical 

cyclone risk with ST-DBSCAN. It can be used in astronomy, e.g. to test the spatial distribution 

of Taurus stars (Joncour et al., 2018), where the DBSCAN parameters were set based on 

correlation function and knn. It finds an application in the classification of objects from imaging 

with an airborne LIDAR technique (Wang et al., 2019), WLAN Indoor Positioning Accuracy 

(Wang et al., 2019) and traffic collision risk in maritime transportation (Liu et al., 2020). 

DBSCAN may also work on text data and computer codes. Mustakim et al. (2019) run 

DBSCAN on the cosine distance obtained for text representation (Frequency-Inverse Document 

Frequency and Vector Space Model) and check partitioning quality with the silhouette. Reis 

and Costa (2015) clustered computer codes – they used tree edit distance (as Levenshtein 

distance) for strings to compare trees, which was the input data for DBSCAN. Their analysis 

clustered codes in terms of execution time, which helps in the pro-ecological selection of 

equivalent, but quicker codes.  

Before introducing DBSCAN, there were a few other concepts of scanning statistics, 

constructed based on a moving circle - GAM (Geographical Analysis Machine), BNS (Besag-

Newell Statistic) and spatial scan statistics. GAM (Openshaw et al., 1987) works on point data 

within a rectangle, divides an area into grid cells, and for each grid, it plots a ring of the radius 

(radii) r specified by the user. It counts cases (e.g. disease) within a circle and compares with 

the expected number of points from Poisson distribution (e.g. population) or other phenomena 

cases. The significant circle is the output. BNS (Besag & Newell, 1991) works similarly to 

GAM but with a pre-defined cluster size k. This means that each ring expands to reach k cases 

inside and then compares with the underlying distribution. Spatial scan statistics (Kulldorff, 

1997) compares within the moving ring the probability of being the case given populations at 

risk inside and outside the ring. The ring is adaptive (up to a given percentage of total cases). 

However, nowadays, only Kulldorff's measure is still applied widely in epidemiological studies, 

while GAM and BNS were almost forgotten. An interesting progressive method stemming from 

GAM is a scan test for spatial group-wise heteroscedasticity in cross-sectional models (Chasco 

et al., 2018). 
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After DBSCAN8, there appeared a group of methods based on Voronoi / Dirichlet 

tessellation (Estivill-Castro & Lee, 2002; Lui et al., 2008), called Autoclust. In the Voronoi 

diagram, for each point, they calculate the mean and standard deviation of the tile's edges. In 

dense clusters, all edges are short; in the case of border points, a variance of edges increases, as 

one edge is significantly longer than the other. Analysis of edges and border points delineates 

the borders of density clusters. The biggest advantage is in self-establishing parameters – 

a number of clusters, which is not the case of k-means or DBSCAN. This approach was 

forgotten and did not become a part of machine learning due to no solutions for predictions. 

Recently, as a rebirth, one can find proposals of 3D implementations (Kim & Cho, 2019). 

Overview of ML spatial clustering 

The above-discussed methods differ in their mechanisms, but their goal is similar. In any case, 

one may ask the question: to which cluster given spatial point belong? Depending on input data, 

it can be: i) a cluster of spatially close points, ii) a cluster of feature-similar observations, iii) 

a cluster of spatial and feature close neighbours, iv) a cluster of similar regression coefficients, 

or v) a cluster of densely located points. Spatial locations can be addressed directly with geo-

coordinates, but also as one of the clustered features, as a restriction in the pairing of points, as 

weight in optimisation, as background in running the GWR regression, or as local density 

(Fig.1).  

 

 
8 After DBSCAN there appeared also a group grid-based clustering algorithms, which are less popular. A spatial 

solution STatistical INformation Grid-based clustering method (STING) was proposed by Wang et al. (1997).   
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Figure 1: Unsupervised spatial machine learning models 

 

Source: Own concept 

 

This methodological summary can find applications in many regional science problems. 

It can help find clusters of features and map them in a smart way for huge geo-located data to 

check if geo-located segmentation exists and if points (customers) are clustered. It can be 

applied to analyse (co)location patterns with the values – to answer where our customers are 

and what else they visit and where to set the business, and who will be the best neighbour. 

Finally, it can help in the reduction of multi-dimensional data.  

Machine learning is a mixture of old statistical concepts refreshed by new challenges. 

Current methodological research efforts go into better forecasting, improving computing 

efficiency, especially with big data and finding more sophisticated approaches, such as for 

spatial techniques. Even if this summary tries to describe spatial clustering designs 
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comprehensively, one can find more literature concepts. One of them is cluster correspondence 

analysis for multiple point locations to address the same event in many places (Lu and Thill, 

2010).  

 

3. Econometric applications of machine learning to spatial data 

Machine learning approaches to the dependency between variables is exhibited in another class 

of models, which differ from traditional econometrics in few aspects: a) even if input data (x 

and y) seem similar, the structure of the model itself is much less transparent; b) as the machine 

learning modelling recalls "beauty contest" and it searches numerically for the best model, the 

forecasts are mostly much better than in classical theory- and user-feeling- driven approaches; 

and c) due to data selection via boosting, sampling, bootstrapping etc., the machine learning 

model can work on much bigger datasets.  

There are two general groups of ML models: a) typical regressions, which link the levels 

of features of variables x and y; and b) classifiers, which detect feature levels x in observed 

classes y. Knowing both features x and classes y in supervised machine learning is contrary to 

unsupervised learning, which clusters data without a priori knowledge of which observation is 

in which group. Many spatial classification problems are as follows: from an image (e.g. pixels 

of a satellite photo) one extracts features of the land (e.g. vegetation index, water index, land 

coverage) and adds geographical information (e.g. location coordinates). Additionally, one 

knows the real classification (e.g. type of crops), which is to be later forecasted with the model. 

A common application is to teach an algorithm to distinguish the desired image elements by 

linking information from the photo with the real class, where an image pixel is an individual 

observation. Further, the model can detect those elements on new photos to predict the class. 

This is widely applied in agriculture to distinguish crops, landscaping and land use (Pena & 

Brenning, 2015). It also works in geological mapping (e.g. Cracknell & Reading, 2014). New 

possible applications are regional socio-economic development indicators based on night-light 

data or land use satellite images (e.g. Cecchini et al., 2021). 

The most common machine learning classifier models are: Naive Bayes (NB), k-Nearest 

Neighbours (kNN), Random Forests (RF), Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), XGBoost (XGB) or Cubist (details of methods in Appendix 1). The last years 

also brought so-called ensemble methods, which are combinations of the aforementioned 

classifiers. There are many studies on which methods perform the best (very often, it is random 
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forest), or are equivalent to classical approaches. Tab.1 presents the latest studies which use the 

ML toolbox.  

 

Table 1: Usage of machine learning models in spatial applications 

Type of model Examples of usage Thematic area Remarks 

Naïve Bayes 

Park & Bae, 2015 housing 
valuation 

Model worked not the best, as C4.5 and AdaBoost. Much 
better was RIPPER.  

Cracknell & Reading, 
2014 

lithology 
classification 

Model worked not the best, Random Forest was better 

k-Nearest 
Neighbours 

Cracknell & Reading, 
2014 

lithology 
classification 

Model worked not the best, Random Forest was better 

Random Forest 

Cracknell & Reading, 
2014 

lithology 
classification 

Model worked the best 

Meyer et al., 2019 land cover Focus on selection of spatial variables and spatial CV, no 
other models in study 

Behrens et al., 2018 soil Focus on Euclidean distance fields, model worked well. 
Model was compared with bagged multivariate adaptive 
regression splines (MARS), which also worked well.  

Ahn et al., 2020 soil Focus on coordinates, distances and PCA-reduced 
distances as covariates, model worked well 

Appelhans et al., 2015 temperature Model performed well 
Lui et al., 2020 poverty Model performed well, better than regression tree 
Hengl et al., 2018 soil Focus on buffer distance, model performed well 
Goetz et al., 2015 landslide 

susceptibility 
Model worked well the same as bootstrap aggregated 
classification trees (bundling) with penalised discriminant 
analysis (BPLDA) 

Li et al., 2011 seabed mud Focus on mixture with kriging, model performed well 
Xu & Li, 2020 housing 

valuation 
Focus on stacking ensemble model, model performed well 

Hengl et al.,2017 soil Model with many spatial covariates, non-spatial CV, 
problems of high spatial clustering of sample points; 
model predicts individual data which are later clustered for 
composite prediction, model worked well 

Pourghasemi et al., 
2020 

gully erosion Random forest with many spatial covariates performed 
better than LASSO, generalised linear model (GLM), 
stepwise generalised linear model (SGLM), elastic net 
(ENET), partial least square (PLS), ridge regression, 
support vector machine (SVM), classification and 
regression trees (CART), bagged CART. No spatial cross-
validation applied.  

Support Vector 
Machines 

Behrens et al., 2018 soil Focus on radial basis function support vector machines 
(SVM) and on Euclidean distance fields, model performed 
poorly 

Goetz et al., 2015 landslide 
susceptibility 

Model worked well 

Li et al., 2011 seabed mud Focus on mixture with kriging, model performed not the 
best 

Du et al., 2020 land use Strategic comparison of ML models, model performed 
well 

Cracknell & Reading, 
2014 

lithology 
classification 

Model worked not the best, Random Forest was better 

Neural Network 

Behrens et al., 2018 soil Focus on Euclidean distance fields, model averaged 
neural network performed poorly 

Appelhans et al., 2015 temperature model averaged neural network performed well 
Nicolis et al., 2020 seismic rate Using Deep Neural Network - Long Short Term Memory 

(LSTM) and Convolutional Neural Networks (CNN), 
model worked well 

XGBoost Appelhans et al., 2015 temperature Focus on stochastic gradient boosting, model performed 
well 
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Hengl et al.,2017 soil Model with many spatial covariates, non-spatial CV, 
problems of high spatial clustering of sample points; 
model predicts individual data which are later clustered for 
composite prediction, model worked well 

Xu & Li, 2020 housing 
valuation 

Focus on stacking ensemble model, using adaptive 
boosting, gradient boosting decision tree, light gradient 
boosting machine and extreme gradient boosting, models 
performed well 

Cubist Behrens et al., 2018 soil Focus on Euclidean distance fields, model worked well 
Appelhans et al., 2015 temperature Cubist combined with residual kriging performed well 

Source: Own study 

 

Machine learning models are not only more accurate, but also might be much faster. Sawada 

(2019) reports that applying machine learning and the Markov Chain Monte Carlo approach to 

a Land Surface Model decreases computation time by 50,000 times. 

The general message is that most machine learning methods in spatial applications do not 

consider relative location and neighbourhood features and analyse pixels regardless of their 

surroundings. ML models are spatial only by operating on the map but not by including spatial 

relations. However, many authors have proposed some techniques to address the spatial 

dimension, which are presented below.  

Simple regression models to answer spatial questions 

The most basic application of ML is to run a classification or regression model on data that is 

spatial in nature. Examples published in recent years apply spatial data as with any other kind 

of data – one understands that data is geo-projected and was gained in specific locations, but 

no spatial information is included. There are many examples. Appelhans et al. (2015) explain 

temperatures on Kilimanjaro with elevation, hill slope, aspects, sly-view factor and vegetation 

index – they use machine learning models in a regression, and the only spatial issue is spatial 

interpolation with kriging9. Similarly, Liu et al. (2020) run non-spatial regression and a random 

forest model on socio-economic and environmental variables to explain poverty in Yunyang, 

China, using data from 348 villages. The only computational spatial component is the Moran 

test of residuals, which evidenced no spatial autocorrelation. The power of the study lies in 

merging different sources of geo-projected data: surface data for elevation, slope, land cover 

types and natural disasters (with resolution 30m or 1:2000); point data like access to town, 

market, hospital, bank, school, or industry taken from POI (Point-Of-Interest) or road density 

network (in scale 1:120000); and polygonal data for the labour force from a statistical office. 

 
9 Kriging, which is often a part of ML modelling, is also the best imputation method in case of missing data 

(Griffith & Liau, 2020).                                                                                                             
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Rodríguez‐Pérez et al. (2020) model the lightning‐caused fire in geo-located grid cells in Spain. 

They use RF, generalised additive model (GAM) and spatial models, where the fact that 

lightning‐caused fire appeared in a given grid-cell was explained with features observed there 

such as vegetation type and structure, terrain, climate, and lightning characteristics. Also, an 

applied example of statistical learning in a book by Lovelace et al. (2019) uses a generalised 

linear model on rastered data of landslide (e.g. slope, elevation) with point data of interest. The 

spatial location and autocorrelation are included in spatial cross-validation.  

Another interesting example is mapping rural workers' health condition and severe 

disease exposure (Gerassis et al., 2020) using a ML approach. The study is based on geo-located 

medical interviews which provided health data – hard medical data and a person's general health 

condition. With a ML Bayesian Network (BN), the authors discovered which variables are 

connected with the patient's condition when flagged as ill. In the next step, with binary logistic 

regression run on individual cases and thresholds from the BN, one gets model classification, 

and prediction of high disease risk for a person. Spatial methods appear only for interpolation 

of illness cases observed, which is a separate model - Gerassis et al. (2020) use the Point-to-

Area Poisson kriging model, which deals with Spatial Count Data, unequal territories and 

diverse population composition. The spatial challenge was in different granulation of data: point 

data in the study sample and polygonal data as a basis of prediction.  

Spatial cross-validation 

Current implementations of machine learning in the spatial context are often restricted to spatial 

k-fold cross-validation (CV) only, which can solve non-independence. This works by dividing 

points into k irregular clusters (by using, e.g. k-means) and selecting one cluster as an out-of-

sample cross-validation part. Due to spatial autocorrelation between training and testing 

observations, simple spatial data sampling gives biased and over-optimistic predictions. 

However, spatial CV increases prediction error (Liu, 2020). Lovelace et al. (2019) show that 

a spatially cross-validated model gives a lower AUROC (Area Under the Receiver Operator 

Characteristic Curve), as it is not biased with spatial autocorrelation. The same applies to 

models that tune hyper-parameters (e.g. SVM) using sampling (Schratz et al., 2019). In the case 

of spatio-temporal data, one should account for spatial and temporal autocorrelation when 

doing CV (Meyer et al., 2018). Spatial cross-validation is becoming a standard (e.g. Goetz 

et al., 2015; Meyer et al., 2019), but some studies still neglect this effect and do not address 

the autocorrelation problem (Park & Bae, 2015; Xu & Li, 2020). 
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Image recognition in spatial classification tasks 

One of typical implementations of ML is image recognition in spatial classification tasks. 

A good example is a supervised lithology classification, i.e. geological mapping (Cracknell & 

Reading, 2014). As input (X), they use the airborne geophysics and multispectral satellite data, 

while as output (Y) for a given territory, they use the known lithology classification, given as 

polygons on the image for each class. They also know the xy coordinates of the pixels of those 

images. In the modelling process, they produce an algorithm which discovers the lithology 

classification from airborne geophysics and multispectral satellites. They run three kinds of 

models on pixel data: i) X→Y, ii) xy coords → Y, iii) X & xy coords → Y, using aforementioned 

NB, kNN, RF, SVM and ANN. In fact, this phase is image processing to teach software to 

understand what is in the picture and give a lithology class to each pixel. The goodness of fit 

and prediction differ between models. ML produces the model, which will generate a lithology 

classification when fed with new satellite and airborne data. A similar study was conducted by 

Chen et al. (2017), who used eleven conditioning factors such as elevation, slope degree, slope 

aspect, profile and plan curvatures, topographic wetness index, distance to roads, distance to 

rivers, normalised difference vegetation index, land use and land cover and lithology to predict 

landslide data. They used maximum entropy, neural networks, SVM and their ensembles.  

A very different approach is involved when dealing with dynamic spatial data. Nicolis et 

al. (2020) model the earthquakes in Chile. Their dataset of seismic events included a period of 

17 years, with 86000 geo-located cases in 6575 days. For each day with an earthquake, they 

created a grid-based image (1°x1°) of the territory with grid-intensity estimated by an ETAS 

(Epidemic-Type Aftershock Sequences) model. Using this, they applied deep learning methods 

such as Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) for 

spatial earthquake predictions – predicting the maximum intensity and the probability that this 

maximum will be in a given grid cell. 

Images as predictors in spatial models are not always informative. Fourcade et al. (2018) 

proved that meaningless for spatial process images such as paintings or faces can predict the 

environmental phenomena well. This finding was the basis of deepened studies (Behrens et al., 

2020) which concluded in two major points. First, spurious correlations without causality raise 

the danger of meaningless but efficient predictors, which can be mitigated by using domain-

relevant and structurally related data. Second, by comparing the variograms of regressors, they 

recommend using covariates with the same or narrower range of spatial dependence of the 
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dependent variable. Meyer et al. (2019) derive similar conclusions that highly correlated 

covariates result in over-fitted models, which replicate data well and fail in spatial predictions.  

Mixtures of GWR and machine learning models 

An example of taking one step further from the classical analysis is a transformation of 

Geographically Weighted Regression (GWR) into a machine learning solution. The process 

behind GWR lies in applying small local regressions on neighbouring points for each 

observation instead of one global estimation. Additionally, one decides on: i) the radius and 

shape of the "moving geometry" (e.g. circle, ellipse), which indicates which points to include 

in a given local regression, ii) its flexibility – fixed kernel for a fixed radius and adaptive kernel 

for a changing radius to react to various densities of the point data, iii) the weighting scheme – 

if observations included in local regressions have the same weight when distance-decaying from 

the core point. These features of GWR can be applied to any machine learning model. Li (2019) 

mixed GWR with neural networks, XGB and RF to improve wind speed predictions in China 

by better capturing local variability. It gave a 12–16% improvement in R2 and a decrease in 

RMSE (Root Mean Square Error). 

According to Fotheringham et al. (2017), traditional GWR should rather be substituted 

by Multiscale Geographically Weighted Regression (MGWR). In MGWR, one decides on 

bandwidth not only with regard to location / local density but allows for optimisation of 

covariate-specific bandwidth. MGWR performs better than simple GWR. In both approaches, 

the problem of bias when "borrowing" data from territories with a different local process is very 

small (Yu et al., 2020)10.  

Spatial variables in machine learning models 

It has become very popular to replace geostatistical models with machine learning solutions to 

model and interpolate spatial point patterns. In fact, current literature compares geostatistical 

models such as regression kriging and geographically weighted regression,  prediction models 

such as ordinary kriging and indicator kriging, multiscale methods such as ConMap and 

ConStat and contextual spatial modelling with ML models.  

In the last decade, researchers have been looking for the best model for spatial 

interpolation. The most straightforward approach, introduced in early studies (as Li et al., 2011), 

 
10 Geographical and Temporal Weighted Regression (GTWR) also exists, to address time series (Fotheringham et 

al., 2015) 
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simply checked the efficiency of non-spatial ML models in spatial tasks. Mostly they have 

combined RF or SVM with ordinary kriging or inverse distance squared. Often Random Forest 

became the most accurate method, which increased its popularity in further studies. This 

approach is still present. For example, Sergeev et al. (2019) predict the spatial distribution of 

heavy metals in soil in Russia by applying a hybrid approach: simulating a general non-linear 

trend using an artificial neural network (ANN) (by applying the generalised regression neural 

network and multilayer perceptron) and fine-tuning the residuals with the classical geostatistical 

model (residuals kriging)11.  

Later solutions try to include spatial components among covariates - coordinates or 

distances between other points. Hengl et al. (2018) promote using a buffer distance among 

covariates of Random Forest. Buffer distance is calculated between each point of the territory 

and observed points. It can be a distance to a given point or a distance to low, medium or high 

values. Hengl et al. (2018) show on a few empirical examples that this solution is equivalent to 

regression kriging but more flexible in terms of specification and allows for better predictions. 

Buffer distance is used to address spatial autocorrelation between observations and works better 

than the inclusion of geographical coordinates. Another example of this is in Ahn et al. (2020), 

who use the Random Forest model with spatial information to predict zinc concentration having 

only its geo-location. They considered PCA reduction of dimensions in distance vectors and 

used kriging for expanding predictions on new locations. They underline a trade-off between 

including coordinates, which give lower model precision and do not allow for controlling spatial 

autocorrelation, but which do not overload computational efficiency, including distance matrix, 

which works oppositely. They showed that the best solution is to use PCA-reduced distance 

vectors, which limit the complexity and improved estimation performance. An alternative is to 

add spatial lag and/or eigenvector spatial filtering (ESF), which can cover most autocorrelation 

(Liu, 2020). The propositions of Ahn et al. (2020) and Liu (2020) may expand implementations 

of Random Forest for spatial data, which work for prediction of 2D continuous variables with 

and without covariates, binominal and categorical variables, and also with extreme values, 

spatio-temporal and multivariate problems (Hengl et al., 2018). In general, Random Forest, 

compared with geostatistical models, requires less spatial assumptions and performs better with 

big data.  

 
11 They also use many prediction quality measures such as correlation, R2, RMSE, Willmott's index of agreement 

and a ratio of performance to interquartile distance (RPIQ) between the prediction and raw test data.  
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An alternative approach in including spatial components is using Euclidean distance 

fields (EDF), which address non-stationarity and spatial autocorrelation and improve 

predictions (e.g. in soil studies) (Behrens et al., 2018). These are features of analysed territory 

generated in GIS – typically, one derives for each point of territory seven EDF covariates: X and 

Y coordinates, the distances to the corners of a rectangle around the sample set and the distance 

to the centre location of the sample set. They prove that as long as spatial regressors have 

a narrower range of spatial dependence than the dependent variable, they improve the model.  

The selection of spatial variables to the model is still ambiguous. In many papers, all 

collected variables are included, with trust that ML methods by their construction will eliminate 

the redundant ones. Some studies propose running standard a-spatial algorithms as BORUTA 

(Amiri et al., 2019) to indicate which variables should stay in the model. There are also 

proposals for removing correlated covariates and regularisation to cope with multicollinearity 

(Farrell et al., 2019), which do not significantly impact the results - random forest on raw data 

performed the best; however, spatial autocorrelation was not addressed. There are also some 

controversies. Meyer et al. (2019) assess the inclusion of spatial covariates by quality measures 

such as Kappa or RMSE. They claim that longitude, latitude, elevation, the Euclidean distances 

(also as EDF) can be unimportant or even counterproductive in spatial modelling and 

recommend eliminating those regressors from models. They underline two other aspects: firstly, 

contrary to the majority narrative, they do not approve of the high fit of ML models, treating 

them as over-optimistic and misleading; secondly, they claim that in visual inspection, one 

observes artificial linear predictions resulting from the inclusion of longitude and latitude, and 

their elimination helps in making predictions real.  

Overview of spatial ML regression and classification models 

The above-described modelling patterns can be summarised in a general framework, which 

consists of four stages: data integration, data modelling, model fine-tuning and prediction (see 

Fig.2). All of them include spatial components.  

1. Data integration: The core point of many current spatial machine learning studies lies 

in integrating spatial data in different formats. As a standard, one uses geo-located 

points (for observation location, Point-of-Interest etc.), irregular polygons (for statistical 

data), regular polygons such as grids or rasters (for summed or averaged data within that 

cell), lines (such as rivers or roads) and images (such as satellite photos, spectral data, 

digital elevation models, vegetation and green leaf indices etc.). The individual 

observation can be of a diverse form: point, polygon, grid or pixel. Depending on the 
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researcher's choice of data target granulation, the dataset integration process may be 

only technical or involve more or less advanced statistical methods. For classification 

purposes, the researchers may add the classes of objects manually.  

2. Modelling: Machine learning methods differ from econometric12 algorithms when 

obtaining a mutual relation between the dependent (y) and explanatory (x) data. 

Regression models are used to explain usually continuous variables, while classification 

models are used for categorical variables. Predominantly, ML models on spatial data 

have neglected issues of spatial autocorrelation between observations. The latest 

studies, however, try to incorporate this element by using spatial variables among 

covariates. These can be geo-coordinates, distance to a given point (e.g. core), mutual 

distances between observations, PCA-reduced mutual distances between variables, 

buffer distance, spatial lag of the variable, and eigenvector or Euclidean distance fields. 

Addressing the spatial autocorrelation enables not only reproducing the training data 

well but also predictions in new locations beyond the dataset (Meyer et al., 2019). 

GWR-like local machine learning regression bridge the gap between spatial and ML 

modelling. This stage results in sets of global or local regression coefficients or 

thresholds of decision trees.   

3. Model fine-tuning: The common approach is to test and improve model estimation with 

k-fold cross-validation. For a long time, many scientists reported excellent performance 

of ML models when testing on fully randomly sampled observations. Current literature 

suggests that not addressing autocorrelation falsely improves the model quality, and 

they recommend spatial cross-validation to overcome this – it takes as folds the k-means 

spatially-continuous clusters of data. The other option is classical testing of spatial 

autocorrelation of model residuals (e.g., Moran's I) and re-estimating if the spatial 

pattern is found.  

4. Prediction: The majority of ML studies are oriented towards predictions based on the 

model. In regression tasks, they often use one of the kriging versions, which expands 

results from observations on all possible points within the analysed territory. In 

 
12 Spatial econometrics due to its inherited spatial weights matrix, deals with neighbourhood, tracks the spillover 

and importance of relative location, and technically improves quality of estimation by reducing bias and improving 

consistency. By adding distance variables one controls for distance-decay patterns and spatial interactions. 

Dummies for specific location (such as Central Business District, on the border, at the seaside, in the main city) 

measure the effect of absolute location and special spatial features.  
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classification tasks primarily based on pixel data, the calibrated models are fed with 

a new image that allows running prediction for all input pixels.  

The literature overview shows that spatial machine learning modelling has undergone 

development with visible progress. In the last decade, one could observe the following 

approaches:  

1) Classic ML  + non-spatial variables  + random cross-validation 

2) Classic ML  + spatial all variables   + random cross-validation 

3) Classic ML  + spatial all variables   + spatial cross-validation 

4) Classic ML  + spatial selected variables  + spatial cross-validation 

5) Spatial ML  + spatial selected variables  + spatial cross-validation 

The current standard of modelling is expressed with "4) Classic ML + spatial selected variables 

+ spatial cross-validation". Models estimated with 1), 2) or 3) may not be fully reliable, due to 

the autocorrelation issues discussed above. The progress and innovations which are coming 

with approach 5) are mostly referring to ML methods to incorporate spatial components into 

the algorithms.  

It is clear from many studies that unaddressed spatial autocorrelation generates problems: 

overoptimistic fit of models, omitted information, and/or biased (suboptimal) prediction. Thus, 

a current toolbox dealing with spatial autocorrelation should be used in all ML models to ensure 

methodological appropriateness. One can mention here methods such as i) adding spatial 

variables as covariates; ii) GWR-like local ML regressions; iii) using spatial cross-validation; 

iv) testing for spatial autocorrelation in model residuals, v) running spatial models on grids or 

pixels a with spatial weights matrix W, and vi) running spatial predictions with kriging. To sum 

up, the spatial dimension and spatial autocorrelation can be addressed at each stage of the 

modelling process, and combinations of these solutions seem to improve the quality of models. 

ML algorithms are often more efficient than classical spatial econometric models, which makes 

them more appropriate in the case of big spatial data.  
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Figure 2: Spatial machine learning modelling  

 

Source: Own concept 

 

4. Perspectives of spatial machine learning 

The methodological solutions presented above open new paths for advanced research using 

spatial and geo-located data.  

Firstly, these methods enable more efficient computation in the case of big data and 

including new sources of information. Switching from regional data into a lower aggregation 

level such as individual points or pixels of the image causes datasets to increase in magnitude 

many times. This low granulation is especially painful for classical spatial econometrics based 

on an nxn spatial weights matrix W or nxn distance matrix. As indicated by Arbia et al. (2019), 

the maximum size of the dataset for computation with personal computers is around 70,000, 

while already with 30,000 observations, the creation of W is challenging (Kopczewska, 2021). 

ML models, which are free of W, are automatically quicker, but addressing the autocorrelation 

issue, currently treated as obligatory, is executed in another way. New sources of data such as 

lightmaps of terrain (Night Earth, Europe At Night, NASA, etc.) or day photos of landscape 
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(Google Maps, Street View etc.) bring new insights and information, and due to big-data robust 

analytics are useful (see Appendix 3). Spatial data handling (e.g., processing remote sensing 

image classification or spectral-spatial classification, executed with supervised learning 

algorithms, ensemble and deep learning) is especially helpful in big data tasks (Du et al., 2020).  

Secondly, the methods present a way to address spatial heterogeneity and isotropy. 

Classical spatial econometrics was concentrated on spatial autocorrelation and mostly neglected 

other problems. Local regressions, combined with global ones, help in capturing unstable 

spatial patterns. The overview of methods shows that integrating classical statistics and 

econometrics with machine learning provides more instruments to the modelling toolbox than 

a single approach.  

Thirdly, the methods open a path for spatio-temporal modelling and studying the 

similarity of different layers: spatial, multi-dimensional, and spatio-temporal etc. The dynamics 

connected to location can be addressed in more ways than the classical panel model.  

Fourth, these methods allow for better forecasting due to inherited boosting and 

bootstrapping in ML algorithms. ML results are also more flexible for spatial expanding into 

new points. Ensemble methods, popular in ML, are supporting researchers in finding the best 

prediction. A shift towards spatial ML from spatial econometrics is also a change from 

explanation into forecasting. The predictive power of classical spatial models was rather limited 

(Goulard et al., 2017), mostly due to simultaneity in spatial lag models. The second problem 

was out-of-sample data, which were not included in W, thus impossible to cover with the 

forecast. New solutions such as ML spatial prediction can be fine-tuned in line with spatial 

econometric predictions based on bootstrapping models (Kopczewska, 2021).    

Fifth, the methods drive innovations such as new indicators based on vegetation index or 

light indicators. The methods presented also introduce 3D solutions to spatial studies, such as 

social topography with 3D inequalities (Aharon-Gutman et al., 2018; Aharon-Gutman & Burg, 

2019), 3D Building Information Models (Zhou et al., 2019) or urban compactness growth 

(Koziatek & Dragićević, 2017). There appear urban studies that rely on information from 

GoogleStreeView, by counting cars, pedestrians, bikers etc. to predict traffic (Goel et al., 2018), 

or counting urban disorders such as cigarette butts, trash, empty bottles, graffiti abandoned cars 

and houses etc. to predict neighbourhood disorder (Marco et al., 2017) or counting green 

vegetation index to predict safety (Li et al., 2015).   
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This all shows that spatial modelling built on econometrics, statistics and machine 

learning is the most effective approach. It finds wide applications in epidemiology, health, 

crime, the safety of surroundings, customers' location, business, real estate valuation, socio-

economic development, and environmental impact etc.  

Beyond all of that, the ML approach can still answer typical questions, which were asked 

over the last years in quantitative regional studies. On the one hand, they are to track invisible 

policy and its impact on observable phenomena – by studying policy flows, core-periphery 

patterns and its persistence, urban sprawl patterns, diffusion and spillover from the core to 

periphery, cohesion and convergence mechanisms, institutional rent, effects of administrative 

division, the role of infrastructure or agglomeration effects. On the other hand, these can be 

opposite studies, analysing visible spatial patterns to conclude about unobservable policy, such 

as studying clusters, tangible flows such as trade or migrations, similarity and dissimilarity of 

locations, spatio-temporal trends, spatial regularities on labour markets, in GDP and its growth, 

in education, customers' location and movements as well as business development, location and 

co-location. Those studies mostly answer the questions on spatial accessibility, spatial 

concentration and agglomeration, spatial separation, spatial interactions and spatial range.  

Progress in science over the past decades involves interdisciplinary transfers of 

knowledge and methods. Regional science also waits for that transfer. The presented overview 

of recent papers proves that it has already started, but still waits for mass interest from 

researchers. 
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Appendix 1: Overview of quantitative concepts  

Below one can find the description of the methods mentioned in the paper (distance metrics, 

clustering with k-means, PAM and CLARA, hierarchical clustering, spatial clustering with 

SKATER and REDCAP, DBSCAN clustering, Clustering quality measure: silhouette, inertia, 

Dunn index, k-fold cross-validation, typology of supervised machine learning methods, Naïve 

Bayes classifier, K-Nearest Neighbours classifier, Random Forest classifier, Support Vector 

Machines, Artificial Neural Networks, Maximum entropy classifier, Autoencoder-based 

residual network, Gradient boosting, Cubist).  

1. Distance metrics 

Clustering algorithms, which are based on mutual distance between points, use different metrics 

of distance. For two points 𝑋 = (𝑥$, 𝑥%, 𝑥&, … , 𝑥') and 𝑌 = (𝑦$, 𝑦%, 𝑦&, … , 𝑦') one can define 

(see Fig.A1.1):  

- Euclidean distance 1∑ (𝑥! − 𝑦!)%'
!"$  , which measures the shortest way between points. It 

compares pairs of observations, variable by variable, and computes the square root of 

summed up squares of differences between values of variables.  

- Manhattan (urban, city-block) distance ∑ |𝑥! − 𝑦!|'
!"$ , called also urban distance, which 

uses perpendicular sections to connect points as moving around the edges of the grid. It 

compares pairs of observations, variable by variable, and computes the absolute difference 

of their values, which is summed up. 

- Minkowski distance ∑ (|𝑥! − 𝑦!|()$/('
!"$ , which is generalisation of Euclidean and 

Mahnattan distance and allows for non-linear curve way between points  

Figure A1.1: Distance metrics 

 
Source: Own work 
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Beyond those three metrics one can use more concepts: 

- Gower distance (also Gower dissimilarity) – introduced by Gower (1971), can be applied 

to the mixture of numerical and categorical variables. It compares pairs of observations 

variable by variable and computes the average distance score between those observations. 

Components of score are from range [0,1], and their average too. For quantitative variables 

the score is the absolute value of difference between values of observations divided by the 

variable range: 4𝑥! − 𝑥*4/(max(𝑥) − min	(𝑥)). For qualitative variables it gives 0 if they 

are the same and 1 if they are different. Low values of Gower distance are interpreted as 

(close) similarity13.  

- Mahalanobis distance – introduced by Mahalanobis (1936), includes correlations between 

variables 1(𝑥 − 𝑦)+𝑐𝑜𝑣(𝑥, 𝑦),$(𝑥 − 𝑦). To calculate this distance one follows the 

procedure14:   

1. Take real data (let’s say three variables x, y, z) and calculate average values of each 

variable – you get the vector of (three) average values (�̅�, 𝑦> , 𝑧 ̅) 

2. Take your test data (let’s say xi=1, yi=4, zi=6) 

3. Calculate vector of differences between your test data and vector of average values (𝑥! −

�̅�, 𝑦! − 𝑦@, 𝑧! − 𝑧̅)= (1−�̅�, 4 − 𝑦@, 6 − 𝑧)̅ – this is a vector of differences from mean values 

4. Calculate variance-covariance matrix of your data – you get 3x3 matrix – make an 

inverse of it 

5. Multiply (as matrix): vector of differences * inverse covariance matrix * vector of 

differences 

6. Take a square root of this multiplication – this is Mahalanobis distance 

- Hamming distance – introduced by Hamming (1950) to compare binary vectors; it gives 

0 if elements are the same, and 1 if they are different, and sums up the scores – this counts 

in how many points the vectors differ. As the Gower distance for qualitative data, it 

compares pairs of observations, variable by variable.  

- Cosine distance (cosine similarity) – measures the angle of two vectors. In case of 

similarity the angle is 0° and cos(0°)=1. In case of dissimilarity, angle of two vectors 

increases, and its cosine is in range [0,1). Two vectors being opposite have distance of -1. 

 
13 https://jamesmccaffrey.wordpress.com/2020/04/21/example-of-calculating-the-gower-distance/  
14 https://jamesmccaffrey.wordpress.com/2017/11/09/example-of-calculating-the-mahalanobis-distance/  
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Cosine distance is expresses as: ∑ .!/!
"
!#$

0∑ .!
%"

!#$ 0∑ /!
%"

!#$

, where A and B are analysed vectors 

(variables). Counter is a sum of products of paired values of both variables. In nominator 

one gets total of squared values of both variables.  

- Cophenetic distance – proposed by Sokal and Rohlf (1962), applied only in hierarchical 

clustering, measures the height of dendrogram between two clusters – precisely, the height 

of the dendrogram where the two branches that include the two objects merge into a single 

branch 

- Levenshtein distance – introduced by Levenshtein (1965), called also edit distance, mostly 

used in text analysis, reflects the minimum number of necessary corrections (delete, insert, 

substitute) to change one vector into another15.  

 

2. Clustering with k-means 

The idea of k-means was introduced by Steinhaus (1956), the first algorithm was developed by 

Lloyd (1957), while k-means term was proposed by MacQueen (1967) (see Bock, 2007). In k-

means method one assumes a-priori number of clusters k, sets initial multi-dimensional 

coordinates of these k centroids, calculates the matrix of distances between all sample points 

and k centroids, and finally optimizes the location of centroids, by minimizing the total distance 

of points from cores (see Fig.A1.2). Location of centroids is non-restricted and can be in any 

place of the plane (surface) where the sample data are located. All points are assigned to 

clusters.  

Figure A1.2: Clustering with k-means 

 

 
15 https://www.baeldung.com/cs/levenshtein-distance-computation  
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Source: Own work 
 

3. Clustering with PAM and CLARA 

The idea of clustering with PAM (Partitioning Around Medoids) was introduced by Kaufman 

and Rousseeuw (1987). Like k-means, one assumes a priori k core points. However, they are 

not selected freely as in k-means, but must belong to the sample. Finding the best combination 

of k points which become medoids minimizing the total distance of points from cores requires 

iterative approach (see Fig.A1.3). All points are assigned to clusters.  

 

Figure A1.3: Clustering with PAM 

 

 
Source: Own work 

 



Kopczewska, K. /WORKING PAPERS 16/2021 (364)                                   38 
 

CLARA (Clustering Large Applications) method is big data equivalent of PAM. It was 

proposed by Kaufman and Rousseeuw (1990). It works as PAM but on subsample, which 

classifies points to clusters. The rest of points is assigned to clusters using k nearest neighbours. 

 

4. Hierarchical (agglomerative) clustering 

Hierarchical clustering was introduced by Breiman et al., (1984). It assumes continuous 

clustering which can be selected after division. The bottom-up algorithm starts with all 

observations constituting their own clusters – singletons. Iteratively, the clusters are merged in 

bigger groups. In last stage, all observations belong to one cluster. This division can be 

visualised as dendrogram. To read an output one can decide how many clusters to see or on 

which high to cut the tree. All observations are assigned to some clusters.  

 

Figure A1.4: Hierarchical clustering 

 

 

Source: Own work 

 

5. Spatial clustering with SKATER and REDCAP 

SKATER (Spatial ‘K’luster analysis by tree edge removal) was proposed by Assuncão et al. 

(2006). It uses pruning of the trees constructed as a weighted connectivity graph with edge and 

nodes. It clusters the values with regard to their location. Clusters of similar values are expected 
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to be located next to each other. For each region, it makes the list of contiguity, and for each 

neighbour, it calculates the cost – total distance between all variables attached to areas. For each 

region, an algorithm chooses two closest neighbours (in terms of data) and finally groups areas 

into the most coherent spatially continuous clusters.  

REDCAP (Regionalisation with dynamically constrained agglomerative clustering and 

partitioning) algorithm was developed by Guo (2008) as an answer for SKATER. It uses 

hierarchical agglomeration method with spatial constraints. It applies three criteria of defining 

the distance between values (single linkage, average linkage and complete linkage, see 

Fig.A1.5) and two “constraining strategies” with regard to spatial location: first order 

neighbourhood (sharing common border) or full-order neighbourhood (links to all other 

regions).  

 

Figure A1.5: Definitions of distances between clusters 

 

Complete linkage 

 

Single linkage 

 

Average linkage 

 

Centroid linkage 

Source: https://www.datacamp.com/community/tutorials/hierarchical-clustering-R 

 

6. DBSCAN clustering 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was proposed by Ester 

et al., (1996). It does not use distance metrics and nearest neighbours (as e.g. PAM), but 

examines the spatial density of points to get dense and sparse areas. The algorithm sets clusters 

one by one. Starting from a randomly chosen point, it examines the neighbourhood in a given 

radius ε and marks the points belonging to the cluster and constituting noise. All points 

belonging to the cluster are iteratively tested and the full cluster is formed. Subsequently, in the 

same procedure points are examined, which constitute noise against the previously formed 

cluster. Points can belong to a cluster (core and border) or stay outside the cluster (noise). 

DBSCAN requires setting the radius of epsilon ε and the minimum number of points in this 

radius MinPts. For each point one counts the number of points in radius ε and checks if the 

points fall into the radius of other points. Core points have at least the minimum number of 



Kopczewska, K. /WORKING PAPERS 16/2021 (364)                                   40 
 

MinPts points within a radius of ε. Border points are in the radius ε from the core point, but do 

not themselves contain the minimum number of MinPts points in their radius ε. Noise points 

are outside the radius of core and boundary points (see Fig.A1.6). Sensitivity analysis – number 

of clusters and percentage of noise depending on ε and MinPts. Even if method is known as 

„unsupervised” it requires setting by researcher two parameters, which are crucial for the result 

(see Fig.A1.7).  

 

Figure A1.6: Search algorithm of DBSCAN method 

 

Source: https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html  

 

Figure A1.7: Results of DBSCAN: a) geographical clusters, b) distribution of number of 

clusters depending on ε and minPts, c) distribution of noise percentage depending on ε 

and minPts 

 

Source: own work 
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7. Clustering quality measure: silhouette 

Silhouette statistics to test the quality of clustering – in particular if number of clusters k was 

set properly. The individual statistic Si is given by a formula 𝑆! =
(2!,3!)

567	(3!,2!)
, where ai is the 

average distance from the point to all other objects in the cluster, while bi is the minimum 

average distance from the point to other clusters (tested for each cluster separately). Global S is 

given as 𝑆 = ∑ :!
"
!#$
'

 (averaged individual Si). Si and S statistics are limited s∊[-1,1]. The negative 

values of the silhouette statistics are undesirable, because it means that ai>bi, so the remaining 

clusters are closer than your own cluster. On the contrary, positive values of the silhouette 

statistics are desirable. The optimal value of Si and S statistics is close to 1 (s~1), which occurs 

when the distance between the observation and the middle point in your own cluster is minimal. 

In the interpretation one is looks for the highest values of the silhouette statistics for a different 

number of clusters k.  

 

8. Clustering quality measure: inertia 

Inertia for clusters is a concept similar to analysis of variance and helps deciding which number 

of clusters works the best. It sums up the weighted squared distance between observations and 

their cluster center (within-cluster inertia, W); centers of clusters and all observations (between-

clusters intertia, B); observations and center of all observations (total inertia, T). Good 

clustering is characterized by high inter-cluster inertia (diversity) and low intra-cluster inertia 

(heterogeneity). For two partitioning one compares their Qs (Q=1-W/T) and choses the 

partitioning with higher Q.  

Within-cluster (intra-cluster) inertia W, assuming the existence of a PK partition, is the 

sum of I(CK) inertia in all available K (k = 1, .., K) clusters and is expressed by:  

𝑊 =# 𝐼(𝐶!)
!

"#$
 

where the individual intra-cluster inertia I(Ck) are determined as: 

𝐼(𝐶!) =# 𝑤%𝑑%&
%'(!

(𝑥% , 𝑔") 

where di is the distance between observation xi and the centre of the cluster gk, while wi is the 

weight assigned to the observation - which in particular may be 1/n for n observations. It 



Kopczewska, K. /WORKING PAPERS 16/2021 (364)                                   42 
 

measures the heterogeneity within clusters - the lower the inertia and thus the heterogeneity, 

the more coherent the clusters. 

Between-clusters inertia B, measures the separation between clusters and is expressed as 

the sum of the weighted squared distances dk between the centres of gk clusters and the centre 

g of all observations considered together. Hence, the inter-cluster inertia is given as: 

𝐵 =# 𝜇"𝑑"&
!

"#$
(𝑔" , 𝑔) 

where μk is the sum of the weights assigned to the observations inside the given cluster k:  

𝜇" =# 𝑤%
%'("

 

Total inertia T is the sum of the weighted squared distances dg between individual 

observations xi and the centre g of all observations taken together: 

𝑇 =# 𝑤%𝑑)&
*

%#$
(𝑥% , 𝑔) 

It does not depend on the division into clusters and can be also expressed as the sum of intra-

cluster inertia W and inter-cluster inertia B:  

𝑇 = 𝑊 + 𝐵 

 

9. Clustering quality measure: Dunn index 

Dunn index, introduced by Dunn (1974), is based on extreme values only. It checks the 

quality of clustering - in particular if number of clusters k was set properly. It compares two 

parameters of K clusters: 

- In counter, minimum separation of clusters, calculated as minimum dmin (for all clusters) of 

shortest distance dkk’ between two clusters (separation between the closest points M of two 

clusters k and k’): 

𝑑;!' = 𝑚𝑖𝑛<=<>𝑑<<> where 𝑑<<> = 𝑚𝑖𝑛!∈@&,*∈@&'| I𝑀!
{<} −𝑀*

{<>}I | 

- In numerator, diameter of cluster, calculated as maximum (for all clusters) of largest 

distance Dk between points M within given cluster k:  

𝑑;3C = 𝑚𝑎𝑥$D<DE𝐷< where 𝐷< = 𝑚𝑎𝑥!,*∈@&,!=*| I𝑀!
{<} −𝑀*

{<}I | 
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Thus, Dunn Index is expressed as Dunn=dmin/dmax. In case of good partitioning, in which 

clusters are small (small diameter) and well-separated (large distance between clusters), Dunn 

index will be high.  

Much more on measures of clustering quality one can find in Vigennets to R package 

clusterCrit::16 or in Tibshirani et al. (2000).  

 

10. k-fold cross-validation 

Currently one can find two approaches to cross-validation (CV): i) by dividing data into two 

groups – training and testing, or ii) by dividing data into three groups – training, fine-tuning 

and testing. When dividing data into two groups – sample is divided into k folds (parts, 

subsamples), k-1 folds is used in training of the model and 1 part is used in testing the model. 

Process goes recursively k times, so each of k folds play a role of testing part of sample. When 

dividing data into three groups – one keeps part of the data for out-of-sample predictions and 

does not use these data for model fitting and fine-tuning. The rest of data is used as in approach 

of dividing data into two groups. In case of 5-fold cross-validation, the data used for model 

fitting and fine-tuning are divided into 5 equal parts with 20% of data each, and in each of 5 

iterations, model is fitted on 80% of data and tested on 20% of data.  

 

11. Supervised machine learning – typology of methods 

Supervised learning tools supplement typical models of regression (with continuous 

dependent variable) and classification (with few levels of dependent variable). According to 

Kuhn and Johnson (2016) regression modelling, except linear regression models (like OLS, 

Ordinary Least Squares) includes non-linear regressions (based on neural networks, SVM, 

KNN) and regression trees and rule-based models (like regression trees, random forest, cubist, 

boosting). Similar division one can have for classification methods, which includes linear 

models (logistic regression – logit, probit or linear discriminant analysis), non-linear 

regressions (like neural networks, Support Vector Machines, K Nearest Neighbours, Naïve 

Bayes), and regression trees and rule-based models (regression trees, random forest, boosting). 

 

 
16 https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf  
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12. Naïve Bayes classifier 

Naïve Bayes classifier is a statistical model, based on Bayesian probability formula. In phase 

of building the binary choice model (e.g. class yes/no, more levels also possible), it derives 

probabilities of each class, and that features X (which include features e.g. x1, x2, …) interact 

with class - in fact it collects probabilities of appearing given class P(yes), P(no) and features’ 

structure in given class P(x1|yes), P(x2|yes), P(x1|no), P(x2|no). It assumes that features X (e.g. 

x1, x2, …) are independent of each other. In prediction for new data, it calculates the Bayesian 

posterior probabilities by using (in case of two features) 𝑃(𝑐|𝑋) = F(G|I)∙F(I)
F(G)

=

F(C$|I)∙F(C%|I)∙F(I)
F(C$)∙F(C%)

. The highest score classifies observation to given class.  

 

13. K-Nearest Neighbours classifier 

In K-Nearest Neighbours classifier the observations are classified based on the class of their 

k nearest neighbours (knn). Firstly, it determines which k training observations are the nearest 

neighbours for test observation, by calculating multi-dimensional distance; secondly it checks 

the classes of knn training observations; thirdly, with majority (or distance-weighted) voting it 

chooses the most frequent class. It requires calculating distances between test and all training 

observations. Good overview of the method can be found in Cunningham and Delany (2007) 

 

14. Random Forest classifier 

Random Forest classifier is an ensemble method (using wisdom of crowds), based on decision 

trees, which divide selected features into groups to profile given class. Random Forest is 

a collection of independent trees – they differ as observations are selected in bagging (sampling 

with replacement, bootstrap) and m features are drawn randomly (few variables from bigger 

set). Majority voting aggregates the results from trees – it takes class by class, checks in the 

bottom of each tree the output (class) and averages the features’ values which are on the path 

to given class. Quality check follows out-of-bag (oob) scheme – when bagging, one divides 

observations by keeping ca. 2/3 for training and ca. 1/3 for testing the model. Number of 

features m is to be small enough to keep trees uncorrelated and large enough to keep trees 

strong; it is optimised by controlling the oob error rate. Oob error rate is frequency that test data 

did not meet their true value. Variable importance is tested by permuting the values of m-th 

variable among oob observations and checking the prediction of trees; difference between ratios 
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of correct class prediction in non-permutated and permutated tests is variable importance. Good 

technical overview is available in vignettes of Random Forest software by Breiman and Cutler 

(see link17).  

 

15. Support Vector Machines 

In Support Vector Machines the observations are separated into classes with lines (in 2D) or 

hyperplane (in 3D and more). Support vectors are points in all classes which are closest to the 

line/hyperplane; distance (called margin) between those points and line/hyperplane should be 

maximised. In case the points are not linearly separable, they are transformed to make it possible 

(see introduction in link18).   

 

16. Artificial Neural Networks 

Artificial Neural Networks (ANN) is classifier method, which operates on binary input and 

output. Each kind of information (variable, image cell etc.) is analysed by individual perceptron. 

Numeric data are binarized depending of threshold (e.g. x>a), quantitative data depending on 

given feature (yes/no). Dummy outputs of perceptrons are weighted and aggregated in additive 

function – this result is again contrasted with threshold to give binary answer. Answer of ANN 

is compared with true state. In case of error (expressed as loss function), ANN learns by 

changing the weights to match the true answer (see introduction in link19).  

 

17. Maximum entropy classifier 

Maximum entropy classifier is probabilistic model, without assumptions on features 

independence (oppositely, assumes correlations), using entropy concept. It is based on Bayesian 

probability formula as Naïve Bayes classifier, but instead of assuming empirical probabilities, 

it starts with uniform weights and optimizes them (see introduction in link20).  

 

18. Autoencoder-based residual network 

 
17 https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm  
18 https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989  
19 https://www.bmc.com/blogs/neural-network-introduction/  
20 https://blog.datumbox.com/machine-learning-tutorial-the-max-entropy-text-classifier/  
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Autoencoder-based residual network are unsupervised learning models, that similarly to PCA 

extract features from wider dataset. Encoder network transform input image into model (with 

latent variables), while decoder network reconstructs the image. Residual network adds a layer 

which gradually learns from residuals (see introduction in link21).  

 

19. Gradient boosting 

Gradient boosting, which most popular XGBoots, like random forest, is based on decision trees. 

However, instead of simultaneous growing of all trees (as in random forest), it works iteratively. 

Next model corrects the mistakes of previous model – misclassifications are analysed, and 

wrongly predicted observations get higher weights in analysis to be more intensively addressed 

in the next round. Final model is an additive decision tree, which includes all good models (see 

introduction in link22).  

 

20. Cubist 

Cubist algorithm, introduced by Quinlan (1992), is based on tree. For each path (to the ending 

leaf) it creates a rule with regression multivariate model. Covariates which fulfil the criteria of 

tree are used in those models. These models are used for predictions and strengthened 

(averaged) with neighbouring model (located above in the tree).  
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Appendix 2: Implementations in R 

Majority of methods discussed in the paper have their software implementations in R. None of 

other existing software does not offer comprehensive solutions both machine learning and 

spatial data processing and computations. TaskViews of R software (at www.r-project.org) give 

comprehensive and up-to-date overviews of packages for clustering (Cluster Analysis & Finite 

Mixture Models23) and machine learning (Machine Learning & Statistical Learning24). Its 

applications to environmental data one can find in TaskViews on Analysis of Ecological and 

Environmental Data25. For spatial analysis, one should look into TaskViews to Analysis of 

Spatial Data26 and Handling and Analyzing Spatio-Temporal Data27.  

Among huge variety of packages and functions, one can list few which are very interesting: 

Unsupervised learning and clustering 

• stats:: , ClusterR:: , cluster::, clustering::, fpc:: , factoextra:: , FactoMineR:: offer 

standard clustering a-spatial methods (k-means, PAM, CLARA, knn) and their testing, 

different metrics of distance 

• NbClust::, optCluster:: offers many tests for clustering quality and selection of 

number of clusters 

• h2o:: offers a-spatial fuzzy k-means algorithms, 

• ClustGeo:: and rgeoda:: offer simultaneous clustering of values and locations 

(spatially constrained clustering), 

• spatialClust:: offers Spatial Clustering using Fuzzy Geographically Weighted 

Clustering, 

• SpODT:: offers spatial oblique decision tree based on the classification and regression 

tree, 

• dbscan:: offers density-based clustering with DBSCAN 

• rgeoda:: offers SKATER and REDCUP algorithms28 

 
23 https://cran.r-project.org/web/views/Cluster.html  
24 https://cran.r-project.org/web/views/MachineLearning.html  
25 https://cran.r-project.org/web/views/Environmetrics.html  
26 https://cran.r-project.org/web/views/Spatial.html  
27 https://cran.r-project.org/web/views/SpatioTemporal.html  
28 See rgeoda:: vignettes https://rgeoda.github.io/rgeoda-book/ and tutorials  
https://geodacenter.github.io/tutorials/spatial_cluster/skater.html  
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• automap:: offers may versions of kriging 

• StatMatch:: offers Gower distance 

Also, non-covered topics are widely available in R: in geoGAM:: (Geoadditive Models for 

Spatial Prediction), mgcv:: (Generalised Additive Model using Splines), MapGam:: (Mapping 

Smoothed Effect Estimates from Individual-Level Data), SpatialEpi:: (cluster detection and 

disease mapping for Spatial Epidemiology), rsatscan:: (interface to SaTScan software), 

graphscan:: (scan statistics in 2D and 3D), rflexscan:: (Flexible Spatial Scan Statistic).  

Supervised learning 

• ranger::, randomForest:: offer Random Forest Modelling 

• xgboost::, gbm::, plyr:: offer Gradient Boosting 

• carret:: offers many classification and regression machine algorithms and fine-tuning 

of its parameters 

• nnet:: offers neural networks algorithms, in particular model averaged neural network 

• earth:: offers multivariate adaptive regression splines, also bagged (MARS)  

• cubist::, Cubist:: offer Cubist algorithms 

• kernlab:: offers Support Vector Regression, also with Radial Basis Function Kernel 

Regression Trees 

• e1071:: offers Naïve Bayes model 

• party:: offers partitioning and conditional inference tree – regression trees for all 

types of data 
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Appendix 3: Data used in spatial machine learning 

Popular source of data is MODIS (Moderate Resolution Imaging Spectroradiometer), which 

contains data from NASA (https://modis.gsfc.nasa.gov/) for whole Earth’s surface for every 1-

2 days in 36 spectral bands. Data are divided into four categories:  

- MODIS level 1 data (with geolocation, cloud mask, and atmosphere products) 

http://ladsweb.nascom.nasa.gov/  

- MODIS land products (with land surface temperature, products, Vegetation indices, etc.) 

https://lpdaac.usgs.gov/  

- MODIS cryosphere products (with snow cover and sea ice and ice surface temperature) 

http://nsidc.org/daac/modis/index.html  

- MODIS ocean color and sea surface temperature products (also on carbon, fluorescence line 

etc.) http://oceancolor.gsfc.nasa.gov/  

Planetary Habitability Laboratory offers also satellite images and climate data 

http://phl.upr.edu/data. There are also many softwares which help in getting proper data (as 

SAGA, System for Automated Geoscientific Analyses29).  

Using three channels (red, green, blue) of aerial image one can construct so-called 

spectral predictors, e.g.: Visible Vegetation Index (VVI, Planetary Habitability Laboratory), 

Triangular Greenness Index (TGI), Normalized Difference Vegetation Index (NDVI), 

Normalized Green Red Difference Index (NGRDI), Green Leaf Index (GLI) etc. R function 

rgb_indices() from uavRst:: package30 offers 17 spectral indices. IndexDataBase31 offers 

comprehensive specification of formula for spectral indices based on data from 68 different 

sensors. One can also run PCA analysis on visible spectrum and spatial predictors – first few 

principal components are used instead of these variables to avoid doubling the information.  

Another popular source of data is LIDAR (Light Detection and Ranging). They are 

available from many sources32 as OpenTopology, USGS Earth Explorer, United States Inter-

agency Elevation Inventory, NOAA Digital Coast, National Ecological Observatory Network 

(NEON), LIDAR Data Online etc. It allows to get variables as Digital Elevation Model (DEM), 

Slope and aspect (on the basis of DEM) in e.g. radians, geolocation variables as longitude and 

latitude etc.  

 
29 http://www.saga-gis.org/en/index.html  
30 http://finzi.psych.upenn.edu/library/uavRst/html/rgb_indices.html  
31 https://www.indexdatabase.de/db/i-single.php?id=375  
32 https://gisgeography.com/top-6-free-lidar-data-sources/  
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Other interesting information are Night Light Data, available from World Bank33, SOS 

NOAA (Science on a Sphere, National Oceanic and Atmospheric Administration34) and from 

NASA35 or Google Earth (earth.google.com).  

Many open data one can also get from Open Governmental repositories, as data.gov 

(United States), data.gov.uk (United Kingdom), govdata.de (Germany), 

https://www.europeandataportal.eu/en (European Union) etc.  

 

 
33 https://datacatalog.worldbank.org/dataset/worldwide-night-time-lights  
34 https://sos.noaa.gov/datasets/nighttime-lights/  
35 https://www.nasa.gov/feature/goddard/2017/new-night-lights-maps-open-up-possible-real-time-applications  
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