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1 Introduction

This study performs an empirical analysis of the transmission of price shocks between phys-
ical(spot) and financial(futures) markets using Coffee prices. Our goal is to determine how
price transmission occurs between the spot and futures markets in a case where there is a large
geographical separation between agents active in the two markets. One such market is that of
Green Coffee beans which is produced and sold in several regions of the world away from the
financial centers where futures contracts are traded. Unlike commodities produced in advanced
countries such as oil, gas, or corn, world coffee production is dominated by producers based in
developing countries who have little to no interaction with activities in futures markets where
contracts for delivery of their produce is traded. This separation feature of the market provides
a unique setting for the evaluation of price discovery and transmission between the physical and
financial markets that we examine.

We perform empirical analysis by estimating vector error correction (VECM) and vector
autoregressions (VAR) of spot and futures prices for two versions of Coffeer contracts traded in
the physical and financial markets: Robusta and Arabica. The Robusta price forward and spot
price series form a first difference stationary lag-1 VECM(1) model, with adjustments to price
shocks being driven by changes in the futures price equation. Arabica prices are first difference
stationary, forming a VAR(2) model but again with price adjustments occurring through the
futures price equation. For the VECM(1) Robusta model, shocks to the spot price are quickly
integrated to the system and are almost always permanent. Shocks to the futures price have
a large impact on prices, leading to a larger price spikes and permanent changes in long-run
equilibrium prices. Transmission generally occurs from futures to spot. For the VAR(2) Arabica
model, shocks have only temporary effects, dying out within five time periods. The futures price
is independent of the spot price with futures price shocks having a larger impact on the futures
price itself than on the spot price. The effects of shocks die out within five periods. These
results suggest that price discovery occurs in the forward market and information is transmitted
from the financial to the physical market.

The remainder of the paper is organized as follows. In the next section, we provide a brief
background on the determination of international coffee prices, including the link between spot
and futures prices. We also provide a brief literature review on price transmission in dual com-
modity markets and the econometric/statistical models that have been used in similar studies.
Section 3 discusses the VECM(p− 1)/VAR(p) models we use and gives results of unit–root,
cointegration and model selection tests we perform. Section 4 concludes.
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2 Background

2.1 Determination of International Coffee Prices

Day-to-day physical coffee prices are determined by supply and demand. Price setting criteria
are mostly quality (origin), and availability (supply). While each parcel of coffee is unique
with regard to its characteristics, flavor and quality; by grouping more or less comparable types
of coffee together, average prices can be calculated and traded. Indicator prices, published
daily by the International Coffee Organization (ICO) in London, represent and track the four
main types of coffee available in the international market: Colombian mild arabicas, Other mild
arabicas, Brazilian and other natural arabicas, and Robustas. These indicator prices represent
spot or cash prices, quoted in the market for coffee that is more or less immediately available (or
within a reasonable time-span). The four categories enable the ICO to calculate market prices
for these four broad groups and so monitor price developments for each. In addition, using an
agreed formula, the ICO publishes a Daily Composite Indicator Price that combines these four
into a single price representing “all coffee”. This represents the best indication of a current
“international price for coffee”.

The Nairobi Coffee Exchange is the physical market of coffees from at least five different
African countries. While the output sold at the market is not large compared to producers such
as Brazil and Ethiopia, the “Columbian Milds” sold at the auction have a 48–54% weight in the
calculation of international coffee prices by the ICO.1 The NCE coffee also have a price pre-
mium of 20 US$ on prices of similar grade coffee traded at the International Coffee Exchange.2

A causal look at the time series of prices from the NCE and the average prices published by
the International Coffee Organization suggests co-movement or integration, with NCE prices
showing a constant premium.

Futures prices reflect the estimated future supply and demand for a defined average qual-
ity of coffee (e.g. Arabica coffee futures prices in New York, Robusta coffee futures prices
in London). In these markets, forward trading is used to offset price risk in the green coffee
market where different qualities of coffee are traded. Traders therefore link individual prices
with the futures price by establishing a price difference, the differential. The differential takes
into account (i) differences between an individual coffee and the standard quality on which the
futures market is based, (ii) the supply. For example, by combining the New York or London
futures price and the differential, one usually obtains the FOB (free on board) price for a par-
ticular type of green coffee. This enables the market to simply quote, for example, “Quality X
from Country Y for October shipment at New York December plus 5” (US cts/lb). Traders and
importers know the cost of shipping coffee from each origin to Europe, the United States, Japan
or wherever, and so can easily transform “plus 5” into a price “landed final destination”(see

1See Annex 1 in International Coffee Council (2011)
2See e.g. Prices Paid to Growers from the International Coffee Exchange Prices Database

http://www.ico.org/coffee_prices.asp
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Chapter 8 of the International Trade Centre, 2011, monograph for details).

2.2 Related Literature

The analysis of price transmission from futures to spot markets has a long history. Theoreti-
cal contributions relating futures trading to physical/spot market prices include, amongst others
Zhou (1998); Goldstein, Li and Yang (2014) and Holmberg and Willems (2015). Recent empir-
ical contributions include for instance the studies by Hache and Lantz (2013) and Juvenal and
Petrella (2015). However, all these studies have used futures and spot prices that originate from
geographically proximate markets.

There are few if any empirical studies that have tested how futures price changes affect the
physical market when there is considerable geographical separation between the spot and for-
ward market. For instance, Chen, Kuo and Chen (2010) analyze the relationship between oil
futures and the global spot prices for soybean, corn and wheat and find significant relationships.
But they note that these relations can be directly linked to the use of the agricultural commodi-
ties in the production of bio-fuels which become competitive with crude oil as the price of the
latter increases. Similar findings have been made by Ciaian and Kancs (2011) and Gardebroek
and Hernandez (2013) among others. Close geographic proximity and/or non-financial trading
relationships (such as substitutability between bio-fuels and many energy products) confound
most results in the literature and are therefore not fully informative on the transmission of pure
financial trading related shocks to physical prices.

The analysis involves the implementation of vector error correction and vector auto regres-
sions. These methods have been applied for instance by Chen, Turnovsky and Zivot (2014) to
link inflation rates with commodity prices, by deB. Harris, McInish and Wood (2002) to study
trades that permanently move the market in cross–listed equity shares and Hautsch and Huang
(2012) on the long- and short-run effects (impacts) of a market order in a for stocks traded in the
Euronext-Amsterdam exchange. The VECM methodology allows for the quantification of the
effect of a shock in futures prices on the spot price, together with a measurement of the speed
of adjustment after the shock through the co-integrating relationship (see e.g. Baillie, Geoffrey
Booth, Tse and Zabotina, 2002).

3 Empirical Analysis

3.1 Data Description

The time series analyzed come from three different databases. Spot prices are from two physical
auction markets or “exchanges” in East Africa; the Nairobi Coffee Exchange (NCE) and the
Moshi Coffee Exchange (MCE). A detailed description of how these data are generated through
the auction mechanism is given in Appendix A. The other spot prices come from the IMF

Mbara, G. /WORKING PAPERS 7/2020 (313)
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database of primary commodity prices, available at imf.org/3. The Arabica spot prices are from
the International Coffee Organization (ICO), representing the New York cash price; ex-dock in
US cents per pound. The Robusta prices are similarly sourced.

The futures prices are sourced from the CHRIS database hosted at the data provider Quandl4.
The Robusta Coffee Futures price is a non-adjusted price based on spot-month continuous con-
tract calculations using raw data from London International Financial Futures and Options Ex-
change (LIFFE, – now part of Intercontinental Exchange (ICE) group). The continuous futures
contract chains together a series of individual futures contracts that provide a long-term price
history that is suitable for our analysis. The Arabica Futures is similarly computed but has quo-
tations in US dollars. To make the data comparable, we turn the Robusta spot prices to dollars
per pound: St = 2204× S′t/100, where S′t is the price per pound. Table 1 gives details of the
contract specifications. The time series are of monthly frequency from June. 1999 to June 2019.
Figures 1a and 1b and 1c shows the time variation of the prices we analyze. The shaded regions
are United States NBER recession dates.

Table 1: Futures Contracts Specifications

Robusta Arabica

Symbol RC KC
Contract Size Ten Tonnes 37,500 pounds
Price Quotation US $ per metric tonne US Cents
Min. Price Fluctuation $1/tonne ($10 per contract) 0.05 cent/lb. ($18.75 per contract)
Settlement Physical Delivery Physical Delivery

Figure 1a: log Prices: Arabica

(a) Arabica

The solid(blue) lines represent the nearest maturity futures price, while dotted (black) line represents the
spot price. All prices are in logs. The shaded regions are United States NBER recession dates.

3https://www.imf.org/en/Research/commodity-prices. The specific data file can be downloaded at the link:
https://www.imf.org/ /media/Files/Research/CommodityPrices/Monthly/ExternalData.ashx

4 https://www.quandl.com/data/CHRIS-Wiki-Continuous-Futures. Quandl Codes: ’CHRIS/LIFFE_RC1’ and
’CHRIS/ICE_KC1’
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Figure 1b: log Prices: Robusta

(b) Robusta

The solid(blue) lines represent the nearest maturity futures price, while dotted (black) line represents the
spot price. All prices are in logs. The shaded regions are United States NBER recession dates.

Figure 1c: Weekly Prices: Arabica Auction Spot Prices

(c) Arabica: NCE and MCE

The solid(gold) line represent NCE spot prices, dotted (blue) line represents the MCE spot price and the
dashed (red) line represents the nearest maturity KC futures contract. All prices are in logs. The shaded
regions are United States NBER recession dates.

3.2 Cointegration and Error Correction Analysis: Monthly Time Series

Our analysis will therefore involve the following steps:

1. Stationarity / Unit Root Testing

2. Lag - order selection

3. Perform cointegration tests to examine if a cointegration relationship exists.

4. Estimate the VECM with selected lag order.

Mbara, G. /WORKING PAPERS 7/2020 (313)
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3.2.1 Unit Root Tests

A univariate time series yt is said to be integrated if it can be made stationary by differencing.
The number of differencing operations required to achieve stationarity defines the order of inte-
gration. Most financial/economic time series are integrated of order one. Figures 1a-1b suggest
that our prices can be described as a form of random walk or unit root process either with or
without a drift. We use the augmented Dickey-Fuller (ADF) tests for each series and summarize
the results in Table 2 below. The ADF tests runs a regression of the form:

∆yt = ψyt−1 +
p

∑
i=1

αi∆yt−i +ut , (1)

with the null hypothesis ψ = 0. Failure to reject the null then leads to the conclusion that the
process is integrated of order 1 or I(1). In all cases, we fail to reject the null and conclude that
the series are unit root processes. The results shown are for a single lag, but tests using higher
order autoregressive terms and alternative specifications including a drift or time trend do not
change the conclusions of the tests.

Table 2: ADF Tests

Series Lags Test Stat. Crit. Value p–value

ft,R 0 −0.0956 −1.9421 0.6160
1 −0.0324 −1.9421 0.6391

st,R 0 0.1119 −1.9421 0.6919
1 0.1334 −1.9421 0.6998

ft,A 0 −0.1235 −1.9421 0.6058
1 −0.0390 −1.9421 0.6367

st,A 0 0.0992 −1.9421 0.6873
1 0.1759 −1.9421 0.7154

3.2.2 Cointegration Analysis

When two series are non-stationary and integrated of the same order but with a linear combina-
tion that is stationary, then they are cointegrated. We will consider bivariate models containing
two I(1) variables ft and st ; with the long-run relationship given by:

ft = b0 +b1st +ut , (2)

where b0 +b1st represents the long-run equilibrium, and ut represents the short-run deviations
from equilibrium, which by assumption is stationary. The long run is represented in Figure 2
by the straight line assuming where b1 > 0. Suppose that the two variables are in equilibrium at
point A, then from equation 2, the effect of a positive shock in the previous period (ut−1 > 0)

Mbara, G. /WORKING PAPERS 7/2020 (313)
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immediately raises ft to point B while leaving st unaffected. For the process to converge back
to its long-run equilibrium, there are three possible trajectories.

1. Adjustments by ft : Equilibrium is restored by ft decreasing toward point A while st re-
mains unchanged at its initial position. Assuming that the short-run movements in ft are
a linear function of the size of the shock, the adjustment in ft is given by:

ft− ft−1 = a1ut−1 + v1,t = a1 ( ft−1−b0−b1st−1)+ v1,t (3)

where a1 < 0, is a parameter and v1,t is a disturbance term.

2. Adjustments by st : Equilibrium is restored by st increasing toward point C while ft re-
mains unchanged at its initial position. Assuming that the short-run movements in st are
a linear function of the size of the shock, the adjustment in st is given by:

st− st−1 = a2ut−1 + v2,t = a2 ( ft−1−b0−b1st−1)+ v2,t (4)

where a2 > 0, is a parameter and v2,t is a disturbance term.

3. Adjustments by both ft and st : Equations (3) and (4) are both in operation and equilibrium
is restored towards point D. The strengths of the adjustment depend on the size of the
coefficients a1 and a2.

Equations (3) and (4) represent a VECM where the two variables revert to equilibrium in
the next period following a shock. The coefficients a1 and a2 are the error correction parame-
ters. The VECM can be rewritten as the VAR subject to cross-equation restrictions since both
variables are governed by the same long-run equation. The VAR representation is:[

∆ ft
∆st

]
=

[
−a1b0

−a2b0

]
+

[
a1

a2

][
1 −b1

][ ft−1

st−1

]
+

[
v1,t

v2,t

]
, (5)

which can be expressed as:[
ft
st

]
=

[
−a1b0

−a2b0

]
+

[
1+a1 −a1b1

a2 1−a2b1

][
ft−1

st−1

]
+

[
v1,t

v2,t

]
,

Yt = µ +Φ1Yt−1 + vt . (6)

This defines VAR(1) with two restrictions on the parameters. In an unconstrained form, the
intercepts µ has two parameters while the autocorrelation matrix Φ1 has four, for a total of six
parameters. The model equation (6) consists of just four parameters {b0,b1,a1,a2}, so we have
6 - 4 = 2 restrictions.

Accounting for autocorrelation of vt , the VAR in (6) can be extended to include p lags:
Φ(L)yt = µ + vt , where Φ(L) = IN −Φ1L−·· ·−ΦpLp is a polynomial in the lag operator L.

Mbara, G. /WORKING PAPERS 7/2020 (313)
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Figure 2: Graphical Detection of the Rank

Phase diagram demonstrating a vector error correction model with scatter plot of log futures and log spot
price showing potential long–run relationship between the series and their cointegration rank.

The resulting VECM has p−1 lags given by:

∆Yt = µ−Φ(1)Yt−1 +
p−1

∑
j=1

Γ j∆Yt− j + vt , (7)

where Φ(1) = IN −Φ1 and vt is (N × 1). In our case N = 2, but in the special case where
N = 1, then (7) reduces to the Dickey–Fuller regression (1). The operation linking the VAR(p)
to the VECM(p− 1) (7) is the Nelson–Beveridge decomposition of the polynomial Φ(L) as:
Φ(L) = Φ(1)L+Γ(L)(1−L).

Since the vector of prices in Yt are I(1), then Yt is cointegrated if there exists a N× r full
column rank matrix B with 1≤ r < N, such that the r linear combinations B′Yt = ut are I(0). In
matrix notation the cointegrating system is given by:[

1
−b1

]′[
ft
st

]
=

[
ut

0

]
≡ B′Yt = ut (8)

where we have assumed that there is one long run equilibrium relationship between ft and st .
The dimension r is the cointegrating rank and the column(s) of B the cointegrating vector(s).
Figure 2 with the Robusta prices suggests a rank of r = 1 with N−r = 2−1 = 1 common trend.

If Yt is generated by (7) and if Φ(1) = I2−Φ1 has reduced rank r = 1, with Φ(1) = −AB′

Mbara, G. /WORKING PAPERS 7/2020 (313)
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for 1 = r < N = 2 where A and B are each (N× r) matrices with full column rank, then by the
Granger representation theorem, Yt is I(1) and B′Yt is I(0) with cointegrating vector(s) given by
the column(s) of B. Otherwise if Φ(1) has zero rank r = 0, then Φ(1) = 0 and Yt is I(1) and not
cointegrated. In our case with N = 2, r = 1, we have:

Φ(1) =−AB′ =−

[
a1

a2

][
1
−b1

]′
(9)

so that the VECM in equation (7) is subject to the cointegrating restriction (9) is given by:

∆Yt = µ−AB′Yt−1 +
p−1

∑
j=1

Γ j∆Yt− j + vt . (10)

3.2.3 Lag Order Selection

Performing the cointegration test requires the determination of the lag order p in equation (6)
and (7). To obtain the optimal lag, we estimate various versions of (6) and use standard infor-
mation criteria to select the best model. Since the data shown in Figures 1a and 1b show time
trends, we complement (6) with deterministic time trends:

Yt = µ +δ t +Φ1Yt−1 + vt , where δ = [δ1,δ2]
′ and t = [1,2, . . . ,T ]′.

We present the results of the test in Table 3 below. The AIC and BIC values are for models of
lag 1 to 4, with and without intercepts and/or time trends as indicated by the values allocated
to µ,δ ; 1 for true and 0 for false. The AIC and BIC results agree on a maximum of 2 lags but
disagree on the best form of the model in terms of inclusion intercepts and linear time trends.
Since the constants µ are all insignificant at 5% level and the time trends are all insignificant,
we adopt the model without intercepts and time trends in specifying the VAR(p).

Table 3: VAR Lag–order selection

Model

µ = 1,δ = 1 µ = 0,δ = 1 µ = 0,δ = 0

lag−p 1 2 3 4 1 2 3 4 1 2 3 4

1 AIC -1131 -1144 -1133 -1128 -1131 -1144 -1133 -1128 -1117 -1139 -1130 -1128
BIC -1103 -1102 -1077 -1058 -1103 -1102 -1077 -1058 -1103 -1112 -1088 -1072

2 AIC -1291 -1404 -1400 -1390 -1291 -1404 -1400 -1390 -1251 -1397 -1395 -1386
BIC -1263 -1362 -1345 -1320 -1263 -1362 -1345 -1320 -1237 -1370 -1354 -1331

Mbara, G. /WORKING PAPERS 7/2020 (313)
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3.2.4 Cointegration Tests

We use Johansen tests to assess the null hypothesis H(r) of cointegration rank less than or
equal to r among the N time series in Y = [ ft ,st ]

′ against the alternative H(r+ 1) (maximum
eigenvalue test). The tests also produce maximum likelihood estimates of the parameters in a
vector error-correction (VEC) model of the cointegrated series. The test statistics are computed
as −T log(1−λr=1) using the effective sample size T and ordered estimates of the eigenvalues
of Φ(1) = AB′,λ1 > · · ·> λd , where d = N.

Table 4: Cointegration Tests

Robusta

r h Test Stat. Crit. Value p−value eig. Val

0 1 58.9109 20.2619 0.0010 0.2148
1 0 1.3482 9.1644 0.8997 0.0056

Arabica

r h Test Stat. Crit. Value p−value eig. Val

0 0 12.4745 20.2619 0.4509 0.0409
1 0 2.5469 9.1644 0.7009 0.0106

The results in Table 4 show that the series with Robusta prices are cointegrated with r = 1,
while the Arabica series are not. The column labeled h shows the cointegrating rank from the
test. By the Granger representation theorem, we can conclude that Yt is I(1) with Φ(1) = AB′

for Robusta prices and that Yt is I(1) with Φ(1) = 0 for Arabica prices. Using results from
the lag-order selection process in Table 3, we convert the VAR(2) model to a VECM(1) for the
Robusta prices, but proceed to perform further analysis of Arabica prices using a VAR(p) in
first differences.

3.2.5 Impulse Response Functions

Table 5 gives parameter estimates of the VECM(1) model for Robusta prices. In rows labeled
ABi j are the coefficients of the impact matrix AB′ in equation (7). The adjustment coefficient
a2 is insignificant, which suggests that adjustments to any shocks to equilibrium occur through
the futures price. This is further shown in the impulse analysis tracing the effects of shocks
to either series on the trajectory of prices. The IRFs in Figure 3 show responses using orthog-
onalized, one-standard-deviation innovation shocks. For this series, the impact of a shock on
prices are almost always permanent. Shocks to st are quickly incorporated into a new long-run
equilibrium after about 5 months. A shock to the futures price has a larger impact on the spot
price, suggesting price discovery occurs in the financial rather than physical market.

In the case of Arabica prices, we obtain a final model with p = 2 lags, no intercepts or

Mbara, G. /WORKING PAPERS 7/2020 (313)
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Table 5: Parameter Estimates: VECM(1) – Robusta

Parameter Estimate S.E. p–value

µ1 −0.1123 0.0184 0.0000
µ2 −0.0020 0.0081 0.8012

a1 0.0526 0.0078 0.0000
a2 0.0013 0.0034 0.6985

AB′11 −0.6824 0.1009 0.0000
AB′21 −0.0173 0.0446 0.6985
AB′22 0.6838 0.1012 0.0000
AB′21 0.0173 0.0447 0.6985

Γ1,11 −0.0253 0.0789 0.7484
Γ1,21 0.1399 0.0348 0.0001
Γ1,12 0.1691 0.1484 0.2546
Γ2,21 0.0780 0.0656 0.2338

log L 578.2356
T 238

Figure 3: Impulse Response Functions – Robusta Prices

(a) Orthogonalized IRF of ft (b) Orthogonalized IRF of st

time trends but where the lag 2 coefficient matrix has a single estimate Γ2,21. Table 6 gives
the parameter estimates for the VAR(2), after removing the insignificant coefficients and re-
estimating the model. These results show that spot prices have no direct impact on futures
prices: Γ j,12 = 0,∀ j, but the futures market has impact on the spot market – price discovery
therefore takes place in the forward rather than the physical market. Impulse response analysis
show the effects of shocks to either series on the trajectory of prices. The IRFs in Figure 4
show responses using orthogonalized, one-standard-deviation innovation shocks. The impact
of shocks to st on ft is zero (panel (a), solid line). Shocks to ft tend to have a larger impact on
st than its own shocks, again suggesting that price discovery occurs in the futures rather than
the spot market.
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Table 6: Parameter Estimates: VAR(2) – Arabica

Parameter Estimate S.E. p–value

Γ1,11 −0.1305 0.0646 0.0435
Γ1,21 0.5314 0.0480 0.0000
Γ1,22 −0.3620 0.0605 0.0000
Γ2,21 0.1211 0.0359 0.0007

log L 702.5842
T 237

Figure 4: Impulse Response Functions – Arabica Prices

(a) Orthogonalized IRF of ft (b) Orthogonalized IRF of st

3.3 Cointegrated VARMA Analysis: Weekly Time Series

As seen in Figure 1c, the average NCE prices show highly cyclical behavior while the MCE
data show more unit root like process variation. This calls for the estimation of a model that can
capture these features of the data, for which we use the Cointegrated VARMA.

Following the notation of (6), let the N−dimensional process Yt follow the VARMA(p,q)
model:

Φ(L)Yt = Θ(L)vt (11)

where Φ(L) = Φ0 +Φ1L+Φ2L2 + · · ·+ΦpLp and Θ(L) = Θ0 +Θ1L+Θ2L2 + · · ·+ΘqLq are
matrix polynomials, Φ0 = Θ0, Φ0 is lower triangular with ones in the main diagonal. Following
the notation in (7), we assume that the matrix defined by

Π =−AB′ = Φ(1),

has rank r such that 0 < r < N and that there are exactly N− r roots in the model equal to one.
When the model (11) satisfies these two conditions, it is called a cointegrated VARMA model
with cointegration rank equal to r. The error correction form corresponding to the model (11)
is:

Γ(L)OYt = ΠYt−1 +Θ(L)vt , (12)
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where O= IN−LIN , Γ(L) = Γ0 +∑
p−1
i=1 ΓiLi and the Γi matrices are defined by Γ0 = Φ0 and

Γi =−
p

∑
j=i+1

Φ j, i = 1, . . . , p−1.

It follows from (12) that B′Yt−1 is stationary since all the terms in this equation are different
from ΠYt−1 are stationary. There are therefore r cointegration relations in the model, which are
given by B′Yt−1.

The model (11) can be written as: Φ∗(L)D(L)Yt =Θ(L)vt , where D(L) = IN−U1L is the dif-

ferencing matrix polynomial, defined using the idempotent symmetric matrix U1 =B⊥
(
B′⊥B⊥

)−1 B′⊥.
D(L) contains all the unit roots in the model and Φ∗(L) has all roots outside the unit circle, so
we obtain the stationary series:

D(L)Yt = [Φ∗(L)]−1
Θ(L)vt . (13)

We can consequently estimate the VARMA using in differences once we know the polyno-
mial D(L). We proceed by estimating the VARMA in the form (13) first obtaining the matrix
B, and the differencing matrix polynomial D(L), then estimate a VARMA for the differenced
series D(L)Yt . We implement the model using the SSMATLAB toolbox developed by Victor
Gomez Gomez (2019).

3.3.1 Unit Root Tests

We estimate the model (13) for the three time series shown in Figure 1c: Yt = [ ft ,sMCE
t ,sNCE

t ]′;
the superscripts denoting the sources of the spot prices. We apply the CRC criterion to the
multivariate Yt series to obtain the number of unit roots. The criterion is a multivariate gen-
eralization to the univariate test described in Gómez (2013). Using this criterion, we find two
unit roots. We therefore proceed to perform a VAR lag order selection then estimate a coin-
tegrated VARMA(p,q) model with rank imposed (we impose the condition that there is one
cointegrating relationship between the three variables in the vector Yt).

3.3.2 Lag–order & VARMA(p,q) Estimates

We first perform a lag-order identification of the the VAR version of model (11). This involves
estimation of a saturated model with many parameters with progressive reduction of lag–order.
We obtain log–likelihoods from this process, perform LR tests and select the best model using
standard information criteria. The results are displayed in Table 7. Selected orders by AIC, BIC
and LR are 2, 1, and 2 respectively. We therefore proceed with a model with p = 2. A similar
process for the differenced series gives lag order of unity.

We therefore proceed to estimate a model with 2 lags when in the form (11) or 1 lag in the
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Table 7: VARMA lag–order selection

Lags AIC BIC LR p−value

0 18.6557 18.6557 0.0000 0.0000
1 13.2459 13.3699 1389.0765 0.0000
2 13.1675 13.4154 37.1274 0.0000
3 13.1799 13.5517 14.2009 0.1154
4 13.2144 13.7102 8.6130 0.4737
5 13.2502 13.8699 8.2088 0.5133
6 13.2663 14.0099 12.8008 0.1718
7 13.2810 14.1486 12.9694 0.1640
8 13.3203 14.3118 7.0787 0.6289

form (13). The estimation results into the following model parameter values:

µ =

 0.3704
−3.5754
−0.4221

 , AB′ =

−0.0400
0.1737
−0.0123


 1.0000
−0.9856

0.1147


′

,

and with the AR(1) coefficient matrix:

Γ1 =

 0.0229 0.0172 −0.0122
−0.2283 0.0123 −0.0083
−0.2262 0.1811 0.3644

 .
4 Conclusion

In this study, we sought to determine how equilibrium prices are determined for a commod-
ity where the physical–spot and financial-futures markets are fully separated. This separation
occurs in the market for Coffee because a large share of production occurs in countries with
no well developed financial markets. This separation allows for the testing of the location of
price discovery and the direction of information transmission across/between the markets. We
have found that for Coffee prices, price discovery occurs mostly in the futures markets. One
potential explanation for this result is that the futures markets operate continuously, while the
spot markets only open at discrete time intervals. It then follows that any shocks to supply and
demand are incorporated into the futures price in the intervening periods between spot market
events and therefore the futures price always leads the spot price.
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Appendix

A NCE Auction Data Acquisition and Aggregation

This section gives a description of the data available for analysis from the NCE. It forms part of
the paper entitled Hedging under Price and Demand Risk funded by the NCN.5

A.1 Seller Side Data

Sellers information at the NCE is available through their catalogues. Every week, before the
auction, sellers submit a detailed description of the lots of coffee they will have on sale. The
catalogues includes standard identifying information such as seller name and date of intended
auction/sale. Since the product is sold in lots, with each lot potentially being from a different
region, harvest area and/or mill, among other characteristics, the sales are organized per lot, each
of which presents product of different quality/grade and quantity. For each lot, a unique ID is
issued by the “warehouse-men” and a descriptive “mark” added (and also recorded on 2.5kg the
sample bags). Finally grade, quantities on offer and packaging information is included. Table 8
shows a sample catalogue from available to buyers before the auction.

Table 8: Typical Seller Catalogue

SALE No. N.C.E. 1
THE NAIROBI COFFEE EXCHANGE

THROUGH THIKA COFFEE MARKETING LIMITED
WILL OFFER BY AUCTION

1,045 Bags On Tuesday 2nd OCTOBER 2018
at 9.00 a.m.

AT THE EXCHANGE HALL
Wakulima House

NAIROBI
1,045 Bags of Kenya Coffee

Prompt Date 9TH OCTOMBER 2018

LOT MARK GRADE BAGS PKT WEIGHT SALE SEASON

601 41TK0025/MUKURWE-ESTATE T 11 8 668 1 2018/19
602 48TK0065/POINT-MZURI T 16 59 1019 1 2018/19
603 51TK2004/T/BULK T 15 40 940 1 2018/19
604 51TK2005/T/BULK T 13 13 793 1 2018/19

5The support of National Science Centre grant 2017/27/N/HS4/02037 is gratefully acknowledged. All opinions
expressed are those of the author and have not been endorsed by the National Science Centre.
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A.2 Buyer Side Data

Buyers have access to the the sellers’ catalogues before the auction. Auctions are held every
Wednesday, from 9 AM and may last from 6 to 8 hours, depending on the number of lots on
offer and how active the bidding is during the sale of each individual bid. There are 80 different
“buyer desks” where bids are submitted through a set of buttons available at each desk. The
following information is collected at every sale: a transaction number, lot number, season,
marks, grade, sale number (of the season), bags and weight bought, buyer code, price, seat
number (of buyer in auction hall), agent code (marketing agent or seller identifier) and time.
Table 9 shows an extract of the transactions listings file showing information that is relevant
to the analysis. Note that the lot numbers, marks ad weight match those of Table 8 as the
transactions correspond to the catalogue of the same marketing agent (21/Thika Coffee Mills).

Table 9: Transaction Listing, Sale 1 of 2nd October 2018

TRCN. LOT MARKS WEIGHT BUYER PRICE SEAT AGENT TIME

21192 601 41TK0025 668 160 64 40 21 10:42:14
21193 602 48TK0065 1019 160 59 40 21 10:42:44
21194 603 51TK2004 940 74 89 74 21 10:43:21
21195 604 51TK2005 793 74 88 74 21 10:43:43
21196 605 51TK2006 1036 74 97 74 21 10:44:13

A.3 Aggregation

For each Sale (auction day), the price and quantity data are aggregated across each lot sale
and grade. For time series analysis, quantities are not used, so the price series are the aver-
age(mean) prices over all transactions. For robustness check, I also use time series weighted by
the quantities sold in per grade. The aggregation is:

pt =
n

∑
i=1

wi pti,

where wi =
qi

∑
n
i=1 qi

is the share of grade i in total volume sold on auction day t and n is the num-
ber of grades available on that day. For example, for the sale 1 of Oct. 2, 2018, the available
grades are i = {AA,AB, C, HE, MH, ML, PB,T, TT, UG1, UG2, UG3}, which gives the per-
centage weights: {5.0043 35.8280 38.2781 0.8305 0.7999 1.7275 3.7698 5.4829 2.3710 2.6382
2.9485 0.3213}. An alternative aggregation scheme ignores quantities, computing the weights
by grade. Under the grades aggregation scheme, the weights would be {12.0419 28.4468
26.5271 1.9197 1.0471 1.7452 6.9808 8.5515 5.2356 3.8394 3.1414 0.5236}.
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