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AAbbssttrraacctt::  This article covers the implementation of fractional (non-integer order) differentiation 
on four datasets based on stock prices of main international stock indexes: WIG 20, S&P 500, 
DAX, Nikkei 225. This concept has been proposed by Lopez de Prado to find the most appropriate 
balance between zero differentiation and fully differentiated time series. The aim is making time 
series stationary while keeping its memory and predictive power. This paper makes also the 
comparison between fractional and classical differentiation in terms of the effectiveness of 
artificial neural networks. This comparison is done in two viewpoints: Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE). The conclusion of the study is that fractionally 
differentiated time series performed better in trained ANN. 
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1. Introduction 

Many supervised machine learning algorithms applied on financial time series data require 

stationarity. In the process of creating a predictive model it is assumed that a given time series 

is generated by a stochastic process. To make an accurate inference from such model it is crucial 

that mentioned data generation process to remain consistent. In statistical terms, the mean, 

variance and covariance should not change with time. As a result in analyzed time series a trend 

over time is not revealed. When this assumption is not fulfilled the algorithm may assign  

a wrong prediction to a new observation. 

In contrary to cross-sectional data time series is a specific kind of data in the sense that 

any observation reflects a history of observations occurred in the past. The literature named it 

as a distinctive memory of past track record. Due to the stationarity condition this series 

memory is often excluded from the dataset. 

The most commonly used method for non - stationarity removal is differencing up to 

some order. To achieve first order differencing from each observation the previous one is 

subtracted. The second order differencing is accomplished by repeating this process on obtained 

time series. It is similar for higher orders. Admittedly, these transformations can lead to the 

stationarity, but as a consequence all memory from the original series is erased. On the other 

hand the predictive power of machine learning algorithm is based on this memory. Lopez de 

Prado [2018] calls it as the stationarity versus memory dilemma by asking a question whether 

there is a trade-off between these two concepts. In other words – does exist a solution of making 

the time series stationary concurrently with keeping its predictive power. One way to resolve 

this dilemma – fractional differentiation - has been proposed by Hosking [1981]. Lopez de 

Prado upgraded this idea to find the optimal balance between zero differentiation and fully 

differentiated time series. 

The remainder of the paper is organized as follows. Next section gives an overview of 

fractional differentiation introduced above. The data used in this research is presented in  

section 3 and the method applied on this data is described in Section 4. Section 5 discusses the 

results and chapter 6 concludes the paper. 
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2. Fractional differentiation – an overview 

In this section the concept of fractional differentiation is elaborated in more detail. A real-

valued feature can be expressed as the sum of all the past values. To each past value a weight 

𝜔𝜔! 	is assigned: 

𝑋𝑋$" = &𝜔𝜔!𝑋𝑋"#!

$

!%&

 

The current value in time series is the function of all the past value occurred before this 

time point: 

𝑋𝑋 = {𝑋𝑋', 𝑋𝑋"#', 𝑋𝑋"#(, … , 𝑋𝑋"#! , … } 

The application of fractional differentiation on time series allows to decide each weight 

for each corresponding value. To present it we can begin from a matrix of observations denoted 

as {𝑋𝑋"} and the lag operator 𝐵𝐵, where: 

𝐵𝐵!𝑋𝑋" = 𝑋𝑋"#! 

for 𝑘𝑘 ≥ 0 and 𝑡𝑡 > 1. The differencing of first order can then be expressed as: 

(𝐼𝐼 − 𝐵𝐵)𝑋𝑋" = 𝑋𝑋" − 𝐵𝐵𝑋𝑋" = 𝑋𝑋" − 𝑋𝑋"#' 

Knowing that:  

(1 − 𝐵𝐵)( = 1 − 2𝐵𝐵 + 𝐵𝐵( 

𝐵𝐵(𝑋𝑋" = 𝑋𝑋"#( 

we can derive the second order of differentiation: 

(𝐼𝐼 − 𝐵𝐵)(𝑋𝑋" = 𝑋𝑋" − 2𝑋𝑋"#' + 𝑋𝑋"#( 

Using binomial coefficients the series can be expanded to: 

(𝐼𝐼 − 𝐵𝐵)) = &(−𝐵𝐵)!8
𝑑𝑑− 𝑖𝑖
𝑘𝑘 − 𝑖𝑖

!#'

*%+

$

!%&

= 1 − 𝑑𝑑𝐵𝐵 +
𝑑𝑑(𝑑𝑑 − 1)

2! 𝐵𝐵( −
𝑑𝑑(𝑑𝑑 − 1)(𝑑𝑑 − 2)

3! 𝐵𝐵, +⋯ 

because from the mathematical point of view:  

(𝑥𝑥 + 𝑦𝑦)- = &@
𝑛𝑛
𝑘𝑘B 𝑥𝑥

!𝑦𝑦-#! = &@
𝑛𝑛
𝑘𝑘B 𝑥𝑥

-#!𝑦𝑦!
-

!%&

-

!%&
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where 𝑛𝑛 is a positive integer. In addition we determined 𝑑𝑑 as a real number and hence we 

received: 

(1 + 𝑥𝑥)) = &C
𝑑𝑑
𝑘𝑘D𝑥𝑥

!
$

!%&

 

All weights were calculated by fractional derivative and can be expressed as: 

𝜔𝜔 = E1,−𝑑𝑑,
𝑑𝑑(𝑑𝑑 − 1)

2! , −
𝑑𝑑(𝑑𝑑 − 1)(𝑑𝑑 − 2)

3! , … , 	(−1)!8
𝑑𝑑− 𝑖𝑖
𝑘𝑘!

!#'

*%&

, … F 

When we consider 𝑑𝑑 as a positive integer number there is a point when 𝑑𝑑 is equal to 𝑘𝑘, then 

𝑑𝑑 − 𝑘𝑘 = 0 and: 

8
𝑑𝑑− 𝑖𝑖
𝑘𝑘!

!#'

*%&

= 0 

Taking into consideration the information that dot product is zero we can conclude that 

memory beyond that point is removed. In first order differencing (𝑑𝑑 = 1) weight follow as (see 

Figure 1 as a confirmation): 

𝜔𝜔 = {1,−1, 0, 0, … } 

General-purpose approach of coefficient for various orders of differencing presents 

Figure 1. For example, if 𝑑𝑑 = 0.25 and 𝑘𝑘 is always an integer number all weights achieved 

values other than 0 which means that the memory is going to be preserved. 

Figure 1 Weights of the lag coefficients for various values of 𝑘𝑘 

 
Notes: Each line as related to particular order of differencing (𝑑𝑑 ∈ [0,1])  
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From the above derivation the iterative formula for the weights of the lags can be deduced: 

𝜔𝜔! = −𝜔𝜔!#' ∙
(𝑑𝑑 − 𝑘𝑘 + 1)

𝑘𝑘  

where 𝜔𝜔! is the coefficient of backshift operator 𝐵𝐵!. For the first order differentiation the 

following coefficient can be concluded (likewise weights mentioned before): 𝜔𝜔& = 1, 𝜔𝜔' =

−1. 𝜔𝜔! = 0 for 𝑘𝑘 > 1.  

In conclusion, the main intention to use the fractional differentiation is finding the 

fraction 𝑑𝑑, which is considered as minimum number needed to achieve stationarity, meanwhile 

keeping the maximum volume of memory in analyzed time series. 

3. Data 

This study uses four datasets with main stock indexes from different countries: WIG20 

(Poland), S&P 500 (USA), DAX (Germany) and Nikkei 225 (Japan). The stock indexes were 

recorded from 1st June of 2010 to 30th June of 2020. The empirical distributions of mentioned 

indexes observed in each of the datasets are given in Figure 2.  

Figure 2 Time series of selected stock indexes 
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Table 1 shows the results of the unit root test for all the analyzed stocks, including the 

augmented Dickey-Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 

test. These tests are used to determine whether a given time series is stationary. The null 

hypothesis of the ADF test essentially assumes non-stationarity and the null hypothesis of the 

KPSS test is stationarity. It can be found out that all the stock prices are non-stationary. 

Table 1 The results of ADF and KPSS tests 

Stock index ADF KPSS 

WIG 20 
-2.22 

(0.19) 

2.64  

(0.01) 

S&P 500 
-0.71 

(0.85) 

8.88  

(0.01) 

DAX 
-1.61  

(0.48) 

8.12 

(0.01) 

NIKKEI 225 
-1.21 

(0.69) 

8.18 

(0.01) 
Notes: In parentheses the p-value of tests is provided. 

 

4. Method 

This section describes the selected approach used to compare statistical properties of fractional 

differentiation with differencing of first order.  

Studying the literature review proposed by Guresen et al. (2011) it can be concluded 

that artificial neural networks (ANN) were often implemented in forecasting stock prices 

indexes. In general, ANN outperform other statistical models applied on time series due to their 

good nonlinear approximation ability (Qiu et al. 2020). They were inspired by the strategy 

human brain processes given information. One of the most frequently implemented neural 

networks topology is multilayer perceptron.  

 Like the human brain the neural network has single processing elements which are 

called neurons. They are connected to each other by weighted and directed edges (see Figure 

3).  Commonly, neurons are aggregated into layers. Typical multilayer perceptron has three 

layers consisting of neurons: input layer, output layer and hidden layer. In the most simple case 

of artificial neural network, the edges between layers are limited to being forward edges (feed 
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forward artificial neural networks). It means that any element of a current layer feeds all the 

elements of the succeeding layer. 

 In the first step the system takes the values of neurons in the input layer and sums them 

up by the assigned weights. In this first iteration all weights are randomized. Then, for each 

iteration an error is calculated, which is a difference between the achieved value and the output 

value.  

 The goal of neural network is mapping values from input layer to values from output 

layer using hidden neurons in some way. This mapping is based on modifying the weights of 

the connections to receive a result closer to the output. To determine the value of the output 

applying the activation function to a weighted sum of incoming values is needed as well. The 

most widely used activation functions are: the logistic function and the hyperbolic tangent 

(Guresen et al. 2011). This learning process can be conducted with, for example, Levenberg-

Marquardt backpropagation algorithm: 

𝑆𝑆(𝛽𝛽) = 	&[𝑦𝑦* − 𝑓𝑓(𝑥𝑥* , 𝛽𝛽)](
.

*%'

 

where 𝑚𝑚 is the size of time series. The sum 𝑆𝑆(𝛽𝛽) should be minimized.  

 There are other learning techniques used to train neural network models such as scaled 

conjugate gradient, one step secant, gradient descent with adaptive learning rate, gradient 

descent with momentum (Moghaddam et al. 2016).   

Figure 3 An example of simple ANN with input, hidden and output layers 
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In this study we are focused on predicting the closing price of a stock tomorrow 

{𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"/'} which is the output layer using the input layer consisting prices measured a day 

before {𝑐𝑐𝑐𝑐𝑙𝑙" , ℎ𝑖𝑖𝑖𝑖ℎ" , 𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛" , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"}. The structure of this ANN is presented in Figure 3.  

The performances of the resulting neural network are measured on the test set according 

to following metrics: 

§ root mean square error (RMSE): 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = 	\
∑ (�̂�𝑦* − 𝑦𝑦*)0
*%'

𝑁𝑁  

§ mean absolute error (MAE): 

𝑅𝑅𝑀𝑀𝑅𝑅 =	
∑ |�̂�𝑦* − 𝑦𝑦*|0
*%'

𝑁𝑁  

where 𝑁𝑁 denotes the number of observations, �̂�𝑦 is the model prediction value and 𝑦𝑦* is the 

observed value. 

 

5. Results 

In this section the fractional differentiation method will be applied on stock indexes described 

in previous part. For every stock index we are going to compute the minimum coefficient 𝑑𝑑 to 

get stationary fractionally differentiated series. 

To find the minimum coefficient 𝑑𝑑 the combination of the Augmented Dickey-Fuller 

test statistics and Pearson correlation coefficient will be used. This concept is illustrated in the 

Figure 4 and Table 3 (Appendix A). The ADF statistic is on the left y – axis, with the correlation 

between the original series and the fractionally differenced series on the right y – axis.  
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Figure 4 ADF test statistics and Pearson correlation coefficients with the original series for various fractional 
orders of differencing, applied to selected stock indexes. 

  

  
 

The original series of WIG20 index has the ADF statistics of -2.22, while the 

differentiated equivalent has this statistic equal to -36.02. At a 95% confidence level, the critical 

value of the DF t-distribution is -2.8623. This value is presented as a dotted line in Figure 4. 

The ADF statistic crosses this threshold in the area close to 𝑑𝑑 = 0.1. At this point the correlation 

has the high value of 0.9975. This proves that fractionally differenced series is not only 

stationary but holds considerable memory of the original series as well. 

Similarly, the ADF statistic S&P 500 index reaches 95% critical value when the 

differencing is approximately 0.4 (for DAX series 𝑑𝑑 ≈ 0.3 and Nikkei 225 𝑑𝑑 ≈ 0.4)  and the 

correlation between the original series and the new fractionally differenced series is over 99% 

(the same for DAX and Nikkei 225).  

Figures 5-8 contain original series with results of implementing the minimum 

coefficient 𝑑𝑑 indicated above. The high correlation indicates that the fractionally differenced 

time series retains meaningful memory of the original series. 
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Figure 5 WIG20 stock index (in blue, left axis) along with fractional derivatives (shades of green). 

 
Figure 6 S&P 500 stock index (in blue, left axis) along with fractional derivatives (shades of green). 
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Figure 7 DAX stock index (in blue, left axis) along with fractional derivatives (shades of green). 

 
Figure 8 Nikkei 225 stock index (in blue, left axis) along with fractional derivatives (shades of green). 
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Above obtained time series are going to be implemented in creating multiplayer 

perceptrons for proposed stock indexes. To begin with, the data for all stock indexes has been 

normalized using the following equation: 

𝑜𝑜𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐-+1. =
𝑜𝑜𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐 − min(𝑜𝑜𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐)

max(𝑜𝑜𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐) − min(𝑜𝑜𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐) 

and divided into training and testing datasets. First 1681 days are used for training and last 813 

used for testing process. 

A feedforward neural networks were created using Keras, open-source neural-network 

library in Python. Every network were inputted with the low, high, opening and closing price 

for each day 𝑡𝑡. The result layer consists of closing price on next day 𝑡𝑡 + 1: 

j

𝑐𝑐𝑐𝑐𝑙𝑙"
ℎ𝑖𝑖𝑖𝑖ℎ"
𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛"
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"

k → 	 [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐"/'] 

It means that artificial neural network predicts the closing price of the next days using historical 

data from the day before. 

As it is observed in Table 2, the analysis shows that for all stock indexes fractional 

differentiation gives better RMSE and MAE statistics obtained on test data.  

Table 2 Results of ANN on test datasets 

Stock index RMSE MAE 

WIG 20 
d = 0.12 18.10 13.68 

d = 1 27.31 20.37 

S&P 500 
d = 0.43 36.32 20.64 

d = 1 41,10 29.38 

DAX 
d = 0.28 124.07 84.43  

d = 1 142.45 94.79 

NIKKEI 225 
d = 0.35 286.86 211.96 

d = 1 317.57 249.80 

 

The purpose of this research is not to evaluate the predictive performance of artificial neural 

networks, but rather to evaluate how much better a fractional differentiation is, compared to 

full differentiation.  
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6. Conclusions 

In this study the concept of fractional differentiation was evaluated on four time series datasets 

obtained from the known stock exchanges (from Poland, United Kingdom, Germany and 

Japan). In these fractionally differenced time series selected orders of differencing vary from 

0.12 to 0.43, which is far from integer differencing. For all of them we have received a high 

level of linear correlation coefficients (above 0.99%), which means immense association with 

original series. Nonetheless, these fractional time series are stationary (indicated by the results 

of Augmented Dickey-Fuller test), which proves that their means, variances and covariances 

are time-invariant.  

 Using fractional differentiation we have made analyzed time series stationary while 

keeping its memory and predictive power. Therefore, this study has clearly demonstrated the 

potential of applying fractional differentiation on time series.  

The previously discussed results clearly show the benefit of fractional differentiation 

compared to classical differentiation in terms of applied performance measurements on created 

artificial neural networks.  
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Appendix A 

Table 3 ADF test statistics and Pearson correlation coefficients with the original series for various fractional 
orders of differencing, applied to selected stock indexes 

Order of 
differencing 

WIG 20 S&P 500 DAX Nikkei 225 

ADF CORR ADF CORR ADF CORR ADF CORR 

0.0 -2.22 1.0000 -0.71 1.0000 -1.61 1.0000 -1.21 1.0000 

0.1 -2.69 0.9995 -0.87 0.9999 -1.78 0.9999 -1.34 0.9999 

0.2 -3.36 0.9975 -1.09 0.9996 -2.05 0.9992 -1.59 0.9995 

0.3 -4.33 0.9922 -1.43 0.9988 -2.49 0.9976 -1.97 0.9984 

0.4 -5.74 0.9803 -1.93 0.9968 -3.17 0.9939 -2.55 0.9958 

0.5 -7.84 0.9542 -2.71 0.9921 -4.27 0.9852 -3.47 0.9897 

0.6 -11.04 0.8978 -4.02 0.9804 -6.09 0.9643 -4.98 0.9748 

0.7 -15.99 0.7817 -6.36 0.9477 -9.29 0.9107 -7.67 0.9351 

0.8 -23.17 0.5755 -11.10 0.8468 -15.28 0.7681 -12.92 0.8194 

0.9 -31.17 0.3040 -21.84 0.5441 -25.85 0.4454 -23.46 0.5074 

1.0 -36.02 0.0560 -35.16 0.0220 -49.28 0.0199 -33.79 0.0202 
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