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AAbbssttrraacctt::  Market risk researchers agree that an ideal model for Value at Risk (VaR) estimation 
does not exist, different models performance strongly depends on current economic 
circumstances. Under the conditions of sudden volatility increase, such as during the global 
economic crisis caused by the Covid-19 pandemic, no classical VaR model worked properly even 
for the group of the largest market indices. Therefore, the aim of the article is to present and 
formally test three novel statistical learning models for VaR estimation: HCR, HCR-GARCH and 
HCR-QML-GARCH, which, by considering additional volatility term (due to time context and 
statistical moments), should be able to perform well in times of market turbulence. In the 
benchmark procedure we compare the 1% and 2.5% one-day-ahead VaR forecasts obtained with 
the above models against the estimates of classical methods like: Historical Simulation, KDE, 
Modified Cornish-Fisher Expansion, GARCH(1,1) with varied distributions, RiskMetrics™, 
EVT and QML-GARCH. Four periods that vary in terms of market volatility: 2006-9, 2008-11, 
2014-17 and mid-2016 to mid-2020 for six different stock market indexes: DAX, WIG 20, 
MOEX, S&P 500, Nikkei and SHC are selected. Models quality is tested from two perspectives: 
fulfilling regulatory requirements and forecasting adequateness. Obtained results show that HCR-
GARCH outperforms other models during periods of sudden increased volatility in the markets. 
At the same time, HCR-QML-GARCH liberalizes the conservative estimates of HCR-GARCH 
and allows its use under moderate volatility, without any major loss of quality in times of crisis. 
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1. Introduction and literature review 

Global economic recessions, like the 2008 financial crisis or the 2020 stock market crash 

(COVID-19 recession), emphasized the importance of adequate risk management by financial 

institutions. Such organizations distinguish the following main sources of risk: market risk, 

credit risk and operational risk (Bank for International Settlements 2006). The main subject of 

our interest in this research is market risk, which determines the risk of losses on financial 

investments caused by adverse movements in interest rates, foreign exchange rates and prices 

of financial instruments (Risk.net 2020).  

Currently, one of the most popular measure of uncertainty in the market risk is Value at 

Risk (VaR) (Mostafa et al. 2017). It can be defined as maximum expected portfolio loss over 

a given period, at assumed confidence level, under normal market conditions (Jorion 2001). 

Importantly, VaR has been adopted to determine capital requirements by both banking and 

insurance institutions, respectively due to international regulatory frameworks such as Basel III 

and Solvency II (Corlosquet et al. 2013). The main advantages of VaR are its ease of 

interpretation and the ability to compare portfolios risk using it (Szubzda and Chlebus 2019). 

However, several researchers demonstrate the strong limitations of VaR measure, for instance: 

it does not control scenarios exceeding VaR and it is not a coherent measure (e.g., Rockafellar 

and Uryasev 2002, Sarykalin et al. 2008). Consequently, an alternative risk measure with 

superior statistical properties (which address most VaR issues) - Expected Shortfall (ES) was 

developed by Rockafellar and Uryasev (2002). ES is defined as expected return on the portfolio 

in the scenarios worse than the VaR. As result, ES measure will replace VaR as Basel IV 

becomes effective (PricewaterhouseCoopers 2016). Nevertheless, the study of VaR estimation 

is still very much in order. First and foremost, VaR is more robust than ES due to putting less 

weight on extreme tail events (Lux et al. 2020), moreover, by definition, a reliable VaR 

forecasting is useful for ES estimation and even though VaR is going to be replaced by ES, it 

will be still a core element of backtesting process for instance for trading desks 

(PricewaterhouseCoopers 2016). 

Generally, market risk researchers agree that it is impossible to establish one best model 

for estimating Value at Risk regardless of market conditions (Abad et al. 2014). Critical to the 

performance of the model are the characteristics of both the financial instrument and the period 

under consideration (Chlebus and Buczyński 2018). Abad et al. (2014) cross-analyzed the 

results of many significant studies on VaR estimation. They take into account such well-

established statistical models in the business world as well as in academia like: historical 
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simulation (HS), kernel density estimation (KDE), RiskMetrics 
"#, generalized autoregressive 

conditional heteroskedasticity (GARCH) model class (with different standardized error 

distributions), filtered historical simulation (FHS), conditional autoregressive value at risk 

(CAViaR), Extreme Value Theory (EVT) - Block Maxima Models (BMM), Extreme Value 

Theory - Peaks Over Threshold models (POT), Monte Carlo models etc. One of the main 

conclusions of their study is that the semiparametric approaches like EVT or FHS appear to be 

the best for VaR estimation in terms of performance and stability. More recent statistical studies 

largely support the above conclusion about the superiority of semiparametric models over other 

approaches (e.g, Taylor 2019, Patton et al. 2019, Wang and Zhao 2016, Yang and Hamori 2020, 

Avdulaj and Barunik 2017, Gerlach and Wang 2020). In counterpoint, there are also studies 

that indicate that classical parametric models are still the most stable and accurate (e.g., 

Buczyński and Chlebus 2018, Buczyński and Chlebus 2019). For purely nonparametric models, 

there is not much scientific publication nowadays (not including machine learning approaches). 

Usually the above-mentioned publications (presenting novel models) benchmark themselves to 

nonparametric models such as KDE or HS. 

The development of machine learning (ML) also has important implications for market 

risk. An increasing number of proposed models for VaR and ES estimation use supervised 

learning approaches (mostly in semiparametric or nonparametric context). In the case of 

shallow ML, an immensely popular model used in this field is the Support Vector Machine 

(SVM) (Vapnik 1995). Its interesting adaptation was presented by Lux et al. (2020) who created 

the hybrid SVR-GARCH-KDE model. In this estimator mean and volatility are forecasted via 

SVR where the volatility model is motivated by GARCH formulation. What is more, they apply 

KDE on standardized residuals to smooth them. SVR-GARCH-KDE hybrid performs 

competitive to classical econometric models like GARCH. Other approaches using SVR to 

estimate the uncertainty metrics considered above have been proposed by: Khan (2011), 

Radović et al. (2015) and Xu et al. (2016). They argue that their methods are in competition 

with classical models. In line with intuition, models based on neural networks also play a strong 

role in successful VaR and ES estimation, for instance: Nguyen et al. (2019) proposed long 

short-term memory stochastic volatility (LSTM-SV) model, Li et al. (2020) developed 

Bayesian LSTM model for VaR and ES joint forecasting, Arimond et al. (2020) tested among 

others LSTM-CNN models in VaR regime switching approach, Arian et al. (2020) proposed 

generative Encoded Value-at-Risk model which is based on Variational Auto-Encoders. In 
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addition, the first scientific papers based on reinforcement learning are being created (e.g., 

Banhudo 2019).  

Interestingly, most mentioned above statistical but also machine learning models that 

use GARCH or its ideas (architecture), assume that the distribution of returns standardized by 

conditional means and conditional standard deviations is independent and identically 

distributed (i.i.d.). However, there is ample empirical evidence that the distribution of such 

a variable need not be i.i.d. (Abad et al. 2014) and models may relax this conventional 

assumption. On this basis, a strand of higher-order conditional time-varying moments models 

was created. A significant contribution to its development was made, among others, by Hansen 

(1994) who proposed Autoregressive Conditional Density (ACD) Estimation model. This 

model considers the problem of estimation the full parameters of a skewness t-generalized 

distribution (SGT) by imposing a quadratic law of motion on the conditioning information.  

This idea was adapted by Bali et al. (2008), who proposed novel GARCH model based on the 

SGT with time-dependent parameters. To be more specific, they allowed higher-order 

conditional moment parameters of the SGT density to depend on the past data using an 

autoregressive process. They empirically showed that time-varying conditional volatility, 

skewness, tail-thickness, and peakedness parameters of the SGT density are significant, thus 

SGT-GARCH model with time-varying skewness and kurtosis gave better results that their 

static version in VaR sense. Remarkably similar approach was proposed by Ergun and Jun 

(2010). They utilized ARCD-GARCH model, which is stated on skewness t-student distribution 

with a time-varying skewness and kurtosis parameter. They also found that such dynamic 

approach is better that static one in VaR estimations. An additional example based on the same 

idea can be the work of Polanski and Stoja (2010). Importantly, the authors of the above 

approaches, in our view, have not provided sufficiently reliable and extensive validation of their 

models. Nevertheless, based on their tests one can conclude that they were not able to 

outperform, among others, classical parametric approaches such as GARCH with skewness t-

student distribution.  

In 2018 Duda (2018) proposed the Hierarchical Correlation Reconstruction (HCR) 

statistical learning model that among other things allows to estimate very accurate the 

probability distribution function (pdf) of a time series at any point in time using orthonormal 

polynomials and historical information (so-called context), where the degree of the polynomial 

reflects the moment (e.g. 0 - constant, 1 - expected value, 2 - variance, 3 - skewness, 4 - kurtosis, 

etc.). This approach fits perfectly with the idea of higher-order conditional time-varying 
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moments and HCR potentially can extend current state of development of this area (in 

semiparametric and machine learning way). We therefore decide to use HCR to create the 

semiparametric HCR-GARCH model, where the standardised residuals from the GARCH are 

modelled using HCR. At the same time, we examine whether HCR will also be able to forecast 

VaR independently at a satisfactory accuracy level. Thus, we also try to develop the area of 

nonparametric VaR models. A more detailed description of HCR (including its applications) is 

described in subsection 2.2.1.1. 

The aim of the study is to present, empirically test and formally benchmark three novel 

statistical learning Value at Risk models: nonparametric HCR which extends the capabilities of 

classical non-parametric models by including a time component in the current forecasted 

distribution of financial returns; semiparametric HCR-GARCH which use the HCR approach 

to model the distribution of standardized residuals from the GARCH model; and 

semiparametric hybrid HCR-QML-GARCH which combines the properties of the HCR-

GARCH and QML-GARCH models through a simple average.  

The benchmark procedure compares the 1% and 2.5% one-day-ahead VaR forecasts 

obtained with the above models against the estimates of classical VaR methods, depending on 

the time period and the stock index. In the empirical study we considered the following classical 

VaR models based on the literature review: Historical Simulation, Kernel Density Estimator, 

Modified Cornish-Fisher Expansion, GARCH(1,1) with varied distributions, RiskMetrics 
"#, 

Peaks Over Threshold, Quasi-Maximum Likelihood GARCH. The models are compared over 

four periods that vary in terms of market volatility: 2006-9, 2008-11, 2014-7 and mid-2016 to 

mid-2020. In the analysis, we consider six major stock market indices for selected countries 

(differentiating the selection by the level of economic development of the countries and their 

geographical location): DAX (Germany), WIG 20 (Poland), MOEX (Russia), S&P 500 (USA), 

Nikkei (Japan) and SHC (China). The models quality is tested from two perspectives: fulfilling 

regulatory requirements (Basel traffic light test) and forecasting adequateness (Kupiec 

Proportion of Failures test, Christoffersen Conditional Coverage test and Dynamic Quantile 

test).  

The main hypothesis verified in this paper is (1) Whether HCR-GARCH can outperform 

in the formal backtesting procedure classical Value at Risk models. The additional research 

questions are (2) Will HCR-GARCH model works well in a period of sudden 

increased/decreased volatility - in particular during the 1st wave of the COVID pandemic? (3); 

Will the HCR model be able to outperform VaR models in its class (non-parametric models) 
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during backtesting procedure? and (4) Does the hybrid HCR-QML-GARCH model perform 

better than the single HCR-GARCH and HCR-QML-GARCH models. 

The remainder of the paper is organized as follows. Section 2 covers the methodology 

used in the research, including VaR: measure, estimation models and backtesting framework. 

In particular, three novel VaR models: HCR, HCR-GARCH, HCR-QML-GARCH are 

presented here. Section 3 contains the description and assumptions of the empirical study. 

Section 4 presents the results of the empirical research. Finally, our conclusions are given in 

Section 5.  

2. Methodology 

2.1 Value at Risk measure 

The VaR measure is defined as the maximum expected loss over a given time horizon ! under 

normal market conditions, at a given level of confidence " (Jorion 2001). More formally, VaR 

can be represented by the formula:  

F(VaR!) 	= Pr(-" < 	VaR!(!)|Ω"#$) = ", (1) 

where 3(-) is the cumulative distribution function, -" denotes i.i.d. financial return and Ω"#$ 

symbolize the information set available at time ! − 1 (Abad et al. 2014). 

2.2 Value at Risk estimation models 

Referring to Abad et al. (2014), we distinguish following VaR estimation methods: (2.2.1) 

nonparametric models, (2.2.2) parametric models and (2.2.3) semiparametric models. Below 

we describe the methods used in our study. 

2.2.1 Nonparametric models 

The nonparametric VaR models do not assume rates of return distribution. They are mainly 

based on historical realizations of returns (Abad et al. 2014). 

Hierarchical Correlation Reconstruction 

In 2017 Duda (2017) proposed the Rapid Parametric Density Estimation (RPDE) algorithm 

which allows for very inexpensive and accurate (approaching real distribution) modeling of 

density distribution as linear combination of chosen functions e.g. polynomials, sines/cosines 

or fouriers. Whereas Hierarchical Correlation Reconstruction (HCR) algorithm developed by 

Duda (2018) is directly extension of RPDE by modelling multivariate densities using the idea 

of decomposition of multiple variables into correlations between various subsets of variables. 

For now, HCR finds application in many statistical and economic problems among others: 
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predicting probability distribution of values in time series (Duda 2019), modelling joint 

probability distribution of yield curve parameters (Duda and Snarska 2018), and evaluating 

credibility of income data (Duda and Szulc 2020). Importantly, Duda (2019) points out that 

HCR combines the advantages of classical statistical and machine learning models. Classical 

statistical approaches allow for highly controllable and interpretable modelling, while they have 

a relatively small number of parameters, which affects the quality of their estimates. However, 

in the case of machine learning models (e.g. neural networks) the number of degrees of freedom 

in the models increases, causing a drastic increase in computational complexity, while the 

interpretability decreases. By contrast, HCR simultaneously ensures that model parameters: 

have an inexpensive direct formula, controllable accuracy, are unique and independently 

calculated and each has specific interpretation. The first HCR’s application mentioned above is 

crucial from the perspective of this study, so we fully focus on its mathematical implementation 

and properties.  

In general, HCR in time series environment allows to estimate the probability density 

function 5 as linear combination of polynomial by taking into account two hyperparameters: 

time component (context) and any number of moments (degree of polynomial) given by the 

researcher. This is done in the following procedure (for convenience we change the 

mathematical notation in this section).  

Let us assume that {-"}"%$..'! denotes i.i.d. stationary variable of 8( financial returns. 

As a first step, this variable should be normalized to nearly uniform probability distribution on 

[0, 1], what allows, inter alia to compactify the tails and normalize further coefficients. We 

perform this stage using Laplace distribution, which cumulative distribution function (cdf) is 

given by: 

9(-) =
1

2
[1 + sgn(r − a)(1 − exp(−|- − C|/E))], (2) 

where maximum likelihood estimation of parameters is a = median of r and b = mean of |r – a|. 

Thus, output normalizing transformation is equal to G" = 9(-").  

Next, we take d succeeding values of {G"}, which come from nearly uniform distribution on 

[0,1]) (if they are statistically independent). We treat I	– 1 as a so-called earlier context. In 

fact, statistical dependencies in our time series are described by their distortion from uniform 

distribution and we would like to model them via joint density estimation for d succeeding 

values of G as polynomial. To achieve it, let us define object G*
"
= G"#*+$ 		for		 N =
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1,… , d 		and		 t  =  1, … n, where 8 = 8( − I + 1. They form R" = {G*
"
}*%$…) ∈ [0,1]

) vectors 

containing value with its earlier context. Then, we derive following vector sequence: 

{R"}*%$…) ⊂ [0,1]) which is directly modeled.  

Finally, we can formulate density U as polynomial by utilizing orthonormal basis (orthonormal 

Legendre polynomials as a function f): 

U(R) = V W-X-(R)

-∈{(…0}"
= V W-X2#(G$)  ∗ … ∗  X2"(G)) ,

0

2#…2"%(

(3) 

where m denotes a degree of polynomial and C- is a coefficient. For such orthonormal functions 

mean-square optimization allows for inexpensive calculation of coefficients (average of this 

function over the sample): 

W- =
1

8
VX-(R

")  

'

"%$

(4) 

The orthonormal basis in such approach has |\| = (] + 1)) functions (coefficients), the 

number of which determines the computational complexity of the algorithm. Duda (2019) 

notices that too high number of coefficients leads to overfitting. Therefore, the responsible 

selection of these two hyperparameters is crucial to address classical bias-variance trade-off. In 

our study, this is done on the ground of empirical verification of model quality for successive 

m and d pairs in the grid search procedure.  

In the next computation step, we utilize U to predict probability density function 5 of 

the current time series point basing on the earlier context: by substituting earlier context to the 

polynomial and normalizing the remaining polynomial to integrate to 1. 

The next necessary stage is application of the calibration procedure ^ on the pdf 5, 

because unfortunately 5 can very rarely be negative in some intervals (the higher |\| the greater 

the likelihood of such events), which requires its transformation to a low positive value. We 

choose the simplest calibration solution here: ^(5) = ]CG(5, _), where v is precalculated 

parameter using historical simulation algorithm at the " level on {-"} (see the subsection 

2.2.1.2). Such transformation may damage probabilistic normalization, hence calibration step 

also includes division by ∫ ^(5(G)
$
(

)IG. 
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Finally, we have to remove normalization from 5 with Laplace distribution, thus 

inversed Laplace cdf is applied on 5‘s horizontal axis and 5’s vertical axis is multiplied by 

Laplace pdf. 

On the basis of the estimated 5 we want to calculate its α quantile for risk evaluation purposes. 

This procedure is straight forward. First, the empirical cumulative distribution function Τ(G) 

must be determined based on 5. Then we inverse Τ(G) to obtain Τ#$(G) and we utilize this 

quantile function to formulate " quantile estimator for any time series x: 

cde3(G) 	= 	Τ
#$(G; 	α). (5) 

In such environment Value at Risk is naturally estimated as: 

VaR3(!) = cde3(-"). (6) 

Historical Simulation 

Historical Simulation is a basic and one of the simplest methods to forecast VaR. Here VaR!is 

denoted as α quantile of the estimated empirical distribution of rates of return over the chosen 

time window (Abad et al. 2014): 

VaR3(!) = W3 (7) 

Kernel Density Estimator 

Kernel Density Estimator let to generalize population’s probability density function based on 

finite data sample by solving data smoothing problem (Silverman 1986). If we assume that 

(G$, G4, … , G') is a sample of i.i.d. realization of random variable with an absolutely continuous 

cumulative distribution function F, then the kernel density estimator Xk5(G) of X5(x) is defined 

as: 

X5
l (G) =

1

ℎ8
Vno

G* − G

ℎ
p

'

*%$

, (8) 

where h is a smoothing parameter called bandwidth with ℎ	 > 	0 and K is a non-negative 

function called kernel function. K might be represented by vast range of functions, for instance: 

Gaussian, Epanechnikov, Rectangular, Triangular, Biweight, Cosine, Optcosine etc. As prior 

research suggests kernel’s type has small impact on the results of the KDE in the VaR 

estimation environment (Huang 2009). Taking it into account and the fact that Epanechnikov 

kernel is optimal in the sense of mean square error (Epanechnikov 1969), we choose 

Epanechnikov kernel to further calculations which formula is: 
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n(s) =
3

4
(1 − s4)1{|7|8$}. (9) 

On the other hand, h is a crucial hyperparameter for KDE, because large h would over-smooth 

the pdf and small h would under-smooth the estimation. There are many well developed 

methods to select bandwidth: plug-in formula of Sheather and Jones (1991), Silverman’s rule 

of thumb (1986), Scott’s rule of thumb (1992) etc. We decide to use the first approach 

mentioned above due to Jones et al. (1996) recommendations. This method solves the fixed-

point equation: 

ℎ = u
e(ψ)

8ewXk′′9(5)y(∫ G
4ψ(G)IG)4

z

$
<
, (10) 

where KDE’s mean integrated square error (MISE) is e(ψ) = ∫ψ
4(G)IG. Finally, Value at 

Risk is estimated here using following equation: 

VaR3(!) = 3{5
#$(G; α), (11) 

where 3{5
#$(G) is inverse function of KDE’s cdf F{=

  (G) which is obtained by integrating pdf 

X5
l (G) (Alemany et al. 2012). 

Modified Cornish-Fisher Expansion 

Modified Cornish-Fisher Expansion estimator of the α quantile of non-Gaussian distribution 

allows to formulate VaR using following equitation (Cavenaile and Lejeune 2012): 

VaR3(!)  =  µ?  +  σ? ~@A,3, (12) 

where �" denotes conditional mean of the financial returns, Ä" is the conditional standard 

deviation of the returns and ~@A,C is the Cornish-Fisher approximation of the α quantile of the 

distribution. If we assume that: ~C 	is the α quantile of a standard normal distribution, S the 

standardized skewness and K excess kurtosis, then ~@A,Cis expressed by: 

~@A,C   =  ~C   +
1

6
 (~C

4  −  1)Å  +  
1

24
 (~C

D  −  3~C)n   −  
1

36
 (2~C

D  −  5~C)Å
4 (13)  

2.2.2 Parametric models 

Parametric VaR models assume parameters, the most often distribution of the returns. They fit 

probability curves to the data and then infer based on them (Abad et al. 2014). 
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Generalized Autoregressive Conditional Heteroskedasticity 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model introduced 

by Bollerslev (1986) generalizes the volatility modeling approach of Engle’s (1982) ARCH 

process. The standard GARCH (p, q) regression model is denoted as: 

-" = µ" + ϵ" = µ" + h?Ñ" , (14) 

where �" is conditional mean of returns, Ö" is random error which is equal to the product of 

conditional standard deviation of returns h? and the standardized i.i.d. random error Ñ". 

Bollerslev’s GARCH assumes that conditional variance is the function of lagged random errors 

and lagged conditional variances: 

ℎ"
4 = ω+Vá*Ö"#$

4

E

*%$

+Và*ℎ"#$
4

F

*%$

, (15) 

where â is an intercept greater than 0, á* is a coefficient of the random squared error and à* is 

a coefficient of the conditional variance, q and p denote respectively: number of random 

squared periods; number of shifted conditional variance periods used in the functional form of 

conditional variance. In this article we consider one of the simplest and most efficient 

(Buczyński and Chlebus 2019) models from the GARCH family, i.e. GARCH (1,1) with 

different random error distributions like: Gaussian (GARCH-n), t-Student (GARCH-t), skewed 

t-Student (GARCH-st) and Generalized Error Distribution (GARCH-ged).  

One can estimate VaR using GARCH via following formula: 

äCR3(t) = µ"ã + åℎ
{
"
4 	 ∗ 	ç3, (16) 

where µ"ã  is the forecast of conditional mean, ℎ{"
4 is the forecast of conditional variance and ç3is 

the α quantile of the assumed underlying distribution of the financial series. 

RiskMetrics 
"# 

The RiskMetrics 
"# model proposed by Morgan (1996) assumes that financial returns follow 

a Gaussian distribution. Thus, VaR is calculated as: 

VaR3(t) = µ? + Ä"9
#$("), (17) 

where µ" denotes conditional mean of the financial returns, Ä" is the conditional standard 

deviation of the returns and 9#$(") is the quantile of the standard normal distribution.  
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2.2.3 Semiparametric models 

The semiparametric VaR models combine the nonparametric approach with the parametric 

method (Abad et al. 2014). 

Peaks Over Threshold model 

Peaks Over Threshold (POT) models come from Extreme Value Theory (EVT) family, which 

is focused on modeling the tail of the data distribution by making assumption of sample built 

on extrema possessed from gathered historical information (Abad et al. 2014, Szubzda and 

Chlebus 2019). POT method allows for obtaining extreme observations by taking cut-off 

threshold denoted by é, where all data points below it form a dataset used to pdf’s tail 

estimation. Specifically, in this study we opt for use fully Parametric POT models based on the 

Generalized Pareto Distribution (GPD) (Embrechts et al. 1999). The GPD cdf is as follows: 

9èê(-; ë, í, U) =

⎩

⎨

⎧1 − ñ1 + ë
-	 − 	í

U
ó

(#$/H)

NXë ≠ 0

1 − ôGö ñ−
-	 − 	í

U
ó 								NXë = 0

, (18) 

where ë,í, U respectively are the parameters of: shape, location and scale. Moreover, let us 

define loss level above é: õ* = -* − é, assume that úI are the number of datapoints greater than 

é and N is the total number of the analyzed financial returns. Naturally, the distribution of 

excess losses over the é is defined as: 

3J(õ) = è(- − é < õ|- > é) =
3(õ + é) − 3(é)

1 − 3(é)
(19) 

Now we adopt the fact, that the distribution of observations being above the é follows the 

9èê(G; ë, í, U), thus the cdf of returns is given by:  

3(-) = 3(õ + é) = [1 − 3(é)]9èê(-; ë, í, U) + 3(é). (20) 

Taking it into account, VaR is expressed by: 

VaR3(t) = é +
Uù

ë̂
ü[ú/úJ(1 − α)]

#HK − 1†, (21) 

To determine é we use mean excess plot (Embrechts et al. 1997). 

Quasi-Maximum Likelihood GARCH 

Quasi-Maximum Likelihood (QML) GARCH model proposed among others by Engle and 

Manganelli (1999) allows to estimate VaR using classical GARCH environment except ç3 
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component, which is computed here by the empirical distribution quantile of GARCH’s 

standardized residuals Ñ". In other words, it is combination of the GARCH model with 

Historical Simulation approach for Ñ". Summarizing, VaR is estimated via equation: 

äCR3(t) = µ"ã + åℎ
{
"
4 	 ∗ W3(Ñ"). (22) 

 

HCR-GARCH 

The HCR-GARCH is another novel Value at Risk forecasting model proposed by us in this 

article. It is a stacking hybrid of an econometric (GARCH) and machine learning (HCR) 

approaches and is empirically inspired by the QML GARCH. The whole idea is based on the 

usage of HCR to model GARCH’s standardized distribution of residuals in the VaR 

environment, in contrast to QML GARCH, where empirical distribution is used to obtain 

α	quantile. Thus, the VaR model can be calculated using the following equation: 

äCR3(t) = µ"ã + åℎ
{
"
4 	 ∗ 	cde3(Ñ"), (23) 

where µ"ã  is the GARCH’s forecast of conditional mean, ℎ{"
4 is the GARCH’s forecast of 

conditional variance and cde3(Ñ") is the α quantile of the GARCH’s standardized distribution 

of residuals Ñ" modelled via HCR algorithm. In this way, we consciously break the statistical 

assumption about the independence of the residual’s component, because the estimated 

distribution of Ñ" includes a time component which is responsible for increasing the 

conservativeness of the VaR model. However, we strongly believe that the hybrid forecast 

constructed like that better suits to market realities, especially under conditions of increased 

variance in the markets. In this study, we base the HCR-GARCH estimation on the GARCH-n 

model. However, as we verified empirically, the choice of the intermediate distribution in this 

case is not crucial and the normal distribution can be substituted by e.g. skewed t-Student 

without significant differences in the HCR-GARCH results. 

HCR-QML-GARCH 

Finally, we decide to introduce the HCR-QML-GARCH, which is a simple ensemble model 

based on arithmetic average of HCR-GARCH and QML-GARCH. Here, VaR is computed like: 

äCR3(t) = µ"ã + åℎ
{
"
4 	 ∗ 	

cde3(Ñ") ∗ W3(Ñ")

2
. (24) 
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It seems that this model should address the trade-off between the liberality (QML-GARCH) 

and conservatism (HCR-GARCH) of the VaR forecast. 

2.3 Backtesting 

In our research we utilize popular and well establish backtesting framework (Buczyński and 

Chlebus 2018), which comprehensively evolves the quality of VaR models. First it controls 

regulatory requirements fulfillment (excess ratio and Basel traffic light test), secondly it checks 

adequacy of forecasts (Kupiec Proportion of Failures test, Christoffersen Conditional Coverage 

test and Dynamic Quantile test). For convenience, let °" be VaR exceedance as an indicator 

function (Costanzino and Curran 2018): 

I?  =   £
1	if	-" < VaRL(t)

0	if	-" ≥ VaRL(t)
(25) 

2.3.1 Excess ratio and Basel traffic light test 

Excess ratio α is expressed as: 

αã =
1

ú
V°"

M

"%$

, (26) 

where "ù denotes observed excess ratio and N is the number of observations (number of VaR 

forecasts). According to theory, the excess ratio for the correctly specified and forecasting 

model should be equal to the significance level, at which VaR is calculated. 

The Basel traffic light test (Basle Committee on Banking Supervision 1996, Costanzino and 

Curran 2018) is based on excess ratio α and it classifies model’s responses into three zones: 

green (indicates that there is no problem with the quality or accuracy of the model), yellow 

(indicates potential problems with the model, recommends its close supervision) and red 

(indicates strictly a problem with a model). The zone’s assignment is made using following 

formula (Buczyński and Chlebus 2018): 

3(°") = Vñ
ú

n
ó

N$

O%(

öP(1 − ö)M#P = α	 ¶

-ôI	~ß8ô				" ≥ 	0.9999

õô®®ß©	~ß8ô				" ≥ 	0.95

™-ôô8	~ß8ô				" < 	0.95

, (27) 

where F is cumulative distribution of variable from the binomial distribution, p denotes level 

of probability for which VaR is estimated and K is number of VaR breaches.  

2.3.2 Kupiec Proportion of Failures test (UC) 

The Kupiec (1995) Proportion of Failures test (also known as unconditional coverage test) 

examines how many times a VaR is breached over a given time window. The null hypothesis 
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assumes that theoretical and empirical excess ratios are equal (α = 	"ù). The test statistics takes 

following form:  

´eQRA = 2®8 ¨ñ
1	 −	αã

1	 − 	"
ó

M#P

ñ
αã

"
ó

P

≠~χ4(1). (28) 

Importantly, the POF Kupiec test, unlike Basel traffic light test, considers the overestimation 

of the model (Buczyński and Chlebus 2018). 

2.3.3 Christoffersen Conditional Coverage test (CC) 

The Christoffersen (1998) Conditional Coverage test verifies the frequency of the VaR breaches 

occurrence as well as their independence. Its test statistics is as follows: 

´eSS = ´eQRA + ´eNMT~χ
4(G), (29) 

where ´eNMT is a likelihood ratio of the VaR forecast independence test which takes null 

hypothesis about the independence of exceedances, against the alternative hypothesis that the 

exceedances are characterized by the first order Markov chain. It is denoted as (Kaszyński et 

al. 2020): 

´eNMT = −2®8 ¨
π∗(
'!!+'#!±∗$

'!#+'##

±((
'!!±($

'!#±$(
'#!±$$

'##≠~≤
4(1), (30) 

where 8*,2is the number of observations, π*2 = 8*28*2/∑ 8*22  and ±∗2 = ∑ 8*2* /∑ 8*2 .*,2  

2.3.4. Dynamic Quantile test (DQ) 

The Engle and Manganelli (2004) Dynamic Quantile test utilizes the linear regression model to 

jointly verify the presence of autocorrelation among VaR breaches. Let us define following 

term (Buczyński and Chlebus 2018):  

¥" = £
1 − "			NX				-" < VaRL(t)

			−	"					NX					-" 	≥ VaRL(t)
, (31) 

which is crucial part of the following regression: 

¥" = µ( +Vµ* 	¥"#$

F

*%$

+V�2∂2 + Ö"

E

2%$

, (32) 

where X denotes all exogenous variables included in the forecasting model, p is the number of 

lags of dependent variable and q is the number of lags of independent variables. The null 

hypothesis assumes nullity of coefficients in above regression: µ( 	= 	µ$ 	=	. . . 	= 	µF 	= 	 �$ 	=
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	. . . = 	 �E 	= 	0, i.e. independence of the violation in t to all past violations (Kaszyński et al. 

2020). The Wald test statistic is as follows: 

ê∑SS =
¥"
V∏(∏V∏)#$∏V¥"

"(1 − ")
~≤4(ö + W), (33) 

where M is a matrix, in which the columns are p lags of the exceedance vector and q lags of the 

explanatory variables. 

3. Empirical study setting 

The basic assumption of the evaluation methodology is to meet the requirements of the Basel 

III, i.e. to forecast one-day-ahead VaR using a rolling-window and to assume significance levels 

of 1% (the current value of the metric) and 2.5% (the value imposed by Basel IV for the VaR 

needed to calculate Expected Shortfall metric) (PricewaterhouseCoopers 2016). Furthermore, 

we adopt that VaR is calculated based on daily logarithmic financial returns: 

-" = ®8(ö") − ®8(ö"#$), (34) 

where ö" is the price of the asset at the end of the trading day t. For the purpose of the study, 

we assume that in the rolling-window training sample (in the sample) covers always 500 

observations, which is nearly two stock market years. This is not fully consistent with the 

recommendation of the optimal cut-off point by Buczyński and Chlebus (2020), which is around 

1000 for conservative models, however according to their research, the smallest reasonable 

number of observations in the training sample is exactly 500. Generally, such a threshold 

addresses the trade-off between the conservativeness of the model and its computational 

complexity (crucial factor during experiments). In the case of the test sample (out of the 

sample), we also take 500 observations, which naturally gives us a satisfactory inference period. 

To recall, in the one-step-ahead approach such a setup implies the need to estimate 500 VaR 

models each time. 

The experiment covers a set of main stock indexes from three European and three global 

(non-European) countries like: DAX (Germany), WIG 20 (Poland), MOEX (Russia), S&P 500 

(USA), Nikkei 225 (Japan) and SHC (China). Countries are selected to represent both 

developed (Germany, USA, Japan) and developing economies (Poland, Russia, China) to 

examine the quality of VaR forecasts depending on this factor.  

In addition to spatial variation, the study also distinguishes four periods characterized 

by different volatility in the markets during last 15 years. Importantly, this difference also 

applies to in-sample and out-of-the-sample sets. Period I lasts from January 2006 to December 
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2009, so the training set has low volatility and the test set is full of variation’s turbulence 

associated with the global economic crisis. Period II runs from January 2008 to December 2011. 

Here both in the sample and out of the sample have high volatility, with a decreasing trend over 

time.  Period III covers the time from January 2014 to December 2017 and is characterized by 

tranquil volatility throughout the series. Period IV considers the first wave of the Covid-19 

pandemic, thus it lasts from September 2016 to September 2020. Its characteristics are 

remarkably similar to Period I, but here the outbreak of volatility is much more sudden. From 

the perspective of the study, this is a key period. 

To better understand the statistical properties of the distributions of returns for the 

analyzed six stock indices in the four periods, we present Table 1. As the Jarque-Bera and 

Anderson-Darling tests indicate, in no case do returns follow a normal distribution. Most often 

we deal with left skewed distributions (skewness less than zero) and leptokurtosis (excess 

kurtosis greater than 0), which is in line with left long tail expectations. Furthermore, always 

the mean value from the series is statistically not different from 0. This implies a practical lack 

of need to estimate the value of the average return in VaR models, which we also do.  Finally, 

it is worth noting that the sample of stock indices is representative, due to the high heterogeneity 

in the values of the descriptive statistics presented.  

Table 1. Descriptive statistics of the financial returns per each analyzed stock index and 
period 

PERIOD I 

Index Mean Median Min Max 
St. 
Dev. Skewness 

Excess 
Kurtosis JB AD 

DAX 0.000 0.001 -0.074 0.108 0.017 0.207 7.215 0.000 0.000 
S&P 500 0.000 0.001 -0.095 0.110 0.017 -0.210 8.208 0.000 0.000 
Nikkei 225 0.000 0.000 -0.121 0.132 0.019 -0.382 7.326 0.000 0.000 
SHC 0.001 0.003 -0.093 0.090 0.022 -0.444 2.071 0.000 0.000 
WIG 20 0.000 0.000 -0.083 0.061 0.016 -0.339 2.043 0.000 0.000 
MOEX 0.000 0.001 -0.207 0.252 0.031 -0.052 11.930 0.000 0.000 

PERIOD II 

Index Mean Median Min Max St. 
Dev. Skewness Excess  

Kurtosis 
JB AD 

DAX 0.000 0.000 -0.073 0.108 0.018 0.213 4.679 0.000 0.000 
S&P 500 0.000 0.001 -0.095 0.110 0.018 -0.219 5.755 0.000 0.000 
Nikkei 225 -0.001 0.000 -0.121 0.132 0.020 -0.487 7.163 0.000 0.000 
SHC -0.001 0.000 -0.080 0.090 0.020 -0.150 2.578 0.000 0.000 
WIG 20 0.000 0.000 -0.083 0.061 0.016 -0.360 2.624 0.000 0.000 
MOEX 0.000 0.000 -0.207 0.252 0.029 0.020 13.959 0.000 0.000 

PERIOD III 

Index Mean Median Min Max 
St. 
Dev. Skewness 

Excess 
Kurtosis 

JB AD 



Woźniak, M. and Chlebus, M. /WORKING PAPERS 10/2021 (358)                        17 

DAX 0.000 0.001 -0.071 0.049 0.012 -0.362 2.413 0.000 0.000 
S&P 500 0.000 0.000 -0.040 0.038 0.008 -0.411 3.104 0.000 0.000 
Nikkei 225 0.000 0.001 -0.083 0.074 0.013 -0.173 5.245 0.000 0.000 
SHC 0.000 0.001 -0.089 0.056 0.015 -1.324 7.425 0.000 0.000 
WIG 20 0.000 0.000 -0.058 0.030 0.009 -0.626 3.952 0.000 0.000 
MOEX 0.000 0.000 -0.114 0.051 0.012 -0.802 9.784 0.000 0.000 

 
 
 

PERIOD IV 

Index Mean Median Min Max 
St. 
Dev. Skewness 

Excess 
Kurtosis 

JB AD 

DAX 0.000 0.001 -0.131 0.104 0.013 -1.083 19.934 0.000 0.000 
S&P 500 0.000 0.001 -0.128 0.090 0.013 -1.172 22.238 0.000 0.000 
Nikkei 225 0.000 0.001 -0.063 0.077 0.012 -0.076 6.630 0.000 0.000 
SHC 0.000 0.001 -0.080 0.056 0.011 -0.701 6.692 0.000 0.000 
WIG 20 0.000 0.000 -0.135 0.056 0.012 -1.917 22.370 0.000 0.000 
MOEX 0.000 0.001 -0.087 0.074 0.011 -1.121 14.717 0.000 0.000 

JB and AD denote p-values for the Jarque-Bera and Anderson-Darling normality of distribution tests, respectively. 

In addition, we verify the presence of Autoregressive Conditional Heteroskedasticity (ARCH) 

effects using the ARCH-LM test and clustering of variances using the Ljung-Box test in the 

analyzed time-series. At the 5% significance level, we find that returns are characterized by 

conditional heteroskedasticity and are subject to autocorrelation (in quadrature). Such statistical 

properties suggests the use of GARCH models. At the same time, we diagnose our GARCH 

models for autocorrelation and ARCH effect for standardized residuals using Weighted Ljung-

Box Test on Standardized Squared Residuals and Weighted ARCH LM Tests. Based on these, 

we find that not all GARCH models are well specified i.e., standardized residuals are subject to 

autocorrelation. This reinforces our belief in the validity of using the HCR-GARCH approach, 

where we make practical use of this negative artefact of the GARCH model. 

All calculations in the study are performed in the R and Python programming languages, which 

are point-preferred due to the availability of statistical and machine learning libraries. 

Importantly, the HCR algorithm is fully implemented in R.  

4. Results 

In this section, we first look for the best configuration of HCR and HCR-GARCH models on 

an independent validation period (4.1) and then compare them with other classical models (4.2). 

4.1 HCR and HCR-GARCH model setting and tuning 

Models based on the HCR algorithm require tuning of two hyperparameters: maximum 

polynomial degree (m) and historical context (d-1). We choose to solve this problem using grid 
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search according to the best practices of statistical learning in the Value at Risk domain (Lux, 

2020). The search of the hyperparameter space is performed on an independent validation set 

(January 1999 - December 2003) per: model class (HCR, HCR-GARCH), VaR level (1%, 

2.5%) and index (DAX, S&P, Nikkei, SHC, WIG, MOEX). The adopted evaluation criterion is 

sequentially: p-value of the Conditional Coverage (CC) test, p-value of the Unconditional 

Coverage (UC) test, p-value of the Dynamic Quantile (DQ) test. The higher the p-value, the 

better the ranking of a given model (Lux, 2020). If the same p-values are reached, the simpler 

model (lower value of hyperparameters) is selected.  

Our validation set description is presented in Table 2. This is a period of alternating 

calm and perturbation in the markets, so it seems appropriate to establish the best models 

(ideally the hyperparameters should be readjusted after every few trading days completed, but 

for computational reasons this idea was abandoned). 

Table 2. Descriptive statistics of the financial returns per analyzed stock indexes in validation 
period 

PERIOD 0 - validation 

Index Mean Median Min Max St. 
Dev. Skewness Excess 

Kurtosis JB AD 

DAX 0.000 0.000 -0.089 0.076 0.018 -0.024 1.729 0.000 0.000 

S&P 500 0.000 -0.001 -0.060 0.056 0.014 0.151 1.118 0.000 0.000 

Nikkei 225 0.000 -0.001 -0.072 0.072 0.016 0.059 1.404 0.000 0.000 

SHC 0.000 0.000 -0.079 0.094 0.015 0.658 6.015 0.000 0.000 
WIG 20 0.000 0.000 -0.085 0.068 0.015 -0.019 2.046 0.000 0.000 
MOEX 0.002 0.002 -0.134 0.141 0.027 0.196 2.539 0.000 0.000 

JB and AD denote p-values for the Jarque-Bera and Anderson-Darling normality of distribution tests, respectively. 

Based on the literature review presented, we assume that m can take values at least from 

1 (expected value) to 4 (kurtosis). We additionally decide to check performance of the 5th 

moment. We arbitrarily select a historical context (d-1) on a range from 1 to 6 (thus we consider 

more than 1 trading week). It seems that even maximal value of m and d-1 should not 

significantly affect the overtraining of the models (Duda 2018). Furthermore, from our 

perspective, an important criterion for selecting the solution space is the computational 

complexity of the model (we try not to model more than 2500 coefficients). 

In Tables 3 and 4 we present the validation results for the HCR and HCR-GARCH 

models, respectively. While all selected models passed the Traffic Light Test, not all models 

exceeded a p-value of 10% for the tests analyzed (they proved to be too conservative on the 

validation set). Furthermore, it can be observed that both models overwhelmingly prefer m 
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equal to 2. However, for the historical context, it is hard to find a clear pattern at the quantile 

and index level. The selected hyperparameters are applied in the final models (see subsection 

4.2). The HCR-QML-GARCH models are produced according to the HCR-GARCH 

recommendations for hyperparameters. 

Table 3. The best HCR models in the tuning period per index and quantile 

m d-1 Index Quantile 
(%) 

ER & LT CC UC DQ 

5 2 SHC 1.0 1.000 0.951 1.000 0.997 
4 3 SHC 2.5 2.400 0.730 0.885 0.030 
2 4 DAX 1.0 1.000 0.951 1.000 0.000 
2 3 DAX 2.5 2.200 0.648 0.661 0.005 
4 3 Nikkei 1.0 1.000 0.951 1.000 0.001 
2 6 Nikkei 2.5 2.800 0.555 0.673 0.562 
2 6 WIG  1.0 0.200 0.008 0.028 0.524 
2 5 WIG  2.5 1.000 0.003 0.015 0.329 
2 6 MOEX 1.0 0.200 0.008 0.028 0.524 
2 1 MOEX 2.5 0.200 0.000 0.000 0.029 
2 5 S&P 1.0 0.200 0.951 1.000 0.001 
2 5 S&P 2.5 0.800 0.555 0.673 0.562 

ER & LT denote the excess ratio and color present the Light Test result. CC, UC, DQ, indicate the p value of the 
corresponding test.  

Table 4. The best HCR-GARCH models in the tuning period per index and quantile 

m d-1 Index Quantile 
(%) 

ER & LT CC UC DQ 

2 1 SHC 1.0 0.400 0.095 0.125 0.772 
2 4 SHC 2.5 1.600 0.134 0.168 0.757 
2 1 DAX 1.0 0.200 0.008 0.028 0.524 
2 1 DAX 2.5 0.200 0.000 0.000 0.029 
2 6 Nikkei 1.0 0.400 0.095 0.125 0.772 
2 1 Nikkei 2.5 0.200 0.000 0.000 0.029 
2 1 WIG  1.0 0.000 0.000 0.002 0.000 
2 6 WIG  2.5 0.200 0.000 0.000 0.029 
2 6 MOEX 1.0 0.400 0.095 0.125 0.772 
5 2 MOEX 2.5 1.000 0.003 0.015 0.329 
2 3 S&P 1.0 0.400 0.095 0.125 0.772 
2 1 S&P 2.5 0.800 0.000 0.005 0.207 

ER & LT denote the excess ratio and color present the Light Test result. CC, UC, DQ, indicate the p value of the 
corresponding test.  
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4.2 Model comparison 

The results are presented for each Value at Risk quantile separately. Table 5 presents the 

evaluation of the 1% VaR estimation of the financial returns for each analyzed model, stock 

index and period. Analogous results are prepared in Table 6 for 2.5% VaR. To compare models 

outcome we utilize following metrics: excess ratio, Basel traffic light test, Unconditional 

Coverage test, Conditional Coverage test and Dynamic Quantile test. 

Initially, we focus on the analysis of the 1% VaR results. First, we examine how the 

classical models within each class (due to parametricity) performed. In the case of 

nonparametric models, it can be easily concluded that no model performs well in all periods 

analyzed. This is indicated by all evaluation metrics, i.e. multiple VaR exceedances, yellow and 

red lights in the Basel traffic light test and notorious rejection of the null hypotheses for the 

statistical tests undertaken. Moreover, the models performed significantly worse for indices 

from highly developed countries. One can say that the only period in which nonparametric 

models relatively return meaningful estimates is period III, which is consistent with intuition, 

i.e., nonparametric models perform poorly in periods of sudden increased volatility due to the 

problem of long adjustment to current market realities.  

Remarkably similar conclusions can be drawn for the RiskMetrics 
"# model, which, as 

the simplest parametric approach in our research, only do well in Period III. In contrast, classical 

parametric models from the GARCH family perform well in periods I, II and III. However, 

none of them turn out to be sufficient in period IV, where volatility has increased very 

unexpectedly due to the onset of the COVID-19 pandemic. Nevertheless, undoubtedly the best 

in this class is the GARCH-st model thanks to its Basel traffic light, UC and CC tests 

performance. On the other hand, the GARCH-n model perform the worst. One can say that for 

parametric GARCH the indices from developing countries cause the most problems.  

In the case of classical semiparametric models, the conclusions are twofold. The POT 

model behaves similar to the GARCH-st during the first three periods, however the GARCH-

st appears to have slightly better performance in the period IV. In the case of QML-GARCH, it 

can be clearly stated that this model is the most conservative compared to those analyzed above, 

which means that in periods I, II and III it does not exceed enough to meet the UC, CC, DQ test 

requirements, but at the same time it does not go beyond the green light of the Basel test. In the 

case of period IV, it does relatively well and generates yellow light only once for the DAX 

index. However, at the same time it passes the DQ test only for the S&P and SHC indexes. It is 
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difficult to unequivocally choose the best model from the above-described classical approaches 

to VaR estimation, however, it seems that the clear leaders are GARCH-st and QML-GARCH.  

Taking above into account, we examine the results of the models from the HCR family. 

The nonparametric HCR model proposed by us performs generally very poorly on all indexes: 

in the case of periods I and IV, it records numerous VaR exceedances which are expressed, 

inter alia, by yellow and red lights in the Basel test. While in periods II and III it is too 

conservative, for instance UC and CC tests indicates this fact. Clearly, the HCR model is not 

capable to outperform models in its class. In the case of our target HCR-GARCH model, it turns 

out to be even more conservative than QML-GARCH, which leads to green light in the Basel 

traffic light test for all indexes in all periods. In the periods I, II and III, the estimates implement 

too few VaR exceedances to classify the model as good according to the UC and CC model 

interpretation. For the DQ test, the HCR-GARCH model performs slightly better in these 

periods than the GARCH-st and GARCH-QML. For period IV, HCR-GARCH is by far the 

leader among all the approaches discussed. Only for MOEX it fails the CC test and for WIG 

and DAX the DQ test. The last model we propose, which is HCR-QML-GARCH performs 

better on periods I, II, III than QML-GARCH and HCR-GARCH, while it still collectively 

performs worse than GARCH-st at this time. Period IV for HCR-QML-GARCH converges to 

the QML-GARCH model in terms of evaluation metrics. 

We then analyze the results of the models for 2.5% VaR at the same convention as 

above. As in the case of 1% VaR, nonparametric models do not cope at all in times of sudden 

increased volatility, i.e. in periods I and IV, generating almost only yellow and red lights in the 

Basel traffic light test. In the case of periods with decreasing and low volatility, they are too 

conservative, for instance see UC and CC tests outcomes. The indices of highly developed 

countries turn out to be the most difficult to estimate: S&P, DAX and Nikkei.  

As before, RiskMetrics 
"# has generally failed in VaR estimations and we can state that 

it is the weakest model in this study. The classic GARCH-n/t/ged parametric models perform 

well only in the third period of the analysis. At other times, they generate numerous Basel 

yellow lights and fail UC, CC and DQ tests. Again, the GARCH-st model performs very well 

in the I, II and III period, while in the around pandemic and pandemic times (period IV) it stops 

working properly, e.g. see outcome of Basel traffic light, UC, CC and DQ tests.  

For semiparametric models, the POT model performs less well than the GARCH-st 

described above, e.g. generates more yellow traffic lights and fails the UC and CC tests more 

often. The QML-GARCH model again proves to be too conservative for the first three periods, 
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as it fails the UC and CC tests in most cases, and never exceeds the green light in the Basel 

traffic lights test. At the same time, this model does well in period IV, generating only green 

lights, but for some indices it does not pass the CC and DQ tests. It seems that again the best 

models are QML-GARCH and GARCH-st.  

For models with the family HCR results are varied. The simplest nonparametric HCR 

model performs very much like Historical Simulation and KDE, in other words it does not work 

properly. HCR-GARCH shows very similar prognostic properties as QML-GARCH, i.e. it is 

very conservative in all periods, and in the IV period it records relatively good quality of 

estimation (especially for the DAX, Nikkei, WIG and S&P indices). However, QML-GARCH 

appears to be more universal. In the case of the HCR-QML-GARCH hybrid model, it can be 

concluded that it performs better jointly than HCR-GARCH and QML-GARCH due to the 

generally better results of UC, CC and DQ tests in all periods. 

Based on the above results, one can conclude that an ideal VaR model does not exist. 

The HCR-GARCH mode which we have proposed produces the expected results in terms of 

periods of sudden increased volatility, while it does not work very well in periods of relative 

calm in the markets, as it retains its conservatism. A good solution to this problem turns out to 

be the HCR-QML-GARCH hybrid, which liberalizes the conservatism of HCR-GARCH. In the 

case of our nonparametric model, HCR has failed and is unable to contribute anything 

groundbreaking to non-parametric VaR estimation. Furthermore, we were unable to detect an 

unambiguous relationship between the estimation quality of HCR family models and the origin 

of the stock market index (level of state development). It is worth mentioning that in times of 

very low and moderate volatility, GARCH-st undeniably proved to be the best model. 
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Table 5. Results of 1% VaR estimation of the financial returns per each analyzed model, stock index and period 

 PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT  UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

H
is

to
ric

al
 

Si
m

ul
at

io
n  

 

SHC 0.8 0.641 0.783 0.992 0.2 0.028 0.008 0.524 0 0.002     1.2 0.663 0.766 0.005 
DAX 2 0.048 0.016 0 1.8 0.106 0.025 0 0.2 0.028 0.008 0.524 3.4 0 0 0 

Nikkei 2.8 0.001 0 0 0.6 0.331 0.013 0 0.8 0.641 0.783 0 1.8 0.106 0.025 0 
WIG  1.8 0.106 0.061 0.019 1.8 0.106 0 0 0.8 0.641 0.783 0.992 2.8 0.001 0 0 

MOEX 2.8 0.001 0 0 0.8 0.641 0.783 0 0.6 0.331 0.323 0.772 2 0.048 0.001 0 
S&P 3.6 0 0 0 1 1 0.951 0 0.6 0.331 0.323 0.772 2.6 0.003 0 0 

K
D

E 
Ep

an
ec

hn
ik

ov
 

 

SHC 0.8 0.641 0.783 0.992 0 0.002     0 0.002     1.2 0.663 0.766 0.005 
DAX 2 0.048 0.016 0 1.6 0.215 0.186 0 0.2 0.028 0.008 0.524 3.4 0 0 0 

Nikkei 2.8 0.001 0 0 0.6 0.331 0.013 0 1 1 0.951 0.001 2 0.048 0.008 0 
WIG  1.6 0.215 0.186 0.018 1.8 0.106 0 0 0.8 0.641 0.783 0.992 2.4 0.008 0 0 

MOEX 2.8 0.001 0 0 0.6 0.331 0.386 0.935 0.4 0.125 0.071 0.524 2 0.048 0.001 0 
S&P 3.8 0 0 0 0.8 0.641 0.783 0 0.6 0.331 0.323 0.772 2.6 0.003 0 0 

M
od

ifi
ed

 
C

or
ni

sh
 F

is
he

r 
 

SHC 0.8 0.641 0.783 0.992 0 0.002     0.4 0.125 0.095 0 1 1 0.951 0.001 
DAX 1 1 0.951 0 1.4 0.397 0.438 0 0.2 0.028 0.008 0.524 2.8 0.001 0 0 

Nikkei 2.2 0.02 0.002 0 0.4 0.125 0.001 0 0.8 0.641 0.783 0 1 1 0.106 0 
WIG  1.4 0.397 0.438 0.012 1.6 0.215 0 0 0.2 0.028 0.008 0.524 2 0.048 0.001 0 

MOEX 1.4 0.397 0.103 0.009 0.8 0.641 0.783 0 0 0.002     0.4 0.125 0.095 0 
S&P 2.6 0.003 0 0 0.8 0.641 0.783 0 0.2 0.028 0.008 0.524 1.6 0.215 0.186 0 

G
A

R
C

H
-n

 
(1

,1
)  

SHC 2 0.048 0.008 0.001 2 0.048 0.016 0.168 2.2 0.02 0.003 0.008 1.8 0.106 0.025 0 
DAX 2 0.048 0.016 0.364 2 0.048 0.016 0.001 0.6 0.331 0.386 0.935 3.4 0 0 0 

Nikkei 1.6 0.215 0.059 0 0.8 0.641 0.053 0 1.8 0.106 0.061 0.374 3.8 0 0 0 
WIG  2.4 0.008 0.001 0.015 1.6 0.215 0.003 0 0.8 0.641 0.783 0.992 3 0 0 0 

MOEX 3 0 0 0 1.4 0.397 0.438 0.012 1 1 0.87 0.991 2 0.048 0.001 0 
S&P 2.6 0.003 0 0 2.6 0.003 0 0 1.4 0.397 0.417 0.973 2.6 0.003 0 0.004 

G
A

R
C

H
-s

t 
(1

,1
)  

SHC 0.4 0.125 0.095 0.772 1.6 0.215 0.186 0.64 1 1 0.951 0.001 1.4 0.397 0.103 0 
DAX 0.8 0.641 0.783 0.992 0.8 0.641 0.783 0.992 0.6 0.331 0.386 0.935 2 0.048 0.016 0 

Nikkei 1.2 0.663 0.766 0.005 1 1 0.106 0.001 1.2 0.663 0.766 0.974 1.6 0.215 0.186 0.018 
WIG  1.6 0.215 0.186 0.64 1.2 0.663 0.004 0 0.6 0.331 0.386 0.935 2.2 0.02 0.002 0 

MOEX 1.6 0.215 0.186 0.018 1.2 0.663 0.766 0.005 0.8 0.641 0.693 0.935 1.8 0.106 0.025 0 
S&P 0.6 0.331 0.386 0.935 1.2 0.663 0.766 0.005 0.8 0.641 0.783 0.992 1.2 0.663 0.766 0.996 



Woźniak, M. and Chlebus, M. /WORKING PAPERS 10/2021 (358)                        24 
 PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT  UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

G
A

R
C

H
-t 

(1
,1

)  
 

SHC 1.2 0.663 0.129 0.003 1.8 0.106 0.061 0.374 1.6 0.215 0.186 0.018 1.6 0.215 0.059 0 
DAX 1.4 0.397 0.438 0.971 1.2 0.663 0.766 0.974 0.6 0.331 0.386 0.935 2.4 0.008 0.001 0 

Nikkei 1.4 0.397 0.438 0.012 1 1 0.106 0.001 1.2 0.663 0.766 0.974 2.2 0.02 0.003 0.008 
WIG  2.2 0.02 0.003 0.058 1.2 0.663 0.004 0 0.6 0.331 0.386 0.935 2.8 0.001 0 0 

MOEX 2.2 0.02 0.003 0.008 1.2 0.663 0.766 0.005 1 1 0.87 0.991 2 0.048 0.001 0 
S&P 1 1 0.951 0.997 1.8 0.106 0.061 0 0.8 0.641 0.783 0.992 2.2 0.02 0.003 0.159 

G
A

R
C

H
-g

ed
 

(1
,1

)  

SHC 1.2 0.663 0.129 0.003 1.8 0.106 0.061 0.374 1.6 0.215 0.186 0.018 1.6 0.215 0.059 0 
DAX 1.4 0.397 0.438 0.971 1.2 0.663 0.766 0.974 0.6 0.331 0.386 0.935 2.6 0.003 0 0 

Nikkei 1.4 0.397 0.438 0.012 0.8 0.641 0.053 0 1.2 0.663 0.766 0.974 2.2 0.02 0.003 0.008 
WIG  2 0.048 0.016 0.168 1.2 0.663 0.004 0 0.6 0.331 0.386 0.935 3 0 0 0 

MOEX 2.2 0.02 0.003 0.008 1.2 0.663 0.766 0.005 1 1 0.87 0.991 1.8 0.106 0.025 0 
S&P 1 1 0.951 0.997 1.8 0.106 0.061 0 0.8 0.641 0.783 0.992 2.2 0.02 0.003 0.159 

R
is

kM
et

ric
s 

SHC 3.2 0 0 0 0.8 0.641 0.783 0.992 1 1 0.951 0 3 0 0 0 
DAX 4.4 0 0 0 2.4 0.008 0 0 0.4 0.125 0.095 0.772 5 0 0 0 

Nikkei 5.2 0 0 0 0.6 0.331 0.013 0 2.2 0.02 0.003 0.008 3.2 0 0 0 
WIG  3.4 0 0 0 2.2 0.02 0 0 1.2 0.663 0.766 0.996 3.6 0 0 0 

MOEX 3.6 0 0 0 1.8 0.106 0.025 0 0.8 0.641 0.693 0.935 2.2 0.02 0 0 
S&P 5.8 0 0 0 1.8 0.106 0.025 0 1 1 0.87 0 6.2 0 0 0 

PO
T  

SHC 0.8 0.641 0.053 0 1 1 0.951 0.997 1.4 0.397 0.438 0.012 1.2 0.663 0.129 0 
DAX 1.2 0.663 0.766 0.996 0.8 0.641 0.783 0.992 0.2 0.028 0.008 0.524 2.8 0.001 0 0 

Nikkei 1.2 0.663 0.766 0.974 0.6 0.331 0.013 0 1.2 0.663 0.766 0.974 1.8 0.106 0.061 0.019 
WIG  1 1 0.951 0.997 1 1 0.106 0.001 0.4 0.125 0.095 0.772 2.8 0.001 0 0 

MOEX 1.6 0.215 0.186 0.018 1.2 0.663 0.766 0.005 0.8 0.641 0.693 0.935 1.8 0.106 0.002 0 
S&P 0.6 0.331 0.386 0.935 1.4 0.397 0.438 0.012 0.8 0.641 0.783 0.992 1.6 0.215 0.186 0.854 

Q
M

L-
G

A
R

C
H

 
(1

,1
) 

SHC 0.8 0.641 0.053 0 0.4 0.125 0.095 0.772 0.8 0.641 0.783 0 0.8 0.641 0.783 0.992 
DAX 0.8 0.641 0.783 0.992 0.2 0.028 0.008 0.524 0.2 0.028 0.008 0.524 2 0.048 0.016 0 

Nikkei 0.4 0.125 0.095 0.772 0.4 0.125 0.001 0 0.8 0.641 0.783 0.992 1.6 0.215 0.186 0.018 
WIG  0.2 0.028 0.008 0.524 0 0.002     0 0.002     1 1 0.951 0 

MOEX 1.4 0.397 0.438 0.012 1.2 0.663 0.766 0.005 0.4 0.125 0.071 0.524 1.2 0.663 0.129 0 
S&P 0.6 0.331 0.386 0.935 0.8 0.641 0.783 0 1 1 0.951 0.997 1.4 0.397 0.438 0.97 
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 PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT  UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

H
C

R
 

SHC 0.6 0.331 0.386 0.935 0 0.002 0 0 0.2 0.028 0.008 0.524 1.6 0.215 0.186 0 
DAX 2.4 0.008 0 0 1.4 0.397 0.438 0 0.2 0.028 0.008 0.524 2.4 0.008 0 0 

Nikkei 3.4 0 0 0 0.2 0.028 0.008 0.524 0.4 0.125 0.095 0.772 2.4 0.008 0.001 0 
WIG  1.6 0.215 0.186 0.018 0.8 0.641 0.783 0.992 0.2 0.028 0.008 0.524 2 0.048 0.008 0 

MOEX 3.4 0 0 0 0 0.002 0 0 0 0.002 0 0 2 0.048 0.008 0 
S&P 4.2 0 0 0 1.2 0.663 0.766 0 1 1 0.951 0.997 6 0 0 0 

H
C

R
-G

A
R

C
H

 
(1

,1
) 

SHC 0.8 0.641 0.053 0 0.4 0.125 0.095 0.772 0.6 0.331 0.386 0.935 0.8 0.641 0.783 0.992 
DAX 0.6 0.331 0.386 0.935 0 0.002     0.2 0.028 0.008 0.524 1.6 0.215 0.186 0 

Nikkei 0 0.002 0 0 0.2 0.028 0.008 0.524 0.4 0.125 0.095 0.772 0.6 0.331 0.386 0.935 
 WIG  0.2 0.028 0.008 0.524 0.4 0.125 0.095 0.772 0.4 0.125 0.095 0.772 1 1 0.951 0 

MOEX 0.4 0.125 0.095 0.772 0.2 0.028 0.008 0.524 0 0.002 0 0 0.4 0.125 0.095 0.772 
S&P 0.4 0.125 0.095 0.772 0.2 0.028 0.008 0.524 1 1 0.951 0.997 1.4 0.397 0.438 0.97 

H
C

R
-Q

M
L-

G
A

R
C

H
 (1

,1
)  SHC 0.8 0.641 0.053 0 0.4 0.125 0.095 0.772 0.8 0.641 0.783 0 0.8 0.641 0.783 0.992 

DAX 0.8 0.641 0.783 0.992 0.4 0.125 0.095 0.772 0.2 0.028 0.008 0.524 2 0.048 0.016 0 
Nikkei 0.4 0.125 0.095 0.772 1.2 0.663 0.129 0.003 0.4 0.125 0.095 0.772 1 1 0.951 0.001 
WIG  1 1 0.951 0.997 0.6 0.331 0.386 0.935 0.4 0.125 0.095 0.772 1.2 0.663 0.766 0 

MOEX 1 1 0.951 0.997 0.8 0.641 0.783 0 0.6 0.331 0.323 0.772 1 1 0.951 0.001 
S&P 0.6 0.331 0.386 0.935 0.8 0.641 0.783 0 1 1 0.951 0.997 1.4 0.397 0.438 0.97 

ER & LT denote the excess ratio and color present the Basel traffic light test result. CC, UC, DQ, indicate the p value of the corresponding test, where green means exceeding 10% p-value. 
Table 6. Results of 2.5% VaR estimation of the financial returns per each analyzed model, stock index and period 

  PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

H
is

to
ric

al
 

Si
m

ul
at

io
n  

 

SHC 3 0.487 0.467 0.56 0.8 0.005 0 0.207 0.8 0.005 0 0.004 3.8 0.083 0.046 0.069 
DAX 6 0 0 0 3 0.487 0.001 0 1 0.015 0 0 5.4 0 0 0 

Nikkei 5.4 0 0 0 0.8 0.005 0 0.003 2.4 0.885 0.552 0.429 4.2 0.026 0.004 0.001 
WIG  4.6 0.007 0 0 2.2 0.661 0 0 1.6 0.168 0.042 0.109 5.8 0 0 0 

MOEX 4.8 0.003 0 0 2 0.458 0.243 0.002 0.8 0.005 0 0.119 3.8 0.083 0.021 0 
S&P 5.8 0 0 0 2 0.458 0.243 0 1 0.015 0.002 0.004 6.2 0 0 0 

K
D

E 
Ep

an
e

ch
ni

ko v  

SHC 3 0.487 0.467 0.56 0.8 0.005 0 0.207 0.8 0.005 0 0.004 3.8 0.083 0.046 0.069 
DAX 5.8 0 0 0 3 0.487 0.001 0 0.4 0 0 0.062 5.2 0.001 0 0 

Nikkei 5.2 0.001 0 0 0.8 0.005 0 0.003 2.2 0.661 0.648 0.606 4.2 0.026 0.004 0.001 
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  PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

WIG  4.4 0.014 0 0 2 0.458 0 0 1.6 0.168 0.042 0.109 5 0.002 0 0 
MOEX 4.8 0.003 0 0 2 0.458 0.243 0.002 0.8 0.005 0 0.119 3.4 0.221 0.067 0 

S&P 5.8 0 0 0 1.6 0.168 0.042 0 1 0.015 0.002 0.004 6 0 0 0 

M
od

ifi
ed

 
C

or
ni

sh
 F

is
he

r 
 

SHC 3.4 0.221 0.192 0.471 1 0.015 0.003 0.329 1 0.015 0.003 0 2.2 0.661 0.648 0.6 
DAX 4.4 0.014 0.002 0 3.2 0.336 0.001 0 0.8 0.005 0 0.004 4 0.048 0.01 0.001 

Nikkei 4.6 0.007 0 0 0.4 0 0 0 2.4 0.885 0.552 0.429 3.2 0.336 0.098 0.003 
WIG  3.8 0.083 0.021 0.001 2.2 0.661 0 0 0.8 0.005 0 0.207 4 0.048 0 0 

MOEX 2.4 0.885 0.552 0.429 2 0.458 0.243 0.002 0.6 0.001 0 0.119 1.6 0.168 0.002 0 
S&P 5.8 0 0 0 1.8 0.292 0.115 0 1 0.015 0.002 0.004 4.8 0.003 0 0 

G
A

R
C

H
-n

 
(1

,1
)  

SHC 3.8 0.083 0.021 0.029 2.8 0.673 0.555 0.712 3.6 0.139 0.1 0.378 3 0.487 0.467 0.56 
DAX 4 0.048 0.008 0.108 4.4 0.014 0.001 0.001 1.6 0.168 0.134 0.757 5.2 0.001 0 0 

Nikkei 4.6 0.007 0.001 0.005 2.6 0.887 0.619 0.701 2.8 0.673 0.555 0.7 5.2 0.001 0 0 
WIG  3.4 0.221 0.192 0.569 3.2 0.336 0.098 0.105 2.4 0.885 0.73 0.918 4.6 0.007 0 0 

MOEX 4 0.048 0.008 0.105 3.2 0.336 0.23 0.077 2.4 0.885 0.734 0.924 2.6 0.887 0.117 0 
S&P 4.6 0.007 0 0.012 4.2 0.026 0.007 0.002 1.8 0.292 0.277 0.755 4 0.048 0.019 0.081 

G
A

R
C

H
-s

t 
(1

,1
)  

SHC 2.2 0.661 0.406 0.276 2.4 0.885 0.73 0.686 2.2 0.661 0.648 0.6 2.6 0.887 0.619 0.481 
DAX 3.2 0.336 0.23 0.647 3.2 0.336 0.23 0.007 1.8 0.292 0.283 0.852 4.2 0.026 0.004 0.002 

Nikkei 2.8 0.673 0.583 0.517 2 0.458 0.243 0.468 2 0.458 0.475 0.907 4.4 0.014 0.001 0.002 
WIG  2.8 0.673 0.583 0.542 2.6 0.887 0.117 0.033 2 0.458 0.475 0.847 3.6 0.139 0.04 0.001 

MOEX 3.4 0.221 0.121 0.429 3.2 0.336 0.23 0.077 2 0.458 0.469 0.85 2.6 0.887 0.117 0 
S&P 3.4 0.221 0.121 0.483 3 0.487 0.384 0.087 1.6 0.168 0.129 0.624 3.2 0.336 0.23 0.654 

G
A

R
C

H
-t 

(1
,1

)  
 

SHC 3.8 0.083 0.021 0.029 2.8 0.673 0.583 0.571 2.8 0.673 0.555 0.7 2.8 0.673 0.583 0.542 
DAX 4.2 0.026 0.003 0.003 4 0.048 0.008 0 2.2 0.661 0.648 0.928 4.8 0.003 0 0.002 

Nikkei 4.2 0.026 0.007 0.006 2.4 0.885 0.552 0.664 2.4 0.885 0.73 0.918 5.2 0.001 0 0 
WIG  3.2 0.336 0.321 0.606 3 0.487 0.123 0.081 2.4 0.885 0.73 0.921 4.6 0.007 0 0 

MOEX 3.6 0.139 0.056 0.302 3.2 0.336 0.23 0.077 2.4 0.885 0.734 0.924 2.8 0.673 0.131 0.001 
S&P 4.2 0.026 0.003 0.103 3.6 0.139 0.056 0.076 1.8 0.292 0.277 0.755 4 0.048 0.01 0.016 

G
A

R
C

H
-

ge
d 

(1
,1

) 
 

SHC 3.4 0.221 0.067 0.008 2.4 0.885 0.73 0.686 2.6 0.887 0.691 0.712 2.8 0.673 0.583 0.542 
DAX 3.8 0.083 0.023 0.202 3.6 0.139 0.056 0 1.6 0.168 0.134 0.757 4.2 0.026 0.004 0.002 

Nikkei 3.4 0.221 0.192 0.125 2.4 0.885 0.552 0.664 2.2 0.661 0.648 0.928 5 0.002 0 0.001 
WIG  3.2 0.336 0.321 0.606 2.8 0.673 0.131 0.056 1.6 0.168 0.134 0.757 4.4 0.014 0.001 0 

MOEX 3.6 0.139 0.056 0.302 3.2 0.336 0.23 0.077 2.4 0.885 0.734 0.924 2.6 0.887 0.117 0 
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  PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

S&P 4 0.048 0.008 0.18 3.4 0.221 0.121 0.09 1.6 0.168 0.129 0.624 3.6 0.139 0.056 0.098 

R
is

kM
et

ric
s 

 

SHC 5.4 0 0 0 2 0.458 0.475 0.49 1.2 0.039 0.013 0.003 4 0.048 0.019 0.002 
DAX 6.4 0 0 0 4 0.048 0 0 1.2 0.039 0.002 0.002 6.6 0 0 0 

Nikkei 6.4 0 0 0 0.8 0.005 0 0.003 3 0.487 0.467 0.074 6.4 0 0 0 
WIG  5.4 0 0 0 3 0.487 0 0 2 0.458 0.243 0.332 5 0.002 0 0 

MOEX 6.8 0 0 0 2.6 0.887 0.117 0.002 0.8 0.005 0 0.119 3 0.487 0.123 0 
S&P 7.8 0 0 0 3.2 0.336 0.015 0 1.8 0.292 0.099 0.027 8.2 0 0 0 

PO
T  

SHC 2.2 0.661 0.406 0.005 1.8 0.292 0.283 0.852 2.4 0.885 0.73 0.678 2.4 0.885 0.552 0.387 
DAX 3.6 0.139 0.056 0.334 2.8 0.673 0.555 0 1.2 0.039 0.013 0.475 4.2 0.026 0.004 0.002 

Nikkei 3 0.487 0.467 0.563 1.2 0.039 0.002 0.046 1.6 0.168 0.134 0.757 5 0.002 0 0.001 
WIG  2.8 0.673 0.583 0.547 2.2 0.661 0.052 0.011 1 0.015 0.003 0.329 4.2 0.026 0.001 0 

MOEX 3 0.487 0.384 0.645 2.2 0.661 0.648 0.6 1.8 0.292 0.099 0.207 2.6 0.887 0.117 0 
S&P 3.4 0.221 0.121 0.483 2.6 0.887 0.691 0.051 1.6 0.168 0.129 0.624 3.4 0.221 0.121 0.552 

Q
M

L-
G

A
R

C
H

 
(1

,1
)  

SHC 1.6 0.168 0.042 0.208 1.8 0.292 0.283 0.852 2 0.458 0.475 0.486 1.8 0.292 0.115 0.088 
DAX 2.2 0.661 0.648 0.902 1.2 0.039 0.013 0.475 0.6 0.001 0 0.119 3 0.487 0.384 0.001 

Nikkei 1.2 0.039 0.013 0.052 0.6 0.001 0 0 1.6 0.168 0.134 0.757 3.2 0.336 0.23 0.079 
WIG  1.4 0.086 0.009 0.005 0.4 0 0 0 0 0   2 0.458 0.025 0 

MOEX 2.6 0.887 0.691 0.712 1.2 0.039 0.013 0.052 0.6 0.001 0 0.062 2.4 0.885 0.087 0 
S&P 1.8 0.292 0.283 0.354 2 0.458 0.475 0.007 1 0.015 0.003 0.329 2.4 0.885 0.73 0.645 

H
C

R
 

 

SHC 3.8 0.083 0.019 0.071 1.2 0.039 0.013 0.475 1 0.015 0.003 0 3.8 0.083 0.023 0.07 
DAX 4.6 0.007 0 0 2.6 0.887 0.117 0 0.6 0.001 0 0.119 4.8 0.003 0 0.001 

Nikkei 6.4 0 0 0 1.4 0.086 0.012 0.109 1.6 0.168 0.129 0.624 5 0.002 0 0 
WIG  3.6 0.139 0.056 0.085 1.8 0.292 0.115 0.088 0.4 0 0 0.062 4 0.048 0.01 0 

MOEX 4 0.048 0 0 1.2 0.039 0.002 0.006 0.4 0 0 0.029 2 0.458 0.025 0 
S&P 8.6 0 0 0 2.8 0.673 0.583 0 1.8 0.292 0.283 0.002 8.4 0 0 0 

H
C

R
-G

A
R

C
H

 
(1

,1
)  

SHC 1 0.015 0 0.014 1.4 0.086 0.049 0.625 2 0.458 0.475 0.486 1.4 0.086 0.012 0.012 
DAX 0.8 0.005 0 0.207 0.6 0.001 0 0.119 0.2 0 0 0.029 2.4 0.885 0.73 0.026 

Nikkei 0.6 0.001 0 0.119 0.6 0.001 0 0 1.4 0.086 0.049 0.625 2 0.458 0.475 0.007 
WIG  0.8 0.005 0 0.207 0.6 0.001 0 0.119 0.4 0 0 0.062 1.6 0.168 0.134 0.001 

MOEX 1.4 0.086 0.049 0.119 1.2 0.039 0.013 0.052 0.4 0 0 0.029 1.2 0.039 0.013 0.052 
S&P 1.4 0.086 0.049 0.119 1.4 0.086 0.049 0 1 0.015 0.003 0.329 2.2 0.661 0.648 0.899 

H C R - Q M L - G A R C H
 

( 1 , 1 )   SHC 1.4 0.086 0.012 0.109 2 0.458 0.475 0.907 2 0.458 0.475 0.486 2 0.458 0.243 0.17 
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  PERIOD I PERIOD II PERIOD III PERIOD IV 
model index ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ ER & LT UC CC DQ 

DAX 2.2 0.661 0.648 0.902 1.2 0.039 0.013 0.475 0.6 0.001 0 0.119 2.8 0.673 0.555 0 
Nikkei 1.2 0.039 0.013 0.052 0.6 0.001 0 0 1.6 0.168 0.134 0.757 3.2 0.336 0.23 0.079 
WIG  1.2 0.039 0.013 0.475 1.4 0.086 0.012 0.109 1 0.015 0.003 0.329 3.2 0.336 0.321 0.001 

MOEX 2.2 0.661 0.648 0.6 1.6 0.168 0.134 0.222 0.6 0.001 0 0.062 2.4 0.885 0.087 0.017 
S&P 1.8 0.292 0.283 0.354 2 0.458 0.475 0.007 1 0.015 0.003 0.329 2.4 0.885 0.73 0.645 

ER & LT denote the excess ratio and color present the Basel traffic light test result. CC, UC, DQ, indicate the p value of the corresponding test, where green means exceeding 10% p-value. 
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5. Conclusion 

The main purpose of this study was to present and empirically test three novel statistical 

learning Value at Risk models: nonparametric HCR, semiparametric HCR-GARCH and hybrid 

semiparametric HCR-QML-GARCH. The benchmark procedure compares the 1% and 2.5% 

one-day-ahead VaR forecasts obtained with the above models against the estimates of classical 

VaR methods, depending on the time period and the stock index. The major hypothesis verified 

in this paper was that HCR-GARCH model can outperform in the formal backtesting procedure 

classical VaR models. According to results, HCR-GARCH model outperforms classical VaR 

models under conditions of sudden increased volatility in the markets which emerges as 

a consequence of the Covid-19 pandemic. In the case of low, moderate and gradually increasing 

volatility, the GARCH-st model proved to be the best and universal model. This conclusion is 

in line with the results, inter alia, Abad et al. (2014), Buczyński and Chlebus (2018) and 

Buczyński and Chlebus (2019). Generally, HCR-GARCH works the best in extreme market 

conditions. The most basic VaR model proposed by us HCR is not able to outperform models 

in its class of nonparametric approaches. Despite the innovation of estimating the density with 

a strong consideration of time, in most cases HCR converges to the results presented by classical 

nonparametric models such as: Historical Simulation or KDE. Additionally, we check whether 

hybrid HCR-QML-GARCH model perform better than the single HCR-GARCH and HCR-

QML-GARCH models. On the basis of the backtesting carried out, we can conclude that this 

hybrid performs better than single models in almost all cases. Which coincides with Lux's 

conclusion (2020). This approach makes the HCR-GARCH model more universal, i.e. it can be 

applied under conditions of moderate volatility.  

We state that our contribution to literature is twofold. First, we provide added value to 

the strand of literature on the semiparametric Value at Risk models by introducing HCR-

GARCH and HCR-QML-GARCH models. Second, our study contributes to the analysis of the 

performance of the classical Value at Risk models in the Covid-19 period. 

We are aware of the significant limitations of this study. First, for the HCR model, one 

can test: (1) a different method to normalize the time series e.g. empirical cumulative 

distribution function or a different distribution than Laplace (2) a more sophisticated method to 

deal with negative density forecasting (3) a different basis than polynomial e.g. sine/consinus 

etc. Another improvement could be obtained using different algorithms of models ensembling 

for example regime switching approach may be applied. An interesting extension of hybrid 

models would be the combination of the HCR-GARCH semiparametric model with the most 
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promising parametric models, e.g. GARCH-st. What is more, for models benchmarking 

purpose, it is worth using more State of The Art models in the field of machine learning and 

more stock indexes.  

References 

Abad P., Benito S., López C., 2014. A comprehensive review of Value at Risk methodologies. 

The Spanish Review of Financial Economics 12(1), 15-32. 

https://doi.org/10.1016/j.srfe.2013.06.001 

Alemany R., Bolancé C., Guillen M., 2012. Nonparametric Estimation of Value-at-Risk. 

XARXA de Referencia en Economia Aplicada. 

https://dx.doi.org/10.2139/ssrn.2162585 

Arian H., Moghimi M., Tabatabaei E., Zamani S., 2020. Encoded Value-at-Risk: A Predictive 

Machine for Financial Risk Management. arXiv preprint arXiv:2011.06742. 

Arimond A., Borth D., Hoepner A. G., Klawunn M., Weisheit S., 2020. Neural Networks and 

Value at Risk. Michael J. Brennan Irish Finance Working Paper Series Research Paper, 

(20-7). arXiv preprint arXiv: 2005.01686. 

Avdulaj K., Barunik J., 2017. A semiparametric nonlinear quantile regression model for 

financial returns. Studies in Nonlinear Dynamics & Econometrics 21(1), 81-97. 

https://doi.org/10.1515/snde-2016-0044 

Bali T. G., Mo H., Tang Y., 2008. The role of autoregressive conditional skewness and kurtosis 

in the estimation of conditional VaR. Journal of Banking & Finance 32(2), 269-282. 

https://doi.org/10.1016/j.jbankfin.2007.03.009 

Banhudo G., 2019. Adaptive value-at-risk policy optimization: a deep reinforcement learning 

approach for minimizing the capital charge. University Institute of Lisbona. 

http://hdl.handle.net/10071/19197 

Bank for International Settlements, 2006. International convergence of capital easurement and 

capital standards. Basel, Switzerland. 

Basle Committee on Banking Supervision, 1996. Supervisory Framework For The Use of Back-

Testing in Conjunction With The Internal Models Approach to Market Risk Capital 

Requirements. Basel, Switzerland.  

Bollerslev T., 1986. Generalized autoregressive conditional heteroskedasticity. J Econ 31(3), 

307–327. https://doi.org/10.1016/0304-4076(86)90063-1 



Woźniak, M. and Chlebus, M. /WORKING PAPERS 10/2021 (358)                        31 

Buczyński M., Chlebus M., 2018. Comparison of Semi-Parametric and Benchmark Value-At-

Risk Models in Several Time Periods with Different Volatility Levels. e-Finanse. 14(2), 

67-82. https://doi.org/10.2478/fiqf-2018-0013 

Buczyński M., Chlebus M., 2019. Old-fashioned parametric models are still the best. A 

comparison of Value-at-Risk approaches in several volatility states. Journal of Risk 

Model Validation 14 (2) https://doi.org/10.21314/JRMV.2020.222 

Buczyński M., Chlebus M., 2020. Size does matter. A study on the required window size for 

optimal quality market risk models. Working Papers 2020-09, Faculty of Economic 

Sciences, University of Warsaw. 

Cavenaile L., Lejeune T., 2012. A Note on the Use of Modified Value-at-Risk. The Journal of 

Alternative Investments 14(4), 79–83. https://doi.org/10.3905/jai.2012.14.4.079 

Christoffersen P., 1998. Evaluating Interval Forecasts. International Economic Review, 39(4), 

841–862. https://doi.org/10.2307/2527341 

Corlosquet M., Janssen J., Manca R., 2013. Use of Value‐at‐Risk (VaR) Techniques for 

Solvency II, Basel II and III. VaR Methodology for Non‐Gaussian Finance. London: 

ISTE/Wiley. https://doi.org/10.1002/9781118733691.ch1 

Costanzino N., Curran M., 2018. A Simple Traffic Light Approach to Backtesting Expected 

Shortfall. Risks 6(1), 2. https://doi.org/10.3390/risks6010002 

Duda J., 2017. Rapid parametric density estimation. arXiv preprint arXiv:1702.02144. 

Duda J., 2018. Hierarchical correlation reconstruction with missing data, for example for 

biology-inspired neuron. arXiv preprint arXiv:1804.06218. 

Duda J., Snarska M., 2018. Modeling joint probability distribution of yield curve parameters. 

arXiv preprint arXiv:1807.11743. 

Duda J., 2019. Exploiting statistical dependencies of time series with hierarchical correlation 

reconstruction. arXiv preprint arXiv:1807.04119. 

Duda J., Szulc A., 2020. Social Benefits Versus Monetary and Multidimensional Poverty in 

Poland: Imputed Income Exercise. In: Tsounis N., Vlachvei A. (eds) Advances in Cross-

Section Data Methods in Applied Economic Research. ICOAE 2019. Springer 

Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-

3-030-38253-7_6 

Embrechts P., Kluppelberg C., Mikosch T., 1997. Modelling extremal events for Insurance and 

Finance. Springer-Verlag, 295-305. http://doi.org/10.1007/978-3-642-33483-2 



Woźniak, M. and Chlebus, M. /WORKING PAPERS 10/2021 (358)                        32 

Embrechts P., Resnick S., Samorodnitsky G., 1999. Extreme value theory as a risk management 

tool. North American Actuarial Journal 3(2). 

https://doi.org/10.1080/10920277.1999.10595797 

Engle R., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of 

United Kingdom inflation. Econometrica 50(4), 987–1007. 

https://doi.org/10.2307/1912773 

Engle R., Manganelli S., 1999. CAViaR: Conditional Value at Risk by Quantile Regression. 

NBER, Working Paper 7341. 

Engle R., Manganelli S., 2004. CAViaR: Conditional Autoregressive Value at Risk by 

Regression Quantiles. Journal of Business & Economic Statistics, 22(4), 367-381. 

Epanechnikov A., 1969. Non-parametric estimation of a multivariate probability density. 

Theory of Probability and Its Applications,14: 153–158. 

https://doi.org/10.1137/1114019 

Ergun A. T., Jun J., 2010. Time-varying higher-order conditional moments and forecasting 

intraday VaR and expected shortfall. The Quarterly Review of Economics and Finance, 

50(3), 264-272. https://doi.org/10.1016/j.qref.2010.03.003 

Gerlach R., Wang C., 2020. Semi-parametric dynamic asymmetric Laplace models for tail risk 

forecasting, incorporating realized measures. International Journal of Forecasting, 

36(2), 489-506. https://doi.org/10.1016/j.ijforecast.2019.07.003 

Hansen B. E., 1994. Autoregressive conditional density estimation. International Economic 

Review, 705-730. https://doi.org/10.2307/2527081 

Huang Y., 2009. A value-at-risk approach with kernel estimator. Applied Financial Economics, 

19(5), 379–395. https://doi.org/10.1080/09603100701857906 

Jones M., Marron J., Sheather S., 1996. A Brief Survey of Bandwidth Selection for Density 

Estimation. Journal of the American Statistical Association 91, 401–407. 

https://doi.org/10.1080/01621459.1996.10476701 

Jorion P., 2001. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-

Hill, United States of America 

Kaszyński D., Kamiński B., Pankratz B., 2020. Assessment of the size of VaR backtests for 

small samples. Przegląd Statystyczny, 67 (2): 114-151. 

https://doi.org/10.5604/01.3001.0014.5726 

Khan A.I., 2011. Modelling daily value-at-risk using realized volatility, non-linear support 

vector machine and ARCH type models. J Econ Int Finance 3(5), 305–321 

https://doi.org/10.5897/JEIF.9000078 



Woźniak, M. and Chlebus, M. /WORKING PAPERS 10/2021 (358)                        33 

Kupiec P., 1995. Techniques for Verifying the Accuracy of Risk Management Models. Journal 

of Derivatives, 3(2), 73-84. https://doi.org/10.3905/jod.1995.407942 

Li Z., Tran M. N., Wang C., Gerlach R., Gao J., 2020. A Bayesian Long Short-Term Memory 

Model for Value at Risk and Expected Shortfall Joint Forecasting. arXiv preprint 

arXiv:2001.08374. 

Lux M., Härdle W., Lessmann S., 2020. Data driven value-at-risk forecasting using a SVR-

GARCH-KDE hybrid. Computational Statistics, 35, 947–981. 

https://doi.org/10.1007/s00180-019-00934-7 

Morgan J. P., 1996. Riskmetrics technical document, 4th ed. J.P. Morgan, New York 

Mostafa F., Dillon T., Chang E., 2017. Value at Risk. Computational Intelligence Applications 

to Option Pricing, Volatility Forecasting and Value at Risk. Studies in Computational 

Intelligence, 697. Springer, Cham. https://doi.org/10.1007/978-3-319-51668-4_8 

Nguyen N., Tran M. N., Gunawan D., Kohn R., 2019. A long short-term memory stochastic 

volatility model. arXiv preprint arXiv:1906.02884. 

Patton A. J., Ziegel J. F., Chen R., 2019. Dynamic semiparametric models for expected shortfall 

(and value-at-risk). Journal of econometrics, 211(2), 388-413. 

https://doi.org/10.1016/j.jeconom.2018.10.008 

Polanski A., Stoja E., 2010. Incorporating higher moments into value‐at‐risk forecasting. 

Journal of Forecasting, 29(6), 523-535. https://doi.org/10.1002/for.1155 

PricewaterhouseCoopers, 2016. Basel IV: Revised internal models approach for market risk. 

Radovi´c O., Stankovi´c J., Stankovi´c J., 2015. Tail risk assessment using support vector 

machine. J Eng Sci Technol Rev 8(1), 61–64 https://doi.org/10.25103/jestr.081.11 

Risk.net, 2020. Market risk. Risk glossary. https://www.risk.net/definition/market-risk 

Rockafellar R., Uryasev S., 2002. Conditional value-at-risk for general loss distributions. 

Journal of banking & finance, 26(7), 1443-1471. https://doi.org/10.1016/S0378-

4266(02)00271-6 

Sarykalin S., Serraino G., Uryasev S., 2008. Value-at-risk vs. conditional value-at-risk in risk 

management and optimization. 270–294. https://doi.org/10.1287/educ.1080.0052 

Silverman B., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 

London. 

Scott D., 1992. Multivariate Density Estimation. Theory, Practice and Visualization, New 

York. 



Woźniak, M. and Chlebus, M. /WORKING PAPERS 10/2021 (358)                        34 

Sheather S., Jones M., 1991. A reliable data-based bandwidth selection method for kernel 

density estimation. Journal of the Royal Statistical Society series B, 53: 683–690. 

https://doi.org/10.1111/j.2517-6161.1991.tb01857.x 

Szubzda F., Chlebus M., 2019. Comparison of Block Maxima and Peaks Over Threshold Value-

at-Risk models for market risk in various economic conditions. Central European 

Economic Journal, 6(53), 70-85. https://doi.org/10.2478/ceej-2019-0005 

Taylor J. W., 2019. Forecasting value at risk and expected shortfall using a semiparametric 

approach based on the asymmetric Laplace distribution. Journal of Business & 

Economic Statistics, 37(1), 121-133. https://doi.org/10.1080/07350015.2017.1281815 

Vapnik V. N., 1995. The nature of statistical learning theory. Springer, New York.  

Wang C.S., Zhao Z., 2016. Conditional Value-at-Risk: Semiparametric estimation and 

inference. Journal of Econometrics, 195(1), 86-103. 

https://doi.org/10.1016/j.jeconom.2016.07.002 

Xu Q., Jiang C., He Y., 2016. An exponentially weighted quantile regression via SVM with 

application to estimating multiperiod VaR. Stat Methods Appl 25(2), 285–320. 

https://doi.org/10.1007/s10260-015- 0332-9 

Yang L., Hamori S., 2020. Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil 

Market: A Wavelet-Based Semiparametric Approach. Energies, 13(14), 3700. 

https://doi.org/10.3390/en13143700 

 



UNIVERSITY OF WARSAW

FACULTY OF ECONOMIC SCIENCES

44/50 DŁUGA ST.

00-241 WARSAW

WWW.WNE.UW.EDU.PL


	WNE WP 10/2021 (358)
	Introduction and literature review
	Methodology
	Empirical study setting
	Results
	Conclusion

