
Warsaw 2018

Working Papers
No. 24/2018 (283)

A MONTE CARLO INVESTIGATION OF THE 
EFFECTS OF SPATIAL HETEROGENEITY 

OF PREFERENCES 
FOR DISCRETE CHOICE MODELS

WIKTOR BUDZIŃSKI

MIKOŁAJ CZAJKOWSKI

UNIVERSITY OF WARSAW

FACULTY OF ECONOMIC SCIENCES



WORKING PAPERS 24/2018 (283) 

Working Papers contain preliminary research results. Please consider this when citing the paper. Please contact the 
authors to give comments or to obtain revised version. Any mistakes and the views expressed herein are solely those 
of the authors   

 

A Monte Carlo investigation of the effects of spatial heterogeneity of preferences  
for discrete choice models 

WWiikkttoorr  BBuuddzziińńsskkii**,,  MMiikkoołłaajj  CCzzaajjkkoowwsskkii  
 
Faculty of Economics, University of Warsaw, Poland 
* Corresponding author: wbudzinski@wne.uw.edu.pl 
 

AAbbssttrraacctt::  There are reasons researchers may be interested in accounting for spatial heterogeneity 
of preferences, including avoiding model misspecification and the resulting bias, and deriving 
spatial maps of willingness-to-pay (WTP), which are relevant for policy-making and 
environmental management. We employ a Monte Carlo simulation of three econometric 
approaches to parametrically account for spatial auto-correlation in discrete choice models. The 
first is based on the analysis of individual-specific estimates of the mixed logit model. The second 
extends this model to explicitly account for spatial correlation, instead of simply conditioning 
individual-specific estimates on population-level distributions and individuals’ choices. The third 
is the geographically weighted multinomial logit model, which incorporates spatial dimensions 
using geographical weights to estimate location-specific choice models. We analyze the 
performance of these methods in recovering population-, region- and individual-level preference 
parameter estimates and implied WTP in the case of spatial autocorrelation. We find that, although 
ignoring spatial autocorrelation did not significantly bias population-level results of the simple 
mixed logit model, neither individual-specific estimates nor the geographically weighted 
multinomial logit model was able to reliably recover the true region- and individual-specific 
parameters. We show that the spatially-autocorrelated mixed logit proposed in this study is 
promising and outline possibilities for future development.  

KKeeyywwoorrddss:: discrete choice experiment; discrete choice models; individual-, region- and 
population-level parameter estimates; preference heterogeneity; spatial auto-correlation 

JJEELL  ccooddeess:: Q51, C25, C31 

AAcckknnoowwlleeddggeemmeennttss:: The authors wish to thank the participants of the 23rd Annual Conference of the 
European Association of Environmental and Resource Economists, Athens, 2017, who facilitated this 
study with helpful comments on an earlier version of this paper. MC gratefully acknowledges the support 
of the Polish Ministry of Science and Higher Education and the National Science Centre of Poland 
(Sonata 10, 2015/19/D/HS4/01972). WB acknowledges the support of the National Science Centre of 
Poland (Preludium, 2016/21/N/HS4/02094) and the support of the Foundation for Polish Science (FNP). 

http://doi.org.10.26405/WP/WNE/2018/283/024 



Budziński, W. and Czajkowski, M. / WORKING PAPERS 24/2018 (283)                            1 
 

 
 

 

1. Introduction 

Preferences for environmental goods may follow spatial patterns (ref. intro paper of this special 

issue). This becomes an important issue for discrete choice models, commonly used for 

modeling consumers’ preferences and willingness-to-pay (WTP). First, ignoring any important 

source of preference heterogeneity may lead to model misspecification and result in biased 

estimates. However, because modern developments in geographical information systems (GIS) 

allow researcher to easily combine them with individuals’ locations (e.g., zip-codes) and 

provide detailed information about the spatial configuration of environmental goods, it is now 

easy to control for spatial patterns in stated and revealed preferences, such as spatial 

autocorrelation. Second, explicitly accounting for spatial dependencies is useful for policy-

making and environmental management, for example by allowing derivation of detailed spatial 

maps of WTP.  

These reasons spark increasing interest in using location-specific references or 

improvement levels of choice attributes, or including location-specific characteristics as 

explanatory variables of preferences (e.g., Campbell et al. 2008; Campbell et al. 2009; Hynes 

et al. 2010; Johnston et al. 2011). More importantly, however, parametric methods of 

accounting for spatial heterogeneity are being developed, which allow for uncovering spatial 

patterns that are otherwise difficult to attribute to any characteristic that is observable and 

available in the data (e.g. Johnston and Ramachandran 2014).  

The most common parametric way to account for spatial preference heterogeneity in 

discrete choice models is to include a two-step procedure, in which the Mixed Logit (MXL) 

model is estimated and individual-specific parameter estimates (conditional on respondents’ 

choices) are derived; they are then used for spatial analysis, such as the spatial lag model, the 

spatial error model, or kriging (e.g. Abildtrup et al. 2013; Broch et al. 2013a; Yao et al., 2014; 

Czajkowski et al. 2017). This approach can be extended to explicitly allow random parameters 

to follow a spatial lag process. Such a spatially autocorrelated mixed logit (SA-MXL) model is 

proposed in this study. Finally, the third approach considered in this study is the geographically 

weighted multinomial logit model (GW-MNL; Budziński et al. forthcoming). This is an 

extension of the geographically weighted regression, in which spatial dimension is incorporated 

using geographical weights to estimate location-specific models (Fotheringham et al. 1998) of 

discrete choice data.  
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In this study, we provide an overview of the three methods, reviewing their advantages 

and limitations, and employ a Monte Carlo simulation to investigate their performance in the 

case of unobserved spatial autocorrelation. We evaluate the models’ performances in terms of 

the ability to correctly recover population-, region- and individual-level preferences and WTP.  

Section 2 presents the three methods mentioned above with more detail and mathematical 

rigor. Technical details regarding the SA-MXL model proposed here and its estimation are 

provided in Appendix 1. Section 3 describes and justifies the data generating process used in 

the Monte Carlo simulation. Section 4 presents results in terms of model bias when recovering 

population-level preferences and WTP, individual-specific parameters, and region-specific 

estimates. The last section concludes.  

2. Methods 

We use a Monte Carlo simulation to compare three models that may be applied to discrete 

choice data with spatial dimension of preference heterogeneity. We start the description of these 

models with a standard mixed logit (MXL) model, and then follow it with a novel extension, 

a spatially autocorrelated mixed logit (SA-MXL) model. In the last part, we describe 

a geographically weighted multinomial logit (GW-MNL) model.1  

2.1. Mixed logit model 

The theoretical foundation for the discrete choice model is random utility theory, which 

assumes that the utility a person derives depends on observed characteristics and unobserved 

idiosyncrasies, represented by a stochastic component (McFadden 1974). As a result, individual 

i ’s utility resulting from choosing alternative j  in choice set t  can be expressed as: 

 
non-cost cost

ijt i ijt i ijt ijtU X   β X . (1) 

In the mixed logit model, it is assumed that each individual i  has a separate, independent 

set of parameters. Assuming extreme value distribution for the error component, 
ijt , leads to 

a well-known formulation of conditional likelihood in multinomial logit form. As individual-

specific parameters are not directly observed, a distribution for them needs to be assumed and 

                                                 

1 The software codes for estimating the models presented here were developed in Matlab and are available from 

http://github.com/czaj/DCE under Creative Commons BY 4.0 license. The simulation data and supplementary 

materials are available from http://czaj.org/research/supplementary-materials. 

http://github.com/czaj/DCE
http://czaj.org/research/supplementary-materials
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integrated. Such unconditional likelihood can then be used for estimation of parameters 

describing the distribution of random effects; for example, their means and variances. 

Estimation of MXL is usually performed using the maximum simulated likelihood (MSL) 

method, and this is also the case in the present study.2  

Throughout the study we assume that individual-specific parameters for non-cost 

attributes, iβ , follow normal distributions, whereas the individual-specific parameter for cost, 

i , follows a log-normal distribution. Although the individual specific parameters are not 

observed by the researcher, it is possible to estimate their values as implied by each 

respondents’ choices conditional on the population-level estimates of parameter distributions 

(Bayesian posterior means) using the Bayes theorem. We will focus on predicting individual-

specific marginal WTP with the following formula 

 
   

 
 

| , , , , |
| , , ,

| ,

i i i i i ii i
i i i i

i i i i
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 


 

  
  

 


y X β ββ β
y X β

y X
,  (2) 

where  | , , ,i i i ip y X β  is the likelihood of individual i  making the observed choices 

conditional on the values of random parameters,  | ,i ip y X  is the same likelihood but 

unconditional (random parameters are integrated out, so it is the likelihood function for MXL) 

and  , |i if  β  is the assumed pdf function of random parameters. For more details about 

this approach and examples of its applications, refer to Czajkowski et al. (2017), Abildtrup et 

al. (2013), Broch et al. (2013b) and Yao et al. (2014).  

Note that the MXL model does not assume any spatial dependence in its specification. 

Any spatial effect we observe in individual-specific WTP obtained from formula (2) is due to 

conditioning on the vector of observed choices, iy . 

2.2. Spatially autocorrelated mixed logit 

In this study, we propose a novel extension of the MXL model, which directly accounts for 

spatial dependencies in preference heterogeneity. Although SA-MXL follows the same utility 

specification as described in (1), the difference arises due to the specification of the distribution 

of random parameters. In standard MXL, it is assumed that parameters are independent among 

                                                 

2 For our simulation, we employ 10,000 draws from a scrambled Sobol sequence (Czajkowski and Budziński, 

2015). 
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individuals; this is not the case here. In this specification, we follow LeSage and Smith (2004). 

Let us define ik , which the random parameter for the k-th attribute (out of a total of K  

attributes) will depend on, as: 

 
1

,
NP

ik k im mk ik

m

w u  


    (3) 

where ~ (0, )ik ku N  . We assume that iku  are independent among individuals and attributes. 

The latter assumption is likely to be too restrictive, as it implies that there is no correlation 

between different random parameters, and therefore no scale heterogeneity or correlation of 

tastes (Train 2009; Hess and Train 2017). The model can be extended to incorporate such 

correlation, but this is beyond the scope of this study.  

Equation (3) describes a spatial autoregressive process, which can be written in vectorized 

form as 
1

kk k



 θ B u , where 
k kB I W   , and W  is a spatial weight matrix, whose rows sum 

to 1.3 From this it follows that  
1

2~ 0,
k kk kMVN B B 





 
 
 

θ . If the k-th attribute is not a cost 

( k K ), we assume that the random parameter is specified as: 

 ,ik k ik      (4) 

whereas if the k -th attribute is a cost ( k K ), then we assume that: 

  exp ,i K iK      (5) 

where k  are parameters to estimate (means of random parameters). Similarly, as in Train and 

Sonnier (2005) any distribution that is a transformation of a normal distribution can be specified 

here, but in this simulation, we limit ourselves to the most common specifications of normal 

and log-normal distributions.  

Note that in general this model cannot be estimated by MSL. This is because of the non-

zero correlation between choices of all individuals. In MSL, the researcher would have to 

calculate the product of conditional probabilities of choices across all individuals and choice 

tasks. If the number of individuals is large, such a product would become effectively equal to 

0 due to numerical precision. This issue can be, to some extent, resolved if the particular 

                                                 

3 Throughout the study, we use the inverse squared distance as a weight matrix, which is a standard approach in 

spatial econometrics. 
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specification of W is assumed; for example, k  nearest neighbors. In this study, to test a more 

general case, we estimate the model using Bayesian inference, based on Train and Sonnier 

(2005) and LeSage and Smith (2004). The detailed specification of the model and its estimation 

details are provided in Appendix 1.  

Individual-specific estimates of WTP are easy to obtain from SA-MXL, as we can simply 

use saved draws from posterior distributions to calculate them. For the n -th saved set of draws 

from a posterior distribution, we can define WTP for the k -th attribute as: 

 
 exp

n n

k k
nk n n

K K

WTP













θ

θ
,  (6) 

and then we can calculate its mean, median, or any other characteristic over n.  

To our knowledge, this specification of the model has never been used before for any 

application aimed at uncovering spatial heterogeneity of preferences. 

2.3. Geographically weighted multinomial logit 

The geographically weighted multinomial logit model (GW-MNL; Budziński et al. 

forthcoming) is an extension of the geographically weighted regression (Fotheringham et al. 

1998) of discrete choice data, in which the spatial dimension is incorporated using geographical 

weights to estimate location-specific models. The rationale of this approach is that if spatial 

clusters of preferences do exist, a locally-weighted maximum likelihood method can be used to 

account for spatial autocorrelation or other spatial patterns of preferences and welfare measures. 

Because this is a semi-parametric approach, no a priori assumptions about the spatial 

distribution of preferences are necessary. 

The utility function in GW-MNL is defined analogously as in (1), with the only difference 

being that the parameters are now location-specific rather than individual-specific, and 

therefore, they are indexed by l. If the number of locations is the same as the number of 

individuals, then the two specifications are the same (which is the case in our simulation).  

 
non-cost cost

ijt l ijt l ijt ijtU X   β X   (7) 

The assumption that allows for the estimation of GW-MNL is that individuals located 

close to each other have more similar preference parameters than individuals located far away 

from each other. As a result, the parameters become spatially correlated.  
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The estimation is conducted by estimating L ‘local’ models, where L is a number of 

distinct locations. In the case of our simulation, it will be equal to the number of individuals, so 

there will be a separate local model estimated for each individual. Each local model is estimated 

via the weighted maximum likelihood method. The likelihood of the choices of individual i , 

assuming the l -th local model, can then be written as 

 
 
 

non-cost cost

non-cost cost
1

exp

exp

it it

CT
l iy t l iy tl

i

t l ijt l ijtj
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L

X












β X

β X
. (8) 

The weighted log-likelihood for the l -th model is defined as follows:  

    
1

, , , log
NP

l l

i i i

i

WL Lat Long b l L


 ,  (9) 

where  , , ,i iLat Long b l  is a geographical weight (kernel) that depends on the latitude and 

longitude of individual i ’s location, b  which is called the ‘bandwidth parameter’ and the 

location l  for which the local model is estimated. There are a few functional forms of     

proposed in the literature. In what follows, we use the Gaussian kernel4 defined as: 

  
   

2 2

2
, , , exp 0.5

i l i l

i i

Lat Lat Long Long
Lat Long b l

b


   
  

 
 

.  (10) 

This is simply an exponential function of negative half of the squared Euclidean distance 

of individual i ’s location from location l  divided by the square of the bandwidth parameter. If 

the individual lives exactly in location l , this weight is equal to 1. The use of this weight implies 

the clustering of similar values because observations near location l  have a larger bearing on 

the local model’s log-likelihood compared to observations that are further away. The bandwidth 

parameter therefore determines what “further away” means. If the bandwidth is low, then 

practically, only the observations in very close proximity of the given location influence the 

local model. Specifically, when 0b , each local model is estimated using observations only 

from the given location. Analogously, when bandwidth is high, all local models will have 

similar parameter estimates, with b  leading to a simple MNL model for the whole sample.  

                                                 

4 For other possible kernels, see Fotheringham, Brunsdon and Charlton, 2003.  
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In GW-MNL, individual-specific WTP can be calculated simply with marginal WTP for 

each local model, i.e. l
l

l

WTP



β

 , and then assigning them to the individuals who live in those 

locations.  

For more details about this approach and an example of its applications, see Budziński et 

al. (forthcoming). 

3. Simulation setting 

Our simulation setting was aimed at recovering individual preferences in the case of their spatial 

autocorrelation. Even though we expect the SA-MXL model to perform best, as it is fully 

consistent with the data generating process, this model is relatively more complex and 

demanding in terms of estimation time (approximately 1 hour, compared to 1 minute for MXL 

and 40 minutes for all GW-MNL models). It is therefore useful to test if the alternative approach 

to uncovering spatial patterns (the GW-MNL model) or using individual-specific estimates 

from the MXL that ignores spatial dimension perform reasonably well.  

The models will be compared using three different measures of performance. First, we 

compare the characteristics of the WTP distribution implied by the estimated models, such as 

WTP mean and standard deviation. Here, we are not directly interested in the spatial dimension 

of preferences, but we rather focus on obtaining a good description of the WTP distribution in 

the population. Second, we compare individual-specific WTP estimates with their true values 

and calculate mean absolute percentage error (MAPE). This analysis will allow us to conclude 

whether individual-specific estimates can be used for valid inference. Last, we will compare 

the models’ “regional” predictions based on their individual-specific WTP estimates. 

Specifically, we will divide the simulated area into nine squares of equal sizes, and predict mean 

WTP for each of them using our models. Then, we will compare these predictions with the true 

mean regional values and calculate absolute percentage errors. This measure will provide us 

with information about how useful these methods are when it comes to using national level 

samples for more “regional” analysis. 

The data generating process assumed 1,000 individuals with six choice tasks per 

individual, each choice consisting of three alternatives, defined by two attributes, denoted as 

Quality and Cost. Such a simple setting leads to only one vector of WTP (one value for each 
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individual), which we will use to evaluate the performance of the approaches presented in the 

previous section.  

Specifically, the utility function is given by: 

 Quality Costijt i ijt i ijt ijtU      , (11) 

where, Quality and Cost attributes follow uniform distributions on a [0,2]  interval, and the 

stochastic term, 
ijt , follows a standard extreme value distribution. i  follows a log-normal 

distribution. Spatial autocorrelation was assumed to be equal to 0.6 for both parameters. The 

values of parameters used in the data generating process are summarized in Table 1. 

Table 1. True values of parameters used in the Data Generating Process of the Monte 

Carlo simulation  

 
k  

2

k  k  

Quality 3 1 0.6 

Cost -1 1 0.6 

 

We assumed the individuals were distributed uniformly on a 10x10 square. An example 

of spatial distribution of WTP is presented in Figure 1. The spatial dependence is not 

straightforward to see, as there is still significant variation on the local level, but Moran’s I 

statistic is actually equal to 0.67 in this case. This data generating process may correspond to 

a situation where spatial dependence is only one of the factors driving the preference 

heterogeneity, which is likely to be the case in a real-world scenario. Nevertheless, significant 

spatial autocorrelation means that individuals located near each other are more likely to have 

similar preferences and values of WTP.  
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Figure 1. Example of spatial distribution of WTP in the data generating process 

 

The simulation uses 100 artificial samples according to the described data generating 

process. We then estimate MXL, SA-MXL, and GW-MNL models for each sample, with 40 

GW-MNL models for each sample (the GW-MNL models differed in the value of bandwidth 

parameters, ranging from 0.05 to 2 with 0.05 increases). 

4. Results 

Table 2 provides the characteristics of WTP, as implied by the data generating process and the 

estimated models. Each characteristic is simulated, as the WTP distribution is non-standard 

(normal random variable divided by log-normal random variable; in the case of true values and 

SA-MXL, they are additionally spatially autocorrelated) with unknown analytic formulas. For 

each of 100 generated datasets we calculated the implied characteristics of WTP for each model. 

Table 2 reports their means and standard deviations (in brackets). 
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Table 2. Comparison of selected moments and quantiles of the recovered willingness-to-

pay distribution with their true values implied by the data generating process 

  
Mean Std. Dev 

10th 
percentile 

25th 
percentile 

50th 
percentile 

75th 
percentile 

90th 
percentile 

True 15.4807 31.6163 1.617 3.4422 7.6421 16.7063 33.8252 

SA-MXL 
16.5795    
(4.8224) 

39.5100    
(28.1746) 

1.6188    
(0.2088) 

3.4657    
(0.4335) 

7.7832    
(1.2882) 

17.3141    
(3.9655) 

35.7787    
(10.5124) 

MXL 
16.3735    
(4.6594) 

30.2507    
(14.7820) 

1.5762    
(0.1993) 

3.4088    
(0.4142) 

7.8272    
(1.2514) 

17.8172    
(3.9582) 

37.2093    
(10.6940) 

GW-MNL   
(min. AIC) 

-0.0191    
(55.1850) 

302.5630    
(1617.1076) 

2.4358    
(0.4508) 

3.2610    
(0.4026) 

4.5097    
(0.4681) 

6.7887    
(0.8828) 

11.3977    
(2.3929) 

GW-MNL  
(min. MAPE) 

4.7185    
(1.4703) 

9.8760    
(26.0672) 

2.2433    
(3.4068) 

3.3625    
(1.6781) 

4.3330    
(1.0085) 

5.5394    
(0.8548) 

7.4295    
(1.5778) 

 

In the case of GW-MNL, it was not clear which value of bandwidth parameter should be 

selected. There are several methods available in the literature, such as the corrected Akaike 

information criterion (AIC, Dekker et al. 2014), taking the lowest bandwidth at which all local 

models converge (Dekker et al. 2014), a leave-one-individual-out cross-validation criterion 

(Fotheringham et al. 2003), or simply “eye-balling” as suggested by Koster and Koster (2015). 

We compare the bandwidth chosen based on the AIC method, with the bandwidth that 

minimizes MAPE for individual-specific WTP. The latter should result in the best possible 

performance of the GW-MNL, as it is optimized by considering the true values of the 

parameters. In a real-life situation, however, it would not be possible to use this method, as true 

individual-specific WTP would be unknown. 

The results presented in Table 2 show that SA-MXL and MXL provide estimates that are 

close to each other, and at the same time, close to the true characteristics. The only difference 

is in the standard deviation, which SA-MXL seems to overestimate. As percentiles of the 

distribution are well recovered, and standard deviation is not, this would imply that there are 

some outliers within the 100 estimated models. We attempted to re-estimate the models that 

implied values of the standard deviations of WTP that were too large using different starting 

values and a greater number of iterations in Gibbs sampler, but this did not qualitatively change 

the results. It may be the case that a more sophisticated Bayesian algorithm needs to be used, 

such as the Hamiltonian Monte Carlo (Gelman et al. 2014), or that the complexity of the model 

makes it difficult to properly recover the variance of preferences, as k  and k  parameters can 

both influence it.  

In the case of GW-MNL, the results depend on the choice of bandwidth parameter. If the 

bandwidth is chosen to minimize AIC (on average 0.47b  ), means and standard deviations 

are highly biased because some local models did not converge, resulting in unreasonably high 
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or low values of local parameters. On the other hand, estimates of percentiles are too high for 

low percentiles, and too low for higher ones. This implies that GW-MNL cannot provide 

a proper estimate of the distribution of WTP. This is likely because this model only considers 

spatial dimension of data, ignoring any other possible sources of heterogeneity. When 

the bandwidth is chosen to minimize the MAPE of individual-specific WTP (on average 

1.01b  ), the means and standard deviations are less biased, but the percentile estimates are 

similar to the ones from GW-MNL with the AIC-based bandwidth.5 

In Table 3, we present a summary of the results of the MAPE, calculated by comparing 

true individual-specific WTP with individual-specific WTP predicted by the models. As we 

have a separate MAPE calculated for each of 100 artificial datasets, we present a summary, 

with the mean MAPE value, and the 5th and 95th percentiles of MAPE values. The cases 

analyzed here are similar to Figure 2, with the exception of SA-MXL, which was divided into 

two cases. We calculate the posterior mean of individual-specific WTP, as well as the posterior 

median of individual-specific WTP, as the latter seems to have significantly lower error. This 

is an interesting finding, as the mean is usually used for inference, while the median is known 

to be less sensitive to outliers. Nevertheless, for MXL we calculate only the posterior mean, as 

the posterior median is not easily obtainable.  

Table 3. Mean absolute percentage error calculated for individual-specific willingness to 

pay estimates 

  
Mean Absolute Percentage Error (%) 

[90% confidence interval] 

SA-MXL – posterior mean of WTP 
398.0874                               

[160.29 - 744.49] 

SA-MXL – posterior median of WTP 
145.8917                            

[88.49 - 284.06] 

MXL – posterior mean of WTP 
535.2666                          

[166.38 - 1226.17] 

GW-MNL  (min. AIC) 
417.3288                                        

[113.95 - 1607.45] 

GW-MNL (min. MAPE) 
148.8819                                        

[98.32 - 243.85] 

 

As for the performance of the models, MXL has the highest MAPE on average (535%). 

Next are GW-MNL with bandwidth chosen based on AIC (417%) and SA-MXL, with posterior 

means of WTP (398%). The best performance is provided by the GW-MNL, where the 

                                                 

5 In the supplementary materials available online, we provide the results of a simulation in which preference 

heterogeneity depends deterministically on some spatial process (e.g., distance decay). In such a case GW-MNL 

works much better and different methods of choosing bandwidth provide similar results.  
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bandwidth is chosen to minimize the MAPE (149%) and SA-MXL with posterior medians of 

individual-specific WTP (146%). It should be noted again that the former could not be chosen 

in a real-life scenario, as the values of MAPE could not be calculated. As a result, although 

GW-MNL can follow SA-MXL when it comes to the prediction of individual-specific WTP, it 

remains limited by the lack of a robust method for choosing a bandwidth parameter. Last, it 

should be noted that even for SA-MXL, which works best in this setting, an average bias is 

146%, which may be considered significant in real-world applications.  

 In Table 4, we present a summary of absolute percentage errors when comparing mean 

WTP across nine “regions” (which we defined simply as nine squares of equal size). We 

calculated minimal, mean, and maximal absolute percentage error (across nine “regions”) for 

each model and each artificial dataset. To summarize the results, we once again present mean 

results, as well as 5th and 95th percentiles.  

When comparing MAPE the conclusions from this Table are slightly different from those 

in Table 3 – here SA-MXL performs best irrespectively whether it uses mean (44%) or median 

(42%) posterior WTP. GW-MNL (69%, with bandwidth that minimizes MAPE from Table 3) 

and MXL (72%) follow, although we note that MXL’s MAPE has relatively large interquantile 

range here. Lastly, GW-MNL with bandwidth that minimizes AIC (131%) performs worst. 

When comparing MAPE the order is the same as for Table 3. It seems that although SA-MXL 

(with posterior mean of WTP) has low error on average, it may produce much larger error (up 

to 110%) for some “regions”. The results for SA-MXL (with posterior median) and GW-MNL 

(with bandwidth that minimizes MAPE) provide more uniform distribution of errors across 9 

“regions”.  

Table 4. Minimum, Mean and Maximum absolute percentage errors calculated for 

region-specific willingness to pay estimates  

  

Minimum Absolute 
Percentage Error (%) 

[90% confidence 
interval] 

Mean Absolute 
Percentage Error (%) 

[90% confidence 
interval] 

Maximum Absolute 
Percentage Error (%) 

[90% confidence 
interval] 

SA-MXL – posterior mean of WTP 
9.3109                      

[0.39 - 37.93] 
44.0709                 

[13.82 - 127.33] 
110.4981                 

[31.65 - 327.31] 

SA-MXL – posterior median of WTP 
24.1706                              

[5.48 - 43.58] 
42.3833                 

[26.79 - 55.07] 
59.8446                 

[41.46 - 72.44] 

MXL – posterior mean of WTP 
31.8365                              

[0.41 - 186.43] 
71.7537                 

[13.85 - 266.29] 
122.3254                 

[30.47 - 372.05] 

GW-MNL  (min. AIC) 
29.9781                              

[5.77 - 55.33] 
130.9899                 

[52.05 - 170.34] 
658.9347                 

[71.77 - 982.27] 

GW-MNL (min. MAPE) 
49.0685                 

[18.66 - 62.75] 
68.6270                 

[60.08 - 96.86] 
88.0015                 

[69.44 - 161.82] 
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5. Summary and conclusions 

In this study, we compared the performance of three models that can be used to analyze discrete 

choice data in which preference heterogeneity depends on some spatial factors, which affect 

spatially autocorrelated preferences. The models compared include (1) the traditional MXL 

model, which does not explicitly assume any spatial dependence but recovers spatial effects by 

conditioning individual-specific WTP on the vector of observed choices, (2) the novel 

specification for the MXL model, in which spatial dependence of preference heterogeneity is 

explicitly accounted for (SA-MXL), and (3) the geographically-weighted (locally estimated) 

MNL model (GW-MNL). The comparison was based on the models’ ability to recover true 

parameters of the data generating process, as assumed in the simulation.  

Our results show that the SA-MXL model generally performs best. This should not come 

as a surprise, as this is the only currently available model which is specified consistently with 

our data generating process, involving both unobserved and spatially autocorrelated preference 

heterogeneity. The individual-specific estimates resulting from the traditional MXL model are 

conditional on population-level distributions and observed choices without explicitly allowing 

for spatial auto-correlation, while the GW-MNL is unable to recover the non-spatial unobserved 

preference heterogeneity implied by the data generating process in our experiment.6  

It must be noted here that although in our simulation setting the proposed SA-MXL model 

shows promising results, further work is needed to confirm its performance in real-life studies. 

In particular, we acknowledge two limitations of this model, which future research could focus 

on: (1) establishing more efficient algorithms for faster estimation and better convergence (e.g., 

other Bayesian estimation techniques, use of probit instead of logit kernel) and (2) allowing for 

correlation between random parameters, which in our opinion could be a significant limiting 

factor for empirical applications. 

The good news of our experiment is that if the goal of the analysis is to estimate the 

overall distribution of WTP in the population, in our simulation setting the standard MXL 

model was sufficient. Not accounting for spatial dependencies did not significantly bias 

estimates of the mean or some other characteristics of the WTP distribution (Table 2).  

                                                 

6 The model performs well in an idealized situation of no such source of preference heterogeneity; this is equivalent 

to the MNL model failure in the case of, for example, normally distributed preference parameters, as implied by 

the common MXL model specification.  
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On the contrary, we find that if one is interested in deriving individual-specific or region-

specific estimates of WTP, using a model that accounts for spatial dependencies may be 

necessary and the results of commonly used approaches may be misleading. In our simulation, 

the MXL and GW-MNL models resulted in substantial bias of individual-specific (Table 3) and 

region-specific (Table 4) estimates. 

The likely reason the GW-MNL model fails in these settings is that although the model 

accounts for spatial dimension of heterogeneity, it does not allow for other sources of 

(unobserved) preference heterogeneity.7 This could be addressed by developing more advanced 

models, such as a geographically weighted latent class model (GW-LC; Campbell et al., this 

issue), or geographically weighted mixed logit (GW-MXL) models. The development and 

proliferation of these approaches to applied studies would remain limited, however, until 

reliable methods for selection of the bandwidth parameter, responsible for weighting in other 

nearby locations in geographically weighted models, are found (Budziński et al. forthcoming). 

Overall, our results are encouraging, showing that it is generally possible to mitigate bias 

resulting from spatial autocorrelation of individual preferences for environmental goods. At the 

same time, we demonstrate that by employing correct parametric methods to explicitly account 

for spatial dependencies, it is possible to derive unbiased individual- and region-specific 

preference and WTP estimates. We call for the further development of these methods, however, 

so that they better fit the real-life situations that are encountered in many applied studies.  

                                                 

7 In a real-life situation, one would typically have several individuals per location (e.g., per ZIP-code area), which 

would likely render GW-MNL’s performance even worse. 
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Appendix 1. Econometric specification and estimation of the spatially autocorrelated 

mixed logit model  

To specify the posterior distribution of this hierarchical Bayes model, we start with the 

conditional probability of making an observed choice. If random parameters, ib  and i , are 

known, the likelihood of a vector of choices  iy  is given by: 

  
 
 

non-cost cost

non-cost cost
1
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exp
| , , it it
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y X m q . (12) 

To obtain the posterior distribution for all model coefficients, we need to first specify 

their priors. We have chosen standard diffuse priors, analogously as in LeSage and Smith 

(2004), which are presented in (13). For spatial autocorrelation coefficients, k , distribution is 

uniform on interval depending on minimal and maximal eigenvalues of the W matrix. 
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In the proposed model, only the posterior distribution for 
2

k  is a known distribution, namely 
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q q B B q  , where m  is a number of distinct spatial locations (in our case, 

equal to the number of respondents). Spatial autocorrelation has a posterior distribution proportional to 
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q B B q
q B , which does not describe any known 

distribution. Other parameters have posterior distributions given as a product of (12) and their 

prior from (13). As some posteriors are unknown, the proposed estimation algorithm is a Gibbs 

sampler, with four steps in total, where three of them employ the Metropolis-Hastings 

algorithm. The estimation process proceeds as follows:  
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1. Some initial values of all parameters are assumed: 0 0 0 0, , ,m s r q . 

2. For the each individual, we draw the candidate vector of individual-specific parameters, 

0

1i i  q q t h , where h  is a vector of random variables from a multivariate normal 

distribution centered around 0, with standard deviations equal to vector 0
s , and 1  is the 

tuning parameter, used to assure an acceptance rate of approximately 0.3. This step has 

numerous sub-steps equal to the number of individuals in the sample. For individual l , 

there is the following procedure: 

a. We define  1 1 0 0

1 2 1, , , , , ,l

k k k lk l k NPk     


q , where, for example, 1

1k  denotes 

the saved draw for individual 1. Analogously we define 

 1 1 0 0 0

1 2 1, , , , , ,l

k k k lk l k NPk    

 


q . Then 

   

   

0

0 11

| , ,

| , ,

l

kk

l

kk

l
i i i

l
i i i

f
R

f

p

p

















q

q

y X m q

y X m q
 

is compared with a random draw from the uniform distribution,  . Specifically, 

if R   we set 1

lk lk   for each k, and 1 0

lk lk   otherwise. In the formula for 

R   l

kf q  is a pdf function of a multivariate normal distribution with mean 

equal to 0, and variance matrix equal to  
1

2

k kk B B 


 .  

3. The vector of variances  
2

1
s  is drawn from the inverse gamma distribution conditional 

on 1
q  matrix and 0

r  vector.  

4. We draw a candidate vector for means of random parameters, 0

2 m m t h , where h  

is a vector of random variables from a multivariate normal distribution centered around 

0, and 2  is the tuning parameter, used to assure an acceptance rate of approximately 

0.3. Then, 
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μ

μ
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y X μ θ

 is compared with a random draw from the 

uniform distribution,  . Specifically, if R  , we set 1 m m  , and 1 0m m  

otherwise.  

5. We draw a candidate vector 0

3 r r t h , where h  is a vector of random variables from 

a multivariate normal distribution centered around 0, and 3  is the tuning parameter, 

used to assure an acceptance rate of approximately 0.3. If the candidate draw is not from 
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the interval 1 1,Min MaxEig Eig    , we set 
1 0r r . Otherwise, we compare 

1

0 1

( | )

( | )

k kk

k kk

p
R

p













q

q
 with a random draw from the uniform distribution,  . Specifically, 

if R   we set 1 r r  , and 1 0r r  otherwise. 

After all steps, the procedure is repeated but the initial values 0 0 0 0, , ,m s r q  are replaced 

by 1 1 1 1, , ,m s r q . We run this process 40,000 times, considering the first 10,000 draws as the 

“burn-ins” sample, and then taking every third draw of the rest of the generated draws. In total 

we obtain 10,000 draws from the posterior distribution for inferences.  
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Appendix 2. Results of a simulation with a deterministic spatial heterogeneity of 

preferences 

In this Appendix we provide the results of an analogous simulation as in the main text, with the 

difference that now preference heterogeneity is solely driven by a deterministic spatial process. 

Specifically, we assume that researcher is trying to value some public good, for which there are 

available 4 substitutes in the area of interest. The distance to those substitutes will be a driver 

of preference heterogeneity. We assume that individual-specific parameters are given by 

1 3log( )
i i

Dist     and 2
i i

Dist  , where 
i

Dist  is a distance to the nearest substitute for 

individual i .  In Figure A1 we present a distribution of WTP implied by these parameters, for 

substitutes located at points (-4, -4), (3, 2), (-4.5, 3) and (1, -3). This distribution follows an 

intuitive dependence, that individuals living further away from the substitutes are willing to pay 

more for a public good. The difference with respect to Figure 1 is that now, the dependence is 

deterministic. The question we investigate with such data generating process is whether 

proposed models can recover such spatial process, if, e.g., substitutes are unknown or we cannot 

control for them for some reason.      

Figure A1. Example of spatial distribution of WTP in the deterministic data generating 

process   
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Below we present 3 tables analogous to tables 2, 3 and 4 from the main text. In this 

comparison we do not include SA-MXL model as we obtained very strange results with this 

data generating process, with implied WTP distribution characteristics sometimes  more than 

100 times larger than the true values. We believe that this is because for such data generating 

process spatial autocorrelation parameter, 
k

 , is equal to 1, which is its upper boundary. We 

think that this may cause some identification issues, which could possibly be resolved with 

development of spatial autoregressive process of second order. We decided to not pursue this 

path, as to the best of our knowledge, such processes are not really analyzed in spatial 

econometrics, as they do not arise very often in practice. Nevertheless, we note that if researcher 

suspects similar process of preference heterogeneity in his study, SA-MXL may not be an 

appropriate approach.  

We report three interesting findings based on Tables A1, A2 and A3. First, in all Tables 

GW-MNL significantly outperforms MXL. This is different from the main text, where in some 

cases MXL outperformed GW-MNL (especially with wrongly chosen bandwidth parameter). 

Second, in here the method of choosing bandwidth matters less. Indeed, whether we minimize 

AIC or MAPE, we obtain quite similar results, as on average the optimal bandwidth was 0.45 

for the former, and 0.59 for the latter, so the difference is much smaller than in the main text. 

Lastly, as can be seen in Table A1, although GW-MNL recovers percentiles of WTP 

distribution well, the mean and standard deviation are still off, therefore we recommend using 

characteristics such as median, when using GW-MNL for inference.  

The results reported in this Appendix indicate that GW-MNL is much better suited for 

analysis of data generating processes as presented in Figure A1, rather than the one as in Figure 

1 in the main text.    

Table A1. Comparison of selected moments and quantiles of the recovered willingness-to-

pay distribution with their true values implied by the data generating process 

  
Mean Std. Dev 

10th 
percentile 

25th 
percentile 

50th 
percentile 

75th 
percentile 

90th 
percentile 

True 0.1221 1.1546 -0.6342 0.1046 0.4717 0.6526 0.7407 

MXL 
0.3515    

(0.0198) 
0.6889    

(0.0327) 
-0.4614    
(0.0317) 

-0.0804    
(0.0215) 

0.3218    
(0.0182) 

0.7539    
(0.0250) 

1.2055    
(0.0460) 

GW-MNL   
(min. AIC) 

0.2125    
(0.0212) 

0.6631    
(0.0455) 

-0.6646    
(0.0528) 

0.0711    
(0.0302) 

0.4342    
(0.0208) 

0.6287    
(0.0210) 

0.7418    
(0.0279) 

GW-MNL  
(min. MAPE) 

0.2308    
(0.0240) 

0.5657    
(0.0747) 

-0.5729    
(0.0694) 

0.0587    
(0.0272) 

0.4154    
(0.0237) 

0.6126    
(0.0223) 

0.7190    
(0.0280) 
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Table A2. Mean absolute percentage error calculated for individual-specific willingness 

to pay estimates 

  
Mean Absolute Percentage 

Error (%) 
[90% confidence interval] 

MXL – posterior mean of WTP 
185.2022                                 

[156.21 - 223.35] 

GW-MNL  (min. AIC) 
49.0520                                

[39.99 - 58.51] 

GW-MNL (min. MAPE) 
46.1726                               

[38.86 - 55.00] 

 

Table A3. Minimum, Mean and Maximum absolute percentage errors calculated for 

region-specific willingness to pay estimates  

  

Minimum Absolute 
Percentage Error (%) 

[90% confidence 
interval] 

Mean Absolute 
Percentage Error (%) 

[90% confidence 
interval] 

Maximum Absolute 
Percentage Error (%) 

[90% confidence 
interval] 

MXL – posterior mean of WTP 
9.6101                     

[0.57 - 20.28] 
63.3339                     

[53.71 - 71.94] 
145.9910                               

[119.23 - 173.70] 

GW-MNL  (min. AIC) 
1.7086                      

[0.16 - 4.65] 
34.3477                      

[26.84 - 40.62] 
94.9462                      

[68.29 - 129.28] 

GW-MNL (min. MAPE) 
2.1241                              

[0.13 - 5.72] 
42.1818                    

[30.17 - 51.70] 
114.5984                    

[84.91 - 150.12] 
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