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Abstract: Pair trading remains a cornerstone strategy in quantitative finance, having consistently 

attracted scholarly attention from both economists and computer scientists. Over recent decades, 

research has expanded beyond traditional linear frameworks—such as regression- and 

cointegration-based models—to embrace advanced methodologies, including machine learning 

(ML), deep learning (DL), reinforcement learning (RL), and deep reinforcement learning (DRL). 

These techniques have demonstrated superior capacity to capture nonlinear dependencies and 

complex dynamics in financial data, thereby enhancing predictive performance and strategy 

design. 

Building on these academic developments, practitioners are increasingly deploying DL models to 

forecast asset price movements and volatility in equity and foreign exchange markets, leveraging 

the advantages of artificial intelligence (AI) for trading. In parallel, DRL has gained prominence 

in algorithmic trading, where agents can autonomously learn optimal trading policies by 

interacting with market environments, enabling systems that move beyond price prediction to 

dynamic signal generation and portfolio allocation. 

This paper provides a comprehensive survey of ML-, DL-, RL-, and DRL-based approaches to 

pair trading within quantitative finance. By systematically reviewing existing studies and 

highlighting their methodological contributions, it offers researchers a structured foundation for 

replication and further development. In addition, the paper outlines promising avenues for future 

research that extend the application of AI-driven methods in statistical arbitrage and market 

microstructure analysis. 
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1. Introduction 

Stock market forecasting concerns the prediction of future values of company shares or other 

financial assets traded on exchanges. While accurate forecasts can generate substantial financial 

gains, the task remains inherently complex. According to the Efficient Market Hypothesis (EMH), 

stock prices incorporate all publicly available information, implying that future movements cannot 

be reliably inferred from historical prices alone, as they are primarily driven by new information. 

Consequently, models that depend exclusively on past prices tend to have limited predictive power, 

especially given markets’ high sensitivity to external shocks. 

The proliferation of the Internet has introduced alternative sources of collective 

intelligence—such as Google Trends and Wikipedia usage—that may capture shifts in investor 

attention and sentiment. This has led to the view that prices are shaped not only by financial news 

but also by real-time public interest. Hence, a central question arises: to what extent can historical 

price data, possibly enhanced with such alternative sources, be used to improve forecasting 

accuracy? 

Early investigations into the predictability of stock markets were deeply rooted in theories 

like Early investigations into market predictability were grounded in the EMH and the random 

walk hypothesis, which posit that prices adjust randomly to new information and therefore cannot 

be systematically predicted from past data. Under these frameworks, forecasting stock returns was 

regarded as no better than random guessing. Nevertheless, subsequent research has increasingly 

challenged these assumptions, suggesting that financial markets may display patterns that enable 

partial predictability. The sustained outperformance of certain investors, such as Warren Buffett, 

is often cited as suggestive evidence that markets are not perfectly efficient. 

Developing robust forecasting models, however, remains difficult because asset prices are 

influenced by a wide range of factors, including firm fundamentals, macroeconomic conditions, 

market sentiment, and historical dynamics. Models based on a single predictor typically fail to 

capture this complexity, whereas incorporating multiple features—such as news sentiment, social 

media activity, and technical indicators—can improve predictive performance by reflecting the 

multifaceted drivers of market behavior. 

Figure 1 illustrates the major domains of stock trading where AI techniques are increasingly 

applied. Quantitative trading employs mathematical and statistical models to exploit market 
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inefficiencies. Algorithmic trading automates order execution according to predefined rules such 

as price or timing. High-Frequency Trading (HFT), a specialized subset of algorithmic trading, 

uses advanced algorithms to execute large volumes of trades within milliseconds. Automated 

Trading Systems (ATS) further extend algorithmic trading by directly routing orders to exchanges. 

Although these trading paradigms predate AI, recent developments have increasingly integrated 

AI methods to enhance pattern recognition, predictive modeling, and execution efficiency. 

Figure 1. Utilization of Artificial Intelligence Technologies in Quantitative Finance and Equity 

Markets Trading. 

 

Figure 2 highlights major algorithmic trading strategies, ranging from trend-following and 

momentum trading to mean reversion, moving average crossovers, breakout strategies, and 

statistical arbitrage. These approaches reflect different assumptions about market behavior: some 

exploit the continuation of price trends, others rely on reversals to long-run equilibria, and still 

others focus on technical thresholds or temporary mispricings between related assets. Among them, 

statistical arbitrage—particularly pairs trading—has become one of the most prominent 

applications, employing tools such as cointegration and regression analysis to detect and exploit 

relative value opportunities. 

While these strategies predate modern artificial intelligence, recent advances in machine 

learning and deep learning have enhanced their performance by enabling more sophisticated 
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feature extraction, adaptive parameter tuning, and improved execution. In this sense, AI does not 

redefine these strategies but augments their predictive power and adaptability. 

Figure 2. Diverse Approaches to AI-Enhanced Algorithmic Trading Strategies. 

 

Among statistical arbitrage approaches, pairs trading has emerged as one of the most widely 

studied and implemented strategies. The basic idea is to identify pairs of assets whose prices have 

historically moved together and to exploit temporary deviations in their relative valuation. When 

the spread between two assets diverges beyond a predefined threshold, traders take offsetting 

positions with the expectation that the spread will revert to its long-run equilibrium. Despite its 

intuitive appeal, the strategy involves several practical challenges, including robust pair selection, 

optimal threshold determination, and accurate timing of trade execution. 

Recent advances in ML, DL, and RL have the potential to substantially enhance pairs trading. 

ML algorithms can process large-scale datasets to uncover nonlinear dependencies and hidden 

correlations between securities that are often overlooked by traditional statistical methods. Both 

supervised and unsupervised learning have been applied, with the former forecasting spread 

dynamics and the latter clustering securities into candidate pairs. DL architectures, particularly 

recurrent neural networks (RNNs) and long short-term memory (LSTM) networks, are well-suited 

for modeling temporal dependencies and nonlinear spread behavior, while more recent approaches 

explore convolutional and transformer-based models. RL offers a different paradigm, focusing on 
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sequential decision-making through interaction with the market environment. RL agents 

dynamically adjust trading policies by optimizing cumulative rewards, allowing adaptive 

refinement of entry and exit rules under evolving market conditions. 

Overall, these advanced AI-driven techniques promise to improve the robustness and 

adaptability of pairs trading strategies. By enabling models that learn from data and adjust in real 

time, ML, DL, and RL provide new opportunities for capturing complex dynamics in increasingly 

data-rich and competitive financial markets. This motivates a growing body of literature that 

applies AI methods to pairs trading, which the present survey systematically reviews. 

The primary objective of this literature review is to systematically examine and synthesize 

approximately 70 academic papers from the past decade that explore the use of ML, DL, and RL 

in the context of pair trading strategies. Specifically, this study aims to: 1. identify the current state 

of research by mapping out methodologies and techniques employed in AI-driven pair trading; 

2. evaluate the effectiveness, efficiency, and scalability of various algorithmic and computational 

frameworks; 3. highlight recent innovations that improve upon traditional statistical arbitrage 

models, particularly those leveraging time-series forecasting, feature learning, or decision 

optimization; 4. analyze the performance metrics used to assess trading strategies, including  

risk-adjusted returns and prediction accuracy; 5. examine key challenges such as data limitations, 

computational demands, and model overfitting; 6. recommend best practices for designing and 

implementing robust AI-based pair trading systems; and 7. propose future research directions by 

identifying unresolved issues and emerging trends within this evolving field. 

This survey makes several principal contributions. First, it reviews recent advancements in 

AI, with particular attention to innovations from the past decade. Second, it critically examines 

how ML, DL, and RL have been applied to pairs trading and stock market forecasting. Third, 

it situates these developments within the broader context of financial market mechanisms, drawing 

upon existing scholarly work. Fourth, it outlines future research directions in stock market 

prediction, providing guidance for emerging scholars. Finally, the survey highlights potential data 

sources that can be leveraged for further investigation. 

The structure of the remainder of this document is organized as follows: Section 2 elaborates 

on the research works that inform this study. Section 3 provides a concise introduction to the scope 

of this survey. Section 4 discusses the methodologies for data processing and feature extraction. 
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In Section 5, we offer a detailed examination of the various forecasting techniques, enriched with 

relevant context. Section 6 focuses on the metrics used to assess prediction accuracy. 

The framework for implementation and the availability of data are discussed in Section 7. 

Section 8 envisions the prospective avenues for further inquiry in this field. The paper concludes 

with a summary in Section 9, encapsulating the essence of the study, and final thoughts are 

presented in Section 10. 

 

2. Related Work 

This section reviews the evolution of ML methodologies applied to pairs trading, illustrating 

how computational approaches have progressively transformed strategy design and 

implementation. Early studies predominantly relied on unsupervised learning techniques—such 

as clustering and cointegration analysis—to identify candidate trading pairs based on historical  

co-movements. While effective in capturing broad similarities, these approaches were limited by 

their inability to incorporate predictive signals or adapt to changing market dynamics. 

The subsequent introduction of supervised learning methods addressed some of these 

shortcomings by leveraging labeled financial data to refine pair selection and improve the timing 

of trade execution. With the advent of DL, researchers further advanced pairs trading by modeling 

nonlinear dependencies and temporal structures in financial time series, employing architectures 

such as recurrent and convolutional neural networks. More recently, RL has emerged 

as a promising paradigm, enabling adaptive strategy optimization through continuous interaction 

with market environments and dynamic adjustment of entry–exit rules. 

Collectively, these methodological advances highlight the central role of ML in enhancing 

the robustness, adaptability, and profitability of pairs trading strategies, while also signaling 

a broader transition toward data-driven decision-making in financial markets. 

 

2.1 Unsupervised Learning Methods 

Unsupervised learning methods uncover latent patterns and structural relationships in data 

without relying on labeled outcomes. In financial markets, these techniques are particularly useful 

for detecting correlations and dependencies that arise naturally across assets, making them well 

suited for identifying candidate pairs in statistical arbitrage strategies. 
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The selection of studies reviewed here follows three main criteria: (i) a direct focus on the 

application of unsupervised learning to financial trading, with particular emphasis on pairs trading 

or statistical arbitrage; (ii) empirical validation using real-world market data to ensure practical 

relevance; and (iii) methodological novelty, especially where machine learning (ML) techniques 

enhance or replace conventional statistical approaches in pair selection. 

Chen et al. (2012) Chen et al. (2012) investigate the application of machine learning 

techniques to enhance pairs trading, a statistical arbitrage strategy that exploits mean-reverting 

spreads between correlated assets. The study compares two modeling approaches: a conventional 

portfolio rebalancing and linear regression framework, and a more sophisticated method that 

integrates Kalman filtering with the Expectation–Maximization (EM) algorithm. Using data from 

the China futures market, the empirical results indicate that while both approaches show potential, 

the Kalman filter–based model delivers superior profitability. This work illustrates the benefits of 

incorporating adaptive, data-driven methods into traditional arbitrage frameworks, particularly in 

capturing dynamic co-movement between assets. 

Sohail et al. (2020) apply the Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm in combination with conventional pairs trading techniques to identify 

structurally similar stocks using firm size (market capitalization) and principal component analysis 

(PCA) of daily returns. Using data from the Pakistan Stock Exchange (PSX), the study 

demonstrates that this ML-enhanced approach generates statistically significant average monthly 

excess returns while preserving market neutrality and confirming mean-reversion dynamics. 

The findings highlight the potential of unsupervised clustering methods to improve pair selection, 

particularly within the context of emerging markets. 

In a follow-up study, Sohail et al. (2022) examine the robustness of pairs trading during the 

COVID-19 pandemic—a period of heightened volatility and uncertainty. Using DBSCAN to form 

trading pairs from market and accounting features, the authors evaluate the continued viability of 

statistical arbitrage under disrupted conditions. They report that unsupervised-learning–guided 

pairs trading remains profitable and market-neutral, with spreads exhibiting mean reversion in 

adverse environments. Results are, however, sensitive to clustering hyperparameters (𝜀, minPts) 

and feature scaling; robustness is typically assessed through rolling windows, regime-specific 

subsamples, and multiple-testing adjustments such as the false discovery rate. 
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Han et al. (2023) move beyond pair selection based solely on return co-movements or 

cointegration by integrating firm-specific characteristics with price dynamics. Applied to U.S. 

equities (1980–2020), their framework identifies pairs with stronger co-movement propensity and 

more pronounced mean-reverting behavior, delivering robust out-of-sample performance across 

regimes. Mean-reversion strength is quantified via Ornstein-Uhlenbeck (OU) half-life and Hurst 

exponent, while performance evaluation accounts for transaction costs and employs White’s 

reality check or the superior predictive ability test to mitigate data-snooping bias. 

In summary, unsupervised learning has become increasingly influential in advancing pairs 

trading. By uncovering latent structure in high-dimensional data, approaches such as Kalman 

filtering, DBSCAN clustering, and firm-level feature integration enable more informative pair 

selection and more resilient arbitrage execution, particularly in volatile or non-stationary markets. 

 

2.2 Supervised Learning Methods 

This section examines supervised learning methods, where models are trained on historical 

datasets with labeled outcomes to predict future events. Such techniques are increasingly applied 

to pair trading, where accurate forecasting is critical for optimizing entry and exit decisions. 

By learning from past market behavior, supervised models can uncover patterns that inform both 

the timing and selection of trading pairs, thereby improving the precision and potential profitability 

of arbitrage strategies. 

In the context of pair trading, supervised learning has been instrumental in developing 

predictive models that assess the likelihood of mean reversion and estimate the expected duration 

of spread convergence. Recent studies demonstrate that algorithms such as decision trees, support 

vector machines, and neural networks can capture complex, nonlinear relationships within 

financial time series. These models not only contribute to improved trading performance but also 

offer enhanced robustness under dynamic and volatile market conditions. Nonetheless, challenges 

remain—particularly regarding the construction of appropriate labels (e.g., defining convergence 

events) and addressing class imbalance in financial datasets—which require careful 

methodological design. 

This subsection reviews key studies that apply supervised learning techniques to enhance 

pairs trading strategies. Madhavaram (2013) introduces an innovative framework that integrates 
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dynamic PCA with Support Vector Machines (SVM) for financial market analysis. Applied to the 

Financial Select Sector SPDR Fund (XLF), PCA is employed to extract systematic risk factors, 

while SVM models classify and validate potential trading signals. The findings suggest that 

combining SVM with factor-based analysis can improve decision-making, highlighting 

the potential synergy between traditional quantitative finance and machine learning in algorithmic 

trading. However, the approach remains constrained by its sector-specific focus, leaving open 

questions about scalability and generalizability to other markets. 

Nóbrega and Oliveira (2013) propose an intraday statistical-arbitrage framework that 

integrates Extreme Learning Machine (ELM) and Support Vector Regression (SVR) with classical 

linear regression. Applied to a financial-sector universe, the approach is further refined with 

a Kalman filter to dynamically update hedge ratios and smooth predictions. Empirical evidence 

suggests that such hybrid models improve pair selection and signal stability, leading to measurable 

gains in trading performance, though results remain sensitive to hyperparameters and intraday 

microstructure noise. 

In a subsequent study, Nóbrega and Oliveira (2014) extend their earlier work by integrating 

ELM and SVR with Kalman Filter regression. Their findings confirm that such hybrid models 

deliver more accurate forecasts, enhancing annualized returns while simultaneously reducing 

portfolio volatility—further underscoring the benefits of combining statistical models with ML 

algorithms in financial trading. 

Wu (2015) introduces a novel spread-based approach to pairs trading by applying the OU 

model in conjunction with SVM to trade GOOG/GOOGL stocks. The innovation lies in 

the incorporation of technical indicator spreads and the development of two new metrics designed 

to predict future prices rather than returns. Empirical results demonstrate a high win rate, 

highlighting the practical viability of this predictive framework. 

Chaudhuri et al. (2017) examine the predictive capacity of multiple ML algorithms—

including SVM, Random Forest (RF), and Adaptive Neuro-Fuzzy Inference System (ANFIS)—

for forecasting the price ratio of stock pairs. Drawing on nine selected input features, their results 

show that these models effectively capture price dynamics, thereby illustrating the ability of ML 

techniques to refine trading decisions and improve financial forecasting accuracy. 
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Sutherland et al. (2018) apply a range of ML models—including logistic regression (LR), 

RF, deep neural networks (DNN), and gradient-boosted trees (GBT)—to statistical arbitrage on 

the KOSPI 200 index. Their comparative analysis reveals that all models outperform 

the benchmark, with classification-based approaches slightly surpassing regression-based ones. 

These results emphasize the capacity of ML to generate profitable trading signals in emerging 

markets. 

Sun et al. (2019) extend ML applications to the cryptocurrency domain, employing RF 

algorithms combined with Alpha101 features to predict price movements using data from Binance 

and Bitfinex. The proposed strategy exhibits strong predictive performance in a highly volatile 

environment, demonstrating the adaptability of ML approaches beyond traditional equity markets. 

Finally, Hong and Hwang (2023) assess the contribution of firm fundamentals to 

the robustness of pair selection. Addressing the problem of spurious pair identification through 

multiple hypothesis testing, they find that greater similarity in firm characteristics improves trading 

performance and reduces non-convergence risk. Their results suggest that integrating firm-level 

information enhances strategy stability, particularly during crisis periods when fundamentals play 

a more prominent role. 

In summary, the reviewed studies highlight the substantial potential of supervised learning 

in advancing pairs trading. By leveraging labeled historical data, these models refine trade 

selection and timing, thereby optimizing entry and exit decisions. Core methodologies—including 

dynamic PCA, SVM, ELM, SVR, Kalman Filters, RF, and ANFIS—consistently demonstrate 

improved predictive accuracy and profitability across diverse asset classes. Moreover, 

the integration of firm characteristics provides an effective remedy for spurious pairings, offering 

more stable and reliable frameworks in volatile or crisis-prone markets. 

 

2.3 Deep Learning Methods 

This review next turns to DL methods—a specialized subset of ML that employs DNNs to 

capture complex, nonlinear patterns in large-scale datasets. In the context of pair trading, DL has 

emerged as a transformative tool, offering refined insights into market dynamics and enabling the 

development of more adaptive and sophisticated trading algorithms. 
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For clarity, DRL is not treated here as an isolated topic but rather as the intersection of DL 

and RL. RL refers to a class of ML methods in which an agent interacts with an environment and 

learns optimal actions through trial and error, guided by rewards and penalties to maximize 

cumulative returns. DL, in contrast, leverages multilayer neural networks to automatically extract 

high-level features from raw inputs, and has demonstrated strong capabilities in domains such as 

computer vision and natural language processing. 

DRL combines the representational power of DL with the sequential decision-making ability 

of RL by using neural networks to approximate value functions, policies, or transition models. 

Prominent DRL algorithms such as Deep Q-Networks (DQN), Deep Deterministic Policy Gradient 

(DDPG), and Proximal Policy Optimization (PPO) exemplify this integration. This allows DRL to 

handle high-dimensional input spaces—such as multivariate time series in financial markets—

supporting end-to-end learning directly from raw data. 

In financial applications, including pairs trading, DRL provides the flexibility to adaptively 

optimize trading policies in dynamic and uncertain environments where traditional RL methods 

face scalability constraints. Although applications of DRL to pairs trading remain relatively limited, 

its ability to integrate feature extraction and policy learning presents a promising frontier for future 

research. 

Krauss et al. (2017) investigate the application of advanced ML models—including DNNs, 

GBTs, and RFs—to the S&P 500 index. By predicting the probability of individual stocks 

outperforming the market, the study demonstrates that these models, particularly when combined 

in ensemble form, generate substantial out-of-sample returns. Their findings challenge the semi-

strong form of market efficiency and underscore the benefits of combining ML algorithms for 

robust predictive modeling. 

Ruxanda and Opincariu (2018) propose a sophisticated framework that integrates Bayesian 

neural networks (BNNs) with Dirichlet process mixtures to model pairs trading strategies. This 

hierarchical model, with priors derived from a Dirichlet process mixture, enables dynamic 

adaptation to non-stationarity in financial data, thereby enhancing both the flexibility and 

predictive power of pairs trading. Through empirical application, the study illustrates the model’s 

capacity to capture complex relationships between financial assets, offering a more nuanced and 

effective tool for navigating dynamic markets. 
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The paper by Brim (2019) employs DQN to improve pairs trading strategies, testing on 38 

cointegrated stock pairs. Leveraging RL to exploit mean reversion in stock spreads, the study 

demonstrates that DQNs consistently generate positive returns. By training on 2014–2017 data and 

testing on 2018 data, the results highlight the adaptability of DRL in financial markets and its 

ability to learn from complex dynamics for profit maximization. 

Huang et al. (2020) develop a hybrid DL model to detect structural breaks in stock markets, 

with a focus on pairs trading. The approach integrates Wavelet Transform for frequency-domain 

feature extraction with a combined CNN–LSTM architecture for time-domain analysis. Applied 

to minute-scale data from the Taiwan Stock Exchange, the model significantly outperforms 

traditional techniques, illustrating the potential of DL in identifying structural breaks and 

enhancing arbitrage strategies. 

The paper by Flori and Regoli (2021) explores the application of DL, specifically LSTM 

networks, to identify pairs-trading opportunities in the stock market. The authors focus on 

the reversal effect, where market deviations are expected to correct over time, offering profitable 

trading signals. By comparing and combining LSTM predictions with traditional trading practices 

based on price or returns gaps, the study aims to improve portfolio performance under various 

investment scenarios. The analysis confirms that strategies incorporating LSTM predictions can 

enhance financial performance, providing valuable signals beyond those captured by price and 

returns gaps. 

Relan (2021) investigates the predictive power of the USD/GBP exchange rate on 

the FTSE100 index using a Temporal Convolutional Network (TCN), achieving an accuracy of 

89.96%. The research spans from December 31, 1985, to October 6, 2021, employing 13,028 data 

points to develop a ML model and subsequently testing two trading strategies: pairs trading using 

Bollinger Bands and a buy and hold strategy. The pairs trading strategy notably outperformed the 

buy and hold strategy in terms of Annual Average Return and Sharpe Ratio, despite a higher 

Maximum Drawdown, indicating a successful application of ML techniques in predicting stock 

market movements based on currency exchange rates. 

Du (2022) delves into mean-variance portfolio optimization leveraging DL forecasts for 

stocks exhibiting cointegration, showcasing a novel approach in financial market analysis. This 

research pioneers the integration of advanced DL models to enhance forecast accuracy and 
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subsequently inform portfolio allocation decisions. By focusing on cointegrated stocks, the study 

not only adheres to the classical portfolio theory but also embraces modern computational 

techniques, marking a significant stride in the application of AI in finance. The methodology's 

strength lies in its ability to dynamically adjust to market conditions, potentially offering superior 

returns on investment. 

The paper by Platania et al. (2023) presents an innovative approach to pair trading by 

integrating multi-objective programming, cyclical insights, and neural networks. This strategy 

aims to exploit market inefficiencies through statistical arbitrage, enhancing the traditional pair 

trading framework by incorporating a broader range of analytical tools. By analyzing cyclical 

behaviors and employing neural networks for predictive accuracy, the approach seeks to optimize 

trading performance by balancing profitability with risk management. 

In summary, these studies underscore the transformative potential of DL and DRL in refining 

pairs trading and statistical arbitrage. By leveraging architectures such as DNNs, CNNs, LSTMs, 

TCNs, and DQNs, these approaches capture complex temporal patterns, detect structural changes, 

and adaptively optimize trading policies. Collectively, the evidence highlights the growing role of 

DL in improving profitability, enhancing adaptability, and challenging long-standing assumptions 

of market efficiency in high-dimensional and dynamic environments. 

 

2.4 Reinforcement Learning Methods 

This section reviews the application of RL methods in pairs trading, where agents learn 

optimal decision-making policies through interactions with a dynamic environment. RL’s 

sequential learning framework allows trading agents to adaptively adjust their strategies over time, 

balancing the trade-offs between exploration and exploitation to maximize cumulative returns. 

Fallahpour et al. (2016) propose an innovative approach to optimizing pairs trading strategies 

through RL. By dynamically adjusting trading parameters in response to market conditions, 

the study demonstrates substantial improvements in performance compared with traditional 

methods. Incorporating both cointegration and RL, the research provides a novel perspective on 

maximizing profits and managing risks in pairs trading, with empirical validation using S&P 500 

constituent stocks. 
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Brim (2020) applies Double Deep Q-Networks (DDQNs) to pairs trading, leveraging 

the mean-reversion property of stock prices for profit generation. Training the DDQN model on 

historical stock-pair data, the study shows its capacity to predict profitable trading signals, 

emphasizing the utility of RL in financial applications. Notably, the research introduces a Negative 

Rewards Multiplier (NRM) to regulate the model’s risk-taking behavior, marking a significant 

advance in applying DRL to complex market dynamics. 

Sermpinis et al. (2020) present a pioneering Cointegration Approach–Deep Reinforcement 

Learning (CA-DRL) framework for pairs trading in commodities markets. The framework 

combines cointegration-based pair selection with DRL for trade execution, achieving superior 

returns compared with traditional strategies while maintaining similar risk levels. A genetic 

algorithm is further incorporated to optimize trading thresholds, providing incremental 

improvements and highlighting the advantages of integrating advanced ML techniques with 

traditional financial methods. 

Zong et al. (2021) extend the CA-DRL framework to pairs trading on the Dalian Commodity 

Exchange (DCE), focusing on soybean futures and their derivatives. Their results demonstrate that 

CA-DRL consistently outperforms traditional models across different pair-formation horizons 

(one-, two-, or three-year periods), underscoring its effectiveness in designing profitable 

commodity trading strategies. 

Kim et al. (2022) introduce HDRL-Trader, a hybrid DRL framework that optimizes both 

trading actions and stop-loss boundaries through two independent RL networks. By incorporating 

dimensionality reduction, clustering, regression, and behavior cloning, HDRL-Trader significantly 

outperforms state-of-the-art benchmarks on the S&P 500 index, delivering a 25.7% higher average 

return. This framework exemplifies the benefits of integrating TD3 and DDQN algorithms, 

offering a promising direction for algorithmic trading. 

Lu et al. (2022) propose a two-phase ML framework, Structural Adjustment and Policy 

Testing (SAPT), designed to enhance pairs trading strategies by integrating structural break 

detection. The first phase employs a hybrid model to identify structural breaks, while the second 

phase optimizes the trading strategy, accounting for transaction costs and market-closing risks. 

Empirical tests in the Taiwan stock market show that SAPT significantly outperforms existing 
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strategies, highlighting the value of incorporating structural shifts into trading models for improved 

profitability and risk control. 

Xu and Luo (2023) develop an enhanced pairs trading strategy using a two-level RL 

framework. Pair selection is conducted via the Extended Option-Critic (EOC) method, while trade 

thresholds are optimized using a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

approach. Applied to the Chinese futures market, this integrated framework achieves superior 

returns compared with traditional methods by dynamically selecting trading pairs and optimizing 

trade thresholds. The study demonstrates the potential of DRL to address the complexities of 

modern financial markets. 

In summary, the reviewed RL-based studies highlight the transformative role of 

reinforcement learning in pairs trading. By enabling adaptive decision-making and continuous 

strategy refinement, RL models such as DDQNs, CA-DRL, and hybrid frameworks like HDRL-

Trader empower trading agents to respond to evolving market conditions with greater precision. 

Furthermore, the integration of RL with traditional financial tools—such as cointegration analysis 

and structural break detection—enhances both robustness and profitability across diverse markets, 

including equities, commodities, and futures. These advancements emphasize RL’s pivotal role in 

shaping the next generation of intelligent, data-driven trading systems. 

 

3. Landscape Overview 

This section outlines the core body of literature that forms the foundation of this review. 

Through comprehensive database searches, a central set of studies was identified and further 

complemented by additional scholarly contributions sourced from reputable academic platforms, 

including Google Scholar, Scopus, Springer, IEEE Xplore, ScienceDirect, and Web of Science. 

To ensure broad coverage of machine learning applications in financial decision-making, a wide 

range of keyword combinations was employed, such as “Pair Trading with Deep Learning,” “Pair 

Trading with Reinforcement Learning,” “Pair Trading with Deep Reinforcement Learning,” “Pair 

Trading with Machine Learning,” “Pair Trading with Supervised Learning,” and “Pair Trading 

with Unsupervised Learning.” Articles not directly contributing to the thematic scope were 

excluded from the final sample. 



15 
 

Sun, Y. / WORKING PAPERS 22/2025 (485) 

In total, 68 peer-reviewed studies published between 2012 and 2023 were selected for in-

depth analysis. Table 1 reports the yearly distribution of these publications, together with their 

corresponding reference indices. 

Table 1. Counts of publication frequencies in the studies over the years analyzed, from 2012 to 

2023. 

Year Count Article 

2023 12 [1-12] 

2022 18 [13-30] 

2021 8 [31-38] 

2020 14 [39-52] 

2019 3 [53-55] 

2018 3 [56-58] 

2017 4 [59-62] 

2016 1 [63] 

2015 1 [64] 

2014 1 [65] 

2013 2 [66-67] 

2012 1 [68] 

 

Table 2 describes of the Integration of Artificial Intelligence in Pair Trading: This table 

encapsulates the various elements involved in the application of AI to stock market operations, 

including the Categories of Stock Market Data, Types of ML Applications, Empirical and 

Prediction Models, Model Performance Evaluation Metrics, and Measures for Evaluating Portfolio 

Outcomes. 

Among ML models, RF stands for Random Forest, a versatile and widely-used ensemble 

method. AdaBoost refers to Adaptive Boosting, a technique that combines multiple weak learners 

into a stronger model. DT is the abbreviation for Decision Tree, a fundamental classification and 

regression approach. Boosting is a family of algorithms that enhance the performance of ML 

models. LM denotes Linear Model, often used in the context of regression, or Lasso Model when 

it involves L1 regularization. LR stands for Logistic Regression, a staple method for binary 

classification tasks. SVM and SVR represent Support Vector Machine and Support Vector 

Regression, respectively, both of which are powerful in finding the optimal boundary between 

different classes. NB is short for Naive Bayes, a probabilistic classifier that assumes independence 

between predictors. EN means Elastic Net, a regularized regression method that combines both L1 

and L2 penalties. GDA stands for Gaussian Discriminant Analysis (GDA), a generative model for 
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classification, while ELM is a fast-learning algorithm for single-hidden layer feedforward neural 

networks. 

In Deep Learning, NN is the abbreviation for Neural Network, a basic structure of 

interconnected nodes mimicking the human brain. DNN stands for Deep Neural Network, which 

is a complex network with multiple layers, enabling the model to learn high-level features from 

data. RNN, or Recurrent Neural Network, is a type of neural network where connections between 

nodes form a directed graph along a temporal sequence, allowing it to exhibit temporal dynamic 

behavior. LSTM is Long Short-Term Memory Network, a special kind of RNN capable of learning 

long-term dependencies. CNN represents Convolutional Neural Network, highly effective in 

processing data with a grid-like topology, such as images. TCN stands for Temporal Convolutional 

Network, known for its use in sequence modeling tasks. 

For RL, DQN is a groundbreaking algorithm that combines Q-Learning with DNN. DDQN 

is an improvement over DQN that reduces overestimation of action values. PPO refers to Proximal 

Policy Optimization, a policy gradient method for training DNN. HDRL stands for Hierarchical 

Deep Reinforcement Learning, which structures the learning process in a hierarchical fashion for 

complex tasks. Lastly, DPG is used for Deep Policy Gradient, often called Deep Deterministic 

Policy Gradient when it is used in a context of continuous action spaces. 

Performance evaluation typically relies on statistical error metrics such as MAE, MAPE, 

MSE, RMSE, and model loss; classification indicators such as accuracy, precision, recall, F-score, 

confusion matrix, AUC, and ROC curve; and reward-based measures in the reinforcement learning 

context. Portfolio-level performance is assessed using financial indicators including cumulative 

and daily returns, Sharpe and Treynor ratios, maximum drawdown, skewness, kurtosis, profit–loss 

ratio, volatility, and standard deviation. 

In our exploration of recent trends, we conducted a comprehensive methodological analysis 

of the 68 selected studies. The results reveal a growing diversification in the types of AI methods 

employed. Approximately 20% of the studies utilized RL exclusively, another 20% adopted DL-

based approaches, while traditional ML techniques dominated with around 48%. Notably, about 

10% of the papers implemented hybrid methods, with the remainder distributed across 

miscellaneous approaches. This distribution indicates an emerging interest in integrating multiple 

AI paradigms for enhanced performance. 
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Table 2. The Categories of Stock Market Data, Types of ML Applications, Empirical and 

Prediction Models, Model Performance Evaluation Metrics, and Measures for Evaluating Portfolio 

Outcomes. 

Types of Data Tasks Models1 Model Performance 

Evaluation Metrics 

Portfolio 

Performance 

Evaluation Metrics 

Company Stocks 

Stock Index 

Stock Index Futures 

Commodities 

Cryptocurrencies 

Currencies 

Empirically 

investigate the 

pairs trading 

performance 

 

 

 

 

Price prediction 

 

Machine 

Learning (RF, 

AdaBoost, DT, 

Boosting, LM, 

LR, SVM, SVR, 

NB, EN, GDA, 

ELM) 

Deep Learning 

(NN, DNN, 

RNN, LSTM, 

CNN, TCN) 

Reinforcement 

Learning (DQN, 

DDQN, PPO, 

HDRL, DPG) 

 

MAE 

MAPE 

MSE 

RMSE 

Confusion Matrix 

Accuracy 

Precision 

Recall 

F-Score 

Model Loss 

AUC 

ROC Curve 

Reward 

Cumulative Return 

Daily Return 

Monthly Return 

Average Daily Return 

Maximum Drawdown 

Skewness 

Kurtosis 

Sharpe Ratio 

Treynor ratio 

Profit-loss ratio 

Annual Volatility 

Standard Deviation 

 

The reviewed studies span multiple regions and markets, offering a global perspective on 

pairs trading strategies. For the United States, indices such as the S&P 500, Russell 2000, NYSE 

Composite, and AMEX Composite were frequently analyzed. Asian markets were represented 

through the Taiwan TAIEX, KOSPI 200, CSI 300, PSX, and SSE indices, while European markets 

were evaluated using indices such as the FTSE 100. Table 3 provides a detailed overview of 

the indices and their respective countries. 

Table 3. presenting a compilation of key stock indices and markets evaluated in this study 

Index Country 

S&P 500 U.S. 

S&P 400 U.S. 

S&P 100 U.S. 

Russell 2000 U.S. 

 
1 A detailed introduction of the method will be provided in Chapter 5. 
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Index Country 

New York Stock Exchange (NYSE) U.S. 

American Stock Exchange (AMEX) U.S. 

CSI 300 China 

CSI 300 index futures (IF) China 

CSI 300 exchange traded fund (ETF) China 

Shanghai Stock Exchange (SSE) China 

Taiwan Stock Exchange Capitalization Weighted Stock 

Index (TAIEX) 

Taiwan 

FTSE 100 UK 

Pakistan Stock Exchange (PSX) Pakistan 

KOSPI 200 South Korea 

1027 NSE (National Stock Exchange of India) India 

 

4. Data Processing and Analysis 

Most of the studies included in our review relied on daily historical stock datasets, typically 

comprising the Opening, High, Low, and Closing prices together with trading Volume—

collectively referred to as OHLCV data. A subset of researchers further employed higher-

frequency intraday datasets, with sampling intervals of 1, 5, or 15 minutes, to capture finer-grained 

market microstructure dynamics and short-term price fluctuations. In addition, several studies 

incorporated sentiment indicators derived from unstructured textual sources, such as Twitter feeds 

and online discussion forums, thereby enriching financial models with measures of public opinion 

and investor sentiment. 

 

4.1 Historical Price Data with Daily Interval 

Daily price data forms the cornerstone of quantitative financial analysis, particularly in 

the domain of pairs trading. A standard daily dataset includes five key attributes for each stock: 

Open, High, Low, Close, and Volume. Many datasets also provide Adjusted Close, which accounts 

for dividends and stock splits, thereby enabling more accurate backtesting and performance 

evaluation. 

An illustration of such data is shown below using Tesla Inc. as an example, consistent with 

practices observed in the reviewed literature [1, 2, 5–8, 11–13, 15–23, 25–33, 35–44, 46, 49, 50, 

52, 53, 56, 58–62, 65–68]. Table 4 displays a typical sample of daily OHLCV data for Tesla. 
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Table 4. An example of Tesla Inc.’s daily historical data. 

Date Open High Low Close Adj Close Volume 

4/4/2023 197.320007 198.740005 190.320007 192.580002 192.580002 126463800 

4/5/2023 190.520004 190.679993 183.759995 185.520004 185.520004 133882500 

4/6/2023 183.080002 186.389999 179.740005 185.059998 185.059998 123857900 

4/10/2023 179.940002 185.100006 176.110001 184.509995 184.509995 142154600 

4/11/2023 186.690002 189.190002 185.649994 186.789993 186.789993 115770900 

4/12/2023 190.740005 191.580002 180.309998 180.539993 180.539993 150256300 

4/13/2023 182.960007 186.500000 180.940002 185.899994 185.899994 112933000 

4/14/2023 183.949997 186.279999 182.009995 185.000000 185.000000 96438700 

4/17/2023 186.320007 189.690002 182.690002 187.039993 187.039993 116662200 

… … … … … … … … … … … … … … 

 

In our dataset analysis, 51 out of the 68 reviewed studies (approximately 75%) utilized daily 

frequency data as the primary input for modeling and testing. This dominance reflects a strong 

methodological preference in the academic community, driven by the balance between temporal 

resolution and computational feasibility. Daily data provides sufficient granularity to capture 

meaningful price movements while avoiding the noise and complexity of intraday or tick-level 

datasets. 

Furthermore, practical considerations—such as the limited accessibility of high-frequency 

data, which often requires costly subscriptions or institutional-level access—further explain 

the prevalence of daily data in academic research. Accordingly, the popularity of daily frequency 

datasets stems from both methodological robustness and practical feasibility, making them 

the preferred choice for constructing and evaluating pairs trading strategies across diverse markets. 

 

4.2 Historical Price Data with Tick Interval 

Tick-level historical data represents the most granular form of market information, capturing 

every individual transaction executed on an exchange. Unlike intraday datasets aggregated over 

fixed intervals (e.g., 1-minute or 5-minute bars), tick data provides a continuous stream of time-

stamped records, each detailing the exact execution time, trade price, and trade size. 

This high-resolution dataset is particularly valuable for HFT strategies, which rely on 

executing a large number of trades within milliseconds or seconds. Researchers and practitioners 

use tick data to construct fine-grained models of market behavior, enabling the detection of short-

term price patterns and microstructure dynamics with high precision. Moreover, tick data supports 
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detailed examinations of order flow, liquidity provision, and price discovery mechanisms, offering 

crucial insights into intraday market conditions. 

Despite these advantages, the use of tick data poses significant challenges in terms of storage, 

processing speed, and computational requirements, due to the massive volume of records 

generated. Nonetheless, for algorithmic and intraday traders, the predictive power of tick data often 

justifies these computational demands, particularly in markets characterized by rapid price 

fluctuations and frequent quote updates.  

Table 5 provides an illustration of tick-level data, using trading records from the Gold 

Futures contract AU2106. As observed in a limited number of studies [34, 57], tick data remains 

underutilized in the pairs trading literature, largely due to accessibility constraints and technical 

complexity. Nevertheless, its potential to enhance the accuracy and responsiveness of trading 

algorithms in fast-paced environments is considerable. 

Table 5. A sample of historical tick-level data from the Gold Futures AU2106 contract. 

Contract 

ID 

Trade Date Previous 

Settle 

Timestamp Volume Price Bid 

Price 

Ask 

Price 

Last 

Settle 

Turnover 

au2106 20200610 20200609 21:00:00 500 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:01 0 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:01 500 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:02 0 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:02 500 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:03 0 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:03 500 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:04 0 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:04 500 391.88 391.88 391.88 391.88 391880 

au2106 20200610 20200609 21:00:05 0 391.88 391.88 391.88 391.88 391880 

… … … … … … … … … … … … … … … … … … … … 

 

4.3 Historical Price Data with One-Minute Interval 

One-minute historical data represents a practical compromise between the ultra-high 

granularity of tick-level data and the broader perspective of hourly or daily intervals. Each record 

captures the OHLC prices and trading volume for a specific minute, thereby offering a more 

detailed view of market activity than daily data while avoiding the overwhelming scale of tick data. 
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This resolution is particularly well-suited for medium-frequency trading strategies, as it 

enables analysts and traders to track short-term price dynamics and assess evolving market 

conditions with enhanced clarity. At the minute level, researchers can investigate phenomena such 

as volatility clustering, price momentum, and short-term reversals, all of which are essential for 

intraday decision-making and predictive modeling. 

Although one-minute data is less demanding than tick-level data, it still requires considerable 

computational resources and analytical sophistication, especially when applied to large cross-

sectional datasets or extended time horizons. Nevertheless, it strikes a valuable balance between 

informational richness and computational manageability, making it a popular choice in empirical 

studies of intraday trading strategies. 

Table 6 illustrates one-minute historical data for Tesla Inc. stock. This level of data 

granularity has been adopted in a select number of studies [10, 24, 48, 54, 55, 64], underscoring 

its utility in modeling short-horizon market behavior and enhancing predictive accuracy for time-

sensitive trading decisions. 

Table 6. An example of Tesla Inc.’s one-minute historical data. 

Datetime Open High Low Close Adj Close Volume 

2024-04-04 09:30:00 170.0000 170.7400 169.8000 170.0303 170.0303 2425141 

2024-04-04 09:31:00 170.0000 170.0301 169.3100 169.4850 169.4850 637577 

2024-04-04 09:32:00 169.5050 169.6800 168.8741 168.9050 168.9050 537015 

2024-04-04 09:33:00 168.8900 169.4800 168.7800 168.8800 168.8800 494559 

2024-04-04 09:34:00 168.8800 168.9867 168.5200 168.5600 168.5600 466847 

2024-04-04 09:35:00 168.5800 168.6350 168.2500 168.3400 168.3400 487605 

2024-04-04 09:36:00 168.3875 168.7100 168.2613 168.4650 168.4650 447779 

2024-04-04 09:37:00 168.4600 168.8000 168.3400 168.5400 168.5400 441173 

2024-04-04 09:38:00 168.5464 168.7000 168.3201 168.4117 168.4117 308755 

2024-04-04 09:39:00 168.4324 168.8500 168.3927 168.7199 168.7199 384769 

… … … … … … … … … … … … … … 

 

4.4 Historical Price Data with Five-Minute Interval  

Five-minute historical data provides an intermediate level of temporal granularity by 

aggregating OHLC prices and trading volume within five-minute windows. This format offers 

a condensed yet informative perspective on intraday market behavior, striking a balance between 
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the noise sensitivity of one-minute or tick-level data and the broader abstraction of hourly or daily 

intervals. 

Such data is particularly valuable for identifying short- to medium-term trends, including 

support and resistance levels, breakout opportunities, and overall market momentum. The five-

minute interval facilitates smoother visualization of price action, filtering out micro-level 

fluctuations while still retaining sufficient detail to support effective intraday decision-making. 

Although less voluminous than higher-frequency formats, five-minute data still requires 

robust analytical frameworks to uncover meaningful patterns, particularly in high-volatility assets 

or multi-asset portfolios. It is frequently employed in algorithmic trading, signal generation, and 

predictive modeling tasks where reduced noise and enhanced pattern stability are advantageous. 

Table 7 illustrates this data format using Tesla Inc.’s trading records. This interval has been 

adopted in several empirical studies [3, 14, 22, 45, 54], underscoring its relevance for strategies 

that require a balanced view of intraday dynamics across moderately extended time horizons. 

Table 7. An example of Tesla Inc.’s five-minute historical data. 

Datetime Open High Low Close Adj Close Volume 

2024-04-04 09:30:00 170.0000 170.7400 168.5200 168.5600 168.5600 4561139 

2024-04-04 09:35:00 168.5800 168.8500 168.2500 168.7199 168.7199 2070081 

2024-04-04 09:40:00 168.7200 169.1600 168.4500 168.7500 168.7500 1467289 

2024-04-04 09:45:00 168.7342 169.6300 168.0100 169.3650 169.3650 2099000 

2024-04-04 09:50:00 169.3900 169.8600 169.0300 169.4500 169.4500 1527195 

2024-04-04 09:55:00 169.4300 169.5000 168.9200 169.0999 169.0999 1159740 

2024-04-04 10:00:00 169.0800 169.1300 168.3736 168.7200 168.7200 1309723 

2024-04-04 10:05:00 168.7600 169.7500 168.7200 169.6550 169.6550 1288829 

2024-04-04 10:10:00 169.6600 170.1400 169.4300 170.0437 170.0437 1449532 

2024-04-04 10:15:00 170.0274 170.1200 169.7200 169.8956 169.8956 978258 

… … … … … … … … … … … … … … 

 

4.5 Historical Price Data with Hourly Interval 

Hourly historical data provides a macro-intraday perspective by capturing aggregated price 

movements and trading volumes within each trading hour. This frequency represents 

a compromise between the microstructure-oriented granularity of tick or minute-level data and 

the broader abstraction of daily summaries. 
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Each observation in an hourly dataset typically contains the OHLC, together with the trading 

volume for that hour. Such temporal aggregation is particularly relevant for identifying intraday 

price dynamics—such as momentum shifts, breakout formations, and volatility spikes—while 

avoiding the noise and computational intensity associated with higher-frequency formats. 

Hourly data is often employed in event-driven strategies, where price responses to scheduled 

economic announcements, corporate earnings releases, or shifts in market sentiment can be 

detected more clearly than at daily intervals. Although not as fine-grained as tick or minute data, 

hourly data retains sufficient detail to uncover meaningful short- to medium-term patterns and to 

generate actionable trading signals. 

From a computational perspective, hourly data requires less storage and processing power 

than tick or minute-level datasets, yet still necessitates advanced modeling techniques for effective 

use. This makes it suitable for algorithmic trading strategies that must remain responsive to 

intraday dynamics while maintaining scalability in real-time applications. 

As shown in Table 8, which illustrates Tesla Inc.’s hourly trading records, this data 

frequency has been adopted in a limited number of studies [51, 54]. Its application highlights its 

value for strategies that demand a broader yet still responsive perspective on market behavior, 

including pairs trading frameworks where signal stability and reduced noise are essential. 

Table 8. An example of Tesla Inc.’s hourly historical data. 

Datetime Open High Low Close Adj Close Volume 

2024-04-01 09:30:00 176.1600 176.3900 171.6000 171.7280 171.7280 23947033 

2024-04-01 10:30:00 171.7400 172.1899 170.2100 172.1050 172.1050 15778216 

2024-04-01 11:30:00 172.0900 172.4300 170.8900 172.2800 172.2800 8095873 

2024-04-01 12:30:00 172.2882 173.2771 171.7400 171.8900 171.8900 7020081 

2024-04-01 13:30:00 171.8600 173.1050 171.7500 172.9400 172.9400 5705376 

2024-04-01 14:30:00 172.9200 174.0868 172.5901 173.9550 173.9550 7463119 

2024-04-01 15:30:00 173.9500 175.2900 173.1901 175.1200 175.1200 8080117 

2024-04-02 09:30:00 164.6890 167.1900 163.4300 165.5701 165.5701 45944518 

2024-04-02 10:30:00 165.5800 165.8707 163.9000 165.6700 165.6700 18110912 

2024-04-02 11:30:00 165.6700 166.6500 165.1129 166.2600 166.2600 11561980 

… … … … … … … … … … … … … … 
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4.6 Historical Price Data with Monthly Interval 

Monthly historical data provide a broad, long-term perspective on market performance by 

aggregating trading activity over one-month intervals. Each record typically includes the opening 

price at the start of the month, the highest and lowest prices during the period, the closing price 

at month-end, and the total trading volume. In addition, monthly datasets generally contain 

the adjusted closing price, which incorporates dividends and stock splits to provide a more accurate 

measure of long-term returns. Compared with high-frequency or intraday data, monthly data are 

less granular but offer valuable insights for strategic investment decisions and macroeconomic 

analysis. 

This type of data is particularly beneficial for long-term investors, as it facilitates 

the detection of seasonal patterns, responses to quarterly earnings announcements, and 

the influence of broader economic cycles. Analysts frequently employ monthly datasets to assess 

the overall direction and health of stocks or indices, forming the basis for portfolio rebalancing, 

asset allocation, and risk management over extended horizons. 

Although the volume of data is significantly reduced relative to tick or daily frequencies, 

monthly data still require a robust analytical framework to capture cyclical and trend-driven 

dynamics. The lower frequency mitigates short-term market noise, making it a suitable input for 

models that emphasize stability, directionality, and macro-level indicators. However, in the context 

of pairs trading, monthly data are rarely employed for direct signal generation, since trading 

opportunities typically unfold at higher frequencies. Instead, they are more commonly used to 

validate long-run equilibrium relationships or to support cross-market and cross-asset hedging 

strategies. 

Table 9 presents an example of monthly historical data for Tesla Inc., as adopted in selected 

studies [4, 9, 47]. This dataset is particularly appropriate for predictive models aimed at guiding 

investment decisions over months or quarters, where the focus is on strategic positioning in 

response to economic cycles or policy changes rather than daily price fluctuations. 

In Section 4, we examined various types of historical stock price data across different 

temporal resolutions—from daily to monthly—each providing distinct analytical advantages for 

understanding market behavior. Daily data, which include OHLCV, are the most widely adopted 

due to their accessibility and ability to capture comprehensive market activity within a trading 
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session. Tick-level data, on the other hand, record every market transaction, offering high-

resolution insights into market microstructure and liquidity. However, their use is constrained by 

computational demands and limited accessibility due to licensing costs. 

Table 9. An example of Tesla corporation's monthly historical data. 

Datetime Open High Low Close Adj Close Volume 

2023-05-01 00:00:00 163.1700 204.4800 158.8300 203.9300 203.9300 2681994800 

2023-06-01 00:00:00 202.5900 276.9900 199.3700 261.7700 261.7700 3440477900 

2023-07-01 00:00:00 276.4900 299.2900 254.1200 267.4300 267.4300 2392089000 

2023-08-01 00:00:00 266.2600 266.4700 212.3600 258.0800 258.0800 2501580900 

2023-09-01 00:00:00 257.2600 278.9800 234.5800 250.2200 250.2200 2439306100 

2023-10-01 00:00:00 244.8100 268.9400 194.0700 200.8400 200.8400 2590570100 

2023-11-01 00:00:00 204.0400 252.7500 197.8500 240.0800 240.0800 2650798400 

2023-12-01 00:00:00 233.1400 265.1300 228.2000 248.4800 248.4800 2294598400 

2024-01-01 00:00:00 250.0800 251.2500 180.0600 187.2900 187.2900 2343784600 

2024-02-01 00:00:00 188.5000 205.6000 175.0100 201.8800 201.8800 2019907700 

… … … … … … … … … … … … … … 
 

Intermediate-frequency data, such as one-minute, five-minute, and hourly intervals, provide 

a practical compromise between granularity and manageability. These datasets enable analysts to 

detect intraday trends and short-term volatility, making them well-suited for medium-frequency 

trading strategies that demand timely insights without the overwhelming volume and noise of tick 

data. Monthly data, by contrast, offer a macro-level view, capturing long-term trends and structural 

market shifts, thus serving the needs of strategic, long-horizon investors. 

Using Tesla’s historical data as a reference, we observe that tick data reveals subtle, rapid 

price changes essential for modeling high-frequency trading behaviors. In contrast, daily data 

smooth out such micro-level noise, emphasizing broader market dynamics and trend-based signals. 

Five-minute and hourly datasets act as effective intermediaries, enabling traders to exploit intraday 

momentum while maintaining data tractability. Monthly data, with their low frequency, capture 

broad economic cycles, making them instrumental for portfolio reallocation and macroeconomic 

alignment. 

Comparing Tesla’s price data across these intervals also reveals notable differences in 

statistical characteristics—such as mean, variance, and volatility. Higher-frequency data typically 

exhibit greater variance and noise due to rapid market reactions, whereas lower-frequency data 

reduce short-term fluctuations, making long-term patterns more visible. Recognizing these 
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differences is crucial for aligning the data frequency with the design and objective of a trading 

strategy. In the specific context of pairs trading, this alignment is particularly critical: high-

frequency data may uncover transient arbitrage opportunities but at the cost of higher noise and 

transaction costs, while lower-frequency data highlight more stable long-term mean-reverting 

relationships. Ultimately, the effectiveness of any predictive model depends heavily on the chosen 

data resolution, underscoring the importance of selecting time intervals that best suit the intended 

analytical or trading goals. 

 

5. Artificial Intelligence Models in Pair Trading 

AI, particularly its subfields of ML, DL, and RL, has attracted growing attention within 

the financial industry. Banks, asset managers, hedge funds, and securities firms are increasingly 

incorporating AI-based techniques—including supervised and unsupervised learning, NLP, and 

advanced data analytics—into their investment processes. The goal is to enhance predictive 

accuracy, extract insights from complex and large-scale datasets, and ultimately improve 

profitability while sustaining competitive advantages. 

Figure 3 illustrates the hierarchical relationships among AI, ML, DL, and RL. Within this 

framework, ML is a subdomain of AI, DL constitutes a specialized branch of ML, and RL, while 

overlapping with both, operates under distinct principles of sequential decision-making. DRL 

emerges at the intersection of DL and RL, combining representational power with adaptive 

learning mechanisms. 

Figure 3. Relationship between AI, ML, DL, RL, and DRL. Machine learning, deep learning, 

and reinforcement learning all fall under the umbrella of artificial intelligence. 
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AI methods are now widely applied in quantitative trading, where financial data are modeled 

through mathematical, statistical, and algorithmic techniques. Among these strategies, pairs 

trading has proven particularly well-suited to AI applications. Pairs trading involves identifying 

two historically correlated assets and exploiting temporary deviations in their relative valuations. 

ML, DL, and RL provide complementary approaches that improve the precision, adaptability, and 

robustness of such strategies. 

Machine Learning in Pairs Trading 

Machine learning plays a central role in identifying suitable asset pairs for statistical 

arbitrage by analyzing historical data to uncover stable, long-term relationships. The primary 

mechanism involves modeling the typical spread behavior between two assets and detecting 

significant deviations from historical norms. A critical step is feature engineering, in which inputs 

such as price ratios, price differences, volatility measures, and mean-reversion indicators are 

constructed. These features are then fed into classification or regression models—such as SVM, 

LR, or RF—which are trained to predict the likelihood of convergence or divergence in the asset 

pair. This data-driven approach moves beyond rigid econometric assumptions, enabling traders to 

make more adaptive and statistically grounded decisions. 

Deep Learning in Pairs Trading 

Deep learning extends the capabilities of ML by capturing nonlinear and complex 

dependencies in financial data. DNNs, CNNs, and recurrent architectures such as LSTMs are 

particularly effective at identifying subtle patterns that traditional linear models fail to capture. 

In data-rich environments, DL models excel at processing large-scale, high-dimensional inputs to 

uncover latent structures that signal profitable trading opportunities. Moreover, DL methods are 

useful for anomaly detection, flagging unusual deviations in price relationships that may indicate 

trading signals. By learning from the broader distribution of market behavior, DL models enhance 

robustness, reduce false positives, and improve the reliability of signal generation in pairs trading. 

Reinforcement Learning in Pairs Trading 

Reinforcement learning introduces a fundamentally different paradigm, making it highly 

suitable for sequential decision-making in dynamic and uncertain markets. In the context of pairs 

trading, RL agents interact with a simulated or real trading environment, receiving rewards based 

on the profitability of their actions. Through this trial-and-error process, the agent progressively 
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refines its trading policy, determining optimal entry and exit points in real time. RL’s adaptability 

is a key advantage: agents can update strategies incrementally as new data arrive, reducing the need 

for complete retraining when market conditions evolve. Furthermore, RL frameworks facilitate 

continuous improvement through simulation and back-testing, allowing agents to be trained across 

diverse market scenarios without incurring real financial risk. This makes RL particularly effective 

in addressing non-stationarity and evolving asset relationships—persistent challenges in financial 

markets. 

To provide a structured overview of existing approaches, the methodologies documented in 

the literature are categorized into the tables presented below. Table 10 summarizes the supervised 

learning models employed, while Table 11 lists the unsupervised models. Table 12 outlines 

commonly applied DL models, Table 13 details RL approaches, and Table 14 highlights hybrid 

methodologies. These categorizations establish the foundation for the more detailed discussions 

presented in the subsequent sections of this chapter. 

Table 10. Comprehensive overview of supervised learning models employed. 

Article Supervised Learning Models 

[2, 30, 47, 64, 67] SVM 

[62, 65, 66] SVR 

[4] Elastic Net Regression 

[16] AdaBoost 

[19] XGBoost 

[25, 39] LGBM, RF, SVR 

[54] RF 

[55] LR, RF 

[59] GBDT 

[60] SVM, RF, ANFIS 
 

SVM and SVR are among the most widely adopted supervised models in the reviewed 

studies. Their popularity stems from robustness in high-dimensional settings and the ability to 

handle outliers effectively. While SVM is primarily designed for classification tasks, SVR extends 

the framework to regression problems, enabling the prediction of continuous outputs. 

Tree-based ensemble methods constitute another major category. RF constructs multiple 

decision trees and aggregates their predictions, reducing variance and mitigating overfitting. 

Gradient Boosting Decision Trees (GBDT), along with advanced variants such as XGBoost and 
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LightGBM (LGBM), follow an iterative approach where each tree corrects the residual errors of 

its predecessors. Compared to RF, boosting methods aim to reduce bias and generally achieve 

higher predictive accuracy. XGBoost and LGBM further improve scalability and computational 

efficiency, making them particularly suitable for large-scale financial datasets. 

Linear models also appear in the literature. Elastic Net Regression (EN) addresses 

multicollinearity by combining the penalties of Lasso (L1) and Ridge (L2), improving both 

generalization and feature selection. LR, by contrast, is frequently used in binary classification 

problems, modeling the probability of specific trading outcomes through the logistic function. 

AdaBoost represents another ensemble approach. By sequentially reweighting misclassified 

examples, it builds a strong composite classifier from weak learners, which is especially effective 

in noisy datasets. 

Finally, the Adaptive Neuro-Fuzzy Inference System (ANFIS), though less common, 

integrates neural networks with fuzzy logic to capture nonlinear dynamics and handle 

uncertainty—characteristics that align closely with financial market conditions. 

In summary, supervised learning models in pairs trading vary in complexity and 

computational requirements. Ensemble methods such as RF, GBDT, XGBoost, and LGBM 

typically deliver superior predictive performance and robustness, especially in high-dimensional 

or large-sample settings. However, they are more resource-intensive compared to simpler models 

like LR or SVM. Ultimately, the choice of model depends on data characteristics, the volatility of 

the trading environment, and the specific objectives of the strategy. 

Table 11. Comprehensive overview of unsupervised learning models employed. 

Article Unsupervised Learning Models 

[13, 49] DBSCAN 

[7] PCA, DBSCAN 

[9] K-Means, DBSCAN, AHC 

[18] OPTICS Clustering Algorithm (OPTICS) 

[68] EM Algorithm (EM) 

[25, 39] LGBM, RF, SVR 
 

Unsupervised learning models are widely applied in pairs trading to uncover latent structures 

in unlabeled data, making them particularly valuable for exploratory analysis and pair selection. 
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The reviewed studies predominantly employ clustering algorithms and dimensionality reduction 

techniques. 

Among the clustering approaches, density-based methods such as DBSCAN are frequently 

used due to their ability to detect clusters of arbitrary shape and handle noisy financial data. This 

property is particularly useful when market data exhibit irregular distributions. However, 

DBSCAN’s performance is less reliable in high-dimensional spaces or when cluster densities vary 

significantly. OPTICS, an extension of DBSCAN, addresses this limitation by generating 

a reachability plot that captures hierarchical cluster structure without requiring a predefined 

number of clusters or fixed density thresholds. 

Centroid- and hierarchy-based clustering also appear in the literature. K-Means provides 

a computationally efficient means of partitioning assets into a fixed number of clusters by 

minimizing within-cluster variance. Yet, its reliance on convex, equally sized clusters may not 

align with the complexities of real financial markets. Agglomerative Hierarchical Clustering 

(AHC), in contrast, constructs a nested cluster hierarchy that offers intuitive visualization through 

dendrograms. While this method reveals multi-level relationships between assets, it becomes 

computationally intensive with larger datasets. Probabilistic clustering is represented by the EM 

algorithm, typically applied within Gaussian Mixture Models (GMM). EM provides a flexible, 

probabilistic description of asset groupings, which is advantageous for modeling overlapping 

structures in financial data. Nevertheless, its sensitivity to initialization and higher computational 

demands limit scalability. 

In addition to clustering, dimensionality reduction techniques are also applied. PCA serves 

as a critical preprocessing tool by transforming correlated variables into orthogonal components, 

thereby reducing dimensionality while preserving most of the variance. This not only enhances 

clustering performance but also mitigates noise, making it particularly relevant when dealing with 

high-dimensional stock return datasets. 

Interestingly, some studies also report the use of models such as LGBM, RF, and SVR in 

this context. Although these are conventionally classified as supervised methods, their inclusion 

likely reflects applications within semi-supervised or hybrid frameworks, where clustering results 

are integrated with supervised prediction tasks. 
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Overall, unsupervised learning methods provide powerful tools for detecting hidden 

relationships in financial markets. Density-based models like DBSCAN and OPTICS excel 

at handling irregular structures and noisy environments, whereas K-Means and AHC offer more 

structured but assumption-dependent clustering. EM enables probabilistic modeling of latent asset 

groups, while PCA plays a complementary role in reducing dimensionality and improving model 

efficiency. The choice of technique ultimately depends on data characteristics—such as 

dimensionality, noise, and heterogeneity—as well as the objectives of the trading strategy, whether 

exploratory pair identification or enhanced predictive modeling. 

Table 12. Comprehensive overview of deep learning models employed. 

Article Deep Learning Models 

[24, 36, 37, 38, 48] LSTM 

[1] Neural Network 

[17] KalmanNet Bollinger Trading (KalmanBOT) 

[27] Stochastic Neural Network (SNN) 

[28] RNN, LSTM, TCN 

[31] TCN 

[45] LSTM, LSTM Encoder-Decoder 

[46] LSTM, CNN, Multilayer perceptron (MLP) 

[50] DNN 

[56] BNN, DP-BNN, DDP-BNN 

[57] Filterbank CNN 
 

The DL models employed in the reviewed studies encompass a wide range of architectures, 

each addressing specific challenges inherent in financial time series analysis. RNNs and their 

advanced variants, particularly LSTM networks, dominate the literature due to their capacity to 

capture long-term temporal dependencies while mitigating vanishing gradient problems. More 

sophisticated designs, such as LSTM encoder–decoder architectures, extend this capacity to 

sequence-to-sequence forecasting, which is crucial for multi-step financial prediction. TCNs 

provide an alternative to RNNs by employing dilated convolutions, offering stable gradients and 

parallelizable computation for modeling long-range dependencies. 

Feedforward-based models, including DNNs, MLPs, and other standard neural network 

structures, are applied to capture nonlinear mappings in asset price data. CNNs have also been 

adapted from computer vision to financial contexts, where variants such as Filterbank CNNs are 

used to extract local temporal patterns and repetitive structures from market signals. 
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Beyond conventional neural networks, several innovative models have emerged. 

KalmanBOT integrates Kalman filtering into a neural framework, allowing dynamic state 

estimation and adaptation to evolving market conditions. SNNs incorporate controlled randomness 

into the training process, enhancing generalization under noisy environments. BNNs, together with 

extensions such as DP-BNN and DDP-BNN, embed probabilistic reasoning into DL models, 

enabling uncertainty quantification—a critical aspect in financial risk assessment and decision-

making. 

In summary, DL models for pairs trading differ in their primary strengths: RNN-based 

architectures (LSTM, TCN) excel at sequential dependency modeling; CNNs capture local 

temporal features; probabilistic approaches such as BNNs and SNNs provide robustness under 

uncertainty; and hybrid innovations like KalmanBOT address dynamic and non-stationary market 

conditions. The choice of model is ultimately contingent upon the characteristics of the dataset, 

the required balance between predictive accuracy and interpretability, and the adaptability needed 

for volatile financial environments. 

Table 13. Comprehensive overview of reinforcement learning models employed. 

Article Reinforcement Learning Models 

[32, 53] DQN 

[5, 33, 41] DRL, CA-DRL 

[3] Two-Level Reinforcement Learning 

[6] CA-DRL, NEWS-CO-DRL 

[10] PPO, PPO-PT, PPO-PT w/o Demo, SAPT, PTDQN 

[12] Hierarchical Reinforcement Learning (HRL) 

[15] P-DDQN, PTDQN 

[29] SAPT, SAPT w/o Break, SAPT w/o Time, SAPT w/o Hold, PTDQN, SAPT-3-std, 

SAPT-ADF, SAPT-BCD, SAPT-LSTM 

[34] RL-0, RL-0.02, RL-0.05, RL-0.1 

[35] Deep Reinforcement Learning (DRL) 

[42] DQN, Double Deep Q-Network (DDQN) 

[63] RL 

 

The RL approaches applied in the reviewed literature span a diverse set of frameworks, 

reflecting the complexity of financial decision-making environments. Value-based methods such 

as the DQN employ neural networks to approximate Q-values, enabling agents to learn optimal 
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policies through iterative exploration and exploitation. Its extension, DDQN, addresses 

the overestimation bias inherent in standard DQN, yielding more stable and accurate convergence. 

Beyond these foundations, DRL integrates neural architectures with RL to handle high-

dimensional market data. Domain-specific variants such as CA-DRL embed econometric 

knowledge directly into the learning process, improving the agent’s capacity to exploit long-term 

equilibrium dynamics between asset pairs. Policy gradient methods, particularly PPO and its 

derivatives (e.g., PPO-PT), offer improved training stability by constraining policy updates within 

clipped bounds, a feature especially critical in financial markets where instability can lead to 

substantial losses. 

Hierarchical RL (HRL) and multi-layered frameworks such as Two-Level RL and SAPT 

introduce additional structural flexibility. These approaches decompose trading tasks into layered 

sub-decisions—such as entry, holding, and exit—enabling agents to operate effectively across 

multiple levels of abstraction. SAPT and its numerous variants (e.g., SAPT-ADF, SAPT-3-std, 

SAPT-BCD) further illustrate how statistical criteria can be integrated into RL frameworks to 

adapt strategies under different market conditions. 

Advanced Q-learning extensions like Prioritized Double DQN (P-DDQN) and Prioritized 

Twin Delayed Q-Network (PTDQN) refine the learning process by assigning greater weight to 

informative experiences via prioritized replay, thereby accelerating convergence and enhancing 

adaptability in non-stationary environments. 

In summary, RL models in pairs trading differ not only in algorithmic design but also in their 

suitability for specific trading objectives. Value-based methods (DQN, DDQN) are effective for 

discrete action problems; PPO are advantageous in continuous and high-dimensional settings; 

hierarchical and layered frameworks (HRL, SAPT) provide modularity for complex strategies; and 

advanced replay-based Q-learning variants (P-DDQN, PTDQN) enhance efficiency in volatile 

markets. The choice of approach ultimately depends on the complexity of the trading environment, 

the stationarity of asset relationships, and the need for adaptability in dynamic financial contexts. 

The hybrid models summarized in Table 14 reflect a growing consensus in the literature that 

no single approach is sufficient to capture the multifaceted dynamics of financial markets. These 

designs can be broadly categorized into three groups. First, feature-combination approaches 

employ dimensionality reduction techniques (e.g., PCA, CAE) and clustering algorithms 
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(e.g., DBSCAN) as preprocessing steps, before passing the transformed data into reinforcement 

learning models such as PPO. This improves the signal-to-noise ratio and enhances the stability of 

policy learning. Second, model-fusion frameworks integrate conventional ML methods (e.g., LR, 

XGBoost, SVM) with DL architectures (e.g., LSTM, CNN), thereby combining the interpretability 

of shallow learners with the representational power of deep networks. Third, multi-objective 

frameworks seek to jointly optimize signal generation and portfolio management—for example, 

by combining Kalman filtering with LSTM architectures, or coupling predictive models with 

allocation rules such as 1/N or MVF. 

Table 14. Comprehensive overview of combined models employed. 

Article Combined Models 

[8] PCA, Convolutional AutoEncoders (CAE), DBSCAN, PPO 

[14] LR, XGBoost, CNN, LSTM 

[20] A-LSTM+1/N, RF+MVF, RF+1/N, SVM+MVF, SVM+1/N 

[22] LSTM, OPTICS 

[23] XGBoost, TCAN 

[26] SVM, XGBoost, DNN, LSTM, RAF 

[40] LSTM, ANN, LR, GBDT, FeedForward NN 

[42] DQN, Double Deep Q-Network (DDQN) 

[44] LSTM, CNN, Deterministic Policy Gradient (DPG) 

[51] ANN, XGBoost 

[52] LR, Gaussian Discriminant Analysis (GDA), SVM, NN 

[61] DNN, GBDT, RF 
 

These hybrid approaches go beyond mere technical integration: they embody an attempt to 

reconcile diverse temporal, structural, and behavioral aspects of market data within a unified 

framework. Particularly noteworthy is the increasing incorporation of reinforcement learning into 

hybrid systems, which shifts the methodological focus from static prediction toward adaptive, 

sequential decision-making under uncertainty. 

Nevertheless, such models introduce new challenges. They often demand significantly 

greater computational resources, reduce transparency, and are rarely benchmarked against simpler 

baselines, raising concerns about overfitting and limited generalizability. Future research may thus 

benefit from formalizing hybrid architectures within principled frameworks such as meta-learning 

or modular reinforcement learning, while simultaneously prioritizing model interpretability, 

robustness, and real-world deployability. 
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5.1 Machine Learning 

ML refers to the process of training algorithms to learn patterns from data and make 

predictions or decisions without explicit rule-based programming. Within ML, algorithms are 

typically categorized into supervised and unsupervised approaches. In supervised learning, models 

are trained on labeled datasets to map input features to known outputs, whereas unsupervised 

learning focuses on uncovering hidden structures within unlabeled data. Both paradigms have been 

widely applied in financial research, particularly in the prediction of stock price movements and 

the identification of trading opportunities. The following sections examine the methods most 

frequently reported in the literature, with reference to Table 10, 11 and 14. 

 

5.1.1 Supervised Learning 

Supervised learning involves training models to capture the relationship between 

explanatory variables and corresponding target labels, with the objective of minimizing prediction 

error. Applications in finance typically fall into two categories. The first category is regression, 

where the output variable is continuous, such as predicting stock price levels or expected returns. 

The second category is classification, which involves categorical outputs, such as forecasting 

whether the price of a stock will rise or fall. 

Among the supervised learning models applied in quantitative finance, linear regression, 

support vector machines, and random forests are the most commonly used. Evidence from 

the reviewed literature summarized in Table 10 and 14 shows that support vector machines appear 

in nine studies, accounting for roughly 13 percent of the reviewed articles, while random forests 

are reported in six studies, representing about 9 percent. These frequencies highlight the strong 

preference for these methods, largely due to their robustness in handling high-dimensional, noisy, 

and nonlinear financial data. 

The subsequent discussion provides a closer examination of how these models, particularly 

support vector machines, are employed in pairs trading. Attention is given to their predictive 

capacity, their effectiveness in generating trading signals, and their role in supporting statistical 

arbitrage strategies. 

 



36 
 

Sun, Y. / WORKING PAPERS 22/2025 (485) 

5.1.1.1 Introduction to Support Vector Machine 

SVM is a widely used and versatile supervised learning algorithm that can be applied to both 

classification and regression tasks, although it is predominantly utilized for classification. 

The fundamental objective of SVM is to identify an optimal decision boundary, or hyperplane, 

that separates data points belonging to different classes with the greatest possible margin. The data 

points that lie closest to this hyperplane are referred to as support vectors, and they play a critical 

role in determining its orientation and position. 

The principle of margin maximization lies at the core of SVM. By selecting the hyperplane 

that maximizes the distance to the nearest support vectors, the algorithm enhances its ability to 

generalize to unseen data, thereby reducing the risk of overfitting. For linearly separable data, this 

hyperplane takes the form of a line in two dimensions, a plane in three dimensions, or a higher-

dimensional analogue. However, financial data and other real-world datasets are rarely linearly 

separable. To address this limitation, SVM employs the kernel trick, which maps the original 

feature space into a higher-dimensional one where linear separation becomes feasible. This 

transformation is performed implicitly by kernel functions, avoiding the computational burden of 

explicit feature expansion. Commonly used kernels include the polynomial kernel, the radial basis 

function (RBF) kernel, and the sigmoid kernel, each offering different capacities to capture 

nonlinear structures in the data. 

An additional and equally important aspect of SVM is regularization, which is governed by 

a penalty parameter commonly denoted as 𝐶 . This parameter balances the trade-off between 

maximizing the margin and minimizing classification errors on the training data. A large value of 

𝐶 forces the model to prioritize correct classification of training samples, often at the expense of 

generalization, whereas a smaller value of 𝐶 allows some misclassifications but typically yields 

a more robust model. This flexibility is particularly relevant in financial applications, where noise 

and outliers are common in market data. 

The optimal separating hyperplane in a linear SVM is: 

𝑤𝑇x + b = 0                                                             (5.1) 

where 𝑤 is the normal vector (determining the orientation of the hyperplane), x denotes a data 

point in feature space, and b is the bias term shifting the hyperplane along 𝑤. 
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Training a linear SVM chooses 𝑤 and b to maximize the margin, i.e., the minimum distance 

from the hyperplane to the nearest data points (the support vectors). For linearly separable data 

(hard margin), this is equivalent to the convex program, 

  min
𝑤,𝑏

1

2
||𝑤||2   𝑠. 𝑡.   𝑦𝑖(𝑤𝑇x𝑖 + b) ≥ 1,  i = 1, … , n            (5.2) 

with labels 𝑦𝑖 ∈ {−1, +1}. 

In practice, real data are rarely perfectly separable. The soft-margin formulation introduces 

slack variables 𝜉𝑖 ≥ 0 and the regularization parameter 𝐶 > 0 (which you discussed earlier) to 

balance margin size and training errors: 

  min
𝑤,𝑏,𝜉

1

2
||𝑤||2 + 𝐶 ∑  𝜉𝑖

𝑛
𝑖=1    𝑠. 𝑡.   𝑦𝑖(𝑤𝑇x𝑖 + b) ≥ 1 −  𝜉𝑖,  𝜉𝑖 > 0           (5.3) 

Larger 𝐶 penalizes violations more strongly (lower bias, higher variance); smaller 𝐶 allows 

a wider margin at the cost of more training errors (higher bias, lower variance). 

For nonlinearly separable data, SVM employs the kernel trick, replacing inner products by 

a kernel 𝐾(𝑥𝑖, 𝑥) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥) without explicitly computing the mapping 𝜙(⋅). The decision 

function is 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥)𝑛
𝑖=1 + 𝑏)                                                  (5.4) 

where 𝛼𝑖 are the Lagrange multipliers from the dual optimization; only support vectors have 𝛼𝑖 >

0  (by KKT conditions). Common choices of 𝐾  include the polynomial and RBF kernels 

(the sigmoid kernel is also used in some applications). 

 

5.1.1.2 Support Vector Machine in Pair Trading 

Speaking to the steps of implementing SVM in pair trading, as shown in Figure 4 from article 

[47], the model architecture consists of five modules: data acquisition, analytics, hedging based on 

the ML method, pairs trading, and trading performance evaluation. 
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Figure 4. Systematic pair trading model architecture using SVM for futures in article [47]. 

 

The specific steps for applying SVM to pairs trading are also outlined in article [30], where 

model performance under different parameter settings is presented in Table 15. 

Table 15. Model performance with different parameters in article [30]. 

Pair Accuracy AUC of ROC Parameters 

600797.SH-603421.SH 64% 0.63 kernel=poly, C=0.1, degree=3, coef0=2 

002807.SZ-601288.SH 57% 0.57 kernel=poly, C=1, degree=3, coef0=0.5 

000025.SZ-000715.SZ 56% 0.57 kernel=rbf, C=0.1, gamma=0.01, coef0=0 

600029.SH-600115.SH 58% 0.59 kernel=poly, C=4, degree=3, coef0=5 

002696.SZ-600975.SH 66% 0.67 Kernel=poly, C=2, degree=2, coef0=2 
 

Data Acquisition and Preprocessing 

The implementation of an SVM-based pairs trading strategy begins with data acquisition and 

preprocessing. Historical daily price data for selected stock pairs are retrieved from the Chinese 

market using the Tushare API. This dataset typically includes open, high, low, close, and volume 

information for each trading day. The raw data are then cleansed to address missing values, correct 

anomalies, and exclude non-trading days, thereby ensuring consistency and reliability. To enhance 

model convergence and stability, Min-Max normalization is applied, scaling all feature values to 

a uniform range, typically between 0 and 1. 

Feature Engineering and Selection 

Following preprocessing, feature engineering and selection are conducted. For each stock 

pair, absolute and relative price spreads are calculated to quantify divergence between the two 
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assets. Volatility measures, such as rolling standard deviations of the spread, are also computed to 

capture dynamic changes in co-movement. Additionally, technical indicators—including moving 

averages, RSI, and MACD—are constructed to embed trend-following and momentum-based 

information. To manage dimensionality and focus on informative predictors, techniques such as 

PCA or feature importance scores from tree-based models are employed. 

SVM Configuration and Model Training 

Once features are defined, the SVM is configured and trained. Different kernel functions—

linear, polynomial, and RBF—are tested via cross-validation to identify the most effective choice 

in terms of accuracy and computational efficiency. A grid search is then performed across 

hyperparameters, including the penalty term (C), kernel coefficient (gamma), and polynomial 

degree, to determine optimal settings. Using the selected configuration, the model is trained on 

the full training dataset to capture nonlinear dependencies and complex feature interactions. 

Strategy Formulation and Trading Signal Generation 

Based on the trained SVM, trading signals are generated by predicting whether the price 

spread between a stock pair will widen or narrow. Execution criteria are then defined to translate 

these predictions into trading actions. For instance, a long-short position is initiated when 

the predicted spread change exceeds a specified threshold. The resulting strategy is back-tested on 

historical data to validate its performance and confirm the decision rules. 

Back-testing and Performance Evaluation 

Historical simulations are conducted under varying market conditions to rigorously evaluate 

performance. Key performance indicators—including cumulative return, Sharpe ratio, maximum 

drawdown, and beta-adjusted return—are calculated to assess both profitability and risk-adjusted 

performance relative to benchmarks. 

Implementation and Real-Time Execution 

For live trading, the system continuously fetches and processes real-time data to update 

predictions. Trade execution is automated through brokerage APIs, ensuring efficiency. 

A dynamic risk management framework is also incorporated, applying stop-loss and take-profit 

thresholds, along with volatility-adjusted position sizing, to limit potential losses. 
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Ongoing Monitoring and Model Updating 

Finally, the system integrates monitoring and maintenance mechanisms. Live trading 

outcomes are tracked against historical benchmarks to detect deviations. The SVM is periodically 

retrained using the latest data to adapt to evolving market dynamics. A feedback loop further 

refines trading logic and model parameters, improving robustness and adaptability over time. 

 

5.1.2 Unsupervised Learning 

Unsupervised learning is a type of ML in which algorithms are trained using input data 

without corresponding output labels. The primary objective is to uncover the underlying structure 

or distribution of the data, thereby gaining insights into hidden patterns and relationships. This 

paradigm is particularly useful when the outcomes are unknown in advance and the goal is 

exploratory analysis rather than direct prediction. 

Unsupervised learning tasks are typically categorized into clustering and dimensionality 

reduction. Clustering algorithms, such as k-means or DBSCAN, aim to identify inherent groups 

within the data, assigning unlabeled points to meaningful subgroups based on similarity. This 

process is widely applied in finance for tasks such as grouping assets with similar dynamics or risk 

profiles. Dimensionality reduction techniques, most notably PCA, serve to project high-

dimensional financial data into lower-dimensional representations while retaining the most 

informative variance components. Although association rule mining is also a branch of 

unsupervised learning, its applications are more prevalent in domains such as retail and 

recommendation systems rather than financial markets. 

The reviewed literature, as summarized in Table 11 and 14, shows that DBSCAN and PCA 

are the dominant unsupervised approaches adopted. Specifically, DBSCAN has been implemented 

in four studies, accounting for approximately 6% of applications, while PCA has been applied in 

two studies, representing a smaller proportion. Although their overall usage is limited compared 

to supervised learning models, these methods play an important role in enhancing pairs trading 

strategies. DBSCAN contributes by identifying asset clusters with strong co-movement properties, 

while PCA facilitates noise reduction and the extraction of latent factors driving asset returns. 

The following sections explore the integration of DBSCAN in pairs trading, critically evaluating 

its effectiveness and distinct contributions to strategy refinement. 
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5.1.2.1 Introduction to Density-Based Spatial Clustering of Applications with Noise 

Developed in 1996 by Ester et al. (1996), DBSCAN is a widely recognized clustering 

algorithm that groups points according to the density of their neighborhoods. Unlike partition-

based methods such as k-means, DBSCAN distinguishes between dense regions and sparse regions, 

treating the latter as noise. As a non-parametric, density-based method, it does not require prior 

knowledge of the number of clusters, which makes it particularly well suited for applications 

involving complex data distributions. 

The algorithm relies on two key parameters: ε (epsilon), which defines the radius of the 

neighborhood around a point, and minPts, which specifies the minimum number of neighboring 

points required for a region to be considered dense. Formally, for a given dataset 𝐷 , 

the ε-neighborhood of a point 𝑝 is defined as: 

𝑁𝜀(𝑝) = {𝑞 ∈ 𝐷 ∣ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀}  

A point 𝑝 is classified as a core point if 

𝑁𝜀(𝑝) ≥ minPts 

Based on these definitions, DBSCAN categorizes points as follows. A point 𝑞 is said to be 

directly reachable from 𝑝 if 𝑞 ∈ 𝑁𝜀(𝑝) and 𝑝 is a core point. A point 𝑞 is reachable from 𝑝 if there 

exists a chain of points 𝑝1, … , 𝑝𝑛 with 𝑝1 = 𝑞 and 𝑝𝑛 = 𝑞, where each point is directly reachable 

from the previous one. Points that are not reachable from any other point are designated as outliers 

or noise. 

In practice, this means that a cluster is formed by a core point together with all points (both 

core and non-core) that are reachable from it. Each cluster must contain at least one core point, 

while non-core points may belong to a cluster but lie on its “edge,” as they cannot extend 

reachability further. 

The overall DBSCAN procedure unfolds in three stages. First, the ε-neighborhood of each 

point is evaluated to determine whether it qualifies as a core point. Second, a connectivity graph 

is constructed by linking core points that lie within each other’s ε-neighborhoods, thereby initiating 

cluster formation. Finally, non-core points are assigned to clusters if they fall within the ε-radius 

of any core point; otherwise, they are labeled as noise. Through this iterative process, DBSCAN 
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is able to discover clusters of arbitrary shapes and effectively separate noise without requiring the 

number of clusters as an input. 

5.1.2.2 Density-Based Spatial Clustering of Applications with Noise in Pair Trading 

In the context of pair trading, DBSCAN can be effectively utilized to identify groups of 

stocks that exhibit similar movement patterns over time. It plays a critical role in the preliminary 

stages of strategy development by clustering stocks based on their historical price behavior, which 

allows traders to systematically filter potential trading pairs from large datasets. 

The study presented in article [9] introduces a novel pair trading framework that incorporates 

DBSCAN, moving beyond traditional strategies that rely solely on price data by integrating firm-

level characteristics. This approach, applied to the U.S. stock market over a 40-year period, 

demonstrates superior performance in terms of annualized returns and Sharpe ratios. The strategy 

remains profitable even after accounting for transaction costs and exhibits robustness against data-

snooping concerns. 

How DBSCAN Works 

The application of DBSCAN in pair trading begins with feature selection. In this step, 

relevant features are derived from historical return data, augmented by firm-level characteristics 

such as size, book-to-market ratio, and other accounting-based attributes. Incorporating both price 

dynamics and firm-specific fundamentals enables the formation of groups consisting of stocks with 

historically similar movements and comparable structural features, thereby reducing the likelihood 

of spurious pairings. 

A suitable distance metric is then required to quantify similarity between stocks. In article 

[9], cosine similarity is employed to capture the relative alignment of stocks’ return vectors in the 

feature space. Based on this measure, DBSCAN is applied to identify clusters of stocks with 

common patterns. A known challenge of this method is the imbalance in cluster sizes, where one 

large high-density cluster may dominate, leaving many stocks classified as outliers. This highlights 

the importance of parameter calibration, as the number and structure of clusters have a direct 

impact on the trading strategy. 

Once the distance metric is established, DBSCAN is applied to the feature set to identify 

clusters. A known challenge of this method is the imbalance in cluster sizes, where a dominant 

high-density cluster often emerges, leaving the remaining stocks classified as outliers. This 
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phenomenon reflects the concentration of similarities in the data but also underscores the need for 

careful tuning of DBSCAN parameters. The number and structure of resulting clusters can 

significantly influence the strategy’s performance, making parameter calibration essential. 

In financial contexts, this clustering process is particularly valuable, as it helps differentiate 

between common price movements and anomalous behaviors. 

After clustering, stock pairs are selected from within the same group, as they are expected 

to share common dynamics. Trading rules are then based on one-month return differentials: stocks 

with relatively lower returns are treated as undervalued, while those with higher returns are 

considered overvalued. A contrarian strategy is employed, buying the undervalued stock and 

shorting the overvalued one when the spread exceeds one cross-sectional standard deviation of 

the past month’s return difference. Positions are rebalanced monthly. The performance of this 

strategy is summarized in Table 16. 

Table 16. Annualized risk-return metrics with DBSCAN in article [9]. 

DBSCAN Long Short Long-Short 

Mean return 0.291 0.053 0.238 

Standard deviation 0.244 0.188 0.152 

Sharpe ratio 1.195 0.281 1.571 

t-statistic 2.296 2.215 2.875 

Downside deviation 0.171 0.162 0.066 

Sortino ratio 1.703 0.327 3.591 

Gross profit 17.544 9.051 12.733 

Gross loss -5.603 -6.882 -2.96 

Profit factor 3.131 1.315 4.302 

Profitable years 37 27 38 

Unprofitable years 4 14 3 

Maximum drawdown -0.477 -0.624 -0.129 

Calmar ratio 0.611 0.085 1.846 

Turnover 0.932 0.981 1.913 

 

Also, article [9] conducted robustness tests, in Table 17, to assess the sensitivity to clustering 

parameters and to ensure results are not driven by data snooping. 
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Table 17. Parameter sensitivity of the strategies, DBSCAN with different percentiles (α) for 

the outlier threshold in article [9]. 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean return 0.256 0.2 0.173 0.154 0.148 0.148 0.138 0.134 0.129 

Sharpe ratio 2.039 1.763 1.526 1.328 1.19 1.142 1.036 0.954 0.867 

Maximum 

drawdown 

-0.149 -0.146 -0.163 -0.206 -0.197 -0.242 -0.238 -0.285 -0.332 

Number of 

clusters 

2 2 2 2 2 2 2 2 1 

Number of 

stocks in 

clusters 

376(12.

05) 

749(24.

06) 

1092(35

.02) 

1418(45

.44) 

1729(55

.41) 

2034(65

.14) 

2328(74

.56) 

2609(83

.54) 

2878(92

.2) 

Number of 

outliers 

2781(87

.95) 

2408(75

.94) 

2065(64

.98) 

1739(54

.56) 

1428(44

.59) 

1123(34

.86) 

829(25.

44) 

548(16.

46) 

279(7.8

) 

Number of 

stocks traded 

75(2.47

) 

188(6.1

7) 

314(10.

18) 

450(14.

52) 

594(19.

09) 

743(23.

82) 

896(28.

67) 

1053(33

.67) 

1217(38

.86) 

 

Practical Implementation Summarize 

In practical implementation, the process begins with data preparation. This involves 

collecting and preprocessing historical price data for a broad set of stocks, ensuring that the dataset 

is clean and consistent for analysis. Once the data is prepared, attention shifts to parameter 

selection. The two key parameters of DBSCAN—the neighborhood radius (epsilon) and the 

minimum number of points required to form a dense region (min_samples)—must be carefully 

tuned, as they critically determine the clustering results and, by extension, the effectiveness of the 

trading strategy. 

Following parameter calibration, DBSCAN is executed on the processed dataset to identify 

meaningful stock clusters. These clusters are then examined to select potential trading pairs based 

on their historical co-movements. To validate the strategy’s performance, back-testing is 

conducted using historical data, evaluating both feasibility and profitability of the identified 

trading opportunities. 

Benefits of Using DBSCAN in Pair Trading 

There are several notable advantages to applying DBSCAN in pair trading. One significant 

advantage is efficiency. The algorithm reduces the dimensionality of the trading universe by 

filtering out stocks that do not exhibit strong similarities, thereby focusing attention on the most 
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promising pair candidates. Moreover, DBSCAN’s ability to detect and exclude outliers improves 

the robustness of the strategy by eliminating stocks that might introduce excessive noise or 

volatility. Another important strength lies in its adaptability: unlike many clustering methods, 

DBSCAN does not require a predefined number of clusters, making it well-suited to dynamic 

financial markets where structural assumptions are often unreliable. 

Challenges and Considerations 

Despite these advantages, DBSCAN also presents challenges. A key issue is parameter 

sensitivity, as the selection of epsilon and min_samples substantially influences the clustering 

outcomes and often requires adjustment in response to changing market conditions. Furthermore, 

financial markets are inherently noisy and influenced by numerous unpredictable factors. This 

external volatility can reduce the consistency and reliability of clusters generated by DBSCAN, 

particularly during periods of structural breaks or regime shifts. 

 

5.2 Deep Learning 

DL refers to a subset of machine learning techniques that employ artificial neural networks 

(ANNs) with multiple layers, where the term “deep” reflects the use of these hierarchical layers. 

Such architectures enable representation learning, allowing the model to capture and exploit 

abstract patterns in data. The most common DL architectures include DNNs, DBNs, RNNs, CNNs, 

and transformers. These models are highly versatile and can be trained under supervised, semi-

supervised, or unsupervised paradigms. 

DL has been successfully applied across a wide spectrum of fields. In computer vision and 

speech recognition, it enables machines to interpret visual and auditory signals. In NLP and 

machine translation, it facilitates communication and understanding between humans and 

machines. In bioinformatics and drug design, DL aids in predicting molecular activities and 

interactions, while in medical imaging, it assists in the accurate diagnosis of diseases. Furthermore, 

DL contributes to climate modeling and prediction, material inspection for quality control, and has 

even been employed to master complex board games, frequently achieving or surpassing human-

level performance. 

In quantitative finance, and particularly in quantitative trading, DL has also gained 

increasing attention. In the subsequent sections, I will examine in detail how DL is applied to pairs 
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trading. The discussion expands upon the methodologies briefly referenced in the literature, with 

a particular emphasis on the techniques summarized in Table 12 and 14. 

The evidence from Table 12 and 14 clearly indicates that LSTM and CNN are the most 

frequently applied DL architectures in the reviewed works. Specifically, LSTM was utilized in 

eleven studies, accounting for 16% of applications, whereas CNN was adopted in four studies, 

representing 6% of the sample. These findings highlight a strong reliance on these two methods 

within the academic community. The following sections will further analyze the application of 

LSTM in pairs trading, evaluating its effectiveness and illustrating the role it plays in enhancing 

trading strategies. 

 

5.2.1 Introduction to Long Short-Term Memory 

RNNs are designed to process sequential data, distinguishing them from standard 

feedforward neural networks that treat inputs as independent. By maintaining a hidden state, RNNs 

are able to capture temporal dependencies, making them suitable for tasks where the meaning of 

current inputs depends on prior context—for example, understanding how the interpretation of 

a word depends on its surrounding text. 

LSTM networks are a special class of RNNs, shown in Figure 5, developed to mitigate the 

issues of vanishing and exploding gradients that frequently arise when training over long 

sequences. Compared to conventional RNNs, LSTMs are more effective at modeling long-term 

dependencies, making them a widely adopted solution in sequence modeling tasks. A schematic 

of the LSTM architecture is presented in Figure 5. 

What differentiates LSTMs from traditional RNNs is the incorporation of memory cells, 

which allow information to be stored and accessed over extended periods. Each LSTM unit 

consists of a cell, an input gate, a forget gate, and an output gate. These gates regulate the flow of 

information into and out of the memory cell, controlling how the cell state evolves across time 

steps. 
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Figure 5. Schematic Representation of the LSTM Model. 

 

Source: Zhao, W. and Fan, L. (2024). Short-Term Load Forecasting Method for Industrial Buildings Based on 

Signal Decomposition and Composite Prediction Model 

The cell state 𝐶𝑡 is the central component of the LSTM, functioning like a conveyor belt that 

runs through the entire sequence of units. It allows information to be carried forward largely 

unchanged, with selective modifications introduced by the gates. This enables the network to 

preserve essential information while discarding irrelevant details. 

The forget gate 𝑓𝑡  determines which parts of the previous cell state should be discarded. 

It takes as input the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡, passing them through 

a sigmoid function: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                      (5.5) 

where 𝜎 denotes the sigmoid activation that outputs values between 0 and 1, 𝑊𝑓 is the weight 

matrix of the forget gate, 𝑏𝑓 is the bias term, ℎ𝑡−1 is the hidden state from the previous time step, 

and 𝑥𝑡  is the current input vector. The resulting vector 𝑓𝑡 is then applied element-wise to the 

previous cell state 𝐶𝑡−1 to determine which components are retained. 

The input gate 𝑖𝑡 determines which values will be updated, while a 𝑡𝑎𝑛ℎ layer generates 

a vector of new candidate values 𝐶̃𝑡 that may be added to the cell state. These components jointly 

contribute to updating the cell state: 

   𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)           (5.6) 

https://www.mdpi.com/2071-1050/16/6/2522
https://www.mdpi.com/2071-1050/16/6/2522
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𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)            (5.7) 

Here, the input gate uses a sigmoid activation to determine which elements of 𝐶̃𝑡  are 

accepted. The candidate vector 𝐶̃𝑡, produced by the 𝑡𝑎𝑛ℎ  transformation, represents potential 

updates to the cell state, thereby allowing flexible integration of new information through non-

linear transformations. 

The old cell state 𝐶𝑡−1 is then updated to the new state 𝐶𝑡. Specifically, the forget gate’s 

output scales the old state (controlling what is retained), while the input gate’s output scales 

the candidate values (controlling what is updated): 

        𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡        (5.8) 

This formulation combines the previous cell state 𝐶𝑡−1, modulated by 𝑓𝑡, with the candidate 

values 𝐶̃𝑡, modulated by 𝑖𝑡. Such selective updating enables LSTMs to propagate relevant 

information across long sequences while mitigating the risks of gradient vanishing or explosion. 

Finally, the output gate 𝑜𝑡 determines the next hidden state ℎ𝑡. The hidden state encapsulates 

information from prior inputs and is also used for predictions. A sigmoid layer regulates which 

portions of the current cell state contribute to the output. The cell state is then passed through 

a 𝑡𝑎𝑛ℎ function, constraining values to the range [−1, 1], and multiplied element-wise by the 

gate’s output: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                    (5.9) 

  ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡)                   (5.10) 

Here, the output gate 𝑜𝑡 filters the cell state 𝐶𝑡 to determine the information carried forward 

to the next hidden state ℎ𝑡, and potentially to the output layer of the network. By applying the 𝑡𝑎𝑛ℎ 

activation, this step ensures non-linear scaling and controlled representation of the state 

information. 

The detailed dynamics and operational flow of LSTMs are as follows. Each gate within the 

architecture serves a distinct role in managing the flow of information. By preserving valuable 

historical data, incorporating relevant new inputs, and discarding redundant or obsolete 

information, LSTMs are able to maintain stable performance across sequences of varying lengths. 

One of the key advantages of LSTMs is their ability to regulate gradient flow during 

backpropagation. The gating mechanisms help mitigate the well-known issues of vanishing and 
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exploding gradients by selectively controlling how much information—and thus how much 

gradient—is propagated through each time step. This selective control ensures that critical signals 

are preserved during training while minimizing instability. 

Moreover, the structure of LSTMs allows them to effectively capture long-term 

dependencies. Their ability to determine what information should be retained or forgotten makes 

them particularly well-suited for tasks where historical context strongly influences current 

outcomes. A common example is language modeling, in which earlier words in a sentence provide 

essential context for predicting subsequent words. 

Through the integration of these mechanisms, LSTM networks provide a powerful and 

flexible framework for modeling sequential data. Their capacity to preserve temporal context, 

adaptively manage memory, and maintain gradient stability makes them a preferred choice for 

a wide range of applications, including time-series analysis, natural language processing, and 

financial prediction, where long-term dependencies play a critical role. 

 

5.2.2 Long Short-Term Memory in Pair Trading 

Using LSTM networks in pairs trading involves leveraging their ability to remember and 

utilize historical financial data over extended periods, which is crucial for identifying and 

exploiting market inefficiencies between pairs of stocks, commodities, or other financial 

instruments. 

The paper [38] provides a detailed methodology for using LSTM networks to identify and 

capitalize on pairs-trading opportunities. Here are the specific steps based on the information from 

the article. 

Data Collection 

The process begins with data collection. The study focuses on stocks within the S&P 500 

index, which are updated annually to reflect changes in the index composition. Daily price data, 

including open, high, low, close, and volume, are gathered for the period from January 2000 to 

June 2019. Data retrieval is typically performed via APIs like yfinance, and adjusted close prices 

are used to account for dividends and stock splits. 
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Data Preprocessing 

In the preprocessing stage, the authors apply Z-score normalization, standardizing each 

stock’s price series using its mean and standard deviation. Cointegration tests are then conducted 

using tools such as the Engle-Granger or Johansen procedures, implemented in Python or R, to 

identify stock pairs with statistically significant long-term equilibrium relationships—an essential 

condition for effective pairs trading. 

LSTM Model Development 

For model development, the LSTM network takes several input features, including price 

gaps, trading volumes, and returns. Price gaps are calculated as the difference between a stock’s 

price and the average price of its cointegration group. Trading volume data is included to capture 

liquidity fluctuations, which can influence the persistence or reversal of price gaps. Historical 

returns are incorporated to help the model recognize trend and volatility dynamics. 

Importantly, the task is formulated as a three-class classification problem: predicting whether 

the price gap will expand, shrink, or remain stable. The LSTM outputs these probabilities via 

a SoftMax activation function, which are later converted into trading signals. 

Model Training 

For training, historical sequences of fixed lengths—such as 240 trading days—are fed into 

the model. The training process uses backpropagation through time (BPTT), with model 

performance validated on a reserved portion of the data to avoid overfitting. Optimizers such as 

RMSprop or Adam are employed due to their effectiveness in handling stochastic updates in 

sequential models, while the loss function is categorical cross-entropy, suitable for multi-class 

classification tasks. 

Prediction 

After training, the LSTM model is used to generate predictions based on new data. This 

involves feeding in recent sequences of stock information and interpreting the SoftMax output to 

derive trading signals. For instance, a high predicted probability that a price gap will widen could 

trigger a long position in the underperforming stock and a short position in the outperforming one. 

Strategy Implementation 

The signals produced by the model are then used to construct a portfolio. Positions are 

opened based on the model’s directional predictions, with appropriate risk and money management 
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controls in place. These controls may include stop-loss orders, exposure limits, and position sizing 

rules based on the model’s confidence scores. 

Back-testing and Optimization 

The strategy is rigorously evaluated through back-testing on historical data. This simulation 

assesses the model’s performance and helps optimize key parameters, such as the lookback 

window, trading thresholds, and the architecture of the LSTM model itself. Adjustments are made 

based on observed performance to refine both the model and the strategy. The results are 

benchmarked against traditional cointegration-based strategies, showing that the LSTM 

consistently achieves higher Sharpe ratios and profitability by better capturing nonlinear and 

temporal dependencies. 

Execution 

Finally, although the original study evaluates the method in a back-testing framework rather 

than live deployment, the proposed approach could in principle be extended to execution in a real-

time environment. Such implementation would require integration with live data feeds, broker 

APIs, and automated trading systems. Continuous retraining on new data would allow the model 

to adapt to evolving market conditions, ensuring robustness and consistency in performance. 

Overall, the study demonstrates that LSTM networks significantly enhance the identification 

of profitable trading pairs. Compared with benchmark models, the LSTM-based strategy achieves 

superior performance in terms of annualized returns, Sharpe ratio, and hit ratio, highlighting its 

potential as a powerful tool in systematic pairs trading. 

 

5.3 Reinforcement Learning 

RL is a pivotal area at the intersection of machine learning and control theory, centered on 

how an intelligent agent can learn optimal strategies through interactions with a dynamic 

environment. As one of the three foundational paradigms of machine learning—alongside 

supervised and unsupervised learning—RL is distinct in its reliance on trial-and-error learning 

rather than labeled data or direct guidance. 

In contrast to supervised learning, RL does not require predefined input–output pairs or 

explicit feedback after each action. Instead, it focuses on maximizing cumulative rewards over 

time by balancing two competing objectives: exploration (trying new actions to discover their 
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potential) and exploitation (choosing known actions that yield high rewards). This balance makes 

RL particularly suitable for complex environments where feedback may be delayed, indirect, or 

noisy. 

Many RL problems are formally modeled as Markov Decision Processes (MDPs), which 

provide a rigorous mathematical framework for sequential decision-making under uncertainty. 

While classical dynamic programming techniques assume full knowledge of the MDP’s transition 

dynamics and reward structure, modern RL algorithms are capable of learning effective policies 

without such prior information. This flexibility allows RL to be applied in large-scale or partially 

observed environments where traditional approaches are infeasible. 

Formally, an MDP is defined as: 

𝑀 = (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)          (5.11) 

where 𝑆 denotes the state space, 𝐴 is the action space, 𝑃 is the transition probability of moving 

from state 𝑠 to 𝑠′ given action 𝑎, 𝑅(𝑠, 𝑎) is the reward function, and 𝛾 ∈ [0,1)  is the discount 

factor balancing immediate and future rewards. 

In the context of pairs trading, this mapping can be specified as follows: 

• States (𝑆): feature vectors representing market conditions, such as normalized spreads 

between stock pairs, historical moving averages, volatility, and trading volume. 

• Actions (𝐴): discrete trading decisions, including going long the spread, shorting 

the spread, closing positions, or remaining inactive. 

• Transition Dynamics (𝑃): the stochastic evolution of market prices, typically unknown 

and learned implicitly through experience. 

• Rewards (𝑅): realized profits or losses, adjusted for transaction costs and risk penalties 

such as volatility or drawdowns. 

• Discount Factor (𝛾): represents the trader’s preference for short-term versus long-term 

profitability. 

A central concept in RL is the action-value function, or Q-function, which represents 

the expected cumulative discounted reward when starting from a given state 𝑠, taking an action 𝑎, 

and thereafter following policy 𝜋: 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[∑ 𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡)∞
𝑡=0 | 𝑠0 = 𝑠, 𝑎0 = 𝑎]       (5.12) 



53 
 

Sun, Y. / WORKING PAPERS 22/2025 (485) 

The optimal Q-function satisfies the Bellman optimality equation: 

𝑄∗(𝑠, 𝑎) = 𝔼 [𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)| 𝑠, 𝑎]       (5.13) 

where 𝑠′ denotes the next state after taking action 𝑎 in state 𝑠. This recursive structure provides 

the theoretical foundation for modern RL algorithms such as DQNs, which approximate 𝑄∗(𝑠, 𝑎) 

using deep neural networks. 

Quantitative trading, and pairs trading in particular, can be naturally framed as an RL 

problem. Trading decisions are inherently sequential: at each time step, the agent evaluates the 

current market state (e.g., spread deviation, volatility) and selects an action (e.g., long, short, hold). 

The outcomes of these actions generate rewards (profits or losses), which in turn guide 

the refinement of the trading policy. 

The data extracted from Table 13 and 14 indicates that DQN and deep reinforcement learning 

(DRL) methods more broadly are the most frequently adopted approaches in this domain. 

Specifically, DQN was applied in six studies (9% of the reviewed literature), while DRL was used 

in five papers (7%). This prevalence suggests that these methods are increasingly favored by 

researchers for developing adaptive and autonomous trading strategies. 

 

5.3.1 Introduction to Deep Q-network 

RL operates through the interaction between an agent, a set of states 𝑆, and a set of possible 

actions 𝐴  that the agent can take in each state. When the agent performs an action 𝑎 ∈ 𝐴 , 

it transitions to a new state and receives a reward, a numerical signal that reflects the immediate 

utility of that action. The ultimate objective of the agent is to learn a policy that maximizes 

cumulative rewards over time. 

To achieve this goal, the agent must evaluate the potential future rewards that may result 

from its current decisions. These rewards are typically represented as the expected value of 

discounted returns from subsequent states, allowing the agent to balance immediate gains against 

long-term benefits. One of the most widely used algorithms in this context is Q-learning, a model-

free RL technique designed to estimate the value of taking a particular action in a given state. 

The framework of Q-learning is illustrated in Figure 6. 

A key advantage of Q-learning is that it does not require prior knowledge of 

the environment’s transition dynamics—hence the term model-free. It can effectively handle 
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environments with stochastic transitions and rewards, and, given sufficient exploration and 

a partially random policy, it is guaranteed to converge to the optimal policy in any finite MDP. 

At its core, Q-learning relies on the computation of a Q-function, which estimates the expected 

cumulative reward of performing an action in a given state and then following the optimal policy 

thereafter. 

While Q-learning performs well in small, discrete state–action spaces, it faces significant 

challenges in high-dimensional or continuous domains due to its reliance on lookup tables. In such 

settings, maintaining and updating a complete Q-table becomes computationally infeasible. This 

limitation motivated the use of function approximation, where a parameterized function 𝑄(𝑠,   𝑎) is 

employed to estimate Q-values. Here, 𝜃 denotes the parameters of the function, typically learned 

through gradient-based optimization. 

This development gave rise to the DQN, which integrates Q-learning with DNNs to 

approximate the Q-function. By leveraging the representational power of DNNs, DQN 

significantly enhances the scalability of Q-learning, enabling it to learn policies directly from raw, 

high-dimensional input data—such as images or long sequences—without explicit feature 

engineering. Figure 6 also depicts the structure of a typical Deep Q-learning setup, in which 

the neural network processes state representations and outputs Q-values for all possible actions. 

Figure 6. Schematic Representation of Q-learning and Deep Q-learning. 

 
Source: A Hands-On Introduction to Deep Q-Learning using OpenAI Gym in Python 

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
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Therefore, Deep Q-learning, as an extension of traditional Q-learning integrated with DNNs, 

has fundamentally transformed the way high-dimensional observation spaces are handled. 

By leveraging the representational power of DNNs, this method enables the learning of optimal 

policies directly from raw sensory data—an otherwise intractable task for classical Q-learning, 

which relies on discrete state–action space representations. The following provides a more detailed 

overview of the core components and operations of Deep Q-learning. 

Q-learning Review 

At its core, Q-learning seeks to learn the action-value function 𝑄(𝑠, 𝑎), which represents 

the expected utility of taking an action 𝑎 in a state 𝑠 and subsequently following the optimal policy. 

The objective is to maximize the sum of rewards, discounted over time, by updating Q-values 

according to the Bellman equation: 

  𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝒎𝒂𝒙
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]    (5.14) 

Here, 𝛼 is the learning rate, 𝛾 is the discount factor, 𝑟 is the reward, 𝑠′ is the next state, and 

𝑎′ is a possible action in state 𝑠′. 

Deep Neural Network as a Function Approximator 

In deep Q-learning, a DNN—often referred to as the Q-network—is used to approximate 

the Q-function. The network takes the state𝑠as input and outputs a vector of action values 𝑄(𝑠,⋅) 

for all available actions. This approach mitigates the curse of dimensionality by replacing a discrete 

Q-table with a parameterized function that generalizes across similar states. 

Experience Replay 

To break harmful correlations between consecutive updates, deep Q-learning employs 

experience replay. Transitions (𝑠, 𝑎, 𝑟, 𝑠′) are stored in a replay buffer, and the algorithm randomly 

samples mini-batches from this buffer to train the network. Such stochastic sampling approximates 

i.i.d. training data and stabilizes learning by exposing the network to a diverse set of past 

experiences. 

Fixed Q-targets 

A central challenge in training neural networks for RL is the moving-target problem, where 

continuously changing targets can induce oscillations or divergence. Deep Q-learning addresses 

this by introducing a separate target network to compute target Q-values. The target network shares 
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the architecture of the Q-network but its parameters are updated only intermittently (e.g., every 

few thousand steps), thereby providing a more stable target for Q-updates. 

Loss Function and Optimization 

The loss function typically minimizes the mean squared temporal-difference error between 

predicted Q-values and target Q-values: 

𝐿(𝜃) = 𝐸(𝑠,𝑎,𝑟,𝑠′)∼𝑟𝑒𝑝𝑙𝑎𝑦 𝑏𝑢𝑓𝑓𝑒𝑟 [(𝑟 + 𝛾𝒎𝒂𝒙
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−) − 𝑄(𝑠, 𝑎; 𝜃))2]     (5.15) 

where 𝜃 are the parameters of the Q-network and 𝜃− are the (periodically updated) parameters of 

the target network. This loss is optimized with standard stochastic gradient methods, such as SGD 

or Adam. 

Practical Challenges and Enhancements 

In practice, deep Q-learning is highly sensitive to hyperparameter choices, such as 

the learning rate, replay buffer size, batch size, and the update frequency of the target network. 

To mitigate these sensitivities and enhance both stability and performance, several extensions have 

been proposed, including Double DQN, which reduces overestimation bias; Dueling DQN, which 

separately estimates state values and action advantages; and Prioritized Experience Replay, which 

improves sample efficiency by replaying more informative transitions. 

Collectively, these refinements strengthen the robustness and scalability of the base DQN 

framework, enabling it to efficiently learn policies in complex, high-dimensional environments. 

As a result, deep Q-learning has been successfully applied to a wide range of domains, from 

achieving superhuman performance in video games to enabling autonomous control in real-world 

robotic systems. 

 

5.3.2 Deep Q-network in pair trading 

To incorporate DQN into pairs trading, one must develop a sophisticated approach that 

leverages DRL to optimize sequential decision-making processes. This paper outlines 

a comprehensive method for applying DQNs in pairs trading, including the setup of the trading 

environment, the design of the network architecture, and the fine-tuning of the learning algorithms. 
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Paper [53] outlines a structured approach for employing DQN networks to pinpoint and 

leverage opportunities in pairs trading. The following are detailed procedures drawn from 

the insights of the article. 

Defining the Trading Strategy and Environment Setup 

Pairs trading relies on identifying two cointegrated stocks whose price spread exhibits mean-

reverting behavior. In this framework, a DQN is trained to learn the temporal dynamics of 

the spread and to determine optimal entry and exit points. The experimental setup begins with 

the S&P 500 universe, from which approximately 78,000 potential stock pairs are generated. 

An Augmented Dickey–Fuller (ADF) test is applied, and pairs with p-values ≤ 0.05 are retained, 

yielding 145 candidates. To further ensure sufficient volatility, pairs are filtered by requiring 

a ratio of standard deviation to mean (std/mean) ≥ 0.5, resulting in a final set of 38 pairs. 

The trading environment is implemented using the OpenAI Gym framework, which provides 

a standardized interface for reinforcement learning tasks. A custom environment is created to 

simulate the trading process, exposing the agent to a set of state observations that characterize 

the behavior of each selected stock pair. 

Data Handling and Feature Engineering 

The state space of the DQN consists of ten standardized features designed to represent 

the mean-reversion behavior of the spread. These features include: (i) the current spread between 

the two stocks, (ii) the daily spread return, (iii) moving averages of the spread at multiple horizons, 

and (iv) ratios of the spread to its moving averages over the same horizons. Standardization ensures 

that all features have mean zero and unit variance, preventing scale imbalances and allowing 

the DQN to focus on learning the underlying dynamics of the spread. 

Defining Actions and Reward Mechanism 

The DQN selects one of three possible actions based on the observed state, aiming to 

maximize the expected cumulative reward by exploiting the mean-reversion characteristic of 

the price spread. The action space includes initiating a long position—buying the underperforming 

stock and shorting the outperforming one—when the spread exceeds an upper threshold. 

Conversely, when the spread falls below a lower threshold, the model takes a short position by 

selling the underperforming stock and buying the outperforming one. If the spread lies within 

the thresholds, indicating no strong trading signal, the DQN opts to hold and take no action. 
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The reward function is designed to align with profitability. At each time step, the immediate 

reward is defined as the profit or loss generated from the chosen action, directly reflecting 

the trading outcome. 

Network Architecture and Training Process 

The DQN architecture is composed of an input layer, two hidden layers, and an output layer. 

The input layer receives ten features representing the state of the trading environment, including 

the spread between the two stocks, moving averages, and return-based measures. The two hidden 

layers each contain 50 neurons and employ Rectified Linear Unit (ReLU) activation functions to 

capture nonlinear relationships in the data. The output layer produces Q-values corresponding to 

the three possible actions (long, short, hold), thereby mapping observed states to potential trading 

decisions. 

To enhance learning stability, the training process incorporates experience replay. Transition 

tuples—comprising the current state, the action taken, the resulting reward, and the next state—

are stored in a replay buffer. Mini-batches are randomly sampled from this buffer during training, 

which breaks correlations between consecutive observations and improves generalization across 

diverse scenarios. 

The Q-values are updated using a mean squared error (MSE) loss, which compares predicted 

Q-values with target values derived from the Bellman equation: 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟 + 𝛾𝒎𝒂𝒙
𝑎′

𝑄(𝑠′, 𝑎′) 

where 𝛾  is the discount factor emphasizing the importance of future rewards. The network 

parameters are optimized using the Adam optimizer, chosen for its adaptive learning rate and 

efficiency in handling noisy financial data. 

Evaluation and Continuous Learning 

After training, the DQN is evaluated on out-of-sample data, specifically using market data 

from 2018. The evaluation primarily focuses on cumulative returns and Sharpe ratios, which 

measure profitability and risk-adjusted performance. Robustness is assessed by testing the model 

under different market conditions to ensure consistent behavior. 
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Based on the evaluation results, further optimization is achieved by fine-tuning 

hyperparameters such as the learning rate, replay buffer size, and network architecture. Iterative 

retraining ensures that the model adapts to new market dynamics. 

Through careful trading environment design, systematic data preprocessing, and continuous 

refinement of the neural network, the DQN-based approach to pairs trading provides a powerful 

framework for exploiting mean-reversion opportunities. By capturing temporal dependencies in 

spreads and adapting to evolving market conditions, it enhances profitability while maintaining 

robust risk control in dynamic financial markets. 

 

6. Evaluation Metric 

Two distinct categories of performance evaluation metrics are commonly employed. 

The first category assesses the predictive effectiveness of the model (as shown in Table 18), while 

the second evaluates portfolio performance (reported in Table 19). This section first focuses on 

model evaluation. 

To measure the accuracy of classification models on a given test dataset, a confusion matrix 

is widely used. Figure 7 presents a confusion matrix for binary classification, where outcomes are 

categorized as either positive or negative. In the context of pairs trading, the confusion matrix 

provides valuable insights into the effectiveness of classification-based strategies, such as 

predicting whether the spread between two assets will converge or diverge. 

A confusion matrix is a structured tabular representation that compares predicted outcomes 

with actual values, thereby enabling the calculation of performance metrics such as accuracy, 

precision, recall, and specificity. For a binary classification problem, it consists of two rows and 

two columns reporting the following cases: 

• True Positives (TP): instances where the model correctly predicts the positive class. 

• True Negatives (TN): instances where the model correctly predicts the negative class. 

• False Positives (FP): instances where the model incorrectly predicts the positive class 

(Type I error). 

• False Negatives (FN): instances where the model fails to predict the positive class 

(Type II error). 
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Figure 7. Confusion matrix. 

 

 

6.1 Evaluation Metrics of Efficacy 

In assessing the efficacy of models produced by machine learning algorithms, it is crucial to 

apply appropriate evaluation metrics that provide insights into predictive accuracy and reliability. 

These metrics allow for an evaluation of how well the models generalize to unseen data, based on 

known outcomes. Let 𝑌𝑖 denote the 𝑖 − 𝑡ℎ actual value and 𝑌̂𝑖 the 𝑖 − 𝑡ℎ predicted value, where 𝑁 

is the total number of predictions. 

Table 18 summarizes the evaluation metrics frequently adopted in the reviewed literature. 

These metrics can be broadly categorized into error-based measures (e.g., MAE, MSE, RMSE, 

MAPE), which quantify the deviation between predicted and actual values, and classification-

based measures (e.g., Accuracy, Precision, Recall, F1-score, AUC), which evaluate the ability of 

models to correctly classify outcomes. Error-based metrics are particularly useful for continuous 

prediction tasks such as forecasting spreads or returns, while classification-based metrics are more 

appropriate when strategies are framed as binary decisions (e.g., convergence versus divergence 

signals in pairs trading). 
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Table 18.  Evaluation metrics for assessing model efficacy in reviewed articles. 

Evaluation Metrics Description Formula Article 

Mean Absolute 

Error (MAE) 

Measures the average magnitude of the 

errors in a set of predictions, without 

considering their direction. It is the 

mean over the test sample of the 

absolute differences between predicted 

values and actual values. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑖 − 𝑌̂𝑖|

𝑁

𝑖=1

 

[20, 45] 

Mean Squared Error 

(MSE) 

The average squared difference between 

the estimated values and the actual 

value. MSE is more sensitive to outliers 

than MAE as it squares the differences. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑁

𝑖=1

 

[16, 20, 25, 

37, 45, 60] 

Root Mean Squared 

Error (RMSE) 

RMSE is the square root of the mean of 

the squared errors. RMSE is particularly 

useful when large errors are particularly 

undesirable. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑁

𝑖=1

 

[23, 28, 40, 

45,56, 65] 

Mean Absolute 

Percentage Error 

(MAPE) 

MAPE is a measure of prediction 

accuracy of a forecasting method in 

statistics. It usually expresses the 

accuracy as a ratio. 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑ |

𝑌𝑖 − 𝑌̂𝑖

𝑌𝑖

|

𝑁

𝑖=1

 

[16, 28, 31, 

37, 40, 60] 

Accuracy Measures the overall effectiveness of 

the model in predicting correct 

outcomes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

[14, 24, 51, 

52, 64] 

Error rate It quantifies the frequency at which the 

model accurately forecasts the outcome. 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 

𝐹𝑃 + 𝐹𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

[48] 

Precision Evaluates the reliability of the model in 

predicting positive (converging) 

outcomes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

[14, 24, 52, 

64] 

Recall Assesses the model’s capability to 

identify actual positive (converging) 

instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

[14, 24, 52, 

64] 

F1-Score Balances precision and recall, 

particularly useful when the cost of false 

positives and false negatives are high. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

[14, 24, 52, 

64] 

AUC AUC represents the area under the ROC 

curve and ranges from 0 to 1. The 

higher the AUC value, the better the 

classification performance of the model. 

N.A. [30, 64] 

 



62 
 

Sun, Y. / WORKING PAPERS 22/2025 (485) 

6.2 Performance of Evaluation Metrics 

Evaluating the performance of an investment portfolio is a critical step in the investment 

decision-making process. The primary dimensions of this evaluation are return and risk, which 

together form the foundation for assessing portfolio outcomes. Within these dimensions, a variety 

of specific indicators have been employed in the literature to capture different aspects of portfolio 

behavior. 

Table 19 summarizes the most frequently adopted performance and risk measures. Return-

based indicators, such as Accumulated Return and Annual Return, provide a direct measure of 

profitability, while risk-adjusted measures such as the Sharpe ratio and Sortino ratio account for 

the variability of returns, with the latter placing greater emphasis on downside risk. On the risk 

dimension, Maximum Drawdown (MDD) captures the worst peak-to-trough decline over 

the investment horizon, making it particularly relevant for assessing vulnerability during market 

downturns. Volatility (standard deviation) measures overall variability, whereas higher-moment 

statistics such as Skewness and Kurtosis provide insights into the asymmetry and tail risks of return 

distributions. 

Taken together, these indicators enable a comprehensive assessment of portfolio 

performance, balancing the dual objectives of maximizing returns while controlling for risk. 

Table 19. Evaluation metrics for assessing model performance in reviewed articles. 

Evaluation Metrics Description Article 

Accumulated Return Accumulated Return denotes the overall percentage 

gain or declines in the value of an investment 

throughout its duration. Ideally, the Accumulated 

Return should be positive and maximized. 

[3, 6, 7, 8, 10, 17, 18, 29, 39, 

42, 44, 53, 62, 65] 

Annual Return Annual return is the percentage change in the value 

of an investment over a one-year period, reflecting 

the compound rate of return earned or lost by the 

investment annually. 

[2, 4, 5, 8, 12, 22, 25, 31, 32, 

33, 35, 39, 41, 46, 47, 55, 58, 

59, 63, 68] 

Sharpe ratio (SR) The Sharpe ratio is a measure used to evaluate the 

risk-adjusted return of an investment by comparing 

its excess return over the risk-free rate to the 

standard deviation of those returns. 

[2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 

14, 15, 18, 20, 21, 22, 26, 29, 

31, 33, 34, 38, 39, 40, 41, 43, 

44, 45, 47, 49, 50, 55, 58, 62, 

65, 66, 68] 
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Evaluation Metrics Description Article 

Maximum Drawdown 

(MDD) 

 Maximum Drawdown is a risk measure that 

indicates the largest single drop from peak to trough 

in the value of a portfolio or an investment, before a 

new peak is achieved. 

[2, 3, 5, 6, 8, 9, 10, 12, 15, 18, 

20, 21, 22, 25, 26, 27, 29, 31, 

33, 35, 38, 39, 41, 43, 45, 47, 

58, 61, 64, 68] 

Standard Deviation 

(Volatility) 

quantifies the variability or dispersion of a set of 

data points from their mean, typically used to assess 

the consistency of an investment's returns. 

[2, 4, 5, 8, 12, 33, 36, 38, 40, 

41, 55, 58, 61, 62, 63, 65, 66, 

68] 

Skewness Refers to the asymmetry in the distribution of returns 

for an investment, indicating whether the returns are 

biased towards higher or lower values than the 

average, which can reveal the potential for 

unpredictable extreme outcomes in investment 

performance. 

[4, 58, 61, 62] 

Kurtosis Measures the "tailedness" of the return distribution 

of an investment, indicating the likelihood of 

extreme positive or negative returns compared to a 

normal distribution. 

[4, 58, 61, 62] 

Sortino ratio Measures the excess return of an investment relative 

to the downward deviation, focusing specifically on 

the volatility of negative asset returns, thus 

providing a risk-adjusted measure of a portfolio's 

performance under negative fluctuations. 

[9, 10, 20, 21, 26, 29, 41, 55, 

58, 63] 

 

7. Data Availability and Implementation 

Access to reliable data sources is essential for conducting research on stock market 

forecasting. The internet provides a wide range of freely accessible platforms that supply historical 

and real-time market information. Among these, Yahoo! Finance is one of the most widely used 

resources, offering free access to stock quotes, market news, and international market statistics. 

It is particularly valuable for obtaining historical price and volume data, and was cited in 25 out of 

68 reviewed studies, underscoring its prevalence in empirical research. 

In addition to Yahoo! Finance, other platforms have gained traction in recent years. Kaggle, 

for instance, not only provides curated datasets but also hosts machine learning competitions, some 

of which are sponsored by quantitative firms to stimulate the development of forecasting models. 

GitHub serves as an important repository for open-source code and datasets, enabling 

the replication and extension of previous studies. Region-specific sources, such as the National 

Stock Exchange of India (NSE) website, provide high-quality local market data, while more 
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general platforms like Wikipedia can supplement datasets with corporate or macroeconomic 

information. 

Representative links to such resources include: https://finance.yahoo.com, 

https://github.com/, https://www.kaggle.com/, https://www.nseindia.com/, and 

https://www.wikipedia.org/ (accessed on 15 April 2024). 

 

8. Empirical Result Analysis and Future Research Direction 

8.1 Empirical Result Analysis of Pair Trading 

Algorithmic pairs trading has become a mainstream technique in quantitative finance, 

attracting increasing participation from both institutional and individual investors. This 

intensifying competition has made arbitrage opportunities more difficult to exploit, underscoring 

the necessity of developing effective approaches to ensure sustainable profitability [14]. A review 

of the literature indicates that pairs trading remains a viable and, in many cases, profitable strategy, 

although a minority of studies report diminishing returns in more recent years. 

Recent advances in ML have substantially enhanced the performance of pairs trading 

strategies. Neural networks, by capturing non-linear dependencies and uncovering complex 

patterns, significantly improve the predictive accuracy of trading signals [1]. Empirical results 

suggest that LSTM models achieve superior accuracy across most metrics, particularly in 

identifying positive arbitrage opportunities, and generate the highest annualized return on 

investment (ROI). CNNs, while less effective on arbitrage samples, perform better in detecting 

non-arbitrage situations, exhibiting higher precision and F-measure scores. LR tends to deliver 

relatively balanced outcomes across different categories. XGBoost, despite identifying fewer 

opportunities, achieves the highest positive average ROI, suggesting stronger performance in 

arbitrage timing. Overall, ML-based strategies consistently outperform traditional cointegration-

based approaches in both profitability and predictive power [14]. 

Beyond supervised ML models, reinforcement learning and optimization frameworks have 

also demonstrated promise. For example, combining the Entropy Optimization Criterion (EOC) 

for pair selection with MADDPG for trading thresholds has yielded notable improvements in 

the Chinese futures market. Simulations show that Dynamic Q-Network-based pair selection 

https://finance.yahoo.com/
https://github.com/
https://www.kaggle.com/
https://www.nseindia.com/
https://www.wikipedia.org/
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improved cumulative returns by 50% relative to static benchmarks, while the EOC method added 

a further 23% improvement. Integrating MADDPG enhanced performance by an additional  

5–15%, and combining both EOC and MADDPG resulted in a 29% improvement over static 

methods and 16% over DQN alone [3]. These findings highlight the potential of advanced 

learning-based approaches to significantly optimize pairs trading outcomes. 

TCN also exhibit stronger predictive ability compared with traditional financial algorithms, 

translating into substantial profit gains in trading. Further extensions, such as Knowledge-Driven 

TCN (KDTCN) and Temporal Convolutional Attention Networks (TCAN), which incorporate 

natural language processing (NLP), demonstrate further accuracy improvements and suggest 

a fruitful direction for future research [28]. 

Nevertheless, not all studies report positive results. Some find that the profitability of pairs 

trading has significantly declined since 2003, even when fundamental similarity is considered [4]. 

These findings imply that market efficiency may have eroded traditional arbitrage opportunities. 

Moreover, the costs associated with trading spurious pairs remain substantial, reinforcing 

the importance of integrating fundamental information in order to identify reliable pairs. 

 

8.2 Future Research Direction 

The domain of algorithmic pairs trading continues to evolve rapidly, driven by advances in 

ML and DRL. While existing studies demonstrate that these methods can significantly improve 

predictive accuracy and profitability, future research must go beyond incremental refinements and 

systematically address the challenges posed by increasingly complex data environments, 

methodological limitations, and dynamic financial markets. A forward-looking research agenda 

can be organized into four interconnected dimensions: data-driven innovations, methodological 

innovations, market applications, and governance and validation frameworks. 

Advances in ML and DRL offer substantial opportunities for refining pairs trading strategies. 

The application of advanced anomaly detection techniques to financial time series could strengthen 

risk management by identifying irregular patterns, flash crashes, or manipulative behaviors in real 

time. Another critical frontier is the development of adaptive models that adjust automatically to 

shifting market regimes, incorporating signals related to volatility, liquidity, and investor 

sentiment. Such dynamic models could enhance robustness across different market conditions, 
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including crises. Reinforcement learning methods can also be extended by integrating  

meta-learning approaches, enabling agents to generalize across trading environments and adapt to 

non-stationary market dynamics more efficiently. Moreover, the emergence of quantum 

computing offers a novel pathway for tackling high-dimensional optimization problems in 

portfolio construction and risk assessment, although practical implementation remains constrained 

by the immaturity of current quantum hardware. Collectively, these methodological advances 

promise significant improvements, but they also raise concerns regarding computational 

complexity, sample efficiency, and interpretability. 

Expanding pairs trading beyond equities toward cross-asset arbitrage is another promising 

direction. Identifying pricing inefficiencies between equities, commodities, currencies, and digital 

assets requires models capable of handling heterogeneous trading environments, liquidity 

conditions, and regulatory regimes. Such approaches could generate new opportunities for 

diversification and risk hedging. At the same time, the incorporation of game theory and agent-

based modeling provides a valuable framework for simulating the strategic interactions of multiple 

market participants. Modeling markets as multi-agent systems may yield insights into equilibrium 

behaviors, competitive dynamics, and emergent liquidity patterns. However, cross-asset strategies 

face practical challenges related to execution, transaction costs, and heterogeneous market 

microstructures, while multi-agent frameworks often struggle with calibration and validation 

against real-world data. 

As algorithmic trading strategies become increasingly sophisticated, ethical considerations 

and regulatory compliance must be integrated into future research agendas. Developing transparent 

and auditable algorithms will not only facilitate alignment with regulatory frameworks but also 

strengthen trust in financial markets. Automated compliance monitoring systems represent one 

possible solution to ensure that trading models operate within ethical and legal boundaries. 

Furthermore, rigorous real-world validation remains essential. While back-testing provides initial 

evidence of profitability, forward-testing in simulated or paper trading environments, as well as 

stress-testing under extreme scenarios, is critical for assessing robustness and practical viability. 

Ensuring reproducibility and mitigating biases—such as survivorship bias or look-ahead bias—

remain ongoing challenges that require systematic attention. 
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By pursuing these interconnected research directions, the field of algorithmic pairs trading 

can evolve in both sophistication and applicability. Data-driven and methodological innovations 

have the potential to significantly enhance predictive power, while cross-asset applications and 

multi-agent frameworks can broaden the scope of arbitrage opportunities. At the same time, 

embedding governance and rigorous validation practices will be essential to balance technological 

advancement with market stability and transparency. 

 

9. Discussion 

This study has examined the evolution of pairs trading strategies, with particular attention to 

the growing role of AI techniques in quantitative finance. Early approaches were predominantly 

grounded in classical time-series methods, including cointegration and mean-reversion models, 

which provided a robust statistical framework for identifying arbitrage opportunities. These 

techniques, while foundational, were constrained by their linear assumptions and limited ability to 

capture the nonlinear dependencies frequently observed in financial markets. 

The development of ML methods marked a significant advancement. Algorithms such as RF 

and SVM demonstrated improved capacity to model nonlinearities and high-dimensional 

interactions. In particular, SVM’s kernel-based transformations enabled the identification of subtle 

decision boundaries in complex data. Nevertheless, these methods often required extensive feature 

engineering and were sensitive to parameter tuning, which limited their scalability in rapidly 

changing market conditions. 

ANNs represented another turning point by offering greater flexibility in capturing latent 

structures within financial time series. Building upon this foundation, RNNs and their LSTM 

variants further improved the modeling of temporal dependencies, allowing for more accurate 

forecasts of spread dynamics. Despite these improvements, challenges such as overfitting, high 

computational costs, and limited interpretability remain critical concerns in their practical 

implementation. 

More recently, RL has introduced a dynamic framework for decision-making in pairs trading. 

By learning iteratively from market feedback, RL algorithms are capable of adapting strategies in 

response to shifting conditions, thereby offering a mechanism to balance profitability and risk in 
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real time. However, issues of sample efficiency, stability of training, and robustness under extreme 

market stress continue to constrain the widespread adoption of RL in live trading systems. 

A particularly promising direction is the integration of DL and RL, creating hybrid models 

that combine powerful feature extraction with adaptive decision-making. These approaches have 

shown potential in capturing complex market dynamics and improving resilience under volatile 

conditions. Yet, their reliance on vast amounts of data and computational resources, as well as 

their limited transparency, highlight important areas for future refinement. 

In summary, our analysis highlights both the potential and limitations of AI in reshaping 

pairs trading strategies. ML and DL methods significantly enhance predictive accuracy, while RL 

contributes adaptability to evolving markets. The convergence of these methods offers a powerful 

toolkit for traders; however, practical deployment requires addressing challenges of interpretability, 

computational efficiency, and robustness. Continued research into these areas is essential for 

translating methodological advances into sustainable, real-world trading strategies. 

 

10. Conclusion 

This survey has sought to provide a comprehensive account of the evolution of pairs trading 

strategies, with a particular emphasis on the transformative role of ML, DL, and RL. 

By systematically reviewing the literature, we have highlighted how traditional statistical methods 

have gradually been complemented—and in some cases outperformed—by advanced 

AI techniques capable of modeling nonlinearities, capturing temporal dependencies, and 

dynamically adapting to shifting market conditions. 

From a theoretical perspective, our findings underscore the significance of ML and DL as 

foundational tools in modern quantitative finance. These technologies extend beyond linear 

assumptions, enabling the identification of latent structures and complex interactions in financial 

time series. At the same time, hybrid approaches that integrate DL and RL provide a promising 

pathway toward the development of adaptive trading strategies that can adjust to evolving market 

environments. 

On the practical side, this study provides a structured overview of evaluation metrics, 

implementation frameworks, and empirical outcomes. By synthesizing results across a broad set 

of studies, we offer a set of reference benchmarks that can inform both academic research and 
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practical applications. Importantly, the findings suggest that while ML- and RL-based strategies 

show considerable promise in improving profitability and risk management, their effectiveness is 

highly dependent on data quality, market regime, and implementation constraints. 

Nonetheless, several limitations remain. The reliance on historical data for training exposes 

models to risks of overfitting and survivorship bias, while the interpretability of complex models 

such as neural networks continues to be a major concern for both researchers and regulators. 

Furthermore, transaction costs, liquidity constraints, and market frictions may erode the theoretical 

profitability observed in back-testing environments. 

Looking forward, the field presents fertile ground for further exploration. Promising avenues 

include the integration of multi-modal and sector-specific data, the development of more efficient 

and transparent algorithms, the extension of pairs trading into cross-asset domains, and 

the incorporation of advanced computational techniques such as meta-learning and quantum 

optimization. At the same time, embedding ethical considerations and compliance mechanisms 

into algorithmic design will be essential to align technological innovation with market integrity. 

In conclusion, while the predictive capacity of ML, DL, and RL offers unprecedented 

opportunities for enhancing pairs trading, their success in real-world applications will ultimately 

depend on striking a balance between innovation, robustness, interpretability, and regulatory 

compliance. Addressing these challenges will ensure that algorithmic pairs trading continues to 

evolve not only as a profitable strategy but also as a sustainable component of modern financial 

markets. 
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