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Abstract: This thesis examines market-neutral, mean-reversion-based statistical arbitrage 

strategies in the Chinese equity market, using two factor decomposition methods: Principal 

Component Analysis (PCA) and sector-based Exchange-Traded Funds (ETFs). Residual returns 

are modeled as mean-reverting Ornstein–Uhlenbeck (OU) processes, generating contrarian 

signals. A 60-day rolling window ensures out-of-sample estimation. Realistic frictions are 

included via a 10-basis-point round-trip cost. Backtests from 2005 to 2024 compare four 

configurations: synthetic ETFs, fixed PCA, dynamic PCA, and trading-time volume adjustments. 

Both PCA- and ETF-based strategies deliver robust Sharpe ratios near 0.90–0.95. PCA portfolios 

perform better under high cross-sectional volatility, while ETF-based models remain stable during 

structural shifts. Incorporating trading volume enhances returns, especially for ETF models. 

Sensitivity analysis highlights the importance of threshold tuning and rolling-window lengths. 

These findings stress the critical role of factor construction and signal design in market-neutral 

strategies, suggesting further improvement via adaptive PCA and volume-weighted signals. 
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1. Introduction 

Statistical arbitrage encompasses a wide range of investment strategies that share several 

defining characteristics. First, these strategies rely on systematic, rule-based trading signals that 

do not primarily depend on fundamental analysis. Second, portfolios constructed under this 

framework are typically designed to be market-neutral, with an overall beta that remains close to 

zero relative to broader market movements. Third, excess returns are sought through statistical 

methods by exploiting a large number of positions, each with a positive expected value. Such 

diversification is intended to yield relatively stable, low-volatility performance with limited 

correlation to market indices. Finally, the holding periods for statistical arbitrage strategies vary 

widely, ranging from ultra-short-term trades lasting only seconds to positions maintained over 

days, weeks, or even longer horizons. 

Pairs trading is widely regarded as the foundational strategy within statistical arbitrage. It 

typically involves identifying two stocks—often from the same industry or with similar 

characteristics—that have historically exhibited closely correlated price movements. Let 𝑃𝑡 and 

𝑄𝑡 denote the price series of stocks 𝑃 and 𝑄, respectively. Their long-term relationship can be 

modeled as 

Pairs trading is widely regarded as the foundational strategy within statistical arbitrage. It 

typically involves identifying two stocks—often from the same industry or with similar 

characteristics—that have historically exhibited closely correlated price movements. Let 𝑃𝑡 and 

𝑄𝑡 denote the price series of stocks 𝑃 and 𝑄, respectively. Their relationship can be modeled as: 

𝑙𝑛⁡(𝑃𝑡) = 𝜇(𝑡 − 𝑡0) + 𝛽𝑙𝑛⁡(𝑄𝑡) + 𝜀𝑡            (1) 

or in differential form: 

𝑑𝑃𝑡 = 𝜇𝑑𝑡 + 𝛽𝑑𝑄𝑡 + 𝑑𝜀𝑡              (2) 

where the residual term 𝜀𝑡—known as the cointegration residual—captures deviations from the 

equilibrium between the two stocks and is assumed to be stationary or mean-reverting. In 

practice, the drift component is often negligible relative to fluctuations in 𝜀𝑡  and is therefore 

omitted. A typical pairs trading strategy involves going long stock 𝑃 and shorting 𝛽 units of 

stock 𝑄 when 𝜀𝑡 < 0 (indicating undervaluation of 𝑃 relative to 𝑄), and reversing the positions 

when 𝜀𝑡 > 0 . Profits are realized as prices revert toward equilibrium. This mean-reverting 
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behavior is frequently interpreted as a market correction of temporary mispricings or 

overreactions, as discussed in Lo and MacKinlay (1990) and Pole (2007). 

An alternative scenario arises when one stock persistently outperforms the other over 

a prolonged period. In such cases, the spread (or cointegration residual) fails to exhibit 

stationarity, and the price relationship may reflect a structural divergence rather than a transitory 

mispricing. As this thesis primarily focuses on mean-reverting relationships, these non-stationary 

cases are not examined in detail. 

Beyond standard pairs trading, an extension—commonly referred to as generalized pairs 

trading—involves comparing individual stocks to benchmarks or indices rather than to other 

single securities. For example, within a specific sector such as biotechnology, each stock can be 

evaluated against a relevant sector index or ETF. By applying regression or cointegration 

techniques similar to those used in classical pairs trading, it is possible to identify stocks that are 

undervalued or overvalued relative to the sector benchmark. 

Portfolios constructed under this framework typically involve long positions in stocks 

deemed undervalued and short positions in those considered overvalued, with each position 

hedged by its estimated exposure to the benchmark ETF or sector factor. Due to this hedging 

structure, the net exposure to the benchmark is minimal, making the resulting portfolio 

economically equivalent to a long–short equity strategy. 

This thesis focuses on the construction, implementation, and performance evaluation of 

such statistical arbitrage strategies. Particular attention is given to the mean-reversion dynamics 

of residuals and the implications of factor selection for trading outcomes. Scenarios involving 

non-stationary residuals, which suggest persistent divergence rather than temporary mispricing, 

are deliberately excluded from the analysis. 

Residual analysis forms the cornerstone of this research. Trading signals are generated 

based on relative value pricing within a sector or among groups of comparable firms, measured 

against benchmarks or latent factors. This is achieved by decomposing individual stock returns 

into systematic and idiosyncratic components, with the modeling effort focusing specifically on 

the idiosyncratic part, which captures deviations from broader market or sector trends. Formally, 

the decomposition can be written as: 
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𝑟𝑖,𝑡 = 𝑢𝑖 + ∑ 𝛽𝑖𝑗𝑓𝑗,𝑡
𝑛
𝑗=1 + 𝜀𝑖,𝑡            (3) 

where 𝑓𝑗,𝑡 denotes the returns of the 𝑗 − 𝑡ℎ systematic factor, 𝛽𝑖𝑗 is the exposure of stock 𝑖 to that 

factor, and 𝜀𝑖,𝑡 is the idiosyncratic residual unexplained by the factor model. 

A key practical challenge lies in determining the appropriate factor specification. While 

a similar issue arises in classical portfolio theory—typically in the context of selecting risk 

factors for asset pricing or risk management—the objective here is different. Rather than 

optimizing exposures to systematic factors, this study emphasizes removing them, as the 

dynamics of the residuals are what generate relative-value signals and ultimately determine 

profitability in statistical arbitrage. 

The core contribution of this research lies in examining how different choices of factor sets 

affect the behavior of residuals and, by extension, the performance of the trading strategy. 

Alternative factor specifications induce distinct residual dynamics, which in turn generate 

different trading opportunities and PnL outcomes. 

Recent research on mean-reversion and contrarian strategies has expanded beyond early 

foundational studies (e.g., Poterba and Summers, 1988; Lehmann, 1990; Lo and MacKinlay, 

1990), incorporating more sophisticated models of return dynamics and factor structures. For 

example, Khandani and Lo (2009) examined market-neutral contrarian strategies during the 2007 

liquidity crisis by constructing dollar-neutral portfolios based on past return quantiles, effectively 

trading “winners versus losers.” While their approach relies on fixed trading intervals, more 

recent studies have shifted toward strategies that adapt trading frequency and rely on residual 

returns rather than total returns. 

In particular, Kelly et al. (2020) introduce instrumented principal component analysis, 

while Gu et al. (2021) develop deep learning–based factor models—both of which enhance the 

explanatory power of systematic components and reduce residual noise. Building on these 

advances, this study designs mean-reversion strategies that explicitly remove factor-driven 

variation in returns. Rather than modeling raw price behavior, we focus on the dynamics of 

residuals after accounting for a chosen set of risk factors, thereby identifying relative mispricings 

that are more robust to market-wide movements. 
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This paper is organized as follows. Section 2 reviews the literature on mean-reversion 

strategies, market-neutral portfolio construction, and factor-based statistical arbitrage. It begins 

with foundational work on contrarian and mean-reverting behavior in asset prices, including 

early empirical evidence of return predictability. The review then turns to more recent studies 

that emphasize the role of risk factors in generating residual-based trading signals and the 

progression from simple linear models to more advanced approaches such as PCA, machine 

learning, and deep factor models. Special attention is given to research comparing different 

factor specifications—such as fundamental-based factors (e.g., Fama–French), statistical factors 

(e.g., PCA), and industry ETF proxies—in the context of designing market-neutral strategies. 

This discussion highlights both the theoretical rationale and empirical findings that motivate the 

methodologies adopted in this study. 

Section 3 introduces the methodology. We explore the concept of market neutrality through 

two alternative approaches. The first extracts latent risk factors using PCA, following the 

framework introduced by Jolliffe (2011). The second constructs risk factors based on a set of 

industry-sector ETFs that serve as proxies for systematic market influences. Consistent with 

prior literature, our results show that applying PCA to the correlation matrix of a broad cross-

section of Chinese equities yields statistically significant components that can often be 

interpreted as long–short portfolios across industry groups. Interestingly, the individual stocks 

with the highest loadings on each PCA-derived factor are not necessarily the largest firms by 

market capitalization within their sectors. This suggests that PCA-based factor construction may 

be less biased toward large-cap stocks compared to ETF-based methods, which typically follow 

capitalization-weighted schemes. Moreover, we observe that the proportion of total variance 

explained by a fixed number of PCA components fluctuates over time. This temporal variation 

implies that the dimensionality required to capture systematic return variation is itself dynamic, 

potentially reflecting changes in macroeconomic conditions, market structure, or investor risk 

appetite. These dynamics may help explain the performance differences observed between PCA-

based and ETF-based strategies. 

Sections 4 and 5 describe the construction of trading signals based on estimated residual 

processes. For each stock, residuals are computed at the close of each trading day using a rolling 

window of 60 trading days, roughly corresponding to one earnings cycle. This estimation is 

performed using only data prior to the trading day, thus replicating a real-time investment setting 
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and avoiding look-ahead bias. Trading signals are generated when the standardized residual  

(s-score) deviates significantly from its recent mean. Specifically, a position is opened when the 

s-score exceeds ±1.25, and is closed when the residual reverts within asymmetric thresholds 

(0.5 for long positions and 0.75 for short positions). These thresholds are applied uniformly 

across all stocks to ensure consistency and reduce overfitting. 

The analysis uses daily end-of-day (EOD) data. The backtest period begins in 2005 for 

PCA-based strategies and in 2004 for ETF-based strategies, reflecting differences in data 

availability. The investment universe is restricted to Chinese stocks with a market capitalization 

above 2 billion RMB on the trading date, a filter that helps mitigate survivorship bias by 

excluding firms that fall below this threshold at any point in the historical sample. To preserve 

model transparency and reduce the risk of data mining, the residual estimation procedure and 

trading rules are deliberately kept simple and consistent across assets and time periods. 

Section 6 presents a series of backtests evaluating the performance of various trading 

strategies, each employing a distinct method of factor construction for residual estimation. 

Specifically, we examine three configurations: (i) synthetic ETFs constructed from 

capitalization-weighted indices, (ii) a fixed number of PCA components, and (iii) a dynamic 

number of PCA components selected to exceed a specified explained-variance threshold. For all 

strategies, the residuals used to generate signals are estimated strictly out-of-sample, using only 

data from the preceding 60 trading days. To enhance the realism of execution modeling, we 

account for transaction costs by applying a 30-basis-point per-trip cost. This adjustment ensures 

that the reported performance metrics incorporate trading frictions commonly encountered in 

practice. 

Section 7 provides a sensitivity analysis, exploring how changes in key parameters—such 

as the number of PCA components retained, the explained-variance threshold, the thresholds for 

opening and closing positions, and the rolling window length—affect mean-reversion 

performance and profitability. The results show that while the default settings (e.g., a 60-day 

rolling window with entry at ±1.25 standard deviations and asymmetric exit thresholds of 0.5 for 

longs and 0.75 for shorts) are generally robust, alternative parameter choices can yield different 

risk–return tradeoffs. 
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Finally, Section 8 summarizes the key findings and outlines directions for future research. 

This chapter highlights the practical relevance of PCA-based pairs trading, the value of sector 

ETF hedging, and the role of factor dimensionality—where sensitivity analysis indicates that 

dynamic PCA can be effective when explained-variance thresholds are appropriately calibrated 

(around 60–70%). It also points to the potential for further improvements using advanced 

machine learning techniques, alternative data sources, and adaptive thresholding mechanisms. 

Overall, the thesis demonstrates that the choice of factor construction method—whether 

based on PCA eigenportfolios or industry-specific ETF proxies—materially influences residual-

based signals, risk exposures, and empirical strategy performance. By systematically comparing 

and refining these approaches, the research contributes to a deeper understanding of how to 

design resilient, mean-reverting trading strategies that adapt to changing market conditions while 

maintaining market neutrality, thereby extending the literature on statistical arbitrage in the 

context of the Chinese equity market. 

 

2. Literature Review 

The study of mean-reversion and contrarian strategies has a long-standing history in 

financial economics. Foundational works by Poterba and Summers (1988), Lehmann (1990), and 

Lo and MacKinlay (1990) document statistically significant return reversals—at long horizons in 

the case of Poterba and Summers, and at short horizons in the case of Lehmann and  

Lo–MacKinlay. These findings laid the groundwork for market-neutral long–short equity 

strategies and inspired the development of systematic statistical arbitrage frameworks, such as 

the large-scale contrarian portfolios analyzed by Khandani and Lo (2009). In recent years, this 

research area has evolved substantially, incorporating residual-based signal construction, 

advanced factor models—including those derived via PCA—and machine learning techniques. 

This section reviews relevant literature across six interconnected areas: residual-based trading, 

PCA-based factor modeling and pair selection, machine learning applications, theoretical 

developments in contrarian strategies, reinforcement learning methods, and the role of liquidity 

and trading frictions. 

PCA has been widely adopted for factor extraction and pair selection due to its ability to 

reduce dimensionality and identify latent risk factors embedded in asset return data. In early 
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applications (e.g., Avellaneda and Lee, 2010), PCA was used to construct market-neutral 

portfolios by regressing stock returns on principal components. More recent studies have 

extended this idea with richer models, broader datasets, and integration with machine learning. 

Avellaneda and Lee (2010) present a seminal study on model-driven statistical arbitrage in 

the U.S. equities market, introducing a systematic approach based on the mean reversion of 

idiosyncratic returns. They propose two frameworks for extracting systematic risk factors: PCA 

and regressions on sector ETFs. In both cases, residual returns—after controlling for systematic 

components—are modeled as OU processes, enabling contrarian trading strategies that exploit 

temporary mispricings. Their backtests over 1997–2007 show that PCA-based approaches yield 

higher Sharpe ratios on average, particularly before 2003, while ETF-based models remain more 

stable in the later years. Notably, they also demonstrate that incorporating trading volume into 

signal generation improves performance, especially for ETF-based strategies. Furthermore, they 

link strategy effectiveness to broader market conditions, documenting deteriorating performance 

during periods of low volatility and systemic stress, such as the 2007 liquidity crisis. Their work 

not only provides robust empirical evidence but also offers a flexible framework for market-

neutral strategies grounded in cross-sectional factor structures. 

Sarmento and Horta (2020) propose a novel two-step machine learning framework to 

enhance traditional pairs trading. First, they apply PCA for dimensionality reduction, extracting 

latent risk factors, and then employ the OPTICS clustering algorithm to identify statistically 

robust candidate pairs. This unsupervised selection method significantly outperforms standard 

approaches, yielding an average portfolio Sharpe ratio of 3.79, compared with 3.58 for the best 

conventional method and 2.59 for a simpler baseline. Second, to mitigate episodes of persistent 

divergence and prolonged losses, they introduce a forecasting-based trading model using ARMA, 

LSTM, and LSTM encoder–decoder architectures. This predictive step reduces the number of 

days with portfolio drawdowns by approximately 75 %, albeit at the cost of some reduction in 

overall profitability. Their framework is backtested on 208 commodity-linked ETFs using  

5-minute bar data from 2009 to 2018, with transaction costs duly incorporated. 

Caneo and Kristjanpoller (2021) investigate statistical arbitrage in six Latin American 

equity markets (2013–2017), covering 338 stocks, by applying a PCA-based multifactor model 

to construct mean-reverting spreads. They propose two adaptive threshold selection criteria using 
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moving training–trading windows, and show that their strategy achieves an average Sharpe ratio 

about 1.55 higher than that of the corresponding regional market benchmarks. Their analysis also 

reveals that the largest eigenvalue is statistically dominant, with the associated eigenportfolio 

closely co-moving with the overall market. Moreover, the number of significant components 

varies inversely with market volatility, highlighting the dynamic structure of risk decomposition. 

Xiang and He (2022) propose an innovative asset pricing model in which arbitrage factors 

derived from pairs trading are employed to explain the equity risk premium in the Chinese stock 

market. Their approach begins with the construction of mean-reverting spreads using pairs 

trading strategies across a large sample of A-share stocks. These spreads, modeled as OU 

processes, capture idiosyncratic deviations between paired securities. To extract common 

variation in these residuals, the authors apply PCA and interpret the leading principal 

components as systematic pricing factors. Using Fama–MacBeth two-pass regressions and 

double-sorting portfolio analysis, they demonstrate that these PCA-derived arbitrage factors are 

strongly associated with cross-sectional variation in future stock returns, with explanatory power 

that remains robust after controlling for traditional firm characteristics. The study suggests that 

market inefficiencies captured via statistical arbitrage can constitute systematic risk sources 

within a rational asset-pricing framework. 

Gatta et al. (2023) introduce a multi-horizon clustering framework for statistical arbitrage 

that leverages PCA-derived risk factors computed at both daily and monthly frequencies. After 

extracting these factors, they apply an Adaptive Lasso procedure for feature selection to identify 

those most relevant in explaining each stock’s returns. Stocks are then clustered based on their 

exposure profiles, and within each cluster, common-factor exposures are neutralized to isolate 

idiosyncratic spread components. An optimal market-neutral portfolio is subsequently 

constructed using constrained optimization via Sequential Least Squares Programming. 

Thorough backtests across six major equity markets—the Italian, German, U.S., Japanese, 

Brazilian, and Indian—demonstrate robust outperformance relative to minimum-variance, mean-

variance, and Exponential Gradient benchmarks, confirming the effectiveness and generality of 

the approach. 

Han et al. (2023) propose a novel pairs trading framework that combines unsupervised 

learning techniques with PCA. Rather than relying solely on cointegration- or distance-based 
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criteria, they construct a multidimensional feature set comprising both return-based signals and 

firm-specific fundamental variables. PCA is employed to reduce dimensionality and extract 

dominant variations, which are then input into clustering algorithms such as k-means, DBSCAN, 

and agglomerative clustering to form groups of similar stocks. Within each cluster, trading pairs 

are selected based on short-term (one-month) return divergence or momentum rankings. 

Empirical tests across U.S., U.K., and Hong Kong equity markets show that the agglomerative 

clustering strategy delivers an annualized return of 24.8% and a Sharpe ratio of 2.69, with 

drawdowns limited to 12.3%. In contrast, clustering based solely on price-based features yields 

a Sharpe ratio of only ~1.44 and a drawdown close to 50%, underscoring the critical role of 

incorporating firm-specific information in machine learning–driven statistical arbitrage strategies. 

Rotondi and Russo (2024) present a clustering-based pairs trading strategy that 

incorporates PCA-derived distance metrics for stock pair selection. They evaluate three distance 

measures— (1) Euclidean distance, (2) PCA-transformed Euclidean distance, and (3) a novel 

partial correlation–based distance—using S&P 500 constituents over the period 2000–2023. 

After clustering, a simple long–short strategy is implemented exclusively on the identified pairs, 

yielding statistically and economically significant excess returns net of transaction costs. 

Specifically, average monthly excess returns range from 36 to 41 basis points, with Sharpe ratios 

between 0.20 and 0.30, corresponding to annualized Sharpe ratios of 0.72 to 0.99. The partial 

correlation–based distance provides the highest risk-adjusted performance, attributed to superior 

clustering accuracy as measured by industry-sector purity. These results remain robust across 

sensitivity checks, suggesting that PCA-enabled clustering offers a meaningful enhancement for 

pairs trading. 

Krause and Calliess (2024) propose a deep learning–based statistical arbitrage framework 

that generalizes traditional PCA residual models through the use of an autoencoder architecture. 

While classical statistical arbitrage methods typically rely on PCA to extract linear mean-

reverting components from asset returns, the authors design an end-to-end policy network in 

which the autoencoder simultaneously learns nonlinear latent structures and optimizes trading 

performance. Empirically, PCA-based models using OU residuals achieve Sharpe ratios of 0.87 

to 0.96 and annualized returns of 3.9% to 4.6%, with volatility around 4.4% to 4.7%. In contrast, 

the autoencoder-based policy network delivers Sharpe ratios between 1.42 and 1.81, mean 

returns of 5% to 6%, and substantially lower volatility (~3.4% to 3.7%). These findings 
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demonstrate that nonlinear, end-to-end learning with autoencoders can outperform PCA in 

capturing profitable mean-reversion signals and improving risk-adjusted performance in 

statistical arbitrage. 

In summary, the recent literature provides strong empirical and methodological support for 

residual-based trading strategies and PCA-derived factor models in statistical arbitrage. PCA has 

proven effective not only for extracting systematic components from stock returns but also for 

identifying mean-reverting spreads through clustering and distance-based approaches. 

Collectively, these studies provide robust evidence that isolating idiosyncratic return components 

is essential for designing market-neutral strategies, and that PCA remains a valuable tool in both 

residual estimation and pair selection. These insights directly motivate the PCA-based residual-

driven trading framework developed in the next section. 

 

3. Quantitative Construction of Risk Factors and Market-Neutral Residuals 

Consider a universe of 𝑁 stocks, each with returns denoted by 𝑅𝑖  over a given trading 

period (e.g., daily log returns). We begin with a single-factor specification, where the market 

portfolio—typically proxied by a capitalization-weighted index such as the S&P 500—has 

returns denoted by 𝐹. Each stock’s return can then be expressed as: 

𝑅𝑖 = 𝛽𝑖𝐹 + 𝑅̃𝑖                          (4) 

where 𝛽𝑖  measures the sensitivity of stock 𝑖  to the market factor 𝐹 , and 𝑅̃𝑖  represents the 

idiosyncratic component, assumed to be uncorrelated with 𝐹. 

Extending this to a multi-factor framework, the generalized form is: 

𝑅𝑖 = ∑ 𝛽𝑖𝑗𝐹𝑗
𝑚
𝑗=1 + 𝑅̃𝑖             (5) 

where 𝑚 denotes the number of systematic factors, 𝐹𝑗 represents the return of factor 𝑗, and 𝛽𝑖𝑗 is 

the factor loading of stock 𝑖 on factor 𝑗. 

A portfolio composed of stock weights {𝑄𝑖}𝑖=1
𝑁  is market-neutral if it has no net exposure 

to any of the systematic risk factors. Formally, this condition is met when the portfolio’s 

aggregate factor exposures (i.e., factor betas) satisfy: 

𝛽𝑗
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

= ∑ 𝛽𝑖𝑗𝑄𝑖
𝑁
𝑖=1 = 0, 𝑗 = 1,2, … ,𝑚⁡           (6) 
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Under this condition, portfolio returns are uncorrelated with factor movements and are 

entirely driven by idiosyncratic components:      

      ∑ 𝑄𝑖𝑅𝑖
𝑁
𝑖=1 = ∑ 𝑄𝑖

𝑁
𝑖=1 (∑ 𝛽𝑖𝑗𝐹𝑗

𝑚
𝑗=1 + 𝑅̃𝑖) = ∑ (∑ 𝛽𝑖𝑗𝑄𝑖

𝑁
𝑖=1 )𝑚

𝑗=1 𝐹𝑗 + ∑ 𝑄𝑖𝑅̃𝑖
𝑁
𝑖=1 = ∑ 𝑄𝑖𝑅̃𝑖

𝑁
𝑖=1     (7) 

Empirical evidence from developed markets—particularly the G8 economies—suggests 

that approximately 10 to 20 factors are generally sufficient to capture the majority of systematic 

risk, with around 15 being most commonly used. Studies such as Laloux et al. (2000) and Plerou 

et al. (2000) report that these systematic factors can explain roughly 50% of the total variance in 

stock returns. The central challenge, therefore, lies in identifying and extracting these latent 

systematic components effectively in order to construct robust market-neutral portfolios. 

 

3.1 The PCA Method for Factor Extraction 

PCA is a widely adopted statistical technique for extracting latent risk factors from 

financial datasets. It is particularly well-suited for high-dimensional settings, such as equity 

returns, where the number of assets 𝑁 may be large relative to the number of time observations 

𝑀. In the context of pairs trading and statistical arbitrage, PCA facilitates the identification of 

systematic structures and the isolation of residual (idiosyncratic) components that may exhibit 

mean-reverting behavior. 

 

Standardized Returns and Correlation Matrix Construction 

Let 𝑆𝑖(𝑡) denote the adjusted price of stock 𝑖 at time 𝑡, accounting for dividends and splits. 

The daily log return of stock 𝑖 over a window of 𝑀 trading days prior to a reference date 𝑡0 is 

computed as: 

   𝑅𝑖𝑘 = ln⁡(
𝑆𝑖(𝑡0−(𝑘−1)∆𝑡)

𝑆𝑖(𝑡0−𝑘∆𝑡)
),  𝑘 = 1,… ,𝑀, 𝑖 = 1,… ,𝑁⁡           (8) 

where 𝛥𝑡 =
1

252
 corresponds to one trading day. To control for heteroskedasticity across assets, 

the returns are standardized: 

𝑌𝑖𝑘 =
𝑅𝑖𝑘−𝑅̅𝑖

𝜎𝑖
             (9) 

with mean and standard deviation defined by: 
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𝑅̅𝑖 =
1

𝑀
∑𝑅𝑖𝑘

𝑀

𝑘=1

, 𝜎𝑖
2 =

1

𝑀 − 1
∑(𝑅𝑖𝑘 − 𝑅̅𝑖)

2

𝑀

𝑘=1

 

From the matrix of standardized returns 𝑌 ∈ ℝ𝑁×𝑀, the empirical correlation matrix 𝜌 ∈

ℝ𝑁×𝑁 is defined as: 

𝜌𝑖𝑗 =
1

𝑀−1
∑ 𝑌𝑖𝑘𝑌𝑗𝑘
𝑀
𝑘=1 ⁡        (10) 

By which is symmetric and positive semi-definite. By construction, the diagonal elements 

satisfy: 

𝜌𝑖𝑖 =
1

𝑀−1
∑ 𝑌𝑖𝑘

2𝑀
𝑘=1 =

1

𝑀−1

∑ (𝑅𝑖𝑘−𝑅̅𝑖)
2𝑀

𝑘=1

𝜎𝑖
= 1        (11)  

In practical applications, the correlation matrix 𝜌  is often high-dimensional—typically 

500×500 or larger—while the available data is relatively limited. Using an excessively long 

historical window (𝑀 ≫ 𝑁) incorporates outdated information and may fail to reflect current 

market dynamics. Conversely, restricting the estimation to a short recent window (𝑀 < 𝑁 ) 

produces a noisy and potentially ill-conditioned correlation matrix, a well-documented issue in 

the literature on Random Matrix Theory 

To balance this trade-off, we adopt a rolling one-year (252 trading days) window for 

correlation estimation. This captures recent market structure while avoiding excessive lookback 

bias. PCA is then applied to extract the dominant eigenportfolios, filtering out noise and 

providing a stable low-rank approximation even in high-dimensional settings. 

 

Eigen-Decomposition and Spectral Structure 

The correlation matrix 𝜌  is then subjected to eigen-decomposition. Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥

𝜆𝑁 ≥ 0  denote the ordered eigenvalues, and 𝑣(𝑗) ∈ ℝ𝑁  the corresponding eigenvectors. The 

spectral decomposition is given by: 

𝜌 = ∑ 𝜆𝑗𝑣
(𝑗)(𝑣(𝑗))𝑇𝑁

𝑗=1           (12) 

Empirically, the spectrum of 𝜌 typically displays a few large eigenvalues that are well 

separated from the rest of the spectrum, which is referred to as the bulk or noise spectrum (see 

Figure 1A and 1B). These leading eigenvalues correspond to systematic factors, such as market-
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wide or sector-specific components, whereas the bulk is mainly attributed to idiosyncratic 

fluctuations. 

To characterize the distribution of eigenvalues more formally, we define the empirical 

spectral density as: 

 𝐷(𝑥, 𝑦) =
#{𝜆𝑗∈(𝑥,𝑦)}

𝑁
                (13) 

which measures the proportion of eigenvalues lying within the interval (𝑥, 𝑦). This function 

highlights the dominance of low-variance (noisy) components within the spectrum (see Figure 2). 

 

Selecting Significant Components and Eigenportfolios 

To construct a low-rank approximation of the correlation structure, two main approaches 

are commonly employed to determine the number of principal components 𝑚 to retain. The first 

approach is fixed-rank truncation, in which a predetermined number of leading eigenvectors are 

selected—often based on economic intuition, such as the number of major industry sectors in the 

market. The second approach is variance thresholding, where the smallest number of components 

𝑚 is retained such that the cumulative explained variance exceeds a predefined threshold 𝛼, 

typically set between 80% and 90%. This method ensures that the selected components capture 

the majority of systematic variation present in the data, while discarding lower-variance 

components likely associated with noise. 

∑ 𝜆𝑗
𝑚
𝑗=1

∑ 𝜆𝑗
𝑁
𝑗=1

≥ 𝛼 

Once the top 𝑚  components are selected, eigenportfolios are defined by rescaling the 

eigenvectors using the inverse volatility of each stock: 

𝑄𝑖
(𝑗)

=
𝑣𝑖
(𝑗)

𝜎𝑖
, 𝑗 = 1, … ,𝑚⁡ 

where 𝑣𝑖
(𝑗)

 is the i-th element of the j-th eigenvector and 𝜎𝑖 is the volatility of stock 𝑖. The return 

of the j-th eigenportfolio at time 𝑘 is then given by: 

𝐹𝑗𝑘 = ∑
𝑣𝑖
(𝑗)

𝜎𝑖

𝑁
𝑖=1 𝑅𝑖𝑘           (14) 
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By construction, these factor returns {𝐹𝑗𝑘} are mutually uncorrelated and represent latent 

systematic drivers of asset returns. The return of each asset can therefore be expressed as: 

𝑅𝑖𝑘 = ∑ 𝛽𝑖𝑗𝐹𝑗𝑘
𝑚
𝑗=1 + 𝑅̃𝑖𝑘⁡         (15) 

where 𝑅̃𝑖𝑘 denotes the idiosyncratic residual, uncorrelated with the extracted factors. 

This formulation implies a low-rank approximation of the correlation matrix: 

𝜌𝑎𝑏 = ∑ 𝜆𝑗𝑣𝑎
(𝑗)
𝑣𝑏
(𝑗)𝑚

𝑗=1 + 𝜂𝑎
2𝛿𝑎𝑏         (16) 

where 𝑎, 𝑏 = 1, … , 𝑁 are asset indices, and 

𝜂𝑎
2 = 1 −∑𝜆𝑗(𝑣𝑎

(𝑗)
)2

𝑚

𝑗=1

 

ensures that the diagonal elements remain normalized to unity. The Kronecker delta 𝛿𝑎𝑏 captures 

the idiosyncratic noise component. 

In this way, PCA separates the systematic cross-sectional structure of returns from residual 

noise, yielding a set of orthogonal factors suitable for risk modeling, market-neutral portfolio 

construction, and residual-based trading signal generation. 

Figure 1A. Top 50 eigenvalues of the correlation matrix of A-share stock returns 

 

Note: Top 50 eigenvalues of the correlation matrix of A-share stock returns computed using a one-year window 

ending on 1 January 2008. The eigenvalues are derived from daily return data for a filtered universe of 303 stocks 
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with imputed values, and are shown as percentages of explained variance. The first principal component (market 

eigenvalue) dominates the spectrum, followed by a steep decay characteristic of common sector or idiosyncratic 

effects. 

Figure 1B. Time series of the PC1 explained variance and the cumulative PC1–PC50 

 

Note: Time series of the explained variance of the first principal component (PC1) and the cumulative variance 

explained by the top 50 components (PC1–PC50), based on a rolling one-year PCA using daily returns from 303 A-

share stocks. The window rolls monthly from 2007 to 2024. The plot reveals time-varying strength of the market 

component and fluctuations in the overall explanatory power of the principal subspace, reflecting evolving cross-

sectional structure in return correlations. 

Figure 2. The distribution of PCA eigenvalues  
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Note: The distribution of PCA eigenvalues estimated using a one-year window ending on 1 January 2008, based on 

daily returns of 303 A-share stocks. The histogram and KDE curve show a clear separation between a large ‘market 

eigenvalue’ and the rest of the bulk spectrum. The bulk of the eigenvalues are densely clustered near zero, while the 

dominant eigenvalue—highlighted in red—captures a significant proportion of the total variance, consistent with the 

presence of a strong market-wide factor. 

 

3.2 Interpretation of Eigenvectors and Eigenportfolios 

Previous studies (e.g., Laloux et al., 2000) show that the leading eigenvector of the return 

correlation matrix typically corresponds to the market mode. This interpretation arises from the 

fact that all components of the first eigenvector 𝑣𝑖
(1)

, for 𝑖 = 1,2, . . . , 𝑁, are positive, implying 

that the associated eigenportfolio assigns positive weights to all assets. Formally, the portfolio 

weights are defined as: 

       𝑄𝑖
(1)

=
𝑣𝑖
(1)

𝜎𝑖
 

where 𝜎𝑖 denotes the volatility of asset 𝑖. This weighting scheme produces allocations inversely 

proportional to asset volatilities, which empirically tends to approximate capitalization-weighted 

market portfolios. Although not identical, the market-mode eigenportfolio and the capitalization-

weighted benchmark exhibit a strong resemblance, as illustrated in Figure 3. 

In contrast, the interpretation of the remaining eigenvectors is less straightforward. These 

higher-order eigenvectors necessarily contain both positive and negative components to ensure 

orthogonality with the leading eigenvector. However, due to the absence of an intrinsic ordering 

among stocks—unlike in applications such as interest-rate term structure PCA (Litterman, 1991) 

or volatility surface decomposition (Cont and Da Fonseca, 2002)—a direct analogy to “shape 

modes” is not applicable. 

Instead, following Scherer and Avellaneda (2002) and Plerou et al. (2000), we rank the 

components of each eigenvector 𝑣(𝑘) in descending order: 

𝑣𝑛1
(𝑘)

≥ 𝑣𝑛2
(𝑘)

≥ ⋯ ≥ 𝑣𝑛𝑁
(𝑘)

 

where {𝑛1, 𝑛2, . . . , 𝑛𝑁} is a permutation of asset indices based on coefficient magnitude. This 

reordering often reveals coherence: firms with adjacent ranks tend to belong to the same industry 

group. Empirical results from Table 1 and 2 along with Figure 4, 5 and 6 confirm this 

phenomenon, particularly for the second and third eigenvectors. However, coherence weakens 

for deeper eigenvectors and eventually disappears within the bulk of the spectrum, where 

components predominantly capture unstructured, idiosyncratic noise. 
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Accordingly, eigenportfolios constructed from intermediate eigenvectors can be interpreted 

as long–short portfolios contrasting industries or sectors. This aligns with the view that the 

eigenvalue spectrum reflects a hierarchy of market influences: from broad market-wide 

movements, through sectoral dynamics, down to residual noise. 

Figure 3. Comparative evolution of the principal eigenportfolio and the capitalization-weighted 

portfolio  

 

Note: Comparative evolution of the principal eigenportfolio and the capitalization-weighted portfolio from January 

2016 to January 2024. The eigenportfolio is constructed using rolling PCA with a one-year window and updated 

monthly. Both portfolios exhibit broadly similar trends over time, with the eigenportfolio capturing the main 

dynamics of the market. 

Figure 4. First principal component loadings 
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Note: presents the loadings of the first principal component (i.e., the leading eigenvector) derived from the PCA of 

the stock return correlation matrix. The loadings are sorted by their absolute magnitude, highlighting the stocks that 

contribute most strongly to the market-wide common component. Each stock is annotated along the x-axis with the 

abbreviation of its corresponding industry sector. The higher the absolute loading, the more the stock moves in sync 

with the market’s dominant co-movement structure captured by the first principal component. The industry sector 

abbreviations are as follows: AGRI (Agriculture, Forestry, Animal Husbandry and Fishery), CHEM (Basic 

Chemicals), STEEL (Steel), METAL (Non-ferrous Metals), ELEC (Electronics), HOME (Household Appliances), 

FOOD (Food and Beverage), TEXT (Textile and Apparel), LITE (Light Industry Manufacturing), HC (Healthcare – 

Pharmaceuticals and Biotechnology), UTIL (Utilities), TRANS (Transportation), RE (Real Estate), RETL 

(Commerce and Retail), SERV (Social Services), CONS (Conglomerates), AUTO (Automotive), BANK (Banking), 

FIN (Non-bank Financials), MAT (Building Materials), ARCH (Construction and Decoration), POWER (Electrical 

Equipment), MACH (Machinery), DEF (National Defense and Military Industry), IT (Information Technology), 

MEDIA (Media), COMM (Telecommunications), COAL (Coal), OIL (Oil and Petrochemicals), ENV 

(Environmental Protection), and BEAU (Personal Care and Beauty). 

Figure 5. Second principal component loadings 

 

Note: This figure plots the loadings of the second eigenvector obtained from the PCA of the stock return correlation 

matrix. The stocks are sorted in descending order of their PC2 coefficients (not by absolute value), and each is 

labeled with the abbreviation of its corresponding industry sector. The second principal component often reflects an 

industry-specific or style-based long-short structure, in contrast to the market-wide component captured by the first 

principal component. Industry abbreviations follow the same convention as in Figure 4, where, for example, 

"COAL" refers to coal industry, "UTIL" to utilities, "FOOD" to food & beverage, and so on. 
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Figure 6. Third principal component loadings 

 

Note: This figure displays the loadings of the third principal component (PC3), obtained from the PCA of the stock 

return correlation matrix. Stocks are ordered from highest to lowest based on their PC3 loadings, and each is labeled 

by the abbreviation of its corresponding industry sector. Unlike the first component, which captures overall market 

direction, and the second component, which often reflects a sector-level long–short structure, the third component 

may highlight more subtle themes such as industry rotations or factor-based segmentation. The horizontal black line 

at zero marks the sign change in component contributions. Industry abbreviations follow the same notation as in 

Figure 4. 

 

Table 1. Top and bottom 10 stocks sorted by second principal component loading 

Top 10 stocks Bottom 10 stocks 

Code Name Industry Code Name Industry 

000937 China Coal Energy 

Co., Ltd. 
Coal Mining 600303 Vantone Industrial Co., Ltd. Automobile 

600585 Anhui Conch Cement 

Company 

Building 

Materials 
000909 

Digital China Information 

Service Co., Ltd. 
Real Estate 

600016 China Minsheng 

Banking Corp. 
Banking 600884 

Ningbo Thermal Power Co., 

Ltd. 

Power 

Equipment 

600348 Yangquan Coal 

Industry 
Coal Mining 600644 

Leshan Electric Power Co., 

Ltd. 
Utilities 

000898 Baotou Steel Union 

Co., Ltd. 
Steel 600130 Infovision Optoelectronics Electronics 

600028 China Petroleum & 

Chemical Corp. 

(Sinopec) 

Oil & 

Petrochemicals 000705 

Wuhan Humanwell Healthcare 

Group 

Healthcare & 

Biotech 

600188 Yanzhou Coal 

Mining Company 
Coal Mining 600283 

Qianjiang Water Resources 

Dev Co. 

Environment

al Protection 

600036 China Merchants 

Bank 
Banking 600883 Inner Mongolia Yili Industrial 

Agriculture 

& Animal 

Feed 
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Top 10 stocks Bottom 10 stocks 

Code Name Industry Code Name Industry 

000983 Shanxi Coking Coal 

Group Co., Ltd. 
Coal Mining 600360 

Hoshine Silicon Industry Co., 

Ltd. 
Electronics 

600015 Industrial and 

Commercial Bank of 

China (ICBC) 
Banking 600235 

Minfeng Special Paper Co., 

Ltd. 

Light 

Manufacturi

ng 

Note: The top stocks are primarily from energy, coal, and banking sectors, while the bottom stocks are associated 

with real estate, utilities, and consumer industries. Stock codes, company names, and industry classifications are 

shown. 

 

Table 2. Top and bottom 10 stocks sorted by third principal component loading. 

Top 10 stocks Bottom 10 stocks 

Code Name Industry Code Name Industry 

000937 
China Coal Energy 

Co., Ltd. 
Coal Mining 600016 

China Minsheng Banking 

Corp. 
Banking 

600123 

Shanxi Lanhua Sci-

Tech Innovation Co., 

Ltd. 
Coal Mining 600036 China Merchants Bank Banking 

000983 
Shanxi Coking Coal 

Group Co., Ltd. 
Coal Mining 600535 Tasly Pharmaceutical Group 

Healthcare & 

Biotech 

600348 

Yangquan Coal 

Industry Group Co., 

Ltd. 
Coal Mining 600518 

Kangmei Pharmaceutical Co., 

Ltd. 

Healthcare & 

Biotech 

600188 
Yanzhou Coal 

Mining Company 
Coal Mining 600011 

Huadian Power International 

Corp. 
Utilities 

000060 

Minmetals 

Development Co., 

Ltd. 

Non-ferrous 

Metals 600015 

Industrial and Commercial 

Bank of China (ICBC) Banking 

600456 
Baotou Huazi 

Industry Co., Ltd. 

Non-ferrous 

Metals 
600066 

BAIC BluePark New Energy 

Technology Co., Ltd. 
Automobile 

600362 
Jiangxi Copper 

Corporation Limited 

Non-ferrous 

Metals 
600085 

Tonghua Dongbao 

Pharmaceutical Co., Ltd. 

Healthcare & 

Biotech 

600282 
Nanjing Iron and 

Steel Company 
Steel 600887 

Yantai Changyu Pioneer Wine 

Co., Ltd. 

Food & 

Beverage 

600508 

Shaanxi Coal and 

Chemical Industry 

Co., Ltd. 
Coal Mining 600276 

Jiangsu Hengrui 

Pharmaceuticals Co., Ltd. 

Healthcare & 

Biotech 

Note: Top stocks are predominantly from energy and metals sectors, including coal mining and non-ferrous metals, 

while the bottom stocks are concentrated in banking, pharmaceuticals, and consumer-related industries. Stock codes, 

company names, and industry classifications are shown. 
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3.3 The ETF-Based Industry Approach for Residual Extraction 

An alternative to PCA for extracting residuals is to use sector-based ETFs as proxies for 

risk factors. In this approach, the returns of industry-representative ETFs serve as explanatory 

variables in stock-level single-factor regressions. 

Table 3 reports industry classifications and the number of stocks with market 

capitalizations exceeding RMB 2 billion as of January 4, 2016. This breakdown contextualizes 

the relative size and importance of each sector in the equity universe. Each industry is linked to 

a corresponding sector ETF, which is used as a simplified factor in return modeling. 

Unlike eigenportfolios—which are orthogonal by construction and hence produce 

uncorrelated factors—sector ETFs often exhibit substantial cross-correlation. Such correlation 

can introduce redundancy and multicollinearity: two related ETFs may both load significantly on 

a stock’s return (sometimes with opposite signs) if the firm spans multiple activities, thereby 

hurting interpretability and inflating estimation variance in residuals. 

To address these concerns, various regression techniques have been explored in the 

literature. One promising class includes sparse regression methods, which reduce overfitting by 

selecting only the most relevant explanatory variables. A well-known example is the Matching 

Pursuit algorithm ((Davis et al., 1997), which iteratively selects predictors that maximize 

explained variance while promoting parsimony. Another approach is Ridge Regression (Jolliffe, 

2011), which imposes shrinkage penalties to mitigate multicollinearity among predictors. 

In this study, we adopt a simple and interpretable one-to-one matching: each stock 𝑖 is 

assigned to a single ETF based on its primary industry classification (see Table 3). Residual 

returns are then estimated via a univariate regression, 

⁡⁡⁡⁡𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖𝐹𝑔(𝑖),𝑡 + 𝑅̃𝑖,𝑡⁡              (17) 

where 𝑅𝑖,𝑡 is the return of stock 𝑖, 𝐹𝑔(𝑖),𝑡 is the return of the matched sector ETF for industry 𝑔(𝑖), 

𝛽𝑖 is the factor loading, and 𝑅̃𝑖,𝑡 is the residual component not captured by the sector factor. If 

returns are demeaned in preprocessing, 𝛼𝑖 can be set to zero by construction. This one-to-one 

design avoids the instability arising from correlated predictors and yields a transparent residual 

suitable for subsequent mean-reversion/statistical-arbitrage strategies. 
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Table 3. Summary statistics by industry based on market capitalization as of January 4, 2016 

   Market cap unit: RMB millions 

Index Industry Num of Stocks Average MktCap Max MktCap Min MktCap 

1 Transportation 20 15,458.00 54,496.00 4,944.00 

2 Media 2 15,333.00 22,643.00 8,023.00 

3 Utilities 16 17,671.00 86,520.00 2,827.00 

4 Agriculture & Forestry 8 9,424.00 19,093.00 3,832.00 

5 Healthcare 31 18,608.00 91,999.00 3,938.00 

6 Retail 13 5,576.00 8,690.00 3,489.00 

7 Defense & Military 5 19,216.00 46,342.00 10,008.00 

8 Basic Chemicals 20 10,262.00 38,627.00 2,193.00 

9 Home Appliances 6 12,019.00 24,018.00 3,896.00 

10 Building Materials 12 12,830.00 64,275.00 3,807.00 

11 Construction & Decoration 6 11,563.00 37,409.00 3,677.00 

12 Real Estate 24 10,489.00 40,188.00 3,680.00 

13 Non-ferrous Metals 12 14,441.00 29,738.00 3,457.00 

14 Machinery 16 14,766.00 45,562.00 2,962.00 

15 Automobile 20 13,693.00 46,645.00 4,044.00 

16 Coal 6 14,453.00 25,337.00 6,859.00 

17 Environmental Protection 8 14,187.00 30,968.00 4,714.00 

18 Power Equipment 5 8,575.00 14,512.00 4,117.00 

19 Electronics 7 17,316.00 64,923.00 5,632.00 

20 Oil & Petrochemicals 6 89,298.00 456,766.00 2,730.00 

21 Social Services 5 8,025.00 14,820.00 2,603.00 

22 Textiles & Apparel 9 7,616.00 12,700.00 4,585.00 

23 Conglomerates 4 8,748.00 13,535.00 4,269.00 

24 Personal Care 1 3,762.00 3,762.00 3,762.00 

25 Information Technology 7 22,968.00 40,128.00 3,620.00 

26 Light Manufacturing 6 7,646.00 9,501.00 4,145.00 

27 Telecommunications 4 17,519.00 29,441.00 4,271.00 

28 Steel 6 14,561.00 28,224.00 4,880.00 

29 Banking 3 237,435.00 356,468.00 88,985.00 

30 Non-bank Financials 2 88,441.00 171,266.00 5,615.00 

31 Food & Beverage 13 16,151.00 90,287.00 3,573.00 

Total - 303 17,789.00 456,766.00 2,193.00 

Note: The table reports the number of stocks, average, maximum, and minimum market capitalization (in million 

RMB) for each industry sector. “Total” aggregates across all industries. 

 

4. An Equity Valuation Approach Based on Relative Value 

This section presents a quantitative approach to equity valuation based on relative value, 

which evaluates a stock’s performance relative to its industry sector or factor benchmark. The 
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model uses either sector-based ETFs or PCA-derived synthetic factors as explanatory variables. 

An extension incorporating trading volume is introduced in Section 5. Although the current 

framework relies solely on price and volume data, it can be extended to include fundamental 

variables such as analyst revisions, earnings momentum, and other measurable financial 

indicators. 

We adopt a continuous-time framework, where the price of stock 𝑆𝑖(𝑡), for 𝑖 = 1,… ,𝑁, 

evolves according to a stochastic differential equation. Specifically, the return dynamics follow: 

𝑑𝑆𝑖(𝑡)

𝑆𝑖(𝑡)
= 𝛼𝑖𝑑𝑡 + ∑ 𝛽𝑖𝑗

𝑁
𝑗=1

𝑑𝐼𝑗(𝑡)

𝐼𝑗(𝑡)
+ 𝑑𝑋𝑖(𝑡)         (18) 

where 𝐼𝑗(𝑡) denotes the 𝑗 − 𝑡ℎ factor (either ETF or PCA-based), 𝛽𝑖𝑗 are the factor loadings, and 

𝑑𝑋𝑖(𝑡) represents the idiosyncratic return component not explained by systematic factors. 

In the case of a single sector ETF, the model simplifies to: 

𝑑𝑆𝑖(𝑡)

𝑆𝑖(𝑡)
= 𝛼𝑖𝑑𝑡 + 𝛽𝑖𝑗

𝑑𝐼(𝑡)

𝐼(𝑡)
+ 𝑑𝑋𝑖(𝑡)                   (19) 

with 𝐼(𝑡) corresponding to the ETF of the stock’s primary industry classification. 

The idiosyncratic return process 𝑋̃𝑖(𝑡) is defined as: 

𝑑𝑋̃𝑖(𝑡) = 𝛼𝑖𝑑𝑡 + 𝑑𝑋𝑖(𝑡)⁡          (20) 

where the drift term 𝛼𝑖𝑑𝑡 represents the expected excess return relative to the benchmark, and 

𝑑𝑋𝑖(𝑡)  captures stock-specific shocks. This component is modeled as a mean-reverting OU 

process: 

𝑑𝑋𝑖(𝑡) = 𝜅𝑖(𝜇𝑖 − 𝑋𝑖(𝑡))𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖(𝑡), 𝜅𝑖 > 0         (21) 

where 𝜅𝑖 is the speed of mean reversion, 𝜇𝑖 is the long-term equilibrium level, 𝜎𝑖 is the volatility 

of residual shocks, and 𝑑𝑊𝑖(𝑡) is a standard Brownian motion. The OU process is stationary and 

can be regarded as the continuous-time analogue of the 𝐴𝑅(1) model. 

The expected conditional increment is given by: 

𝐸[𝑑𝑋𝑖(𝑡)|𝑋𝑖(𝑠), 𝑠 ≤ 𝑡] = 𝜅𝑖(𝜇𝑖 − 𝑋𝑖(𝑡))𝑑𝑡         (22) 

implying that the forecasted return depends on the deviation of 𝑋𝑖(𝑡) from its equilibrium value 

𝜇𝑖. 
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The parameters 𝛼𝑖, 𝜅𝑖, 𝜇𝑖 , 𝜎𝑖  are stock-specific and are assumed to be locally constant within 

a moving estimation window. In practice, we estimate these parameters using a 60-day rolling 

window and retain only those stocks with sufficiently high mean-reversion speeds (i.e., large 𝜅𝑖) 

to ensure both robustness of the stationarity assumption and profitability of trading signals. 

Details of the estimation procedure are provided in the next section and in Appendix A. 

Solving the OU process yields the closed-form solution: 

𝑋𝑖(𝑡0 + ∆𝑡) = 𝑒−⁡𝜅𝑖∆𝑡𝑋𝑖(𝑡0) + (1 − 𝑒−⁡𝜅𝑖∆𝑡)𝜇𝑖 + 𝜎𝑖 ∫ 𝑒−⁡𝜅𝑖(𝑡0+∆𝑡−𝑠)
𝑡0+∆𝑡

𝑡0
𝑑𝑊𝑖(𝑠)⁡      (23) 

In the long-run limit (𝛥𝑡 → ∞), the process converges to its stationary distribution:  

𝐸[𝑋𝑖(𝑡)] = 𝜇𝑖, 𝑉𝑎𝑟[𝑋𝑖(𝑡)] =
𝜎𝑖
2

2⁡𝜅𝑖
         (24) 

This formulation naturally lends itself to relative-value trading. A market-neutral position 

is constructed by going long the stock and short the corresponding sector ETF (or factor 

portfolio), scaled by the estimated factor loading. The expected instantaneous return of such 

a portfolio is: 

𝔼[𝑑𝛱𝑖(𝑡)] = 𝛼𝑖𝑑𝑡 + 𝜅𝑖(𝜇𝑖 − 𝑋𝑖(𝑡))𝑑𝑡⁡         (25) 

where the drift 𝛼𝑖 captures any systematic excess return and the second term reflects the 

forecasted mean-reversion gain. When 𝑋𝑖(𝑡) > μ𝑖 , the expected return is negative, generating 

a short signal; conversely, 𝑋𝑖(𝑡) < μ𝑖 produces a long signal. 

The speed of mean reversion 𝜅𝑖  determines how quickly deviations from the mean are 

corrected. Its inverse, 

𝜏𝑖 = 1/𝜅𝑖 ⁡ 

defines the characteristic time scale. Assets with small 𝜏𝑖  (fast mean reversion) offer more 

reliable short-term opportunities, and the strategy therefore retains only those stocks with 

sufficiently large 𝜅𝑖 to ensure both estimation robustness and trading profitability. 

 

5. Construction of Trading Signals 

This section outlines the construction of trading signals derived from residual processes 

modeled under a mean-reversion framework. Residual returns are assumed to follow an OU 

process, with parameters estimated using a 60-day rolling window (i.e., 𝑇1 = 60/252). This 
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window provides a balance between responsiveness and estimation stability, roughly 

corresponding to a single corporate earnings cycle. 

As a filtering mechanism, only those stocks with estimated mean-reversion times shorter 

than one-thirtieth of a year (𝜏𝑖 < 1/30 ≈ 8.4 trading days) are retained. This restriction ensures 

that the residual process exhibits sufficiently fast mean reversion within the estimation window, 

thereby supporting the local stationarity assumption and enhancing the statistical reliability of 

signals for short-horizon trading. 

To provide a preliminary empirical assessment, Table 5 reports the historical Sharpe ratios 

achieved by strategies based on these signals, applied to portfolios sorted by sector ETFs over 

the full sample period. Comprehensive backtesting results will be presented in a later section. 

Technical details on the estimation of OU parameters and the construction of standardized 

signals (e.g., s-scores) are provided in the following subsection. 

 

5.1 Signal Design Based on Pure Mean-Reversion Dynamics 

In the baseline signal construction approach, we consider a simplified version of the OU 

process by omitting the drift term. In this specification, the residual process 𝑋𝑖(𝑡) is modeled as 

purely mean-reverting without directional bias. Under such an assumption, the equilibrium 

standard deviation of the process is: 

𝜎𝑒𝑞,𝑖 =
𝜎𝑖

√2𝜃𝑖
⁡            

where 𝜎𝑖 denotes the volatility parameter of the residual process, and 𝜃𝑖 is the mean-reversion 

speed. 

To standardize deviations from equilibrium across stocks with heterogeneous volatility 

profiles, we define a dimensionless statistic, the s-score, as: 

𝑠𝑖(𝑡) =
𝑋𝑖(𝑡)−𝜇𝑖

𝜎𝑒𝑞,𝑖
⁡⁡                (26) 

where 𝜇𝑖  represents the long-term equilibrium level of the residual process. The s-score thus 

measures the normalized deviation of the residual from its equilibrium, serving as the central 

decision variable in our mean-reversion trading strategy. Figure 7 illustrates the evolution of the 
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s-score for the residuals of CMBC relative to the Banking sector. A higher absolute value of 𝑠𝑖(𝑡) 

indicates a greater disequilibrium, and therefore a stronger trading signal. 

The trading rules based on the s-score are structured as threshold-based triggers: 

• Open Long Position: if 𝑠𝑖(𝑡) < −𝑠𝑒𝑛𝑡𝑟𝑦, 

• Open Short Position: if 𝑠𝑖(𝑡) > +𝑠𝑒𝑛𝑡𝑟𝑦,                (27) 

• Close Long Position: if 𝑠𝑖(𝑡) > −𝑠𝑐𝑙𝑜𝑠𝑒, 

• Close Short Position: if 𝑠𝑖(𝑡) < +𝑠𝑐𝑙𝑜𝑠𝑒. 

Each trading signal is implemented as a market-neutral position. When a long signal is 

triggered (i.e., 𝑠𝑖(𝑡) < −𝑠𝑒𝑛𝑡𝑟𝑦), the strategy buys one dollar of the corresponding stock while 

simultaneously selling 𝛽𝑖 dollars of the associated sector ETF, thereby hedging systematic 

exposure. This construction ensures neutrality with respect to the sector-level factor used in 

residual estimation. 

In the case of a multi-factor specification—such as regressions on multiple ETFs or on 

principal components extracted via PCA—the hedging leg consists of a weighted portfolio of 

factor exposures. Specifically, the investor sells 𝛽𝑖1 dollars of Factor 1, 𝛽𝑖2 dollars of Factor 2, …, 

up to 𝛽𝑖𝑚 dollars of Factor mmm, where 𝛽𝑖𝑚 is the loading of stock 𝑖 on factor 𝑗. The reverse 

applies to short signals. All positions are closed by unwinding both the stock and the hedging 

portfolio using the same regression-derived weights. 

This hedging procedure preserves dollar neutrality against the underlying systematic 

factors, ensuring that expected returns are driven solely by the behavior of the idiosyncratic 

(mean-reverting) component. Such design allows the strategy to remain agnostic to broad market 

movements while exploiting temporary mispricings at the stock level. 

For implementation consistency and scalability across assets, uniform entry and exit 

thresholds are applied. These thresholds are determined empirically through backtesting on 

historical data from 2010 to 2014. The optimal values are: 

𝑠𝑒𝑛𝑡𝑟𝑦 = 1.25, 𝑠𝑐𝑙𝑜𝑠𝑒, 𝑙𝑜𝑛𝑔 = 0.50, 𝑠𝑐𝑙𝑜𝑠𝑒, 𝑠ℎ𝑜𝑟𝑡 = 0.75 

The asymmetric closing rules—liquidating short positions at a higher s-score (0.75) than 

long positions (0.50)—were found to improve performance during the training period and are 

thus retained in subsequent backtests. 
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Overall, this rule-based framework capitalizes on statistically significant deviations of the 

residual from its mean, under the assumption that such excursions are temporary and will revert 

over a characteristic horizon determined by 1/𝜃𝑖 . By focusing exclusively on substantial 

deviations, the strategy filters out noise and concentrates on high-conviction opportunities with 

favorable mean-reversion profiles. 

Figure 7. Rolling S-score of Stock CMBC vs. Banking sector 

 

Note: Rolling S-score of China Minsheng Banking Corp. (CMBC) vs. the Banking sector index during 2007–2008. 

The S-score represents standardized residuals from a rolling regression of stock returns on sector returns, used to 

detect mean-reversion signals. 

 

5.2 Signal Design Based on Mean-Reversion with Drift 

In the pure mean-reversion model introduced in the previous section, the drift term of the 

residual process was omitted under the assumption that it is negligible relative to the equilibrium 

volatility, 𝜎𝑒𝑞,𝑖 = 𝜎𝑖/√2𝜃𝑖 . However, it is possible to explicitly incorporate a drift component, 

which leads to a modified signal that accounts for potential directional bias in the residual 

dynamics. 

Under the OU specification, 

𝑑𝑋𝑖(𝑡) = 𝜃𝑖(𝜇𝑖 − 𝑋𝑖(𝑡)) 𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖(𝑡)  

the conditional expectation over a short interval 𝑑𝑡 is 

   𝐸[𝑑𝑋𝑖(𝑡)] = 𝜃𝑖(𝜇𝑖 − 𝑋𝑖(𝑡)) 𝑑𝑡⁡                      (28) 
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Rewriting this expression in terms of the standardized residual (s-score): 

𝑠𝑖(𝑡) =
𝑋𝑖(𝑡) − 𝜇𝑖

𝜎𝑒𝑞,𝑖
 

we obtain, 

𝐸[𝑑𝑋𝑖(𝑡)] = 𝜃𝑖 (
𝜇𝑖

𝜃𝑖𝜎𝑒𝑞,𝑖
− 𝑠𝑖(𝑡)) 𝜎𝑒𝑞,𝑖𝑑𝑡               (29) 

This motivates the definition of a drift-adjusted s-score as: 

   𝑠𝑖
𝑚𝑜𝑑(𝑡) = 𝑠𝑖(𝑡) −

𝜇𝑖

𝜃𝑖𝜎𝑒𝑞,𝑖
            (30) 

The intuition is straightforward. If the residual process has a positive drift (𝜇𝑖 > 0), the 

effective short signal is weakened, since the stock tends to rise even after adjusting for factor 

exposures. Conversely, a negative drift strengthens the short signal. This adjustment therefore 

introduces a momentum-like correction into the symmetric mean-reversion framework. 

For example, under the original strategy, a short position would be opened if 𝑠𝑖 > 𝑠𝑒𝑛𝑡𝑟𝑦. 

Under the modified formulation, the same threshold is harder to reach when 𝜇𝑖 > 0, thereby 

reducing the risk of shorting a stock with persistent upward bias. 

From a statistical perspective, 𝜇𝑖 can be interpreted as the equilibrium level of the residual 

process, which, when estimated over short windows (e.g., 60 trading days), resembles the slope 

of a local moving average. Incorporating this term thus introduces a momentum filter into the 

otherwise purely mean-reverting framework. 

Empirical analysis over the 2010–2014 training period shows that the same entry and exit 

thresholds calibrated for the pure mean-reversion strategy also work well for the drift-adjusted 

case. In practice, the estimated values of 𝜇𝑖 are relatively small—typically on the order of 15 

basis points—while the average reversion time is about 7 trading days and the equilibrium 

residual volatility is around 300 basis points. Hence, the correction term, 

𝜇𝑖
𝜃𝑖𝜎𝑒𝑞,𝑖

≈
0.0015 × 7

0.03
≈ 0.35⁡ 

is modest and does not materially affect the decision variable. 
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Backtests confirm that this adjustment yields only marginal performance improvements at 

the daily trading frequency. For simplicity and robustness, we therefore adopt the original s-score 

formulation in the main implementation and omit further consideration of the drift-adjusted 

variant in subsequent sections. 

In summary, while theoretically appealing, incorporating a constant drift term into the 

residual process does not materially enhance trading performance. This suggests that, once 

systematic risk exposures are controlled for, the idiosyncratic component of stock returns 

exhibits limited persistent momentum over the short horizons relevant to this strategy. 

 

6. Results 

To evaluate the effectiveness of the proposed strategy, we conducted a series of backtesting 

experiments using historical stock data. The central objective is to simulate daily trading across 

the entire stock universe based on the signal rules defined earlier (see Equation 27). Each trading 

day, we update model parameters—such as factor loadings (betas) and residuals—and compute 

trading signals, ensuring that all information used is strictly backward-looking and adheres to 

a rolling window framework. 

During parameter estimation, we retain only those stocks with sufficiently fast mean 

reversion. Specifically, the mean-reversion time scale is defined as 𝜏𝑖 = 1/𝜅𝑖 . If 𝜏𝑖  exceeds 

8.4 trading days (i.e., 𝜏𝑖 < 1/8.4), the stock is excluded from trading. This filtering ensures that 

only stocks with strong and rapid mean-reversion dynamics are eligible for the strategy. 

All trades are assumed to be executed at the day’s closing price. To account for trading 

frictions—including transaction costs and price slippage—we impose a round-trip cost of 30 

basis points per completed trade. In addition, we include a per-trade slippage parameter 𝜖 =

0.0005 (5 bps) in the portfolio update equation to capture incremental execution costs. 

Let 𝐸𝑡 denote the total portfolio equity at time 𝑡. The evolution of the portfolio equity over 

a single trading interval 𝛥𝑡 is given by: 

  𝐸𝑡+𝛥𝑡 = 𝐸𝑡 + 𝐸𝑡𝑟𝛥𝑡 + ∑ 𝑄𝑖𝑡𝑅𝑖𝑡
𝑁
𝑖=1 − (∑ 𝑄𝑖𝑡

𝑁
𝑖=1 )𝑟𝛥𝑡 + ∑

𝑄𝑖𝑡𝐷𝑖𝑡

𝑆𝑖𝑡

𝑁
𝑖=1 − ∑ |𝑄𝑖(𝑡+∆𝑡) − 𝑄𝑖𝑡|

𝑁
𝑖=1 𝜀⁡  (31) 
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Here, 

• 𝑄𝑖𝑡 = 𝐸𝑡𝛾𝑡 represents the capital allocated to stock 𝑖 at time 𝑡, 

• 𝑅𝑖𝑡 is the return of stock 𝑖 over (𝑡, 𝑡 + 𝛥𝑡), 

• 𝑟 is the risk-free interest rate, 

• 𝛥𝑡 = 1 252⁄  corresponds to one trading day in a year, 

• 𝐷𝑖𝑡 is the dividend paid by stock 𝑖 during the period, 

• 𝑆𝑖𝑡 is the stock price at time 𝑡, 

• 𝜀 = 0.0005 reflects the per-trade slippage. 

The allocation coefficient 𝛾𝑡  is a fixed proportion of portfolio equity, identical across 

stocks, and calibrated to maintain a target leverage. For instance, if we aim to hold 200 long and 

200 short positions with a gross leverage of 4 (i.e., 2× equity on the long side and 2× on the short 

side), we set 𝛾𝑡 = 2 200⁄ = 0.01. Thus, 𝛾𝑡 can be interpreted as the maximum fraction of equity 

allocated to any single stock. 

This leverage calibration, validated using data from 2002–2004, produces a portfolio with 

approximately 10% annualized volatility. Importantly, leverage choices do not affect risk-

adjusted metrics such as the Sharpe ratio. Comparable strategies—for example, the “1/2 + 1/2” 

contrarian portfolio of Khandani and Lo (2009)—yield similar Sharpe ratios once normalized for 

exposure. 

Given the binary nature of the trading signals, the strategy follows a so-called bang-bang 

(all-or-nothing) implementation. Specifically, when a signal is triggered, the model takes a full 

long or short position in the corresponding stock, and the position is fully closed when the exit 

condition is met. Although this binary approach may appear simplistic, empirical evidence 

suggests that it consistently outperforms gradual or fractional rebalancing schemes. The 

performance advantage arises from two factors. First, by avoiding frequent incremental trades, 

the strategy reduces sensitivity to estimation noise in the signals. Second, the lower turnover 

reduces cumulative transaction costs, including slippage and round-trip fees, thereby improving 

net performance. 

In summary, the simulation framework validates the practicality and robustness of the 

proposed mean-reversion strategy. The following sections provide a comprehensive empirical 
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evaluation across subsample periods and examine the comparative performance of different 

model specifications and residual extraction techniques. 

 

6.1 Synthetic Industry Indices as Factors 

To extend the back-testing period prior to the emergence of tradable sector ETFs, we 

constructed synthetic, capitalization-weighted sector indices to serve as risk factors in our 

statistical arbitrage model. The motivation was to allow for a direct comparison with the PCA-

based approach and to address the absence of certain sector ETFs, as some industries did not yet 

have corresponding tradable instruments. Each synthetic index aggregates the returns of 

constituent stocks within a given industry, weighted by market capitalization. 

Daily returns for these synthetic indices were computed directly from constituent stock 

returns, aggregated with capitalization weights. For parameter estimation, a rolling 60-day 

window preceding each estimation date was applied. Individual stock returns were then 

regressed on the returns of their respective sector indices, and the residuals from these 

regressions were modeled as OU processes. These residuals formed the basis for trading signals 

under the assumption of mean reversion. 

To achieve market neutrality, portfolio exposure was hedged daily using the CSI 300 ETF, 

an ETF tracking the CSI 300 index. This ensured that the portfolio maintained a near-zero beta 

with respect to the broader market, especially given that synthetic ETFs, unlike actual ETFs, are 

not tradable instruments. In line with the view that market inefficiencies are transient and mean-

reverting, we further centered each stock’s residual series by subtracting the cross-sectional 

average residual mean across the universe. This adjustment was found to reduce model bias and 

enhance strategy performance, consistent with findings by Avellaneda and Lee (2010). 

Table 4 reports the annual performance metrics of the synthetic ETF-based strategy from 

2005 through 2024. Over the full sample, the strategy exhibited a mean annual return of 9.00% 

with a standard deviation of 9.82%, yielding an overall Sharpe ratio of 0.92. Notably, the strategy 

performed strongly in several isolated years, such as 2009, 2015, and 2019, where annual Sharpe 

ratios exceeded 2.4, indicating favorable risk-adjusted returns. However, performance 

deteriorated in certain years—most evidently in 2017 and 2020—with negative Sharpe and 

Calmar ratios. 
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The strategy's robustness was further evaluated using various risk and distributional 

metrics. For example, in 2009, the Sortino ratio reached 4.70, and the Calmar ratio peaked at 

7.87, reflecting both limited drawdown and high returns. Additionally, the Conditional VaR 

(CvaR) at the 95% confidence level remained modest across most years, typically under 3%, 

indicating effective downside risk control. The Omega ratio, which captures the proportion of 

gains relative to losses, consistently exceeded 1.1 in strong-performing years and reached 

a maximum of 1.84 in 2019. 

Table 4. Annual performance metrics of the synthetic ETF-based statistical arbitrage strategy 

with trading costs included (2005–2024) 

Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.1694 0.2317 0.7312 1.5110 -0.1964 0.8627 0.7031 0.7031 0.0000 -0.0241 1.1714 

2006 0.1229 0.2499 0.4920 0.7823 -0.1631 0.7539 0.4811 0.4811 0.0000 -0.0288 1.1321 

2007 0.0442 0.1110 0.3984 0.5505 -0.1608 0.2750 0.3904 0.3904 0.0000 -0.0158 1.0711 

2008 0.1426 0.0887 1.6078 2.1284 -0.0577 2.4718 1.5885 1.5885 0.0000 -0.0124 1.3167 

2009 0.1885 0.0677 2.7821 4.7027 -0.0239 7.8738 2.7376 2.7376 0.3413 -0.0078 1.5838 

2010 0.0978 0.0675 1.4498 2.3811 -0.0405 2.4126 1.4207 1.4207 0.0000 -0.0082 1.2861 

2011 0.0467 0.0505 0.9243 1.3723 -0.0372 1.2554 0.9095 0.9095 0.0000 -0.0070 1.1718 

2012 0.1048 0.0446 2.3513 3.7359 -0.0190 5.5260 2.3089 2.3089 0.4876 -0.0057 1.4645 

2013 0.0233 0.0595 0.3927 0.6748 -0.0476 0.4901 0.3816 0.3816 0.0031 -0.0077 1.0658 

2014 0.0612 0.0465 1.3149 2.0348 -0.0272 2.2461 1.2965 1.2965 0.1470 -0.0060 1.2463 

2015 0.2273 0.0922 2.4643 4.2807 -0.0523 4.3459 2.4249 2.4249 0.0000 -0.0105 1.5266 

2016 0.1126 0.0454 2.4782 4.0652 -0.0201 5.6042 2.4386 2.4386 0.4631 -0.0055 1.4874 

2017 -0.0466 0.0529 -0.8804 -1.1969 -0.0570 -0.8163 -0.8664 -0.8664 0.0000 -0.0083 0.8628 

2018 0.0499 0.0527 0.9460 1.2858 -0.0624 0.7994 0.9290 0.9290 0.0000 -0.0073 1.1704 

2019 0.1785 0.0506 3.5270 6.2941 -0.0252 7.0835 3.4705 3.4705 0.0000 -0.0056 1.8424 

2020 -0.0124 0.0541 -0.2295 -0.3609 -0.0413 -0.3010 -0.2254 -0.2254 0.5567 -0.0071 0.9642 

2021 0.0252 0.0719 0.3505 0.6629 -0.0871 0.2893 0.3442 0.3442 0.0005 -0.0083 1.0580 

2022 0.1344 0.0531 2.5299 4.1298 -0.0304 4.4142 2.4792 2.4792 0.7352 -0.0066 1.5060 

2023 0.0374 0.0414 0.9044 1.5572 -0.0398 0.9408 0.8863 0.8863 0.1487 -0.0050 1.1559 

2024 0.0978 0.0833 1.1740 1.6487 -0.0464 2.1100 0.7965 0.7965 0.0000 -0.0119 1.2523 

All 0.0900 0.0982 0.9172 1.3689 -0.2088 0.4312 3.9706 3.9706 0.0000 -0.0119 1.2276 

Note: Performance includes a round-trip transaction cost of 30 basis points per trade. The final row (“All”) 

summarizes the full-period statistics. 

To validate the statistical significance of these returns, t-statistics and z-statistics were 

computed annually. Several years, including 2009, 2015, and 2019, showed t-statistics well 

above 2.0, supporting the rejection of the null hypothesis of zero mean return. Additionally, the 
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Jarque–Bera test was conducted to assess normality of returns, with p-values frequently 

indicating departures from Gaussianity, especially in years with extreme Sharpe ratios. 

Figure 8 shows the cumulative PNL of the synthetic ETF-based strategy from 2005 to 2024. 

The strategy demonstrates a consistent upward trend over the full sample period, with 

particularly strong growth phases observed between 2015–2016 and again from 2019 onward. 

These periods are characterized by sustained momentum and limited drawdowns, contributing 

significantly to the long-term profitability of the strategy. Short-term stagnations and minor 

drawdowns are visible in certain intervals, such as 2007–2008 and 2016–2017, reflecting 

occasional market environments where the mean-reversion signals generated from synthetic ETF 

residuals were less effective or temporarily misaligned with broader market movements. 

Figure 8. Historical PNL statistics for the strategy using synthetic ETFs as factors from 2005–

2024 

 

The strong performance post-2015 may be attributed to several factors. First, the improved 

signal quality due to more stable residual dynamics and faster mean reversion in low-volatility 

regimes enhances trade timing. Second, greater sector dispersion in certain years increases the 

relative-value opportunities that the strategy seeks to exploit. Third, tighter risk control, 

including SPY beta-neutral hedging and residual centering techniques, may have contributed to 

more robust downside protection and capital preservation. On the other hand, periods of 
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underperformance often coincide with compressed cross-sectional volatility or heightened 

market correlation, reducing the effectiveness of sector-based residual deviations as trading 

signals. These environments tend to obscure true mispricings and lead to weaker signal-to-noise 

ratios. 

In summary, while the synthetic ETF-based approach offers a viable proxy for risk factor 

modeling in the absence of historical ETF data, its performance varies considerably across 

market cycles. It is most effective during periods of heightened volatility or market dislocations, 

consistent with the underlying mean-reversion assumption. 

 

6.2 PCA as Factors 

PCA implementation, summarized in Table 5 and contrasted with the synthetic-ETF variant 

in Figure 9, displays a markedly different life-cycle of effectiveness. Across 2005–2024 it 

delivered a compound annual return of 8.33 percent with 8.83 percent volatility, yielding 

a slightly higher full-sample Sharpe ratio (0.94) yet a lower Calmar ratio (0.51) than the 

synthetic-ETF benchmark. The smaller peak-to-trough drawdown (–16.5 percent versus –20.9 

percent) suggests tighter downside containment, but the slower capital recovery implied by the 

Calmar figure indicates that large gains arrived in fewer, more concentrated bursts. 

During the first half-decade (2005–2010) the PCA strategy outpaced its synthetic 

counterpart by a wide margin. Annual Sharpe ratios climbed steadily from 1.02 in 2005 to an 

exceptional 3.70 in 2009, when fat-tailed sector dislocations pushed the Sortino ratio above 5.6 

and lifted the Calmar ratio past 8. The eigenportfolios extracted from rolling 60-day return 

matrices evidently captured latent common risks—growth versus value, liquidity, and leverage—

that broad industry baskets only imperfectly proxied before liquid sector ETFs became prevalent. 

High t-statistics (above 3.6 in 2009) and Omega ratios near 1.9 confirm that the gains were 

statistically robust and skewed toward favorable outcomes. 

Between 2011 and 2016 the two approaches converged as cross-sectional dispersion 

normalised after the post-crisis reset. Both models alternated quarters of out- and under-

performance. The PCA engine retained an edge in responsiveness—evident in quicker recoveries 

during 2015 and 2016—yet the synthetic indices produced consistently higher Sortino ratios and 

smoother equity curves, reflecting greater stability despite similar Sharpe profiles. This phase 
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illustrates the trade-off between adaptivity, which favors PCA, and the interpretability and 

robustness that capitalization-weighted sector indices provide under moderate-volatility regimes. 

From 2018 onward the synthetic-ETF strategy assumed clear leadership. The PCA variant 

registered two negative-Sharpe years (2019 and 2024) and failed to match the red-line ascent 

visible in Figure 9. Three structural shifts help explain the reversal. First, accelerated factor 

rotation—driven by retail flows, thematic trading and quantitative crowding—rendered rolling 

60-day covariance estimates noisy; resulting eigenvector “flip-flops” diluted the explanatory 

power of the fifteen retained PCs and increased turnover costs. Second, sector realignment—

owing to China’s supply-side reform, global ESG adoption and a surge in semiconductor and AI 

capital expenditure—heightened the relevance of well-defined industry clusters. Capitalization-

weighted synthetic indices adapted automatically, whereas the PCA basis struggled to anchor on 

a stable set of latent factors. Third, volatility regime shifts around the COVID-19 pandemic 

elevated the kurtosis of residuals; Jarque–Bera p-values collapsed toward zero in 2019, while 

results in 2024 suggested a temporary reversion toward Gaussianity, highlighting unstable tail 

behavior across regimes. 

Years of notable success for the PCA strategy, such as 2009, 2010, 2015, 2017 and 2018, 

share three features: t- and z-statistics often around or above 2.0, Omega ratios exceeding 1.3, 

and daily CvaR 95% contained below 1.5 percent of equity. Loss years—2012, 2019 and 2024—

display the mirror image: sub-unitary Sharpe ratios, negative Calmar figures and Omega below 

1.0, underscoring the sensitivity of eigenportfolios to correlation noise. 

Imposing eigenvector-stability constraints or applying shrinkage techniques such as 

Ledoit–Wolf or random-matrix filtering could curb factor turnover and reduce estimation error in 

later years. Allowing the number of retained components to fluctuate with an explained-variance 

threshold, rather than fixing it at fifteen, would align dimensionality with prevailing market 

complexity and lessen over-fitting. A regime-switching ensemble that blends PCA- and sector-

based residuals—weighted by real-time dispersion and correlation metrics—promises smoother 

performance across cycles of fragmentation and convergence, while embedding volatility-jump 

or higher-moment hedges could mitigate the fat-tail drag observed in 2019 and 2024. 

Taken together, the evidence implies that PCA factors excel when latent, non-industry 

commonalities dominate price behavior—such as the early post-crisis and style-rotation 
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phases—but underperform when investor attention re-anchors on clear-cut sector themes or when 

correlation regimes shift abruptly. Conversely, synthetic-industry indices prosper in 

environments of sector-specific dispersion and offer superior robustness at the cost of slower 

reaction speed. A carefully engineered hybrid framework, allowing market structure to determine 

whether adaptive or interpretable factors receive the risk budget, stands to capture the 

complementary advantages documented in Figure 9. 

Table 5. Annual performance of the strategy using 15 PCA-based factors (2005–2024), with 

trading costs included. 

Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.1551 0.1518 1.0219 1.4039 -0.1095 1.4163 0.9826 0.9826 0.0000 -0.0208 1.2368 

2006 0.0785 0.1068 0.7348 1.2215 -0.0750 1.0472 0.7186 0.7186 0.0000 -0.0131 1.1425 

2007 0.0573 0.1208 0.4739 0.6210 -0.1647 0.3477 0.4644 0.4644 0.0000 -0.0171 1.0812 

2008 0.1298 0.1157 1.1224 1.7345 -0.0594 2.1848 1.1090 1.1090 0.0001 -0.0149 1.2047 

2009 0.3522 0.0953 3.6977 5.6140 -0.0430 8.1951 3.6385 3.6385 0.0002 -0.0116 1.8761 

2010 0.1294 0.0756 1.7114 2.8199 -0.0452 2.8608 1.6771 1.6771 0.0013 -0.0094 1.3335 

2011 0.0262 0.0658 0.3979 0.6247 -0.0715 0.3662 0.3916 0.3916 0.1852 -0.0088 1.0679 

2012 -0.0085 0.0697 -0.1221 -0.1755 -0.0519 -0.1641 -0.1199 -0.1199 0.0000 -0.0101 0.9802 

2013 0.0260 0.0798 0.3256 0.5406 -0.0521 0.4986 0.3164 0.3164 0.9766 -0.0101 1.0531 

2014 0.0387 0.0632 0.6126 0.9188 -0.0526 0.7356 0.6040 0.6040 0.1428 -0.0083 1.1056 

2015 0.1701 0.1162 1.4630 2.3896 -0.0854 1.9918 1.4396 1.4396 0.0000 -0.0145 1.2921 

2016 0.0167 0.0668 0.2498 0.2981 -0.0700 0.2382 0.2458 0.2458 0.0000 -0.0106 1.0441 

2017 0.1236 0.0578 2.1374 3.7191 -0.0350 3.5313 2.1032 2.1032 0.9353 -0.0069 1.4046 

2018 0.1070 0.0652 1.6404 2.3339 -0.0464 2.3079 1.6109 1.6109 0.0000 -0.0092 1.3213 

2019 -0.0216 0.0711 -0.3033 -0.4132 -0.1096 -0.1968 -0.2984 -0.2984 0.0000 -0.0108 0.9501 

2020 0.0539 0.0842 0.6398 1.0735 -0.0508 1.0607 0.6282 0.6282 0.4600 -0.0108 1.1086 

2021 0.0916 0.0779 1.1769 2.0863 -0.0413 2.2179 1.1557 1.1557 0.5679 -0.0093 1.2024 

2022 0.0410 0.0792 0.5182 0.8431 -0.0530 0.7746 0.5078 0.5078 0.0010 -0.0100 1.0887 

2023 0.0777 0.0580 1.3407 2.1632 -0.0425 1.8275 1.3138 1.3138 0.6199 -0.0075 1.2371 

2024 -0.0441 0.0719 -0.6134 -0.9274 -0.0558 -0.7896 -0.4162 -0.4162 0.8901 -0.0097 0.9050 

All 0.0833 0.0883 0.9434 1.3736 -0.1647 0.5060 4.0840 4.0840 0.0000 -0.0120 1.1806 

 

Figure 9 presents a comparative view of the cumulative PnL between the synthetic ETF-based 

strategy and the PCA-based strategy using 15 eigenportfolios over the period 2005–2024. In the 

earlier years (2005–2010), the PCA-based strategy shows superior performance, suggesting that 

principal components extracted from stock returns captured latent common risk factors not fully 

represented by sector-based indices. Between 2010 and 2016, both strategies delivered broadly 

similar outcomes, with alternating phases of outperformance: the PCA approach displayed higher 
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responsiveness to short-term deviations, while the synthetic ETF strategy provided smoother and 

more stable return paths. 

From 2017 onward, the synthetic ETF strategy began to outperform more consistently. This shift 

likely reflects structural changes in market organization that reinforced the importance of sector-

based co-movements, making capitalization-weighted synthetic indices more reliable for residual 

estimation. By contrast, the PCA-based approach became more vulnerable to factor instability 

due to evolving correlation patterns and increased noise in rolling covariance estimates. 

Overall, the evidence suggests that the synthetic ETF strategy offers greater robustness in later 

years, whereas the PCA framework was better suited to earlier periods of fragmented market 

structure. The contrasting results underscore the complementary nature of the two approaches: 

PCA excels in detecting latent, non-industry risk drivers, while synthetic indices provide more 

stability when sector clustering dominates. 

Figure 9. Synthetic ETF-based strategy vs. PCA-based strategy 

 

Note: Cumulative PNL comparison between the synthetic ETF-based strategy and the PCA-based strategy with 15 

eigenportfolios (2005–2024). The PCA strategy outperforms in earlier years, while the synthetic ETF strategy 

delivers more stable and superior performance in recent periods. 
 

Figure 10 plots the temporal evolution of two variables: the proportion of variance 

explained by the top 15 principal components extracted from stock return cross-sections (left 

axis), and the annualized 252-day rolling volatility of the CSI300 Index (right axis), spanning the 
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period from 2006 to 2024. A clear co-movement emerges: episodes of elevated market 

volatility—such as the 2008 global financial crisis, the 2015 Chinese equity market correction, 

and the COVID-19 outbreak in 2020—are associated with a sharp rise in the fraction of variance 

captured by the leading eigenvectors. 

This relationship reflects a well-established phenomenon in empirical asset pricing: during 

turbulent markets, idiosyncratic risk declines in relative importance, while systematic shocks 

become more pervasive across assets. As correlations among securities strengthen, a smaller set 

of latent factors explains a larger share of total return variation. Conversely, in tranquil periods 

marked by low aggregate volatility, return dynamics are more dispersed and idiosyncratic, 

leading to a reduction in the explanatory power of the same set of principal components. 

These findings are consistent with the theoretical predictions of factor models under 

regime-switching volatility, and highlight the importance of adapting factor estimation 

methodologies to the prevailing market environment. 

Figure 10. Explained variance (top 15 principal components) & CSI300 rolling volatility 

Note: Percentage of variance explained by the top 15 principal components (left axis) and the annualized rolling 

volatility of the CSI300 Index (right axis) from 2005 to 2024. The explained variance tends to rise during periods of 

elevated market volatility, suggesting increased common factor dominance during market stress. 
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6.3 PCA with Fixed Explained Variance 

In this section, we evaluate the performance of a PCA-based strategy where the number of 

factors is chosen endogenously to explain a fixed proportion of return variance. Specifically, we 

retain the minimum number of principal components required to account for 55% of cross-

sectional variance at each rebalancing period. Unlike the fixed-15-PCs approach, this method 

allows factor dimensionality to adapt dynamically to changing market conditions. 

Table 6 summarizes the results. Over 2005–2024, the portfolio earned an annualized return 

of 6.3% at 12.7% volatility, producing a Sharpe ratio of 0.50—roughly half the risk-adjusted 

efficiency of the fixed-15-factor benchmark. A maximum drawdown of –23.7% in 2016 and 

a Calmar ratio of 0.27 highlight the fragility of this approach: although daily tail risk is modest 

(average CVaR95% of –1.7%), capital recovery after large losses is slow. 

Performance is highly regime-dependent. In environments where a few dominant factors 

overwhelm idiosyncratic noise—most notably the 2008 global financial crisis and the 2021–2022 

post-pandemic reopening—the adaptive model performs strongly. Its low dimensionality reduces 

estimation error, yielding Sharpe ratios above 1.2, Sortino ratios above 2.0, and Calmar values 

exceeding 3.5, indicating rapid recovery from shallow drawdowns. By contrast, in markets 

lacking clear directional themes but characterized by elevated, choppy volatility—such as 2016 

and, to a lesser extent, 2020—the model struggles. In these cases, discarding lower-rank factors 

omits economically meaningful structure, leading to underfitting and weak signal extraction. 

Sharpe ratios fall to around –1.5, drawdowns deepen, and Omega drops below 1.0. 

The full-sample statistics reflect a classic bias–variance trade-off. The 55% variance 

threshold curtails noise and turnover in turbulent regimes but sacrifices informational breadth in 

calmer periods, producing only half the profit per unit of risk relative to the 15-factor benchmark. 

Empirically, annual t- and z-statistics cluster near unity, while the Jarque–Bera test almost always 

rejects normality, indicating that residual payoffs remain fat-tailed even after dimension 

reduction. 

These results suggest two refinements. First, applying a volatility-conditioned threshold—

e.g., 55% during high-volatility regimes but 65–70% when volatility and correlations subside—

could preserve robustness while recapturing alpha in tranquil markets. Second, blending the 

adaptive model with a small overlay of fixed PCs would mitigate underfitting and deliver 
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smoother performance across the full dispersion cycle. Without such refinements, the 

endogenous 55% rule should be regarded as a defensive, low-beta complement rather than 

a stand-alone alpha engine. 

Table 6. Annual performance of the PCA-based strategy using a variable number of factors 

selected to explain 55% of total return variance (2005–2024), with trading costs included. 

Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.1346 0.1742 0.7726 0.9305 -0.1165 1.1549 0.7429 0.7429 0.0000 -0.0265 1.1737 

2006 0.0865 0.1012 0.8546 1.3465 -0.0783 1.1047 0.8357 0.8357 0.0000 -0.0133 1.1651 

2007 -0.0005 0.1391 -0.0035 -0.0046 -0.2204 -0.0022 -0.0034 -0.0034 0.0000 -0.0194 0.9994 

2008 0.4177 0.3109 1.3436 3.1614 -0.1170 3.5714 1.3275 1.3275 0.0000 -0.0278 1.3568 

2009 0.0458 0.1805 0.2535 0.3799 -0.1968 0.2326 0.2494 0.2494 0.3494 -0.0247 1.0425 

2010 0.1270 0.1081 1.1749 1.8498 -0.0762 1.6660 1.1514 1.1514 0.2686 -0.0143 1.2131 

2011 0.0641 0.0744 0.8614 1.3507 -0.0534 1.1989 0.8476 0.8476 0.0011 -0.0102 1.1507 

2012 0.0036 0.0893 0.0404 0.0552 -0.0547 0.0661 0.0397 0.0397 0.0000 -0.0134 1.0067 

2013 -0.0467 0.0921 -0.5072 -0.7703 -0.0735 -0.6359 -0.4929 -0.4929 0.4326 -0.0123 0.9218 

2014 0.0068 0.0614 0.1106 0.1600 -0.0498 0.1366 0.1091 0.1091 0.0077 -0.0088 1.0186 

2015 0.1550 0.1457 1.0640 1.4285 -0.1138 1.3625 1.0469 1.0469 0.0000 -0.0212 1.2056 

2016 -0.2074 0.1391 -1.4906 -1.6057 -0.2199 -0.9431 -1.4667 -1.4667 0.0000 -0.0257 0.7558 

2017 0.0865 0.0776 1.1146 1.8345 -0.0725 1.1926 1.0967 1.0967 0.0000 -0.0098 1.2089 

2018 0.0919 0.0699 1.3152 2.0743 -0.0455 2.0184 1.2915 1.2915 0.0000 -0.0094 1.2526 

2019 0.1112 0.1004 1.1070 1.6360 -0.1071 1.0379 1.0893 1.0893 0.0000 -0.0141 1.2061 

2020 -0.0246 0.0984 -0.2498 -0.4039 -0.0743 -0.3308 -0.2453 -0.2453 0.8391 -0.0130 0.9610 

2021 0.0843 0.0693 1.2159 2.2353 -0.0424 1.9877 1.1940 1.1940 0.5050 -0.0081 1.2125 

2022 0.0451 0.0671 0.6724 1.1195 -0.0463 0.9739 0.6589 0.6589 0.2969 -0.0084 1.1145 

2023 0.0133 0.0527 0.2528 0.4181 -0.0580 0.2294 0.2478 0.2478 0.9532 -0.0068 1.0407 

2024 0.0699 0.0731 0.9562 1.3678 -0.0336 2.0816 0.6487 0.6487 0.0000 -0.0101 1.1734 

All 0.0632 0.1268 0.4983 0.7213 -0.2368 0.2667 2.1572 2.1572 0.0000 -0.0173 1.1048 

 

Figure 11 contrasts the cumulative performance of two beta-hedged PCA mean-reversion 

strategies in China’s equity market from 2005 to 2024. The fixed-dimension model, which 

always retains the top 15 principal components, outperforms for most of the sample, particularly 

during post-2010 expansion phases and other periods of elevated market integration. By 
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including a broader set of systematic co-movements, this specification delivers smoother equity 

growth and superior risk-adjusted returns. 

In contrast, the adaptive specification retains only the minimum number of principal 

components required to explain 55 percent of cross-sectional variance. This defensive design 

reduces factor dimensionality in low-volatility regimes, thereby limiting noise but also 

discarding potentially relevant lower-rank factors. The resulting under-fitting dampens alpha 

generation, producing a visibly flatter equity curve. Moreover, because the effective number of 

factors changes over time, portfolio weights may become less stable when correlation structures 

rotate abruptly, which can in turn increase turnover and weaken performance persistence. 

These observations illustrate a classic bias–variance trade-off. The fixed 15-factor 

approach provides richer informational coverage and structural persistence, though at the cost of 

greater exposure to estimation error. The adaptive 55 percent method suppresses noise but 

sacrifices breadth, leaving it less effective in environments with high latent factor complexity. On 

balance, the informational advantages of the fixed-dimension approach outweigh its noise costs, 

yielding higher cumulative profitability and greater robustness over long horizons. 

Figure 11. Cumulative profit and loss (PNL) comparison between two PCA-based strategies  

Note: Cumulative profit and loss (PNL) comparison between two PCA-based strategies from 2005 to 2024. The first 

strategy selects a variable number of principal components to explain 55% of total variance (dashed red line), while 

the second uses a fixed set of 15 eigenportfolios (solid blue line). The fixed-factor approach demonstrates superior 

long-term performance, particularly during trending market regimes. 
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Figure 12 tracks, in tandem, the annualized 252-day volatility of the CSI 300 (grey bars, 

right axis) and the number of principal components required to explain 55 percent of cross-

sectional return variance (red line, left axis). A pronounced inverse co-movement emerges: when 

market turbulence intensifies, the dimensionality of the return space contracts. During the 2008 

global financial crisis, the 2015 margin-deleveraging episode, and the COVID-19 shock of early 

2020, volatility spiked above 35 percent while the factor count occasionally dropped below three 

PCs, indicating that a handful of dominant latent forces overwhelmed idiosyncratic variation. 

Conversely, in more tranquil regimes—such as 2012–2014 and again in 2021–2023—volatility 

subsided toward 10–15 percent and the model required a markedly larger basis, often exceeding 

fifteen components, to capture the same share of dispersion. This pattern reflects a more 

fragmented risk structure with weaker common components. 

Figure 12. Number of factors vs. CSI300 historical volatility (2005-2024) 

Note: Number of principal components required to explain 55% of return variance (red line) and CSI300 historical 

volatility (blue bars) from 2005 to 2024. The number of factors fluctuates significantly across market regimes, often 

increasing during volatile periods. 

These dynamics corroborate established evidence in empirical asset pricing: high-volatility 

regimes compress cross-sectional correlations around a few systemic shocks, whereas tranquil 

markets disperse risk across numerous micro-drivers. From a modeling standpoint, the chart 

underscores a key implication of this study: factor complexity is inherently state-dependent. 

Using a fixed factor set risks under-fitting in highly integrated markets and over-fitting in 

fragmented ones. An adaptive framework—defined by a variance-explained threshold such as the 
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55 percent rule—better aligns effective dimensionality with prevailing conditions, offering 

a more economical and context-sensitive basis for residual mean-reversion trading. 

 

6.4 Incorporating Trading Volume into Mean-Reversion Signals 

This section investigates the impact of trading volume on the informational efficiency and 

effectiveness of mean-reversion signals. Inspired by Avellaneda and Lee (2010), we adopt 

a trading-time–inspired framework in which raw returns are rescaled by contemporaneous 

trading activity, effectively transforming the signal space from uniform calendar time into 

a liquidity-adjusted measure of time. Formally, the adjusted return is defined as: 

𝑅𝑡
𝑎𝑑𝑗

=
𝑆𝑡+∆𝑡−𝑆𝑡

𝑆𝑡
⋅

⟨𝑉⟩

𝑉(𝑡+𝛥𝑡)−𝑉(𝑡)
= 𝑅𝑡 ⋅

⟨𝑉⟩

𝑉(𝑡+𝛥𝑡)−𝑉(𝑡)
⁡         (32) 

where 𝑅𝑡  is the conventional return over the interval 𝛥𝑡 , 𝑉(𝑡 + 𝛥𝑡) − 𝑉(𝑡) is the cumulative 

trading volume during the interval, and ⟨𝑉⟩ is the trailing average daily volume over a 10-day 

lookback window. 

This specification penalizes large returns that occur on unusually high volume and 

amplifies those arising on light volume. The intuition, consistent with market microstructure 

theory, is that price moves on heavy trading activity are more likely to reflect genuine 

information, while those on light activity are more likely to reflect transitory liquidity shocks or 

behavioral noise. Supporting evidence is provided by Chordia et al. (2005), who document that 

high-volume trades exhibit lower reversal probabilities and faster convergence to informational 

equilibrium. Similarly, Lee and Swaminathan (2000) find that reversals are statistically stronger 

following low-volume moves, suggesting conditional predictability tied to liquidity conditions. 

While the adjustment is motivated by theory, whether it systematically improves trading 

performance remains an empirical question. We apply this volume-rescaled framework to both 

PCA-based strategies—using a fixed set of 15 eigenportfolios—and synthetic ETF-based 

strategies constructed via sector-level return aggregation. Performance results are summarized in 

Table 7 and Table 8, respectively. 

For the PCA strategy, the full-sample annualized return increased to 6.57% with a Sharpe 

ratio of 0.64, indicating a modest improvement. However, the gains were episodic—concentrated 

in 2005–2006 and 2017–2019—and deteriorated sharply during stress periods such as 2020 and 
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2023. This pattern suggests that PCA-derived latent factors are prone to instability when 

subjected to volume-based normalization, particularly under regime shifts in market structure or 

trading behavior. This observation is consistent with Khandani and Lo (2009), who highlight the 

fragility of PCA-based statistical arbitrage during structural changes. Since PCA implicitly 

assumes a stationary covariance structure, reweighting through volume adjustments can 

exacerbate estimation noise or suppress economically meaningful signals. 

In contrast, the synthetic ETF-based strategy delivered more robust and consistent 

improvements under the volume-rescaled specification. The Sharpe ratio rose to 0.75, 

accompanied by gains in downside risk measures such as Sortino, Calmar, and Conditional VaR. 

Performance remained resilient across both tranquil and turbulent regimes—including 2009–

2010 and 2015–2019—indicating that the combination of sector-level economic exposure and 

liquidity-sensitive rescaling provides a more stable framework for signal generation. 

The contrasting outcomes between PCA- and ETF-based strategies can be attributed to 

how volume rescaling interacts with the underlying factor structure. In PCA models, the 

covariance matrix of returns is estimated under the implicit assumption of stationarity. Volume-

adjusted returns effectively reweight time periods, increasing the influence of episodes with 

unusually low trading activity while downweighting periods of heavy volume. This distortion 

can destabilize the estimated eigenvectors, particularly during regime shifts when correlation 

structures rotate abruptly, thereby amplifying estimation noise or suppressing economically 

meaningful factors. In other words, volume normalization in PCA can transform transitory 

liquidity effects into spurious common components, undermining the robustness of residual-

based signals. 

By contrast, synthetic ETF factors are constructed through sector-level aggregation, which 

inherently filters out idiosyncratic noise and yields economically interpretable exposures. 

Because these sector indices are tied to persistent economic structures, their covariance 

representation is less sensitive to short-term distortions introduced by trading-time adjustments. 

Volume rescaling thus acts more like a liquidity-aware filter—moderating signal intensity 

without destabilizing the underlying factor basis. The result is a structurally more stable 

improvement, as evidenced by the superior risk-adjusted performance in Table 8. 
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These findings echo the broader literature on liquidity and asset pricing. Pastor and 

Stambaugh (2003) show that liquidity risk is priced and significantly affects return dynamics, 

while Brunnermeier and Pedersen (2009) demonstrate that funding and market liquidity jointly 

determine arbitrage capacity under stress. In this context, our results suggest that ETF-based 

factors, by embedding sectoral economic structures, are more resilient to liquidity-sensitive 

transformations than purely statistical PCA factors. 

Overall, the evidence supports the view that trading volume contains relevant state 

information that can enhance the effectiveness of mean-reversion signals. While PCA-based 

models show conditional and fragile improvements, synthetic ETF strategies yield structurally 

robust gains, underscoring the importance of factor interpretability and model design in liquidity-

aware arbitrage. 

Table 7. Annual performance metrics of a mean-reversion strategy that employs 15 fixed 

principal components as factors. 

Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.3062 0.2458 1.2455 3.4887 -0.0874 3.5034 1.1976 1.1976 0.0000 -0.0164 1.4728 

2006 0.0776 0.2311 0.3356 0.8676 -0.0983 0.7892 0.3282 0.3282 0.0000 -0.0167 1.1118 

2007 -0.0378 0.1029 -0.3677 -0.5885 -0.1354 -0.2792 -0.3603 -0.3603 0.7366 -0.0133 0.9424 

2008 -0.0399 0.0944 -0.4225 -0.6763 -0.1428 -0.2794 -0.4174 -0.4174 0.7124 -0.0122 0.9339 

2009 0.2059 0.0802 2.5673 4.4410 -0.0506 4.0670 2.5262 2.5262 0.8472 -0.0097 1.5068 

2010 0.1414 0.0745 1.8983 3.0462 -0.0620 2.2816 1.8603 1.8603 0.7155 -0.0093 1.3557 

2011 0.0478 0.0635 0.7526 1.1808 -0.0638 0.7490 0.7405 0.7405 0.6916 -0.0082 1.1282 

2012 -0.0190 0.0559 -0.3400 -0.5445 -0.0536 -0.3548 -0.3338 -0.3338 0.2263 -0.0076 0.9473 

2013 0.0496 0.0703 0.7060 1.0454 -0.0386 1.2867 0.6861 0.6861 0.0078 -0.0094 1.1199 

2014 0.1136 0.0639 1.7784 2.9777 -0.0424 2.6790 1.7535 1.7535 0.9560 -0.0079 1.3276 

2015 0.0287 0.0991 0.2899 0.4159 -0.1006 0.2855 0.2853 0.2853 0.0268 -0.0144 1.0484 

2016 0.0276 0.0625 0.4420 0.6549 -0.0694 0.3980 0.4350 0.4350 0.0000 -0.0086 1.0767 

2017 0.1265 0.0528 2.3958 4.2086 -0.0613 2.0646 2.3575 2.3575 0.9775 -0.0061 1.4535 

2018 0.0864 0.0606 1.4260 2.0898 -0.0375 2.3013 1.4003 1.4003 0.0000 -0.0082 1.2563 

2019 0.0922 0.0602 1.5331 2.4750 -0.0405 2.2752 1.5085 1.5085 0.0001 -0.0076 1.2928 

2020 -0.0573 0.0725 -0.7906 -1.1273 -0.1232 -0.4649 -0.7763 -0.7763 0.0000 -0.0108 0.8755 

2021 0.0532 0.0670 0.7948 1.4178 -0.0452 1.1775 0.7805 0.7805 0.0595 -0.0078 1.1324 

2022 0.0563 0.0760 0.7414 1.1112 -0.0774 0.7273 0.7265 0.7265 0.0181 -0.0104 1.1291 

2023 0.0086 0.0544 0.1591 0.2430 -0.0666 0.1300 0.1559 0.1559 0.1222 -0.0076 1.0258 

2024 0.0434 0.0615 0.7056 1.2231 -0.0339 1.2806 0.4787 0.4787 0.8085 -0.0073 1.1191 

All 0.0657 0.1021 0.6433 1.2099 -0.2449 0.2681 2.7851 2.7851 0.0000 -0.0109 1.1491 
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Note: This table reports the annual performance metrics of a mean-reversion strategy that employs 15 fixed principal 

components as factors, with return signals adjusted according to the trading-time framework. The adjustment 

normalizes raw returns based on recent realized trading volume to account for liquidity conditions. Results are 

reported from 2005 through 2024, along with full-sample statistics in the last row. 

Table 8. Annualized performance statistics for a statistical arbitrage strategy based on synthetic 

capitalization-weighted sector indices. 

Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.4588 0.2274 2.0175 3.9493 -0.1435 3.1965 1.9400 1.9400 0.0000 -0.0239 1.5854 

2006 0.2669 0.2387 1.1181 2.5705 -0.1569 1.7005 1.0934 1.0934 0.0000 -0.0215 1.3249 

2007 -0.0249 0.1097 -0.2268 -0.3506 -0.1478 -0.1685 -0.2223 -0.2223 0.0002 -0.0152 0.9632 

2008 0.0868 0.0899 0.9656 1.4910 -0.0894 0.9711 0.9540 0.9540 0.0000 -0.0118 1.1773 

2009 0.1388 0.0689 2.0148 4.1313 -0.0427 3.2486 1.9825 1.9825 0.0000 -0.0070 1.4119 

2010 0.0918 0.0637 1.4424 2.4014 -0.0344 2.6659 1.4135 1.4135 0.0000 -0.0078 1.2877 

2011 -0.0004 0.0479 -0.0074 -0.0105 -0.0356 -0.0100 -0.0073 -0.0073 0.0000 -0.0071 0.9987 

2012 0.0168 0.0404 0.4158 0.6932 -0.0304 0.5519 0.4083 0.4083 0.0222 -0.0052 1.0706 

2013 0.0436 0.0566 0.7701 1.2416 -0.0583 0.7465 0.7484 0.7484 0.7542 -0.0074 1.1318 

2014 0.0271 0.0460 0.5891 1.0279 -0.0482 0.5616 0.5809 0.5809 0.8854 -0.0056 1.0966 

2015 0.1289 0.0915 1.4094 2.3052 -0.0644 2.0024 1.3868 1.3868 0.0000 -0.0117 1.2674 

2016 0.0422 0.0468 0.9014 1.2514 -0.0336 1.2563 0.8870 0.8870 0.0000 -0.0063 1.1611 

2017 -0.0124 0.0603 -0.2057 -0.2592 -0.0660 -0.1881 -0.2024 -0.2024 0.0000 -0.0096 0.9653 

2018 -0.0532 0.0526 -1.0130 -1.3033 -0.1038 -0.5131 -0.9947 -0.9947 0.0000 -0.0074 0.8407 

2019 0.1215 0.0579 2.0997 3.5563 -0.0331 3.6755 2.0661 2.0661 0.0000 -0.0071 1.4358 

2020 0.0059 0.0778 0.0752 0.0932 -0.1133 0.0517 0.0739 0.0739 0.0000 -0.0130 1.0137 

2021 0.0077 0.0648 0.1183 0.1997 -0.1025 0.0748 0.1162 0.1162 0.0608 -0.0081 1.0194 

2022 0.0600 0.0529 1.1332 1.9839 -0.0327 1.8362 1.1105 1.1105 0.6662 -0.0064 1.1973 

2023 0.0048 0.0397 0.1216 0.1986 -0.0489 0.0985 0.1191 0.1191 0.0003 -0.0050 1.0199 

2024 0.0502 0.0812 0.6180 0.7359 -0.0829 0.6057 0.4193 0.4193 0.0000 -0.0133 1.1216 

All 0.0728 0.0969 0.7510 1.2504 -0.2598 0.2802 3.2513 3.2513 0.0000 -0.0115 1.1814 

Note: This table presents annualized performance statistics for a statistical arbitrage strategy based on synthetic 

capitalization-weighted sector indices, incorporating volume-adjusted return signals. The strategy applies the 

trading-time framework to modulate signal strength based on trading intensity, with volume adjustments computed 

over a 10-day lookback window. The evaluation spans the period from 2005 to 2024, with aggregate results 

presented in the final row. 

Figure 13 contrasts the cumulative PnL of the 15-factor PCA strategy measured in calendar time 

with its trading-time counterpart, where returns are inversely scaled by contemporaneous volume. 

While both specifications remain profitable over 2005–2024, the volume-adjusted variant 

consistently underperforms, with the performance gap widening notably after 2015. This pattern 

indicates that, for latent-factor portfolios, inverse-volume scaling tends to attenuate rather than 

amplify the mean-reversion signal. 
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Figure 13. Comparison of cumulative PNL for PCA-based strategies  

 

Note: Comparison of cumulative PNL for PCA-based strategies using 15 fixed principal components under trading-

time and actual-time frameworks. The trading-time approach adjusts returns based on recent volume activity to 

account for liquidity conditions. While both approaches exhibit mean-reversion profitability over time, the actual-

time strategy consistently outperforms its volume-adjusted counterpart from 2005 to 2024. 

Two mechanisms likely drive this shortfall. First, attenuation of contrarian signals. PCA 

eigenportfolios already capture dominant covariance modes, leaving residuals that are smoothed 

and cross-sectionally diversified. Penalizing high-volume moves further dampens these residuals, 

thereby suppressing otherwise tradable reversals. Second, a timescale mismatch. Both theoretical 

and empirical studies in market microstructure (Lo and Wang, 2000; Hasbrouck, 2009) indicate 

that volume clocks are effective at isolating single-stock liquidity shocks over intraday horizons. 

In contrast, factor-based statistical arbitrage typically operates on multi-day to multi-week 

horizons; applying an intraday-motivated filter at such coarser frequencies risks injecting noise 

rather than enhancing informational efficiency. 

Empirically, the calendar-time strategy’s robustness aligns with prior evidence that PCA-

derived contrarian signals profit from structural persistence (Gatev et al., 2006; Avellaneda and 

Lee, 2010). Volume normalization disrupts that persistence, especially in the post-2015 regime 

when turnover accelerates and eigenvector stability deteriorates. Hence, while trading-time 

formulations may benefit liquidity-sensitive, single-asset trades, traditional return measures 

remain superior for principal-component statistical arbitrage, preserving both signal strength and 
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capital-allocation efficiency. This finding echoes the broader liquidity-risk literature: Pastor and 

Stambaugh (2003) show that returns are predictably shaped by market-wide liquidity fluctuations, 

while Brunnermeier and Pedersen (2009) demonstrate that funding and market liquidity interact 

to destabilize strategies under stress. In this light, volume-scaling of PCA factors may 

inadvertently embed liquidity spirals rather than extract persistent arbitrage signals. 

Figure 14 plots cumulative PnL in trading time for two volume-adjusted mean-reversion 

portfolios: a sector-based synthetic-ETF strategy (solid blue) and a 15-factor PCA strategy 

(dashed red). Both strategies generate positive cumulative returns over the 2005–2024 sample 

period. However, three salient features highlight the superior performance of the ETF-based 

model. 

Figure 14. Cumulative profit-and-loss (PNL) of two statistical arbitrage strategies  

 

Note: This figure compares the cumulative profit-and-loss (PNL) of two statistical arbitrage strategies implemented 

under the trading-time framework: one using synthetic ETF-based factors and the other using 15 principal 

components (PCA). The ETF strategy exhibits superior performance, demonstrating a more consistent and higher 

cumulative return across the sample period. The results suggest that incorporating trading volume through trading-

time adjustments enhances signal reliability, particularly for ETF-based strategies. 

First, from the first volatility spike in 2006, the ETF curve rises more steeply and maintains 

a persistent lead. Even during the 2010–2014 plateau—when both strategies move largely 

sideways—the ETF portfolio stabilizes at a higher base level, sustaining a 0.4–0.6 PnL multiple 
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over its PCA counterpart. A renewed acceleration after 2017 further widens the gap, reaching 

nearly one unit of cumulative PnL by 2024. 

Second, the ETF strategy exhibits shallower drawdowns. Major setbacks in 2008, 2011–

2012, and early 2020 are visibly milder for the ETF strategy, which also recovers to new highs 

more quickly than the PCA portfolio. This resilience is consistent with Table 8, where the ETF 

model demonstrates superior risk-adjusted performance, including lower Conditional VaR and 

higher Sortino ratios during stress episodes. 

Third, the ETF strategy demonstrates greater robustness to volume scaling. Because 

synthetic ETFs aggregate capitalization-weighted sector flows, their signals remain anchored to 

macroeconomic themes even after inverse-volume rescaling. In contrast, PCA eigenportfolios 

hinge on residual cross-sectional noise; scaling by volume dampens those already fragile 

reversals, flattening the red curve—especially evident in the post-2015 divergence. 

Taken together, Figure 14 reinforces the liquidity-compatibility thesis advanced by Lo and 

Wang (2000) and Chordia et al. (2005): volume clocks enhance strategies whose factors 

correspond to stable, economically interpretable risks, but offer little benefit—and may even be 

detrimental—when applied to statistically extracted, correlation-sensitive portfolios such as PCA 

eigenvectors. 

 

6.5 Extreme Periods Comparison and Analysis 

To evaluate the robustness of statistical arbitrage across heterogeneous market 

environments, we examine three structurally distinct regimes: the Global Financial Crisis (GFC, 

2007–2008), the Chinese Bull Market (BNB, 2014–2016), and the COVID-19 pandemic (2020–

2022). These regimes capture, respectively, systemic risk, directional momentum, and heightened 

macroeconomic uncertainty. Table 9 and 10 report the annualized performance of PCA-based 

and synthetic ETF-based strategies across these regimes. Our objective is to assess not only the 

relative effectiveness of the two approaches but also the extent to which market conditions shape 

the performance of mean-reversion strategies. 

During the GFC, both models delivered comparable returns with limited drawdowns, 

underscoring their resilience in periods of systemic distress. The PCA strategy generated 

an average return of 9.39% with a Sharpe ratio of 0.79, while the ETF-based strategy produced 
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a nearly identical return of 9.38% but slightly stronger risk-adjusted outcomes (Sharpe 0.94, 

Calmar 0.58). These results indicate that both residual-based and sector-anchored signals remain 

effective in crisis conditions, consistent with prior findings (Gatev et al., 2006; Avellaneda and 

Lee, 2010) that arbitrage opportunities tend to persist longer when market dislocations are severe. 

By contrast, the BNB regime provided a particularly favorable environment for sector-

based arbitrage. The ETF strategy achieved markedly stronger performance across all 

dimensions, with an average annual return of 13.36%, a Sharpe ratio of 2.05, and a Calmar ratio 

of 2.55. The PCA approach, while profitable (Mean 7.51%), was substantially less efficient, 

recording a Sharpe of 0.88 and Calmar of 0.77. This divergence highlights the ETF strategy’s 

ability to capture macro-driven sector rotation and persistent trending behaviors, effects 

amplified in sustained bull markets. These findings align with Kelly et al. (2020), who document 

the effectiveness of sector tilts in high-dispersion environments. 

The COVID-19 pandemic presents a different performance landscape. Although both 

strategies remained profitable, with mean returns of 6.22% (PCA) and 4.89% (ETF), the PCA 

strategy displayed stronger downside protection. Its Sharpe ratio (0.77) was statistically 

indistinguishable from that of the ETF strategy (0.81), yet the PCA portfolio experienced 

shallower drawdowns, more stable CVaR profiles, and a higher Omega ratio. These results 

suggest that residual-based methods were more adaptive to the heightened volatility and rapid 

regime shifts of the pandemic, as they dynamically captured evolving cross-sectional  

co-movements without reliance on fixed sectoral structures. 

Beyond macro-level interpretations, microstructure dynamics help explain why regime 

conditions magnify the divergence between PCA- and ETF-based approaches. During systemic 

crises such as the GFC, market-wide deleveraging and liquidity freezes amplify cross-sectional 

co-movements, making residual-based signals more persistent and thereby sustaining PCA-

driven arbitrage. In contrast, in momentum-driven expansions such as the BNB, heightened retail 

participation and sectoral capital inflows reinforce capitalization-weighted sector rotations, 

which naturally align with ETF-based factors. Under the COVID regime, characterized by abrupt 

volatility spikes and rapid state shifts, PCA’s model-free structure adapts more readily to 

evolving correlation matrices, whereas sector-anchored ETFs lag in adjusting to transient shocks. 

This microstructural lens clarifies how liquidity provision, trading volume composition, and the 
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speed of correlation adjustment interact with strategy design to shape relative performance across 

regimes. 

Taken together, the evidence demonstrates that the relative merits of PCA- and ETF-based 

statistical arbitrage are regime-dependent. The ETF approach is more effective in expansionary, 

trend-dominated markets such as the BNB period, whereas the PCA framework provides 

superior robustness in turbulent or uncertain environments such as the GFC and COVID-19. This 

divergence underscores that statistical arbitrage is not universally optimal but contingent on the 

interplay between model design and prevailing macroeconomic conditions. From a practical 

perspective, these findings highlight the potential benefits of dynamic model selection or 

ensemble frameworks that condition arbitrage execution on regime-specific state variables, 

thereby enhancing out-of-sample robustness and portfolio resilience. 

Table 9. Annualized performance metrics of the PCA-based statistical arbitrage strategy across 

eight distinct macroeconomic regimes. 

Period 

(Mean) 
Mean 

Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.1551 0.1518 1.0219 1.4039 -0.1095 1.4163 0.9826 0.9826 0.0000 -0.0208 1.2368 

2006 0.0785 0.1068 0.7348 1.2215 -0.0750 1.0472 0.7186 0.7186 0.0000 -0.0131 1.1425 

Pre F.C. 0.1164 0.1309 0.8893 1.2874 -0.1095 1.0629 1.2184 0.0000 0.0000 -0.0170 1.1930 

2007 0.0573 0.1208 0.4739 0.6210 -0.1647 0.3477 0.4644 0.4644 0.0000 -0.0171 1.0812 

2008 0.1298 0.1157 1.1224 1.7345 -0.0594 2.1848 1.1090 1.1090 0.0001 -0.0149 1.2047 

In F.C. 0.0939 0.1182 0.7942 1.1193 -0.1647 0.5699 1.1053 0.0000 0.0000 -0.0162 1.1402 

2009 0.3522 0.0953 3.6977 5.6140 -0.0430 8.1951 3.6385 3.6385 0.0002 -0.0116 1.8761 

2010 0.1294 0.0756 1.7114 2.8199 -0.0452 2.8608 1.6771 1.6771 0.0013 -0.0094 1.3335 

Post F.C. 0.2413 0.0862 2.7979 4.4260 -0.0452 5.3349 3.8856 0.0000 0.0000 -0.0106 1.6107 

2011 0.0262 0.0658 0.3979 0.6247 -0.0715 0.3662 0.3916 0.3916 0.1852 -0.0088 1.0679 

2012 -0.0085 0.0697 -0.1221 -0.1755 -0.0519 -0.1641 -0.1199 -0.1199 0.0000 -0.0101 0.9802 

2013 0.0260 0.0798 0.3256 0.5406 -0.0521 0.4986 0.3164 0.3164 0.9766 -0.0101 1.0531 

Pre B.N.B. 0.0145 0.0719 0.2017 0.3120 -0.1016 0.1426 0.3421 0.0000 0.0030 -0.0098 1.0334 

2014 0.0387 0.0632 0.6126 0.9188 -0.0526 0.7356 0.6040 0.6040 0.1428 -0.0083 1.1056 

2015 0.1701 0.1162 1.4630 2.3896 -0.0854 1.9918 1.4396 1.4396 0.0000 -0.0145 1.2921 

2016 0.0167 0.0668 0.2498 0.2981 -0.0700 0.2382 0.2458 0.2458 0.0000 -0.0106 1.0441 

In B.N.B. 0.0751 0.0855 0.8781 1.2734 -0.0971 0.7733 1.4976 0.0000 0.0000 -0.0119 1.1699 

2017 0.1236 0.0578 2.1374 3.7191 -0.0350 3.5313 2.1032 2.1032 0.9353 -0.0069 1.4046 

2018 0.1070 0.0652 1.6404 2.3339 -0.0464 2.3079 1.6109 1.6109 0.0000 -0.0092 1.3213 

2019 -0.0216 0.0711 -0.3033 -0.4132 -0.1096 -0.1968 -0.2984 -0.2984 0.0000 -0.0108 0.9501 

Pre Covid 0.0696 0.0650 1.0714 1.5520 -0.1096 0.6355 1.8248 0.0000 0.0000 -0.0093 1.1950 

2020 0.0539 0.0842 0.6398 1.0735 -0.0508 1.0607 0.6282 0.6282 0.4600 -0.0108 1.1086 
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Period 

(Mean) 
Mean 

Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2021 0.0916 0.0779 1.1769 2.0863 -0.0413 2.2179 1.1557 1.1557 0.5679 -0.0093 1.2024 

2022 0.0410 0.0792 0.5182 0.8431 -0.0530 0.7746 0.5078 0.5078 0.0010 -0.0100 1.0887 

In Covid 0.0622 0.0804 0.7741 1.3077 -0.0592 1.0503 1.3157 0.0000 0.0432 -0.0102 1.1322 

2023 0.0777 0.0580 1.3407 2.1632 -0.0425 1.8275 1.3138 1.3138 0.6199 -0.0075 1.2371 

2024 -0.0441 0.0719 -0.6134 -0.9274 -0.0558 -0.7896 -0.4162 -0.4162 0.8901 -0.0097 0.9050 

Post Covid 0.0382 0.0628 0.6089 0.9404 -0.0558 0.6850 0.7258 0.0000 0.2863 -0.0085 1.1028 

All 0.0833 0.0883 0.9434 1.3736 -0.1647 0.5060 4.0840 4.0840 0.0000 -0.0120 1.1806 

Note: This table summarizes the annualized performance metrics of the PCA-based statistical arbitrage strategy 

across eight distinct macroeconomic regimes, including the Global Financial Crisis (2007–2008), the Chinese Bull 

Market (2014–2016), and the COVID-19 pandemic (2020–2022). Regime averages are computed across the relevant 

subperiods to facilitate macro-level performance attribution. 

Table 10. Annual and regime-level performance of the Synthetic ETF-based strategy using 

capitalization-weighted sector indices as factors. 

Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2005 0.1694 0.2317 0.7312 1.5110 -0.1964 0.8627 0.7031 0.7031 0.0000 -0.0241 1.1714 

2006 0.1229 0.2499 0.4920 0.7823 -0.1631 0.7539 0.4811 0.4811 0.0000 -0.0288 1.1321 

Pre F.C. 0.1461 0.2411 0.6059 1.0749 -0.1964 0.7439 0.8301 0.0000 0.0000 -0.0270 1.1520 

2007 0.0442 0.1110 0.3984 0.5505 -0.1608 0.2750 0.3904 0.3904 0.0000 -0.0158 1.0711 

2008 0.1426 0.0887 1.6078 2.1284 -0.0577 2.4718 1.5885 1.5885 0.0000 -0.0124 1.3167 

In F.C. 0.0938 0.1003 0.9351 1.2584 -0.1608 0.5834 1.3013 0.0000 0.0000 -0.0145 1.1752 

2009 0.1885 0.0677 2.7821 4.7027 -0.0239 7.8738 2.7376 2.7376 0.3413 -0.0078 1.5838 

2010 0.0978 0.0675 1.4498 2.3811 -0.0405 2.4126 1.4207 1.4207 0.0000 -0.0082 1.2861 

Post F.C. 0.1433 0.0676 2.1204 3.5393 -0.0405 3.5356 2.9446 0.0000 0.0000 -0.0081 1.4313 

2011 0.0467 0.0505 0.9243 1.3723 -0.0372 1.2554 0.9095 0.9095 0.0000 -0.0070 1.1718 

2012 0.1048 0.0446 2.3513 3.7359 -0.0190 5.5260 2.3089 2.3089 0.4876 -0.0057 1.4645 

2013 0.0233 0.0595 0.3927 0.6748 -0.0476 0.4901 0.3816 0.3816 0.0031 -0.0077 1.0658 

Pre B.N.B. 0.0585 0.0518 1.1296 1.7854 -0.0476 1.2283 1.9160 0.0000 0.0000 -0.0069 1.2063 

2014 0.0612 0.0465 1.3149 2.0348 -0.0272 2.2461 1.2965 1.2965 0.1470 -0.0060 1.2463 

2015 0.2273 0.0922 2.4643 4.2807 -0.0523 4.3459 2.4249 2.4249 0.0000 -0.0105 1.5266 

2016 0.1126 0.0454 2.4782 4.0652 -0.0201 5.6042 2.4386 2.4386 0.4631 -0.0055 1.4874 

In B.N.B. 0.1336 0.0652 2.0492 3.2296 -0.0523 2.5544 3.4949 0.0000 0.0000 -0.0082 1.4400 

2017 -0.0466 0.0529 -0.8804 -1.1969 -0.0570 -0.8163 -0.8664 -0.8664 0.0000 -0.0083 0.8628 
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Year Mean 
Std. 

Dev. 
Sharpe Sortino 

Max 

Drawdown 
Calmar t-stat z-stat 

JB test 

(p-

value) 

CVaR 

(95%) 
Omega 

2018 0.0499 0.0527 0.9460 1.2858 -0.0624 0.7994 0.9290 0.9290 0.0000 -0.0073 1.1704 

2019 0.1785 0.0506 3.5270 6.2941 -0.0252 7.0835 3.4705 3.4705 0.0000 -0.0056 1.8424 

Pre Covid 0.0606 0.0523 1.1585 1.6738 -0.0867 0.6990 1.9731 0.0000 0.0000 -0.0073 1.2156 

2020 -0.0124 0.0541 -0.2295 -0.3609 -0.0413 -0.3010 -0.2254 -0.2254 0.5567 -0.0071 0.9642 

2021 0.0252 0.0719 0.3505 0.6629 -0.0871 0.2893 0.3442 0.3442 0.0005 -0.0083 1.0580 

2022 0.1344 0.0531 2.5299 4.1298 -0.0304 4.4142 2.4792 2.4792 0.7352 -0.0066 1.5060 

In Covid 0.0489 0.0604 0.8104 1.3781 -0.0871 0.5619 1.3775 0.0000 0.0000 -0.0075 1.1401 

2023 0.0374 0.0414 0.9044 1.5572 -0.0398 0.9408 0.8863 0.8863 0.1487 -0.0050 1.1559 

2024 0.0978 0.0833 1.1740 1.6487 -0.0464 2.1100 0.7965 0.7965 0.0000 -0.0119 1.2523 

Post Covid 0.0570 0.0583 0.9781 1.4396 -0.0519 1.0982 1.1658 0.0000 0.0000 -0.0077 1.1980 

All 0.0900 0.0982 0.9172 1.3689 -0.2088 0.4312 3.9706 3.9706 0.0000 -0.0119 1.2276 

Note: This table reports the annual and regime-level performance of the Synthetic ETF-based strategy using 

capitalization-weighted sector indices as factors. The strategy is evaluated over the same macroeconomic regimes as 

in Table 9, covering the pre-, during-, and post-periods of major market dislocations such as the GFC, BNB rally, 

and COVID-19 shock. Performance metrics mirror those in Table 9, allowing for direct comparison between 

structurally-defined and statistically-derived mean-reversion signals under varying market conditions. 

 

7. Sensitivity Analysis 

In the preceding chapters, we constructed and evaluated market-neutral statistical arbitrage 

strategies based on PCA and grounded in the principles of pairs trading. While the empirical 

evidence confirms the effectiveness of PCA-based factor models in identifying mean-reversion 

opportunities, it is well recognized that the performance of such strategies is highly sensitive to 

modeling choices and parameter specifications. In practice, factors such as the number of 

retained principal components, the variance threshold for dimensionality reduction, the entry and 

exit thresholds for signal generation, and the length of the rolling estimation window can 

materially affect both return and risk characteristics. 

To systematically assess how these design choices influence strategy outcomes, this 

chapter conducts a series of sensitivity analyses. The objective is to evaluate robustness across 

a range of plausible parameter configurations and to identify settings that deliver a balanced 

trade-off between profitability, risk management, and stability. 
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Section 7.1 examines the impact of varying the number of principal components. By 

comparing strategies that retain 3, 5, and 10 components, we evaluate their effects on cumulative 

returns, volatility, and drawdowns. This analysis addresses whether a parsimonious factor 

structure is sufficient to capture mean-reversion opportunities, or whether higher-dimensional 

representations contribute additional alpha. 

Section 7.2 shifts the focus to cumulative variance explained. Using thresholds of 50%, 

60%, and 70%, we investigate the trade-off between parsimony and explanatory power, and 

assess which thresholds yield more robust and profitable strategies. 

Section 7.3 explores the role of the signal threshold in trade initiation. As this parameter 

governs the model’s sensitivity to deviations in residuals, it directly influences trading frequency, 

portfolio turnover, and the distribution of returns. By comparing conservative versus aggressive 

thresholds, we evaluate their implications for strategy dynamics and risk-adjusted performance 

across different market environments. 

Finally, Section 7.4 considers the length of the rolling estimation window used in PCA. We 

contrast shorter versus longer historical windows to assess how responsiveness and stability 

interact in shaping the model’s adaptability to changing market conditions. This provides insights 

into the trade-off between timely signal detection and resilience against noise. 

Collectively, these sensitivity tests deepen our understanding of the structural dependencies 

embedded within PCA-based statistical arbitrage models. They provide practical guidance for 

parameter tuning in live trading environments and demonstrate how seemingly minor modeling 

choices can materially alter returns, risk exposures, and capital efficiency. Importantly, this 

analysis highlights that sensitivity to design choices directly conditions the out-of-sample 

robustness of mean-reversion portfolios, thereby bridging the gap between theoretical model 

design and real-world implementation. 

 

7.1 Impact of PCA Factor Dimensionality on Strategy Performance 

Table 11 reports the annualized performance metrics for PCA-based strategies using 

different numbers of retained components, ranging from 5 to 45, as risk factors. Several clear 

patterns emerge from the empirical results, consistent with prior findings on factor 
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dimensionality in statistical arbitrage (Laloux et al., 2000; Avellaneda and Lee, 2010). We 

highlight the most salient observations below. 

First, the relationship between the number of components and average annualized returns is 

distinctly non-monotonic (Figure 15 and 16, see also Figure 10). Average returns rise from 7.9% 

with 5 components to a peak of 9.9% at 10 components, before steadily declining to just 1.6% 

with 45 components. This suggests the existence of an optimal factor dimensionality: a limited 

number of components can effectively capture dominant market- and sector-level co-movements, 

yielding statistically robust residual signals for mean-reversion trading. Beyond this point, 

however, the inclusion of additional components introduces high-frequency noise, erodes alpha, 

and increases the risk of overfitting (Laloux et al., 2000), thereby undermining the robustness of 

out-of-sample performance. 

Figure 15. Cumulative PNL of PCA Strategies with Varying Components 

 

Note: This figure shows the cumulative performance of PCA-based strategies using 5 to 45 components. Strategies 

with 10–15 components achieve the highest returns, while those with more components exhibit weaker performance, 

suggesting diminishing marginal benefits from adding factors. 

The Sharpe ratios and t-statistics display similar non-monotonic patterns. The Sharpe ratio 

peaks at 0.94 when using 15 components, while the corresponding t-statistics are highest around 

10 to 15 components (2.93 and 4.08, respectively). These results indicate that mid-range 

dimensionality delivers the most favorable balance between return and statistical confidence. 
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Beyond this range, the statistical significance of returns weakens, with t-values approaching 

insignificance once more than 35 components are included. 

From a risk perspective, volatility—as measured by standard deviation—declines as 

additional components are added, reaching its lowest value (0.0576) with 45 components. Tail 

risk, reflected in VaR and CVaR, also improves under higher-dimensional specifications. 

However, these risk reductions come at the cost of markedly lower returns and Sharpe ratios, 

implying that the decline in profitability outweighs the benefits of reduced volatility. 

Consequently, the overall risk-adjusted efficiency deteriorates, limiting the practical usefulness 

of excessively high-dimensional PCA models. 

Figure 16. Cumulative Explained Variance of PCA Factors vs. CSI300 Volatility (2005–2024) 

 

Note: This figure compares the cumulative explained variance of PCA models using different numbers of 

components (ranging from 5 to 45) with the rolling annualized volatility of the CSI300 index. The left y-axis 

represents the proportion of total variance explained by the first n principal components, where darker lines 

correspond to smaller component counts. The right y-axis shows the 252-day rolling volatility of the CSI300 as a 

proxy for market stress. The visualization reveals that during periods of heightened volatility—such as the 2008 

financial crisis, the 2015 market crash, and the COVID-19 outbreak—more components are required to achieve the 

same level of explanatory power, indicating increased noise and dispersion in the underlying return structure. 

Drawdown-related metrics provide additional evidence of the return–risk trade-off 

associated with PCA dimensionality. While the maximum drawdown decreases as more 

components are included, the accompanying decline in returns causes the Calmar ratio to 
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deteriorate, falling to just 0.12 at 45 components. By contrast, the 15-component strategy 

achieves a much more favorable profile, with a Calmar ratio of 0.51, reflecting a superior 

balance between return and drawdown risk. These findings are consistent with Avellaneda and 

Lee (2010), who argue that PCA-based mean-reversion strategies perform best when anchored to 

a small set of dominant components rather than the full eigenspectrum. 

From an economic perspective, this pattern highlights the dangers of over-expanding the 

factor set. The earliest principal components capture systematic co-movements linked to market, 

sector, and style effects—precisely the structures that residual-based trading strategies are 

designed to exploit. Adding too many components, however, leads the model to explain 

idiosyncratic variation or even spurious noise, thereby weakening the quality of residuals and 

diminishing mean-reversion opportunities. Similar findings of diminishing benefits from higher-

order principal components are reported in Connor and Korajczyk (1988) for asset pricing 

factors, further supporting the view that only the dominant components contain economically 

meaningful information. 

The results carry several practical implications. First, they demonstrate that retaining 

approximately 10 to 15 components provides the most effective trade-off between explanatory 

power and signal degradation. Second, the optimal dimensionality is likely regime-dependent, 

implying that adaptive or dynamic PCA approaches could enhance robustness across 

heterogeneous market environments. Third, strategies with fewer retained components are 

computationally more efficient, which is especially advantageous in high-frequency or large-

scale portfolio applications. 

In sum, PCA dimensionality emerges as a key determinant of statistical arbitrage 

performance. Too few components risk underfitting by failing to capture dominant structures, 

while too many introduce noise that erodes statistical and economic significance. A moderate 

number of components—typically between 10 and 15—achieves the most favorable balance 

between risk and return, offering both theoretical justification and practical guidance for model 

design. 

 

 



58 
 

Sun, Y. / WORKING PAPERS 21/2025 (484) 

Table 11. Performance Metrics under Different Numbers of PCA Components. 
Components 5 10 15 20 25 30 35 40 45 

Mean 0.0791 0.0992 0.0833 0.0432 0.0562 0.0291 0.0160 0.0176 0.0160 

t-stat 2.5586 2.9289 4.0844 2.3583 3.0457 1.9289 1.0782 1.2977 1.1992 

Std. Dev. 0.1338 0.1466 0.0883 0.0793 0.0799 0.0654 0.0640 0.0588 0.0576 

Sharpe 0.5911 0.6766 0.9436 0.5448 0.7036 0.4456 0.2491 0.2998 0.2770 

z-stat 2.5586 2.9289 4.0844 2.3583 3.0457 1.9289 1.0782 1.2977 1.1992 

VaR (95%) -0.0125 -0.0095 -0.0083 -0.0074 -0.0068 -0.0063 -0.0062 -0.0058 -0.0055 

CVaR 

(95%) 

-0.0190 -0.0146 -0.0120 -0.0114 -0.0099 -0.0093 -0.0089 -0.0083 -0.0078 

Omega 1.1146 1.1769 1.1806 1.0997 1.1446 1.0793 1.0446 1.0525 1.0493 

Sortino 0.7606 1.2497 1.3742 0.7779 1.1176 0.6412 0.3375 0.4241 0.4303 

Max D. -0.3199 -0.2561 -0.1647 -0.2379 -0.2131 -0.1696 -0.2716 -0.2074 -0.1377 

Calmar 0.2472 0.3873 0.5061 0.1815 0.2638 0.1717 0.0587 0.0849 0.1159 

Sterling 0.1883 0.2785 0.3149 0.1278 0.1795 0.1080 0.0429 0.0573 0.0671 

Burke 0.8407 1.4814 1.7935 0.5058 1.1305 0.5088 0.1412 0.2292 0.2746 

JB test  

(p-value) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: This table reports the full-sample annualized performance statistics for PCA-based strategies using different 

numbers of components (5 to 45). All metrics are annualized. 

 

7.2 Explained Variance Thresholds and Strategy Performance 

Table 12 presents the annualized performance metrics for PCA-based mean-reversion 

strategies under varying explained variance thresholds, ranging from 40% to 75%. These 

thresholds determine how many principal components are retained in constructing the factor 

model, shaping the trade-off between parsimony and completeness. As illustrated in Figure 16, 

17 and 18—reinforcing the conclusion observed in Figure 12—the relationship between 

explained variance and strategy performance follows a broadly declining trend with local 

reversals, indicating a nonlinear pattern. This carries important implications for model robustness, 

the quality of residual-based signals, and overall portfolio profitability. 

The results indicate that mean returns exhibit an overall declining trend as the explained 

variance threshold increases, though with minor reversals at intermediate levels (e.g., 60% and 

70%). The strategy achieves its highest returns at 40% (11.50%) and 45% (10.96%), but 

performance drops sharply at higher thresholds, reaching just 2.56% at 75%. This suggests that 

the early principal components capture the most economically meaningful co-movements—

typically driven by broad market and sectoral dynamics—whereas higher-order components may 

reflect transient, idiosyncratic noise that weakens the residual-based trading signal. This pattern 



59 
 

Sun, Y. / WORKING PAPERS 21/2025 (484) 

is consistent with findings from Laloux et al. (2000) and Plerou et al. (2000), who warn that 

smaller eigenvalues often represent noise rather than informative structure. 

Risk-adjusted performance, as measured by the Sharpe and Sortino ratios, exhibits 

a convex shape. Both metrics peak around the 70% threshold (Sharpe = 0.6163, Sortino = 

0.8938), suggesting that this level of retained variance provides the most favorable balance 

between return and risk. The corresponding t-statistic of 2.6678 further confirms the statistical 

significance of returns at this level. 

Although mean returns are higher at lower thresholds (40–50%), these configurations are 

associated with greater volatility and elevated tail risk, which ultimately undermines their overall 

efficiency. These results support the interpretation that moderate thresholds—typically between 

60% and 70%—offer the optimal balance, allowing the model to capture systematic co-

movements without overfitting to noise. This configuration generates more stable and reliable 

residuals that serve as effective signals for mean-reversion trading. 

As the explained variance threshold increases, standard deviation declines sharply—from 

0.3147 at 40% to 0.0609 at 75%—and tail risk metrics such as VaR and CVaR also improve. For 

instance, CVaR narrows from –0.0279 to –0.0098 across this range. However, these 

improvements in downside risk are offset by a collapse in return potential and significantly lower 

Calmar and Sterling ratios. This pattern suggests that strategies emphasizing risk minimization 

without sufficient return generation become economically inefficient, limiting their practical 

applicability. 

Maximum drawdowns also decline as more components are retained—falling from –59.8% 

at the 40% threshold to –15.9% at 70%; at 75% they rise again to –23.8%. Importantly, the 

highest Calmar ratio (0.2718) coincides with the 70% threshold, which is also the point of 

smallest drawdown, reinforcing that 70% strikes an effective balance between return generation 

and drawdown control. 

Taken together, these results suggest that retaining components to explain about 70% of 

total variance yields the most robust configuration: it maximizes the trade-off among alpha 

generation, statistical significance, and downside protection. Lower thresholds can boost average 

returns but at the cost of excessive volatility and instability, whereas higher thresholds stabilize 

performance but dilute the signal by incorporating weaker, noise-driven factors. 
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In practice, an explained-variance threshold in the 60%–70% range provides a reasonable 

default for PCA-based arbitrage strategies, subject to refinement based on regime shifts, asset-

class specifics, or out-of-sample validation. 

Table 12. Performance of PCA Strategies with Different Explained Variance Levels. 
Explained 

Ratio 

40% 45% 50% 55% 60% 65% 70% 75% 

Mean 0.1150 0.1096 0.0868 0.0632 0.0652 0.0349 0.0433 0.0256 

t-stat 1.5810 1.5131 2.0257 2.1575 2.5446 1.8770 2.6678 1.8217 

Std. Dev. 0.3147 0.3136 0.1854 0.1268 0.1109 0.0805 0.0702 0.0609 

Sharpe 0.3652 0.3495 0.4680 0.4984 0.5878 0.4336 0.6163 0.4208 

z-stat 1.5810 1.5131 2.0257 2.1575 2.5446 1.8770 2.6678 1.8217 

VaR (95%) -0.0159 -0.0149 -0.0128 -0.0109 -0.0087 -0.0075 -0.0065 -0.0058 

CVaR (95%) -0.0279 -0.0260 -0.0201 -0.0173 -0.0141 -0.0114 -0.0098 -0.0085 

Omega 1.1242 1.1298 1.1228 1.1048 1.1304 1.0805 1.1146 1.0771 

Sortino 0.6600 0.4851 0.7936 0.7216 0.9239 0.6229 0.8938 0.6160 

Max D. -0.5977 -0.6917 -0.3470 -0.2368 -0.2461 -0.2334 -0.1591 -0.2379 

Calmar 0.1923 0.1585 0.2500 0.2667 0.2649 0.1495 0.2718 0.1078 

Sterling 0.1648 0.1385 0.1941 0.1875 0.1884 0.1047 0.1669 0.0759 

Burke 0.8058 0.6579 0.6858 0.7625 0.9126 0.4594 0.7552 0.2997 

JB test  

(p-value) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: This table reports the performance of PCA-based strategies using varying explained variance thresholds 

(40%–75%). While higher thresholds generally reduce volatility and tail risk, the best risk-adjusted returns (e.g., 

Sharpe and Sortino ratios) are observed around the 70% level, suggesting an optimal balance between factor 

completeness and noise control. 

Figure 17. Cumulative PNL of PCA Strategies by Explained Variance Threshold 

 
Note: This chart shows strategy performance under different PCA explained variance levels (40%–75%). Lower 

thresholds yield higher returns with greater volatility, while higher thresholds reduce risk but dampen returns. The 

70% level offers the best overall balance. 
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Figure 18. Temporal evolution of PCA factor dimensionality and CSI300 market volatility 

 

Figure 18. Temporal evolution of PCA factor dimensionality across different explained variance thresholds (40%–

75%) and its relationship with CSI300 index volatility. The number of principal components required to reach 

a given explained variance level varies significantly over time, reflecting shifts in market structure and cross-

sectional correlation. The CSI300 annualized volatility (right axis, red line) tends to increase during market stress 

periods and coincides with a rise in the number of required PCA factors, indicating increased noise and reduced 

factor dominance during turbulent regimes. 

 

7.3 Impact of Entry and Exit Thresholds on Strategy Performance 

Table 13 reports the annualized performance metrics of the PCA-based mean-reversion 

strategy under different combinations of entry and exit thresholds, expressed as multiples of the 

residual standard deviation. Figure 19 plots the corresponding cumulative PnL. These thresholds 

govern the conditions for initiating and closing positions based on residual deviations from the 

estimated equilibrium level, thereby directly influencing trade frequency, average holding period, 

and the overall risk–return characteristics of the strategy. 

Lower entry thresholds (e.g., 1.0) generate more frequent trading signals by reacting to 

relatively small deviations. While this increases exposure to potential arbitrage opportunities, it 

also raises susceptibility to noise and false signals, particularly during volatile market conditions. 

In contrast, higher entry thresholds (e.g., 1.5) act as stricter filters, initiating trades only when 

deviations are substantial. Although this reduces sensitivity to noise, the excessive stringency 
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results in fewer executed trades and missed opportunities, ultimately weakening overall 

performance. 

Exit thresholds exert an equally important influence. Tighter exits (e.g., 0.3 or 0.5) trigger 

earlier closures, securing profits once partial mean-reversion occurs. While this approach helps 

reduce drawdowns and downside exposure, it also limits the ability to capture the full extent of 

price convergence. Looser exits (e.g., 0.75) allow positions to remain open longer, capturing 

a larger portion of the reversion at the expense of higher exposure to residual fluctuations. 

Among all configurations, the (1.0, 0.75) setting delivers the strongest performance, 

achieving the highest Sharpe ratio (1.0835) and the largest t-statistic (4.6901). This indicates that 

moderate entry thresholds combined with relatively loose exits strike the most favorable balance 

between trade frequency, signal reliability, and return capture. The configuration denoted as 

(Main)—(1.25, 0.5, 0.75)—also performs robustly, with a Sharpe ratio of 0.9436 and relatively 

low drawdown (–0.1107), producing a high Calmar ratio of 0.8021. Notably, this specification 

incorporates a two-stage exit mechanism, in which partial profit-taking occurs at 0.5 and final 

closure at 0.75, thereby mitigating downside risk while preserving the ability to benefit from 

further convergence. 

By contrast, configurations such as (1.5, 0.3) or (1.5, 0.5) produce markedly lower Sharpe 

ratios (0.6650 and 0.6395, respectively) and deeper drawdowns. These outcomes reflect a trade 

initiation barrier that is too high relative to a narrow exit window, leading to infrequent and low-

quality trades while missing meaningful reversion opportunities. 

Overall, these results highlight the critical importance of threshold calibration. Entry 

thresholds that are too low can result in overtrading and excess sensitivity to noise, whereas 

thresholds that are too high filter out profitable trades and weaken performance. Likewise, exit 

thresholds that are asymmetrically lower than entry thresholds—as in the main configuration—

help lock in profits before full mean-reversion, improving both downside protection and capital 

efficiency. 

Future extensions could explore adaptive threshold schemes that adjust dynamically to 

market conditions, such as volatility or liquidity regimes. Taken together, the evidence suggests 

that combining moderate entry thresholds (1.0–1.25) with relatively loose exits (around 0.75), or 

employing multi-stage exit rules, yields the most robust and economically viable strategy design 
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Table 13. Performance Metrics under Different Entry and Exit Thresholds. 

Thresholds 1.0_0.3 1.0_0.5 1.0_0.75 1.25_0.3 1.25_0.5 1.25_0.5_0.75 

(Main) 

1.25_0.75 1.5_0.3 1.5_0.5 1.5_0.75 

Mean 0.1112 0.1109 0.1154 0.0786 0.0809 0.0833 0.0888 0.0787 0.0763 0.0859 

t-stat 4.4973 4.6213 4.6901 3.8827 3.9714 4.0844 4.3435 2.8785 2.7683 3.1139 

Std. Dev. 0.1070 0.1039 0.1065 0.0876 0.0881 0.0883 0.0885 0.1184 0.1193 0.1194 

Sharpe 1.0389 1.0676 1.0835 0.8970 0.9175 0.9436 1.0034 0.6650 0.6395 0.7194 

z-stat 4.4973 4.6213 4.6901 3.8827 3.9714 4.0844 4.3435 2.8785 2.7683 3.1139 

VaR (95%) -0.0078 -0.0077 -0.0077 -0.0081 -0.0083 -0.0083 -0.0084 -0.0090 -0.0090 -0.0089 

CVaR (95%) -0.0110 -0.0111 -0.0110 -0.0119 -0.0120 -0.0120 -0.0120 -0.0130 -0.0131 -0.0130 

Omega 1.2572 1.2549 1.2661 1.1713 1.1743 1.1806 1.1921 1.1529 1.1467 1.1663 

Sortino 2.0520 2.0421 2.1528 1.3074 1.3373 1.3742 1.4882 1.1943 1.1530 1.3201 

Max D. -0.1756 -0.1761 -0.1739 -0.1651 -0.1642 -0.1647 -0.1107 -0.2774 -0.2209 -0.1590 

Calmar 0.6332 0.6300 0.6636 0.4760 0.4926 0.5061 0.8021 0.2837 0.3455 0.5401 

Sterling 0.4034 0.4018 0.4214 0.2965 0.3061 0.3149 0.4214 0.2085 0.2378 0.3316 

Burke 2.7983 2.7924 3.1143 1.6700 1.6991 1.7935 2.2051 1.0351 1.1931 1.6964 

JB test 

(p-value) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: This table reports the annualized performance statistics of the mean-reversion strategy under various 

combinations of entry and exit thresholds. Each column represents a threshold pair in the format (entry, exit), where 

entry refers to the standard deviation trigger for opening a position, and exit denotes the closing threshold. The 

configuration labeled (Main) corresponds to the primary model employed in this study. 

Figure 19. Cumulative PNL under different entry/exit thresholds 

 

Note: This figure compares the cumulative PNL of PCA-based mean-reversion strategies under different 

combinations of entry and exit thresholds, defined as standard deviation multiples of residual signals. Lower entry 

thresholds (e.g., 1.0) generate more frequent trades, while looser exit thresholds (e.g., 0.75) allow positions to 

capture deeper mean reversion. The configuration (1.0→0.75) achieves the best overall performance, while the 

benchmark strategy (1.25→0.5→0.75) strikes a balance between return and drawdown. 

 



64 
 

Sun, Y. / WORKING PAPERS 21/2025 (484) 

7.4 Impact of Rolling Window Length on Strategy Performance 

Table 14 summarizes the performance of the PCA-based mean-reversion strategy across 

a range of rolling estimation window lengths, from 30 to 120 trading days. Figure 20 displays the 

corresponding cumulative PnL. The reported annualized metrics—including mean return,  

t-statistic, and Sharpe ratio—reveal a clear pattern: shorter windows (30–50 days) tend to exhibit 

higher volatility and weaker statistical significance, while longer windows (100–120 days) 

consistently deliver improved risk-adjusted returns and more statistically significant alpha. 

Short estimation windows (e.g., 30–50 days) respond more quickly to recent market 

changes and shifting factor structures. This sensitivity allows the model to adapt to transient 

dynamics but also introduces substantial estimation noise. For example, the 30-day window 

produces a very low mean return (0.0083) and an insignificant t-statistic (0.43), suggesting that 

such short samples fail to extract reliable principal components or generate stable residuals. 

Statistically, short windows are equivalent to small-sample estimation, which is more susceptible 

to the influence of extreme returns or temporary structural breaks. From a financial perspective, 

this translates into unstable factor structures and residual signals that lack robustness. 

In contrast, medium to longer windows (60–120 days) improve statistical reliability by 

smoothing out short-term fluctuations and reducing overfitting. A longer historical lookback 

increases the effective sample size, yielding more stable PCA loadings and residual estimates. 

This stability enhances the precision of the signals and strengthens alpha consistency. For 

instance, the 120-day configuration achieves the highest Sharpe ratio (1.44) and t-statistic (6.22), 

underscoring that longer windows provide both statistical and economic benefits. 

Longer windows yield more stable PCA loadings by averaging across a larger information 

set, thereby reducing the influence of outliers and transient noise. This stability in factor structure 

translates into more reliable residual estimates, which are essential for generating effective mean-

reversion signals. 

From a statistical perspective, extending the window is equivalent to enlarging the sample 

size, lowering the variance of eigenvalue and eigenvector estimates and mitigating the 

emergence of spurious components driven by random fluctuations. From a financial perspective, 

shorter windows resemble small-sample estimation and are therefore more vulnerable to extreme 

returns or temporary shocks, producing unstable factor structures. By contrast, longer windows 
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filter out such idiosyncratic events and emphasize persistent co-movements that better reflect 

underlying market and sector dynamics. Consistent with prior studies, reducing estimation noise 

in factor models has been shown to enhance portfolio performance. 

However, excessively long windows may render the model unresponsive during regime 

shifts—such as those triggered by macroeconomic shocks, policy changes, or sector rotations—

delaying signal adjustment and weakening alpha capture. Hence, an inherent trade-off exists 

between statistical robustness and adaptability. 

The 60-day window, adopted as the baseline in this study, represents a practical 

compromise between responsiveness and estimation stability. Its prevalence in both academic 

research and industry practice is well documented, with Avellaneda and Lee (2010) and Gu et al. 

(2021) among the studies supporting its use. Nevertheless, dynamic window adjustment—

conditional on market volatility or signal stability—may further enhance performance. For 

instance, longer windows can be deployed in tranquil markets to exploit stable factor structures, 

while shorter windows may help capture shifts during turbulent regimes. 

Table 14 underscores that rolling window length is a critical design choice in PCA-based 

statistical arbitrage. Shorter windows adapt quickly to evolving dynamics but suffer from 

instability and weak statistical reliability, whereas longer windows (80–120 days) generate 

stronger Sharpe ratios, lower drawdowns, and more consistent signal extraction. In practice, 

a window length of 60–100 trading days appears to strike the most effective balance between 

adaptability and robustness, particularly in environments with moderate structural variation. This 

trade-off aligns with prior findings in the factor modeling literature, which emphasize that 

reducing estimation noise enhances portfolio robustness without entirely sacrificing 

responsiveness. 

Table 14. The performance of the PCA-based mean-reversion strategy under varying rolling 

window lengths (30–120 trading days). 

Windows 30_days 40_days 50_days 60_days 70_days 80_days 90_days 100_days 110_days 120_days 

Mean 0.0083 0.0495 0.0967 0.0833 0.0911 0.1063 0.0680 0.1041 0.0972 0.1435 

t-stat 0.4316 2.1621 3.7179 4.0844 3.7864 4.9797 2.9260 4.4991 4.3176 6.2196 

Std. Dev. 0.0828 0.0990 0.1126 0.0883 0.1042 0.0924 0.1006 0.1001 0.0975 0.0999 

Sharpe 0.0997 0.4995 0.8589 0.9436 0.8747 1.1504 0.6759 1.0394 0.9974 1.4368 

z-stat 0.4316 2.1621 3.7179 4.0844 3.7864 4.9797 2.9260 4.4991 4.3176 6.2196 

VaR (95%) -0.0075 -0.0075 -0.0080 -0.0083 -0.0085 -0.0085 -0.0091 -0.0088 -0.0090 -0.0089 
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Windows 30_days 40_days 50_days 60_days 70_days 80_days 90_days 100_days 110_days 120_days 

CVaR (95%) -0.0106 -0.0110 -0.0115 -0.0120 -0.0124 -0.0125 -0.0141 -0.0127 -0.0131 -0.0126 

Omega 1.0190 1.1104 1.2167 1.1806 1.1894 1.2222 1.1312 1.2080 1.1893 1.2850 

Sortino 0.1616 0.8888 1.7136 1.3742 1.4388 1.6166 0.8196 1.6641 1.4634 2.3224 

Max D. -0.3830 -0.1969 -0.1306 -0.1647 -0.1795 -0.2331 -0.3606 -0.1658 -0.1687 -0.1226 

Calmar 0.0215 0.2512 0.7406 0.5061 0.5076 0.4562 0.1885 0.6279 0.5761 1.1707 

Sterling 0.0171 0.1666 0.4195 0.3149 0.3260 0.3192 0.1476 0.3916 0.3617 0.6447 

Burke 0.0388 0.6028 2.6725 1.7935 1.5578 1.9587 0.6093 2.4399 1.7169 3.8388 

JB test 

(p-value) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: This table reports the performance of the PCA-based mean-reversion strategy under varying rolling window 

lengths (30–120 trading days). As the estimation window expands, both the Sharpe ratio and statistical significance 

(t-stat) generally improve, with the best results observed at 120 days (Sharpe = 1.44, t-stat = 6.22). Longer windows 

provide more stable factor estimates, enhancing signal reliability and reducing overfitting. However, windows that 

are too short (e.g., 30 days) yield weak performance and high drawdowns, reflecting unstable factor structures and 

noisy residuals. Overall, a window length between 80 and 120 days appears to offer the best risk-adjusted trade-off. 

Figure 20. Cumulative PNL under various rolling estimation windows 

 

Figure 20. This figure illustrates the cumulative PNL of a PCA-based mean-reversion strategy under various rolling 

estimation windows, ranging from 30 to 120 trading days. Longer windows (e.g., 100–120 days) tend to yield 

smoother and more profitable trajectories, suggesting that more stable factor estimates enhance signal quality. In 

contrast, very short windows (e.g., 30–40 days) appear to introduce more noise, leading to lower overall 

performance and noisier cumulative return paths. These findings highlight the trade-off between adaptability and 

statistical robustness when selecting the window length for PCA-based signal generation. 

 

8. Conclusions 

This thesis has undertaken a comprehensive investigation of pairs trading and broader 

statistical arbitrage strategies grounded in mean-reversion principles. A central element of the 
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analysis is the decomposition of stock returns into systematic and idiosyncratic components, with 

the latter forming the basis of residual-driven, market-neutral trades. Two factor-construction 

methodologies were examined: (i) PCA, which extracts latent “eigenportfolios” from the return 

correlation matrix; and (ii) ETF-based factor modeling, which regresses stock returns on sector 

ETF benchmarks. 

The empirical evidence shows that the choice of factor specification materially influences 

the behavior of residuals and, in turn, the profitability of mean-reversion signals. PCA-derived 

residuals better isolate latent co-movements and are less biased toward large-cap exposures, 

whereas ETF-based models provide intuitive sectoral interpretations and facilitate direct hedging 

with tradable instruments. Both approaches generate robust signals, though the optimal number 

of retained PCA components or choice of ETFs is time-varying. Importantly, the adoption of 

a dynamic PCA rule—retaining components sufficient to explain a fixed proportion of 

variance—enhances adaptability to evolving cross-sectional structures and improves risk-

adjusted returns. 

Trading signals are systematically generated when residuals deviate from a rolling 60-day 

equilibrium band, defined in terms of standardized residuals (z-scores). Predefined entry and exit 

thresholds capture temporary mispricings while reducing overfitting risk. Transaction costs are 

incorporated through a realistic slippage model, highlighting the role of trading frictions. Further, 

weighting signals by trading volume improves robustness in low-liquidity or high-volatility 

markets. 

Sensitivity analyses confirm that strategy outcomes are shaped by methodological choices. 

While the 60-day window and ±1.25σ thresholds are effective baseline settings, alternative 

calibrations may be warranted in markets with different volatility or liquidity regimes. Stress 

tests during extreme episodes demonstrate that mean-reversion strategies may suffer drawdowns 

but recover once residual mispricings re-emerge, particularly when the factor model 

parsimoniously captures systematic variation. 

Overall, this research highlights the value of rigorous factor decomposition—whether 

PCA- or ETF-based—in constructing market-neutral strategies. It shows that residual-based 

signals can consistently generate alpha across regimes, provided factor structures are robust, 

dynamically updated, and risk controls enforced. Future research could integrate machine 
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learning for dynamic factor selection, incorporate macroeconomic or fundamental variables to 

enrich valuation signals, or explore adaptive thresholding linked to volatility and liquidity states. 

Ultimately, the central insight is that robust identification of systematic structure is essential to 

isolating idiosyncratic mispricings and sustaining profitability in mean-reversion–based 

statistical arbitrage. 
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Annexes 

 

Appendix A: Estimation of the residual process 

This appendix outlines the procedure for modeling regression residuals as OU processes 

and for deriving standardized s-scores. While the method described here is not the most 

advanced or efficient, it is transparent, straightforward to implement, and provides a solid 

foundation that can be improved in practice. 

 

A.1 OU Parameter Estimation for ETF Regressions 

For clarity, we illustrate the procedure in the context of ETF-based factor regressions; the 

PCA-based case follows an analogous approach. For each stock 𝑆, we regress its daily returns on 

a corresponding sector ETF: 

𝑅𝑛
𝑠 = 𝛾0 + 𝛾 𝑅𝑛

𝐼 + 𝜖𝑛, 𝑛 = 1,2, … ,60⁡ 

where 𝑅𝑛
𝑠  and 𝑅𝑛

𝐼  are, respectively, the stock and ETF returns over 60 consecutive daily 

observations (chronologically ordered), and 𝜖𝑛 is the regression residual. Noting the continuous-

time model in Equation (18), we define 

𝜇   =    𝛾0 × 252⁡ 

interpreting 𝛾0 as the daily drift, then annualizing it with the factor 252 (the approximate number 

of trading days in a year). 

Next, we construct the cumulative sum of residuals: 

𝑋𝑘   =   ∑ 𝜖𝑗

𝑘

𝑗=1

, 𝑘 = 1,2, … ,60 

This sequence {𝑋𝑘} can be viewed as a discrete analog of the continuous OU process 𝑋(𝑡). 

Because 𝛾 and 𝛾0 are estimated over the same 60 data points, we observe 𝑋60 = 0, which is an 

artifact of the regression procedure forcing the mean of the in-sample residuals to zero. 

We then fit the discrete 1-lag regression model: 

𝑋𝑛+1 = 𝑎 + 𝑏 𝑋𝑛 + 𝑣𝑛+1, 𝑛 = 1,2, … ,59 
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where 𝑣𝑛+1 is noise. According to the OU model (Equation (23) in the main text), the parameters 

(𝑎, 𝑏) relate to the continuous-time parameters (𝑚, 𝜃, 𝜎) as follows: 

𝑎   =   𝑚(1 − 𝑒−𝜃 𝛥𝑡), 𝑏   =  𝑒−𝜃 𝛥𝑡, 𝑉𝑎𝑟(𝜈)    =  
𝜎2

2𝜃
 (1 − 𝑒−2𝜃 𝛥𝑡) 

Here, 𝛥𝑡 = 1/252 is the daily time step. From these relationships, we solve for the OU 

parameters: 

𝜃 = −
ln(𝑏)

∆𝑡
≈ − ln(𝑏) × 252,𝑚 =

𝑎

1 − 𝑏
, 𝜎 = √

𝑉𝑎𝑟(𝜈)(2𝜃)

1 − 𝑏2
, 𝜎𝑒𝑞 =

𝜎

√2𝜃
= √

𝑉𝑎𝑟(𝜈)

1 − 𝑏2
 

For practical purposes, we require relatively fast mean reversion over the 60-day window 

(i.e., 𝜃 large). A common cutoff is 𝜃 > 252 30⁄ , meaning the characteristic reversion time is 

below 1.5 months. In that scenario, 𝑏   =  𝑒−𝜃 𝛥𝑡 is safely below one. Conversely, if 𝑏  is close to 

unity, the implied mean-reversion speed is too slow, and the model is discarded for that stock. 

 

A.2 s-Score Computation 

Given the OU process 𝑋(𝑡) with long-term mean mmm and equilibrium standard deviation 

𝜎𝑒𝑞, the theoretical s-score is: 

𝑠   =   
𝑋(𝑡) − 𝑚

⁡𝜎𝑒𝑞
⁡ 

However, due to the regression constraint 𝑋60 = 0 in the 60-day sample, we have 𝑋(𝑡) = 0 

at the end of the estimation window, implying: 

𝑠   =   
−𝑚

𝜎𝑒𝑞
  =  

−𝑎

(1 − 𝑏) 𝜎𝑒𝑞
 

To reduce systematic biases, it is often beneficial to re-center the mean by subtracting the 

cross-sectional average across all stocks in the universe: 

𝑚   ⟵   𝑚   −    ⟨𝑚⟩⁡ 

where  ⟨𝑚⟩ is the mean across all stocks in the universe. Hence, we replace 𝑎/(1 − 𝑏) with 

(𝑎/(1 − 𝑏)) − ⟨𝑎/(1 − 𝑏)⟩. The resulting s-score thus becomes: 

𝑠   =   
−1

𝜎𝑒𝑞
(

𝑎

1 − 𝑏
  −    ⟨

𝑎

1 − 𝑏
⟩) 
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This empirical adjustment mitigates potential cross-sectional biases and typically yields 

more robust trading signals in backtests, even though it is not theoretically required by the OU 

framework. 
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