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Abstract: This paper investigates the profitability and robustness of pairs trading strategies based 

on non-parametric technical chart constructions—Renko and Kagi—across the U.S. and Chinese 

equity markets. Within a market-neutral, mean-reversion framework, the study examines strategy 

performance under varying market regimes, including the Global Financial Crisis (GFC) and the 

COVID-19 period. Using historical data from indices such as the S&P 500 and the CSI series, 

pairs are selected via statistical patterns in Renko and Kagi charts. Robustness checks consider 

varying trading horizons, the number of pairs, and transaction costs. Results show that both chart-

based strategies generate significant excess returns and exhibit strong Sharpe ratios before costs. 

While trading frictions reduce profitability, Renko-based strategies remain resilient, especially 

during crises. The findings highlight that adaptive and non-parametric charting methods can 

effectively capture transient mispricings and provide viable alternatives for statistical arbitrage in 

turbulent markets. 
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1. Introduction 

Pairs trading, a well-known quantitative strategy that has been widely used since the 1990s, 

attracts both institutional and individual investors due to its market-neutral approach and 

potential for consistent, low-volatility returns. The strategy typically produces small but steady 

profits and has been extensively studied in the literature, with seminal works by Herlemont 

(2003), Vidyamurthy (2004), Elliott et al. (2005), Do et al. (2006), and Gatev et al. (2006) laying 

its theoretical and empirical foundations. 

The core principle of pairs trading consists of three steps. First, a pair of assets is identified 

based on historically correlated price movements. Second, when their prices diverge, the 

overperforming asset (“winner”) is shorted while the underperforming asset (“loser”) is bought. 

Finally, both positions are unwound once prices realign, thereby capturing the convergence profit. 

Despite numerous variations of the strategy, they all rest on the same premise: the prices of 

the paired assets will eventually converge. In practice, three operational challenges must be 

resolved before any trade is initiated: (i) selecting the pairs, (ii) determining entry points, and (iii) 

defining exit points. Traditional approaches address these challenges by estimating a time-

varying “fair value” of the spread and trading on the expectation of reversion toward this 

benchmark. However, during crises or structural shifts, the fair value itself may drift, generating 

false signals and undermining profitability. 

Across the literature, methods of pair formation and trade execution vary, but all rely on 

the concept of equilibrium in prices or returns: two related assets are expected to yield 

comparable returns over time. Deviations from this equilibrium are often attributed to market 

overreactions, underreactions to new information, or mispricing. The fundamental assumption of 

pairs trading is that such deviations are temporary and will eventually self-correct. 

This equilibrium concept is closely linked to cointegration theory (Engle and Granger, 

1991), which posits that the spread between cointegrated assets should exhibit mean-reverting 

behavior. In theory, when the spread deviates from its long-term mean, it is expected to revert. 

In practice, however, mean reversion is not guaranteed. Asset-specific shocks such as news 

or events may alter the characteristics of the spread, shifting it away from its historical mean. 

These shifts may result in longer recovery times—possibly beyond the planned investment 
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horizon—or, in some cases, prevent reversion altogether. Consequently, relying solely on 

equilibrium-based assumptions may render pairs trading ineffective. Empirical evidence (Do and 

Faff, 2010) supports this concern, showing that returns often diminish once transaction costs are 

accounted for. 

Two main approaches attempt to address the problem of a drifting mean. The first replaces 

the long-term mean with a fixed-length moving average (MA). Although widely used by 

practitioners, MA-based methods suffer from delayed responses due to inherent lag. The second 

relies on regime-switching models (Wu and Elliott, 2005; Bock and Mestel, 2009; Endres and 

Stübinger, 2019), where the mean is allowed to shift between regimes. While this improves 

adaptability in theory, empirical applications remain limited, and it is unclear whether such shifts 

can be detected and exploited quickly enough in practice. 

We propose a non-parametric approach to pairs trading that leverages statistical 

characteristics of the spread process, as outlined in Bogomolov (2013). Unlike traditional 

methods, this approach does not estimate or track the mean but instead relies on the relative 

stability of spread variability over time. The intuition is straightforward: the likelihood of 

reversal increases as prices deviate further from equilibrium. The challenge lies in defining 

a threshold beyond which a contrarian trade becomes favorable, with spread variability being the 

key determinant. Figure 1 illustrates the idea of stable variability alongside uncertainty in the 

exact mean location. 

The method used to assess the variability of the spread process in this study builds on the 

Renko and Kagi chart constructions, first introduced into academic research by Pastukhov (2005). 

Originating in 19th-century Japan, Renko and Kagi charts are widely recognized in technical 

analysis within financial markets. They focus exclusively on price movements that exceed 

a predefined threshold, while deliberately omitting information on time and trading volumes. 

This design aims to filter out minor fluctuations, or "trading noise," thereby capturing only 

meaningful price dynamics. 

Pastukhov’s work provided a rigorous mathematical foundation for Renko and Kagi 

constructions, highlighting their potential to generate trading strategies based on the statistical 

properties of these charts. While his research concentrated on single-asset prices, we extend the 

framework to spread processes in pairs trading. In this paper, Renko and Kagi constructions are 
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employed not only for individual assets but also to identify and evaluate pairs trading 

opportunities, particularly under the Ornstein–Uhlenbeck (OU) process specification. We 

theoretically validate the effectiveness of this approach and further apply it to real market data 

from the U.S. and Chinese stock exchanges. 

This study fills an important gap and makes four concrete contributions. 

1. First, I introduce a methodological extension by being among the first to formulate 

Renko/Kagi H-constructions specifically for spread processes and to derive their 

properties under an OU specification. 

2. Second, I establish a closed-form profitability condition: if the chart-implied  

H-volatility 𝜎𝐻 satisfies 𝜎𝐻 < 𝐻, then a simple contrarian H-strategy yields a positive 

expected return under an OU spread. This result provides a direct link between 

technical thresholds and the underlying statistical parameters. 

3. Third, I conduct comprehensive empirical tests using daily equity data from 1995 to 

2024, covering both U.S. (S&P 500) and Chinese (four CSI indices) markets. The 

evaluation includes stress periods such as the GFC and the COVID-19 pandemic, as 

well as multiple transaction-cost regimes, thereby ensuring robustness. Our results 

show that Renko-based strategies remain profitable even when classical distance or 

cointegration rules fail, particularly during volatile regimes such as the GFC and 

COVID-19 periods. This suggests that volatility-centric thresholds can complement—

or, in stressed markets, even replace—mean-reversion signals widely employed by 

hedge funds and proprietary desks.  

4. Fourth, I provide a practical implementation guide. Specifically, I propose a data-

driven method for selecting the threshold H based on observed spread variability and 

trading costs, and I demonstrate that portfolio diversification across 5 to 50 pairs 

significantly enhances the information ratio. 

Overall, our results indicate that Renko-based strategies remain robust and profitable, 

especially in turbulent market environments, such as the GFC and COVID-19 periods. 

The structure of this paper is as follows: Section 2 provides a brief overview of 

Pastukhov’s Renko and Kagi methods, their properties, applications to the Wiener process, and 

the two trading strategies they enable. Section 3 examines the application of Renko and Kagi 

constructions to the OU process and discrete-time processes. Section 4 details the practical 

implementation of the proposed pairs trading strategy and describes its testing on real market 
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data. Section 5 presents the empirical results, and Section 6 concludes the paper with a summary 

of findings. 

Figure 1. Daily log-price spread process with 60-day moving average and 10% bands. 

Note: This figure shows daily log prices spread process between two major Chinese banks–Huaxia Bank 

(600015.SH) and China Minsheng Bank (600016.SH). The red line is the 60-day moving average and the blue lines 

are the same moving average shifted 10% up and down from its true location. 

 

2. Overview of Renko and Kagi Methods 

2.1 Renko Construction 

The Renko chart is a Japanese charting technique that emphasizes significant price 

movements by filtering out minor fluctuations, thereby providing a clearer view of underlying 

trends. Unlike traditional time-based charts, Renko charts are constructed solely on the basis of 

price changes exceeding a fixed magnitude, referred to as the brick size. This allows for the 

identification of key support and resistance levels, as well as potential trend reversals. 

Let P(t) denote a continuous price process or cumulative return over the interval [0, T]. The 

Renko construction discretizes this continuous path into a sequence of movements of fixed size 

𝐻 > 0, effectively capturing meaningful trends while discarding noise. 
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To construct the Renko chart, we define a sequence of increasing time points {𝑠𝑖}𝑖=0
𝑁 , 

where 𝑠0 = 0 and 𝑠𝑁 ≤ 𝑇. These time points are determined based on a predefined threshold 

𝐻 > 0, which represents the minimum price movement considered significant. The value of 𝐻 

should satisfy the condition: 

  𝐻 ≤ 𝑚𝑎𝑥
𝑡∈[0,𝑇]

𝑃(𝑡) − 𝑚𝑖𝑛
𝑡∈[0,𝑇]

𝑃(𝑡)            (1) 

The sequence {𝑠𝑖} is constructed recursively using the following rule: 

  𝑠𝑖 = inf⁡⁡{⁡𝑢 ∈ [𝑠𝑖−1, 𝑇]: |𝑃(𝑢) − 𝑃(𝑠𝑖−1)| = 𝐻⁡}, 𝑖 = 1,2, … ,𝑁          (2) 

This is, 𝑠𝑖 is the earliest time after 𝑠𝑖−1 when the price process 𝑃(𝑡) has moved by exactly 

𝐻  from its value at time 𝑠𝑖−1 . The process 𝑋(𝑖) = 𝑃(𝑠𝑖)  for 𝑖 = 0,1, … ,𝑁  forms the Renko 

process, which can be visualized as a sequence of "bricks" in the Renko chart, as shown in 

Figure 2, each representing a price movement of size 𝐻. 

In the statistical framework, the Renko construction is closely related to the notions of H-

fluctuation and Renko-H-inversion, as introduced by Pastukhov (2005). The H-fluctuation 

𝑈𝑇(𝐻, 𝑃) of the process 𝑃(𝑡) over the interval [0, T] is defined as: 

   𝑈𝑇(𝐻, 𝑃) = sup
𝑇1

∑ |𝑃(𝑡𝑘) − 𝑃(𝑡𝑘−1)|
𝐾
𝑘=1             (3) 

where 𝑇1 is the set of all finite partitions (𝑡0, 𝑡1, … , 𝑡𝐾) such that 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾 ≤ 𝑇 and 

|𝑃(𝑡𝑘) − 𝑃(𝑡𝑘−1)| = 𝐻  for 𝑘 = 1, … , 𝐾 . Essentially, the H-fluctuation 𝑈𝑇(𝐻, 𝑃)  measures the 

total significant movement of the price process by summing all increments of size 𝐻. 

The Renko-H-inversion 𝑀𝑇(𝐻, 𝑃) corresponds to the maximum number of bricks (i.e., 

significant moves of size 𝐻) that can be extracted from the process: 

  𝑀𝑇(𝐻, 𝑃) = max⁡{𝐾 ∈ 𝑵:𝑈𝑇(𝐻, 𝑃) = 𝐾𝐻}            (4) 

This variable reflects the frequency of significant price changes within [0, T] and thus 

serves as a natural estimator for market volatility. 

To identify local maxima and minima in the Renko process, two sequences of time points 

are introduced: {𝑠𝑛
𝑎}  for local extrema, and {𝑠𝑛

𝑏}  for stopping times corresponding to trend 

reversals. Their construction is as follows: 

1. Initialize 𝑠0
𝑎 = 𝑠0 and 𝑠0

𝑏 = 𝑠1. 

2. For 𝑛 ≥ 1 , define 𝑠𝑛
𝑏  as the earliest time 𝑠𝑖  after 𝑠𝑛−1

𝑏  where the Renko process 

changes direction: 
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𝑠𝑛
𝑏 = 𝑚𝑖𝑛{𝑠𝑖 ≥ 𝑠𝑛−1

𝑏 : (𝑃(𝑠𝑖) − 𝑃(𝑠𝑖−1))(𝑃(𝑠𝑖−1) − 𝑃(𝑠𝑖−2)) < 0}          (5) 

3. Once 𝑠𝑛
𝑏 is determined, 𝑠𝑛

𝑎 is set to the previous time point: 

𝑠𝑛
𝑎 = 𝑠𝑖−1, 𝑤ℎ𝑒𝑟𝑒 𝑠𝑛

𝑏 = 𝑠𝑖⁡             (6) 

Here, 𝑠𝑛
𝑎  marks the time just before a change in direction, corresponding to a local 

extremum, while 𝑠𝑛
𝑏 denotes the time when the reversal is confirmed. Note that in special cases, 

𝑠𝑛
𝑏 and 𝑠𝑛+1

𝑎  may coincide if the process reverses immediately in consecutive steps. 

These sequences satisfy the following certain mathematical properties: 

1. Ordering: 𝑠𝑛
𝑎 < 𝑠𝑛

𝑏 ≤ 𝑠𝑛+1
𝑎 , ∀𝑛 = 0,1, … ,𝑀. 

2. Threshold Condition: |𝑃(𝑠𝑛
𝑎) − 𝑃(𝑠𝑛

𝑏)| = 𝐻, ∀𝑛 = 0,1, … ,𝑀. 

3. Alternation of Trend Direction: 𝑠𝑖𝑔𝑛(𝑃(𝑠𝑛
𝑎) − 𝑃(𝑠𝑛−1

𝑎 )) = (−1)𝑛𝑠𝑖𝑔𝑛(𝑃(𝑠1
𝑎) −

𝑃(𝑠0
𝑎)), ∀𝑛 ≥ 1. 

These conditions ensure that the Renko chart accurately reflects significant price changes 

and trend reversals.  

The Renko construction effectively filters out minor price movements and emphasizes 

significant trends by only recording price changes of at least 𝐻. This makes it a valuable tool for 

identifying support and resistance levels, as well as for detecting potential entry and exit points 

in trading strategies. 

By analyzing the Renko chart, one can compute the Renko-H-volatility 𝜉𝑇(𝐻, 𝑃), defined 

as: 

 𝜉𝑇(𝐻, 𝑃) =
𝑈𝑇(𝐻,𝑃)

𝑀𝑇(𝐻,𝑃)
                         (7) 

For the Renko process, since each brick corresponds to a fixed price movement of size 𝐻, 

the Renko-H-volatility is simply 𝐻 . However, when analyzing higher-order volatilities or 

stochastic processes such as the Wiener process, this quantity offers valuable insights into price 

variability and facilitates comparisons between empirical data and theoretical models. 

In addition, the Renko construction enables the design of trading strategies that exploit 

systematic patterns in price dynamics. By quantifying both the frequency and cumulative effect 

of significant price moves, traders can evaluate market efficiency and identify potential arbitrage 

opportunities. The Renko-H-inversion 𝑀𝑇(𝐻, 𝑃)  serves as a practical estimator of market 

volatility, reflecting the intensity of meaningful fluctuations. 
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The choice of 𝐻 plays a central role in the Renko framework. A smaller 𝐻 produces a more 

sensitive chart that captures a larger number of price movements, including relatively minor 

fluctuations. While this may benefit short-term traders, it also introduces additional noise. 

Conversely, a larger 𝐻 filters out minor variations and highlights long-term trends, which can be 

more suitable for longer investment horizons but risks overlooking short-lived opportunities. The 

optimal value of 𝐻  therefore depends on the underlying asset’s volatility, the trader’s time 

horizon, and the trading strategy applied. 

For illustration, consider a price series 𝑃(𝑡)⁡over the interval [0, T] with 𝐻 = 1. Starting 

from 𝑠0 = 0 , we identify 𝑠1  as the first time 𝑡 ≥ 𝑠0  when ∣ 𝑃(𝑡) − 𝑃(𝑠0) ∣= 1 . Proceeding 

similarly, we obtain 𝑠2 , 𝑠3 , …. If 𝑃(𝑠1) − 𝑃(𝑠0) > 0 and 𝑃(𝑠2) − 𝑃(𝑠1) < 0, then a reversal 

occurs at 𝑠1
𝑏 = 𝑠2 identified as a local maximum, as illustrated in Figure 3. 

In summary, the Renko chart reduces the complexity of price dynamics by focusing 

exclusively on significant movements. This makes it particularly valuable in statistical 

arbitrage—such as pairs trading—where identifying meaningful deviations is critical. By 

leveraging Renko-derived statistics such as 𝑀𝑇 and 𝜉𝑇, traders can formulate robust volatility-

based trading rules that remain resilient to structural breaks and market microstructure noise. 

Figure 2. Renko charts for the asset price process and the corresponding Renko transformation. 

 

Note: Panel (a) illustrates the asset price process 𝑃(𝑡) , where the orange markers highlight time points 𝑡𝑖 

corresponding to threshold-exceeding movements. Panel (b) shows the associated Renko process 𝑋(𝑖), where each 

brick represents a movement of at least 𝐻 = 0.3. Dashed gray lines are added as visual references for the threshold 

levels applied in both panels. 
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Figure 3. Renko construction with identified stopping times and local extrema. 

 

Note: anel (a) depicts the asset price process 𝑃(𝑡), where blue markers indicate stopping times 𝑠𝑛
𝑏 and red markers 

highlight local extrema 𝑠𝑛
𝑎, corresponding to significant reversals. Black dotted lines connect consecutive stopping 

times to illustrate trading intervals. Panel (b) presents the Renko process 𝑋(𝑖), where red markers denote local 

extrema and blue markers represent stopping times. Dashed gray lines indicate the threshold level 𝐻 = 0.3 , 

consistently applied across both panels. 

 

2.2 Kagi Construction 

The Kagi chart is a Japanese charting technique designed to capture major price reversals 

and trend continuations by filtering out insignificant fluctuations. While both Kagi and Renko 

charts simplify raw price movements, they differ fundamentally in construction and application. 

The Renko chart discretizes price changes into uniform bricks of fixed size and operates on 

a derived process. In contrast, the Kagi chart works directly with the actual price path 𝑃(𝑡), 

allowing it to reflect not only the magnitude but also the timing and sequence of real price 

reversals. 

This distinction makes Kagi charts particularly well-suited for identifying structural 

changes in market sentiment and momentum. Since the construction depends on sequential highs 

and lows in the real price series, the Kagi chart can more accurately capture dynamics such as 

breakout confirmations, support/resistance violations, and reversal strength. 

Let 𝑃(𝑡) be a continuous time series representing the actual asset prices or cumulative 

returns over the interval [0, T]. We define a threshold 𝐻 > 0 that satisfies the condition: 
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𝐻 ≤ 𝑚𝑎𝑥
𝑡∈[0,𝑇]

𝑃(𝑡) − 𝑚𝑖𝑛
𝑡∈[0,𝑇]

𝑃(𝑡)            (8) 

The construction involves generating two sequences of time points, {𝑠𝑛
𝑎} and {𝑠𝑛

𝑏}. Here, 

𝑠𝑛
𝑎 denotes the times when the process 𝑃(𝑡) reaches a new local maximum or minimum relative 

to the preceding confirmed extremum, while 𝑠𝑛
𝑏 represents the confirmation points at which such 

extrema are validated by a subsequent price movement of at least 𝐻. 

The construction begins by identifying the first significant price movement where the 

cumulative price range reaches the threshold 𝐻. Specifically, we define 

𝑠0
𝑏 = inf⁡{𝑢 ∈ [0, 𝑇]: 𝑚𝑎𝑥

𝑡∈[0,𝑢]
𝑃(𝑡) − 𝑚𝑖𝑛

𝑡∈[0,𝑢]
𝑃(𝑡) ≥ 𝐻}          (9) 

Then, depending on whether 𝑃(𝑠0
𝑏) is a local maximum or minimum, we define: 

𝑠0
𝑎 = {

arg 𝑚𝑖𝑛
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡) , 𝑖𝑓⁡𝑃(𝑠0

𝑏) = 𝑚𝑎𝑥
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡)

arg 𝑚𝑎𝑥
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡) , 𝑖𝑓⁡𝑃(𝑠0

𝑏) = 𝑚𝑖𝑛
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡)

          (10) 

The initial trend direction is determined by the sign: 

  𝑆0 = 𝑠𝑖𝑔𝑛(𝑃(𝑠0
𝑎) − 𝑃(𝑠0

𝑏))            (11) 

where 𝑆0 = 1 indicates that 𝑠0
𝑎 is a local maximum, and 𝑆0 = −1 indicates a local minimum. 

For 𝑛 ≥ 1 , I recursively define (𝑠𝑛
𝑎, 𝑠𝑛

𝑏)  and 𝑆𝑛 , alternating between identifying local 

maxima and minima based on the previous extremum. If at time 𝑠𝑛−1
𝑎  I have a local maximum 

(𝑆𝑛−1 = +1), I search for the next significant decline. Specifically, I find 𝑠𝑛
𝑏 as: 

𝑠𝑛
𝑏 = inf⁡{𝑢 ∈ [𝑠𝑛−1

𝑎 , 𝑇]: 𝑃(𝑠𝑛−1
𝑎 ) − 𝑚𝑖𝑛

𝑡∈[𝑠𝑛−1
𝑎 ,𝑢]

𝑃(𝑡) ≥ 𝐻}         (12) 

and then identify the new local minimum, 𝑠𝑛
𝑎 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑡∈[𝑠𝑛−1
𝑎 ,𝑠𝑛

𝑏]
𝑃(𝑡), setting 𝑆𝑛 = −1. 

If at time 𝑠𝑛−1
𝑎  we have a local minimum (𝑆𝑛−1 = −1), we look for the next significant rise: 

𝑠𝑛
𝑏 = inf⁡{𝑢 ∈ [𝑠𝑛−1

𝑎 , 𝑇]: 𝑚𝑎𝑥
𝑡∈[𝑠𝑛−1

𝑎 ,𝑢]
𝑃(𝑡) − 𝑃(𝑠𝑛−1

𝑎 ) ≥ 𝐻}         (13) 

and then identify the new local maximum, 𝑠𝑛
𝑎 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑡∈[𝑠𝑛−1
𝑎 ,𝑠𝑛

𝑏]
𝑃(𝑡), setting 𝑆𝑛 = +1. 

This alternating process continues until the end of the time interval [0, T] is reached or no 

further significant movements are detected. The sequences {𝑠𝑛
𝑎} and {𝑠𝑛

𝑏} constructed in the Kagi 

chart have specific mathematical properties. Firstly, the time points are ordered such that 𝑠𝑛
𝑎 <
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𝑠𝑛
𝑏 ≤ 𝑠𝑛+1

𝑎  for all 𝑛 ≥ 0. Secondly, the threshold condition |𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛−1

𝑎 )| ≥ 𝐻 holds for all 

𝑛 ≥ 0. Thirdly, the trend direction alternates between 𝑆𝑛 = +1 and 𝑆𝑛 = −1 for each successive 

𝑛, and the sign of the price differences satisfies 𝑠𝑖𝑔𝑛(𝑃(𝑠𝑛
𝑎) − 𝑃(𝑠𝑛−1

𝑎 )) = (−1)𝑛𝑆0 for all 𝑛 ≥

1. 

The Kagi construction is closely related to the concepts of H-variation and kagi-H-

inversion introduced by Pastukhov (2005). The H-variation 𝑉𝑇(𝐻, 𝑃) of the process 𝑃(𝑡) over 

the interval [0, T] is defined as: 

𝑉𝑇(𝐻, 𝑃) = sup
𝑇2

∑ |𝑃(𝑡𝑙) − 𝑃(𝑡𝑙−1)|
𝐿
𝑙=1          (14) 

where 𝑇2 is the set of all finite partitions (𝑡0, 𝑡1, … , 𝑡𝐿) such that 0 ≤ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐿 ≤ 𝑇 and 

|𝑃(𝑡𝑙) − 𝑃(𝑡𝑙−1)| ≥ 𝐻 for 𝑙 = 1,… , 𝐿.  

The kagi-H-inversion 𝑁𝑇(𝐻, 𝑃) is defined as the number of times the price process 𝑃(𝑡) 

changes direction by at least 𝐻 over the interval [0, T]. In the Kagi construction, this corresponds 

directly to the number of sign changes in the sequence {𝑆𝑛}. 

By analyzing the Kagi chart, one can compute 𝑉𝑇(𝐻, 𝑃)  and 𝑁𝑇(𝐻, 𝑃) , which offer 

quantitative insights into the volatility and directional dynamics of the process 𝑃(𝑡) . These 

measures are useful for both developing trading strategies and conducting statistical analysis of 

financial time series. 

To illustrate the Kagi construction, consider a simplified price series 𝑃(𝑡) over the interval 

[0, T] with 𝐻 = 1. Suppose the initial price is 𝑃(0) = 10. The price reaches 𝑃(𝑡) = 11 at 𝑡 = 𝑠0
𝑏, 

where the price range 𝑚𝑎𝑥
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡) − 𝑚𝑖𝑛

𝑡∈[0,𝑠0
𝑏]
𝑃(𝑡) ≥ 1. Since 𝑃(𝑠0

𝑏) = 𝑚𝑎𝑥
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡), we set 𝑠0

𝑎 =

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑡∈[0,𝑠0

𝑏]
𝑃(𝑡) = 0 . The initial trend direction is 𝑆0 = 𝑠𝑖𝑔𝑛 (𝑃(𝑠0

𝑎) − 𝑃(𝑠0
𝑏)) = 𝑠𝑖𝑔𝑛(10 −

11) = −1, indicating a starting local minimum. 

Since 𝑆0 = −1, we look for the next significant rise. The price increases to 𝑃(𝑡) = 12 at 

𝑡 = 𝑠1
𝑏 , satisfying 𝑚𝑎𝑥

𝑡∈[𝑠1
𝑎,𝑠1

𝑏]
𝑃(𝑡) − 𝑃(𝑠0

𝑎) = 2 ≥ 𝐻 . We identify 𝑠1
𝑎 = 𝑠1

𝑏  as the new local 

maximum and set 𝑆1 = 1. The process continues, alternately identifying significant rises and 

declines based on the threshold 𝐻. 
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In a Kagi chart, vertical lines represent price movements of magnitude at least 𝐻 , 

connecting successive local extrema. A change in line direction occurs when the price reverses 

by at least 𝐻 from the last extremum. In addition, line thickness or color is often employed to 

indicate trend direction: for example, a thin line may represent a downward (bearish) phase, 

while a thick line may indicate an upward (bullish) phase. 

Trading signals can be extracted from these structural features. A change in direction 

indicates a potential reversal and may serve as a buy or sell signal. Horizontal levels 

corresponding to past reversals act as support or resistance zones for future price movements. 

Furthermore, when the price surpasses a previous extremum by at least 𝐻, it often suggests 

a continuation of the prevailing trend. 

The choice of the threshold 𝐻 plays a critical role. A smaller 𝐻 captures more frequent 

reversals and short-term fluctuations, but it introduces greater noise. A larger 𝐻 filters out minor 

variations and highlights long-term dynamics, but may miss short-lived trading opportunities. 

Hence, the optimal 𝐻  depends on the asset’s volatility, the trader’s horizon, and prevailing 

market conditions. 

Importantly, the Kagi construction is not merely a charting tool but also connects to 

statistical concepts in technical analysis. The number of significant reversals corresponds to the 

kagi-H-inversion, while the cumulative price variation above the threshold is quantified by the 

H-variation. These quantities provide statistical measures of volatility, facilitate the development 

of systematic trading strategies, and contribute to the assessment of market efficiency. 

By employing the Kagi construction, traders can reduce complex price trajectories to an 

interpretable form, highlighting essential reversals and trend continuations. This approach filters 

out market noise and offers a clearer representation of the underlying price dynamics over time. 

 

2.3 Statistical Properties of Renko and Kagi Constructions 

While the Renko and Kagi constructions differ in methodology, they share several 

statistical properties that shed light on the behavior of financial time series. These properties are 

central to understanding asset price dynamics and form the basis for robust trading strategies. In 
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particular, their asymptotic behavior offers theoretical benchmarks for financial modeling and 

risk management. 

A key aspect is the behavior of the H-volatility 𝜈𝑇(𝐻, 𝑃) and the H-inversion 𝑁𝑇(𝐻, 𝑃) as 

the observation horizon 𝑇 → ∞. The former captures the average magnitude of significant price 

moves, while the latter measures the frequency of trend reversals. Pastukhov (2005) analyzed 

these properties for the Wiener process 𝑊(𝑡), a canonical model for asset prices due to its 

continuous paths and Gaussian increments. 

For the Wiener process scaled by volatility 𝜎, denoted 𝜎𝑊(𝑡), Pastukhov demonstrated 

that the H-volatility of order 𝑝 converges to a constant multiple of (𝜎𝐻)𝑝 as 𝑇 → ∞: 

lim
𝑇→∞

𝜈𝑇
(𝑝)(𝐻, 𝜎𝑊) = 𝑅𝑊(𝑝)(𝜎𝐻)

𝑝           (15) 

where the constant 𝑅𝑊(𝑝) depends on the order 𝑝 and the type of construction (Renko or Kagi). 

Specifically, for the Renko construction, the constant 𝑅𝑊(𝑝) is given by: 

𝑅𝑊(𝑝) = ∑
𝑛𝑝

2𝑛
∞
𝑛=1            (16) 

which follows from the discrete brick structure and its connection to the geometric distribution. 

For the Kagi chart, the corresponding constant has an integral representation: 

𝑅𝑊(𝑝) = ∫ (1 + 𝑥)𝑝𝑒−𝑥𝑑𝑥
∞

0
               (17) 

In the special 𝑝 = 1, both constructions yield 𝑅𝑊(1) = 2, leading to the conclusion: 

lim
𝑇→∞

𝜈𝑇(𝐻, 𝜎𝑊) = 2𝜎𝐻          (18) 

This implies that, asymptotically, the average significant price movement per reversal is 

proportional to the product of volatility 𝜎  and the threshold 𝐻 . The factor of 2 reflects the 

symmetry of the Wiener process, where upward and downward excursions of any given size are 

equally likely. 

These results highlight the self-similarity of the Wiener process and provide theoretical 

benchmarks against which empirical data can be compared. In practical terms, they suggest that 

Renko- and Kagi-based measures of volatility converge to universal constants under Brownian 

dynamics, thereby offering a statistically grounded approach to modeling financial time series. 
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Furthermore, the H-inversion 𝑁𝑇(𝐻, 𝜎𝑊) , representing the number of times the price 

process changes direction by at least 𝐻, also exhibits well-defined asymptotic properties. As 𝑇 →

∞, the expected number of H-inversions grows linearly with time, and satisfies: 

lim
𝑇→∞

𝑁𝑇(𝐻,𝜎𝑊)

𝑇
=

1

𝐸[𝜏(𝐻,𝜎𝑊)]
           (19) 

where 𝐸[𝜏(𝐻, 𝜎𝑊)] denotes the expected waiting time between consecutive H-inversions. For 

the Wiener process, the first hitting time of the levels ±𝐻has expectation 𝐸[𝜏(𝐻, 𝜎𝑊)] = 𝐻2 𝜎2⁄ , 

yielding the explicit relation: 

lim
𝑇→∞

𝑁𝑇(𝐻,𝜎𝑊)

𝑇
=

𝐻2

𝜎2
                 (20) 

The asymptotic properties of H-volatility and H-inversion have important implications for 

financial modeling. The convergence of H-volatility to 2𝜎𝐻  provides a practical method for 

estimating the underlying volatility parameter. Specifically, by averaging the magnitude of 

significant price moves of size 𝐻 over a sufficiently long horizon, one may obtain: 

𝜎 ≈ 𝑣𝑇(𝐻, 𝑃)/(2𝐻)             (21) 

This approach is particularly useful when price dynamics resemble a Wiener process or 

when standard volatility estimators perform poorly in the presence of market anomalies. 

The H-inversion 𝑁𝑇(𝐻, 𝑃), in turn, serves as a diagnostic of market conditions. A higher 

frequency of inversions indicates a more volatile, range-bound market, where short-lived 

reversals dominate. Conversely, fewer inversions imply sustained directional trends, which can 

be favorable for trend-following strategies such as momentum trading. Monitoring the evolution 

of H-inversions thus allows traders to adjust their positions dynamically in response to prevailing 

market regimes. 

The dependence of H-volatility on 𝐻 and 𝜎 reflects intrinsic scaling laws in financial time 

series. In fractal and multifractal analysis, such scaling behaviors are employed to characterize 

the complexity and self-similarity of market dynamics. The consistent relationship between  

H-volatility and the threshold 𝐻 across different scales supports the use of fractal models in 

finance, offering a theoretical framework to interpret market irregularities and anomalies. 

Beyond their theoretical significance, the statistical properties of Renko and Kagi 

constructions have direct practical applications in trading strategy design. By exploiting the 
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insights provided by H-volatility and H-inversion, traders can improve decision-making and 

enhance risk management practices. A critical consideration is the selection of the threshold 𝐻, 

which governs the trade-off between sensitivity and noise. A smaller 𝐻 captures more frequent 

but smaller movements, making the chart highly responsive to short-term fluctuations but prone 

to false signals. Conversely, a larger 𝐻  filters out minor noise and emphasizes major price 

changes, though at the cost of delayed signal detection. The asymptotic properties help quantify 

these effects and thus provide guidance in choosing an appropriate threshold. 

The relationship between H-volatility and market volatility further informs practical 

aspects of trading, such as setting stop-loss levels and determining position sizes. Specifically, 

since the average significant price movement converges to 2𝜎𝐻, stop-loss orders can be placed 

at distances proportional to 𝐻, ensuring that risk limits are aligned with the expected variability 

of the price process. This approach helps strike a balance between avoiding excessive sensitivity 

to normal fluctuations and maintaining sufficient exposure to capture meaningful trends. 

The asymptotic regularity of H-inversion and H-volatility under specific stochastic models 

facilitates the integration of Renko and Kagi charts into algorithmic trading frameworks. 

Algorithms can be designed to trigger trading signals when an H-inversion is detected or when 

predefined H-volatility thresholds are crossed. By automating the identification of significant 

price movements, such systems enable faster adaptation to market conditions and help mitigate 

the influence of behavioral biases. 

Although the Wiener process provides a foundational benchmark for analyzing these 

constructions, real financial markets display features that go beyond simple Brownian motion. 

These include discontinuous jumps, heavy-tailed return distributions, volatility clustering, and 

long-memory effects. Extending the analysis to alternative stochastic processes allows for a more 

realistic representation of market dynamics and enhances the practical relevance of Renko and 

Kagi-based methods. 

Incorporating jumps into the price process, as modeled by Lévy processes, fundamentally 

alters both the frequency and magnitude of significant price movements. Jumps create 

discontinuities that can trigger multiple effective reversals in a single event, thereby reshaping 

the statistical properties of H-inversion and H-volatility. Studying Renko and Kagi constructions 



15 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

under Lévy dynamics thus provides valuable insights into markets subject to sudden shocks, such 

as those driven by macroeconomic news or liquidity shortages. 

Stochastic volatility models, such as the Heston model, capture the empirically observed 

phenomenon of volatility clustering. In this framework, the volatility parameter 𝜎(𝑡) evolves as 

a stochastic process, making the distributional properties of H-volatility and H-inversion 

explicitly time- and state-dependent. This setting offers a richer ground for analyzing risk 

dynamics and improving option pricing as well as volatility forecasting. 

Finally, fractional Brownian motion (fBM) incorporates long-range dependence via the 

Hurst exponent 𝐻 ∈ (0,1). When 𝐻 > 0.5, the process exhibits persistence, leading to fewer 

trend reversals and more extended trends; when 𝐻 < 0.5, it exhibits anti-persistence, generating 

more frequent reversals consistent with mean-reverting dynamics. Since fBM lacks the 

independent increments property of standard Brownian motion, the asymptotic behavior of  

H-inversion and H-volatility deviates systematically from the Wiener benchmark. This provides 

a natural framework for modeling markets with memory effects, such as emerging markets or 

assets with strong institutional trading patterns. 

 

2.4 Trading Strategies Based on Renko and Kagi Constructions 

The Renko and Kagi constructions not only serve as powerful tools for visualizing 

significant price movements but also provide a robust foundation for systematic trading 

strategies. By exploiting the statistical properties of H-constructions introduced in the previous 

sections, one can formulate rules that align with the underlying dynamics of the price process. 

Broadly, two classes of strategies emerge: momentum (trend-following) strategies and contrarian 

(mean-reversion) strategies. Although the empirical implementation in this study focuses on the 

contrarian approach—owing to its compatibility with mean-reverting spread processes—we 

briefly outline the momentum strategy for conceptual completeness. 

An H-strategy refers to a trading rule directly linked to the H-construction of either Renko 

or Kagi charts, where the threshold 𝐻 defines the minimal significant price movement. These 

strategies are formulated using the sequences of stopping times {𝑠𝑛
𝑎} and {𝑠𝑛

𝑏}, as defined in 

Sections 2.1 and 2.2, representing local extrema and confirmation points of reversals, 
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respectively. Since the distinction between Renko and Kagi constructions is minor for trading 

implementation, we treat them jointly under the umbrella of H-strategies. 

The momentum strategy seeks to exploit the continuation of established trends. A trader 

enters a long position at time 𝑠𝑛
𝑏 when the price process confirms a breakout above the previous 

local maximum 𝑃(𝑠𝑛−1
𝑎 ), and conversely enters a short position when the price breaks below the 

previous local minimum. The corresponding trading signals are:  

Buy if 𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛

𝑎) > 0 or 𝑃(𝑠𝑛
𝑎) − 𝑃(𝑠𝑛−1

𝑎 ) > 0 (upward breakout); 

Sell if 𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛

𝑎) < 0 or 𝑃(𝑠𝑛
𝑎) − 𝑃(𝑠𝑛−1

𝑎 ) < 0 (downward breakout). 

The profit from a single trade executed between the stopping times 𝑠𝑛−1
𝑏  and 𝑠𝑛

𝑏 is given by: 

𝑌𝑠𝑛𝑏 = (𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛−1

𝑏 )) ⋅ 𝑠𝑖𝑔𝑛⁡(𝑃(𝑠𝑛
𝑎) − 𝑃(𝑠𝑛−1

𝑎 ))        (22) 

Aggregating over the interval [0, T], the total profit can be expressed (up to a first-order 

approximation) as: 

𝑌𝑇(𝐻, 𝑃) ≈ (𝑣𝑇(𝐻, 𝑃) − 2𝐻) ⋅ 𝑁𝑇(𝐻, 𝑃)         (23) 

where 𝑣𝑇(𝐻, 𝑃) is the H-volatility and 𝑁𝑇(𝐻, 𝑃) is the H-inversion, as defined in Section 2.3. 

Equation (23) reflects the intuition that each effective price reversal contributes an average 

payoff equal to the excess movement 𝑣𝑇(𝐻, 𝑃) − 2𝐻, multiplied by the total number of reversals. 

The contrarian strategy builds on the premise that prices tend to revert to their mean after 

substantial movements. Within the H-construction framework, a trader following this approach 

would short the asset at a stopping time 𝑠𝑛
𝑏  after a significant upward move, anticipating 

a subsequent decline, and go long at 𝑠𝑛
𝑏 after a significant downward move, expecting a rebound. 

The trading rules can be summarized as: 

Sell if 𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛

𝑎) > 0 or 𝑃(𝑠𝑛−1
𝑎 ) − 𝑃(𝑠𝑛

𝑎) > 0; 

Buy if 𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛

𝑎) < 0 or 𝑃(𝑠𝑛−1
𝑎 ) − 𝑃(𝑠𝑛

𝑎) < 0. 

The profit from a single trade executed between 𝑠𝑛−1
𝑏  and 𝑠𝑛

𝑏 is defined as: 

𝑌𝑠𝑛𝑏 = (𝑃(𝑠𝑛
𝑏) − 𝑃(𝑠𝑛−1

𝑏 )) ⋅ 𝑠𝑖𝑔𝑛⁡(𝑃(𝑠𝑛−1
𝑎 ) − 𝑃(𝑠𝑛

𝑎))        (24) 

Aggregating over the interval [0, T], the cumulative profit can be approximated as: 

𝑌𝑇(𝐻, 𝑃) ≈ (2𝐻 − 𝑣𝑇(𝐻, 𝑃)) ⋅ 𝑁𝑇(𝐻, 𝑃)         (25) 
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where 𝑣𝑇(𝐻, 𝑃) denotes the H-volatility and 𝑁𝑇(𝐻, 𝑃)  the H-inversion. 

Comparing equations (23) and (25), it is clear that the profitability of H-strategies critically 

depends on the relationship between 𝑣𝑇(𝐻, 𝑃) and 2𝐻. Specifically: 

• If 𝑣𝑇(𝐻, 𝑃) > 2𝐻 , momentum strategies yield positive profits, while contrarian 

strategies incur losses; 

• If 𝑣𝑇(𝐻, 𝑃) < 2𝐻, contrarian strategies become profitable, while momentum strategies 

lose money; 

• If 𝑣𝑇(𝐻, 𝑃) = 2𝐻, both strategies break even, producing zero expected profit. 

As established in Section 2.3, for processes like the standard Wiener process,  

the H-volatility converges to 𝑣𝑇(𝐻,𝑊) = 2𝐻  as 𝑇 → ∞ . This implies that neither the 

momentum nor the contrarian strategy would generate profit when applied to a pure Brownian 

motion, consistent with the efficient market hypothesis. 

More generally, the profitability of H-strategies is closely linked to the statistical properties 

of the underlying price process. For martingale processes with independent and identically 

distributed increments and zero drift (e.g., the Wiener process), we have 𝑣𝑇(𝐻, 𝑃) = 2𝐻, leading 

to zero expected profit for both strategies. For mean-reverting processes, such as the OU process, 

the H-volatility 𝑣𝑇(𝐻, 𝑃) is typically less than 2𝐻. In this case, contrarian strategies become 

potentially profitable, as prices are more likely to revert after significant deviations. Conversely, 

if the price process has a drift or exhibits persistent trends, then 𝑣𝑇(𝐻, 𝑃) may exceed 2𝐻 , 

favoring momentum strategies. 

In practical financial markets, asset prices rarely behave as perfect martingales.  

Mean-reversion is often observed in certain asset classes such as currencies, commodities, and 

correlated stock pairs, where contrarian strategies can be effective. Conversely, strong trending 

markets may provide profitable opportunities for momentum strategies. 

When implementing H-strategies based on Renko and Kagi constructions, several practical 

considerations arise. Transaction costs—such as trading fees, bid–ask spreads, and slippage—can 

materially reduce profitability, especially for high-frequency strategies. Short-selling restrictions 

may further limit the feasibility of taking both long and short positions. Moreover, the 

effectiveness of momentum versus contrarian strategies is often regime-dependent: periods of 
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elevated volatility or structural changes in the market may alter the statistical properties of 𝑃(𝑡), 

thereby shifting the balance between the two approaches. Finally, selecting an appropriate 

threshold 𝐻 is critical. A small 𝐻 increases sensitivity to price movements but amplifies noise, 

while a large 𝐻 filters noise but may delay signals. Robust backtesting and empirical calibration 

are therefore essential for optimizing strategy performance. 

 

3. Extended Properties of Renko and Kagi Constructions 

3.1 Properties of H-Constructions on the Ornstein–Uhlenbeck Process 

The OU process is a fundamental stochastic process widely used to model mean-reverting 

behavior in financial time series. It is defined by the stochastic differential equation (SDE): 

𝑑𝑋𝑡 = −𝜃(𝑋𝑡 − 𝜇)𝑑𝑡 + 𝜎𝑑𝐵𝑡          (26) 

where 𝜃 > 0  is the rate of mean reversion, 𝜇 is the long-term mean level, 𝜎 > 0 is the volatility 

parameter, and 𝐵𝑡 is a standard Brownian motion. For analytical convenience, and without loss 

of generality, we may set 𝜇 = 0, yielding the simplified SDE: 

𝑑𝑋𝑡 = −𝜃𝑋𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡          (27) 

The OU process exhibits a natural tendency to revert to its mean level, which makes it a 

suitable model for assets or spreads displaying mean-reverting characteristics. When applying H-

constructions (Renko or Kagi charts) to the OU process, it is important to understand how their 

properties differ from those observed with non-mean-reverting processes such as the standard 

Wiener process discussed in Section 2.3. 

In the framework of H-constructions, the H-volatility 𝜈𝑇(𝐻, 𝑃)  plays a critical role in 

determining the profitability of trading strategies. Recall that for the Wiener process, 

𝑣𝑇(𝐻,𝑊) → 2𝐻 as 𝑇 → ∞, leading to zero expected profit for both momentum and contrarian 

strategies. By contrast, the mean-reverting nature of the OU process affects the H-volatility 

significantly: large deviations are less likely to persist, and the process is more likely to reverse 

direction before reaching a magnitude of 𝐻. 

A key asymptotic property of the OU process is that its H-volatility satisfies 𝐻 ≤

𝜈𝑇(𝐻, 𝑃) < 2𝐻  for 𝑇 → ∞. This inequality reflects the fact that the H-volatility for the OU 
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process is strictly less than 2𝐻, but typically bounded away from zero and close to or above 𝐻, 

owing to the mean-reverting structure of the process. 

Theorem 3.1. Let 𝑃(𝑡) follow the OU process defined in (26), and let 𝜈𝑇(𝐻, 𝑃) denote the 

H-volatility under a Renko or Kagi construction. Then, as 𝑇 → ∞, 

lim
𝑇→∞

𝜈𝑇(𝐻, 𝑃) < 2𝐻           (28) 

The mean-reverting nature of the OU process causes price movements to reverse more 

frequently and with smaller magnitudes compared to a pure random walk. As a consequence, the 

average significant price movement per trend reversal (captured by the H-volatility) is strictly 

less than the benchmark value 2𝐻 obtained for the Wiener process. 

Given that 𝜈𝑇(𝐻, 𝑃) < 2𝐻 for the OU process, contrarian (mean-reversion) H-strategies 

become theoretically profitable. According to the profit formula: 

𝑌𝑇(𝐻, 𝑃) = (2𝐻 − 𝜈𝑇(𝐻, 𝑃)) ⋅ 𝑁𝑇(𝐻, 𝑃)         (29) 

where 𝑌𝑇(𝐻, 𝑃)  is the total profit over the period [0, T] and 𝑁𝑇(𝐻, 𝑃)  is the H-inversion, 

representing the number of significant price reversals. Since (2𝐻 − 𝜈𝑇(𝐻, 𝑃)) > 0 for the OU 

process, the expected total profit 𝑌𝑇(𝐻, 𝑃) is positive under the assumptions of zero transaction 

costs and unrestricted trading. A detailed proof is provided in Appendix A. 

Assets or spreads modeled by an OU process are natural candidates for contrarian 

strategies. Examples include interest rate spreads, currency pairs with pegged exchange rates, 

and certain commodity spreads. The choice of the threshold 𝐻 is crucial: a smaller 𝐻 captures 

more frequent reversals but may be overly sensitive to noise, while a larger 𝐻 produces clearer 

signals at the cost of fewer opportunities. In practice, transaction costs, bid–ask spreads, and 

slippage can significantly erode the theoretical profitability. 

The theoretical results also rely on the assumption that the OU process parameters 𝜃 and 𝜎 

remain constant. In real markets, these parameters are time-varying, requiring ongoing 

calibration. Numerical simulations and empirical studies confirm that 𝜈𝑇(𝐻, 𝑃)  converges to 

a value strictly below 2𝐻. This reinforces the potential profitability of contrarian strategies in 

mean-reverting markets when implemented with Renko and Kagi constructions. 
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3.2 Properties of H-Constructions on the Discrete Process 

In practical applications, financial data are typically recorded at discrete time intervals  

(e.g., daily closing prices), rather than continuously. This discreteness introduces certain 

challenges when applying H-construction methods, such as Renko or Kagi charts, which were 

originally designed for continuous processes. In this section, we explore the properties and 

implications of applying H-constructions to discrete stochastic processes, focusing on the 

random walk and the autoregressive AR(1) process. 

 

3.2.1 Random Walk 

Consider a discrete-time stochastic process {𝑌(𝑡)}  defined as the cumulative sum of 

independent and identically distributed (i.i.d.) random variables: 

𝑌(𝑡) = ∑ 𝑋(𝑖)𝑡
𝑖=0 , 𝑋(𝑖) ∼ 𝑁(0, 𝜎2), 𝑡 = 0,1,2, …               (30) 

This process {𝑌(𝑡)} is a simple Gaussian random walk. When attempting to apply the H-

construction to {𝑌(𝑡)} , we encounter an issue stemming from the discrete sampling of the 

process. Specifically, the probability that the process moves exactly 𝐻 units between two discrete 

observation times is zero: 

 𝑃(|𝑌(𝑡 + 𝑛) − 𝑌(𝑡)| = 𝐻) = 0, ∀𝑛 ≥ 1, 𝑡 ≥ 0         (31) 

In continuous time (e.g., for Brownian motion), threshold crossings occur exactly at level 

𝐻. However, in discrete time, because we only observe the process at sampled points, crossings 

typically occur with an overshoot, i.e., the process jumps beyond 𝐻 rather than hitting it precisely. 

Formally, at each stopping time 𝑠𝑏𝑛 where the process crosses the threshold 𝐻, we observe 

an overshoot 𝐻̃𝑛 such that: 

|𝑌(𝑠𝑎𝑛) − 𝑌(𝑠𝑏𝑛)| = 𝐻̃𝑛 ≥ 𝐻         (32) 

where 𝐻̃𝑛  is a random variable representing the actual movement, which is at least 𝐻  but 

possibly larger due to the continuous increments being sampled only at discrete times. 

This overshoot leads to an upward bias in the empirical H-volatility relative to the 

idealized continuous-time case. In particular, the expected number of H-inversions over a time 

horizon 𝑇, denoted 𝑛𝑇(𝐻, 𝑌), satisfies: 
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 𝑛𝑇(𝐻, 𝑌) =
2𝐸[𝐻̃𝑛]

𝐻
≥ 2 or 𝑣𝑇(𝐻, 𝑌) = 2𝐸[𝐻̃𝑛] ≥ 2𝐻        

where the benchmark value of 2 corresponds to the continuous-time martingale case. Thus, 

overshoots inflate the measured H-volatility, even though the underlying process remains 

a martingale. 

In practical terms, when applying H-constructions to real-world discrete financial data, one 

often observes an H-volatility greater than the theoretical benchmark of 2. Importantly, this does 

not imply non-martingale behavior, nor does it suggest that a trend-following H-strategy would 

be profitable. The inflation is simply a consequence of overshoot effects, which are especially 

pronounced when the increment standard deviation 𝜎  is comparable in magnitude to the 

threshold 𝐻. 

To better understand the overshoot, we examine its dependence on the ratio 𝐻/𝜎. When 𝐻 

is large relative to 𝜎, the expected overshoot is small and 𝐸[𝐻̃𝑛] → H. Conversely, when 𝐻 is 

small relative to 𝜎, the overshoot becomes larger on average, leading to a greater upward bias in 

the empirical H-volatility ν𝑇(𝐻, 𝑌). 

 

3.2.2 Autoregressive Process 𝐴𝑅(1) 

Next, we examine the first-order autoregressive process, AR(1), which can be regarded as 

a discrete-time analogue of the OU process: 

𝑌(𝑡) = 𝛼𝑌(𝑡 − 1) + 𝑋(𝑡), 𝑋(𝑡) ∼ 𝑁(0, 𝜎2), 𝑡 = 1,2, …         (33) 

where, 𝛼 ∈ [0,1) is the autoregressive coefficient that determines the degree of mean reversion. 

When ∣ 𝛼 ∣< 1, the process is stationary with variance 𝑉𝑎𝑟(𝑌) = 𝜎2 1 − 𝜎2⁄ . 

As in the random walk case, the AR(1) process does not satisfy the conditions required for 

precise H-construction steps, since the increments have a continuous distribution: 

𝑃(|𝑌(𝑡 + 𝑛) − 𝑌(𝑡)| = 𝐻) = 0, ∀𝑛 ≥ 1, 𝑡 ≥ 0         (34) 

Thus, crossings of the threshold 𝐻 occur with an overshoot at each stopping time 𝑠𝑏𝑛: 

|𝑌(𝑠𝑎𝑛) − 𝑌(𝑠𝑏𝑛)| = 𝐻̃𝑛 ≥ 𝐻         (35) 

where 𝐻̃𝑛 is a random variable representing the actual displacement. 
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A key difference from the random walk is that the AR(1) process exhibits mean-reverting 

behavior. Although it is not strictly bounded, its stationary distribution has finite variance, which 

effectively restricts the typical range of fluctuations. This feature implies that overshoots are less 

extreme compared to the random walk, where variance grows without bound. 

Regarding overshoot behavior, while the expected overshoot E[𝐻̃𝑛 ] decreases as 𝐻 

increases, it generally remains strictly larger than 𝐻 . Unlike the random walk case, where 

E[𝐻̃𝑛] → H  when 𝐻 ≫ 𝜎 , the mean-reverting structure of the AR(1) process prevents the 

overshoot from converging precisely to 𝐻. 

Consequently, it is possible to observe an H-volatility measure exceeding the theoretical 

benchmark of 2, 𝑛𝑇(𝐻, 𝑌) ≥ 2, without contradicting Theorem 3.1. This behavior is consistent 

with the properties of discrete mean-reverting processes and reflects the presence of overshoot 

rather than a violation of martingale conditions. 

To quantify this effect, we define the expected overshoot empirically as: 

 E[𝐻̃𝑛] =
1

𝑁
∑ |𝑌(𝑠𝑎𝑛) − 𝑌(𝑠𝑏𝑛)|
𝑁
𝑛=1 ⁡⁡             (36) 

and introduce the ratio, 

𝑅(𝐻, 𝑌) =
𝑛𝑇(𝐻,𝑌)

2E[𝐻̃𝑛]
∈ [1,∞)             (37) 

This ratio measures the deviation of the observed H-volatility from the continuous-time 

benchmark, providing a convenient way to quantify the inflation due to overshoot in the AR(1) 

process. 

 

3.2.3 Implications for Trading Strategies and Parameter Selection 

When implementing H-strategies on discrete processes, the overshoot phenomenon 

introduces several practical considerations that directly affect trading performance. 

First, overshoots influence trading profitability. In contrarian strategies, overshoots can be 

beneficial: since the strategy takes positions opposite to recent price movements, trades are 

entered at more favorable levels—higher for short positions and lower for long positions. This 

mechanism may improve profitability compared to the continuous-time benchmark. Conversely, 

in trend-following strategies, overshoots tend to reduce profitability, as trades are executed only 
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after the price has already moved beyond the threshold 𝐻, resulting in less advantageous entry 

points. 

Second, overshoots impact transaction costs. Because the realized displacement 𝐻̃𝑛  is 

larger than 𝐻, the effective gain per trade can deviate from the theoretical expectation. A useful 

proxy for evaluating the cost-to-gain balance is the ratio 𝑘/𝐸[𝐻̃𝑛], where 𝑘 denotes transaction 

costs. A higher ratio indicates that transaction costs consume a larger fraction of expected per-

trade gains, potentially eroding overall profitability, particularly when 𝐻 is small relative to 𝜎. 

Selecting appropriate values for the threshold 𝐻 and time horizon 𝑇 is therefore crucial for 

the success of H-strategies on discrete processes. There is a fundamental trade-off between 

overshoot effects and trading frequency. Increasing 𝐻  reduces the relative magnitude of 

overshoots, since 𝐸[𝐻̃𝑛] → H as 𝐻/𝜎 → ∞. This improvement enhances the ratio 𝑅(𝐻, 𝑌) and 

lowers the proportion of costs relative to gains. However, decreasing 𝐻 increases the number of 

H-inversions 𝑛𝑇(𝐻, 𝑌), leading to more trading opportunities and potentially higher aggregate 

profits. At the same time, overshoot effects become more pronounced and transaction costs 

represent a larger share of profits. 

Thus, there exists an optimal value of 𝐻  that maximizes profitability by balancing the 

trade-off between trade frequency, overshoot effects, and transaction costs. This optimal 

threshold depends on the properties of the underlying process 𝑌(𝑡), including its volatility 𝜎, the 

degree of autocorrelation 𝛼 (in AR(1) processes), and the level of transaction costs 𝑘. In addition, 

ensuring statistical reliability requires a sufficient number of H-inversions 𝑛𝑇(𝐻, 𝑌) . This 

condition may necessitate either extending the observation horizon 𝑇 or selecting a smaller 𝐻⁡to 

increase the number of data points. 

Further refinements can be achieved through adaptive strategies, in which 𝐻⁡is allowed to 

vary with market conditions. For example, the threshold can be scaled with volatility forecasts 

(e.g., from a GARCH model), thereby maintaining a roughly constant ratio between 𝐻⁡and 𝜎 and 

mitigating the overshoot effect. Moreover, analyzing the empirical distribution of overshoots 𝐻̃𝑛 

provides valuable insights. In particular, trades associated with unusually large overshoots, such 

as 𝐻̃𝑛 > 2𝐻 , may lead to adverse outcomes in contrarian strategies, as subsequent mean 
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reversion may be insufficient to generate profits. Filtering or adjusting strategies around such 

scenarios can further improve performance. 

In summary, applying H-constructions to discrete financial processes introduces 

complexities absent in continuous models. Overshoots not only bias the measurement of  

H-volatility but also affect the profitability and robustness of trading strategies. Careful selection 

of the threshold 𝐻, together with an understanding of the underlying process characteristics, is 

essential for optimizing trading performance. Adaptive thresholds and overshoot-aware 

adjustments offer promising avenues for enhancing the effectiveness of H-strategies in practical 

financial applications. 

 

4. Pairs Trading Based on the Contrarian H-strategy 

Pairs trading strategies typically consist of three steps: (i) the formation of pairs, (ii) the 

rule for opening a position on the spread, and (iii) the rule for closing the position. In the 

contrarian H-strategy, however, the latter two steps are unified into a single reversal rule: the 

signal to close an existing position simultaneously serves as the signal to open a new position in 

the opposite direction. This section outlines the construction of the strategy based on Kagi charts, 

together with the dataset and testing methodology employed in the empirical analysis. 

 

4.1 Data 

To evaluate the effectiveness of contrarian H-strategies in pairs trading, we employ daily 

adjusted closing prices of stocks from both the U.S. and Chinese markets. The Chinese stock 

market data are obtained from the iFinD database, while the U.S. data are cross-checked with 

publicly available datasets to ensure consistency. The study covers several major indices of 

varying capitalization levels. For each index, we adopt the rolling constituent approach, meaning 

that the sample includes the constituent stocks corresponding to each year of the testing period. 

Table 1 summarizes the datasets used, including the number of constituents, the full sample 

period, and the designated out-of-sample testing window. The out-of-sample period begins one 

year after the start of the full sample period, reflecting the standard one-year formation and one-

year trading structure of Gatev et al. (2006). This cross-market setting allows us to examine the 
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robustness of the contrarian H-strategy across different institutional environments and 

capitalization structures, providing a comprehensive basis for comparison. 

Table 1. Dataset Overview: Constituents and Sample Periods. 

Stock indexes Number of constituents Entire data period Out-of-sample period 

S&P 500 500 Jan 1995-June 2024 Jan 1996-June 2024 

CSI 300 300 Jan 2005-June 2024 Jan 2006-June 2024 

CSI 100 100 Jan 2006-June 2024 Jan 2007-June 2024 

CSI 200 200 Jan 2007-June 2024 Jan 2008-June 2024 

CSI 500 500 Jan 2007-June 2024 Jan 2008-June 2024 

Note: For the Number of constituents, this paper includes the constituent stocks for each year. 

• S&P 500 Index: The S&P 500 comprises 500 leading large-cap U.S. companies across 

a broad range of sectors. The dataset spans from January 1995 to June 2024, offering 

nearly three decades of historical data for robust empirical analysis. The testing period 

begins in January 1996 and extends to June 2024 under a rolling formation-and-

trading framework. This dataset enables us to evaluate the performance of pairs 

trading strategies in a relatively mature and efficient market. 

• CSI 300 Index: The CSI 300 consists of 300 of the largest and most liquid A-share 

stocks listed on the Shanghai and Shenzhen stock exchanges. The dataset covers the 

period from January 2005 to June 2024, with the testing period starting in January 

2006 and continuing until June 2024 under the rolling framework. As the primary 

benchmark for the Chinese equity market, this dataset allows us to examine the 

behavior of pairs trading strategies in an emerging market setting. 

• CSI 100 Index: The CSI 100 represents the top 100 companies by market 

capitalization within the CSI 300, the CSI 100 dataset spans from January 2006 to 

June 2024, with the testing period beginning in January 2007. By focusing on the 

largest Chinese firms, this dataset facilitates the assessment of pairs trading strategies 

among the most prominent and potentially more efficient segment of the Chinese 

market. 

• CSI 200 Index: The CSI 200 comprises the next 200 largest firms following the CSI 

100, representing mid-cap stocks. The data cover the period from January 2007 to June 

2024, with the testing period starting in January 2008. This dataset enables the analysis 
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of pairs trading strategies in the mid-cap segment, which may display distinct market 

dynamics relative to large-cap firms. 

• CSI 500 Index: The CSI 500 consists of 500 small-cap companies and spans the 

period from January 2007 to June 2024, with the testing period beginning in January 

2008. By incorporating small-cap firms, this dataset provides an opportunity to 

examine pairs trading strategies in a segment that is potentially less efficient and more 

volatile compared to large- and mid-cap stocks. 

Each dataset contains the constituent stocks for each year within the sample period, 

ensuring that changes in index composition are properly incorporated into the analysis. Pairs 

trading strategies aim to exploit temporary mispricings between correlated securities, thereby 

capitalizing on market inefficiencies. The profitability of such strategies is expected to vary with 

the degree of market efficiency across different indexes. In general, large-cap stocks, such as 

those in the S&P 500 and CSI 100, tend to operate in relatively efficient markets due to higher 

liquidity and greater analyst coverage. In contrast, mid-cap and small-cap stocks, represented by 

the CSI 200 and CSI 500, may exhibit lower levels of efficiency, thereby offering greater 

opportunities for profitable pairs trading. 

Accordingly, we hypothesize that pairs trading strategies will yield higher returns in the 

CSI 500, where market inefficiencies are more pronounced, compared with the larger and more 

efficient stocks in the CSI 100. Examining the profitability of pairs trading across market 

segments thus provides an indirect measure of relative market efficiency, since higher abnormal 

returns are typically indicative of lower efficiency. 

Following Gatev et al. (2006), we adopt a formation–trading period framework. 

Specifically, a 12-month formation period is used to identify potential pairs and calibrate the 

trading model, followed by a 6-month trading period in which these pairs are actively traded. The 

trading commences on the first business day after the formation period and continues until the 

end of the designated horizon. For example, in the case of the S&P 500 dataset, the first 

formation window spans January 1995 to December 1995, with the corresponding trading 

window from January 1996 to June 1996. This framework is consistently applied across all 

datasets, with adjustments to the start date according to data availability (see Table 1). 
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To enhance robustness, we generate overlapping trading periods. Each month, a new 

formation period concludes and a new trading period begins, resulting in multiple concurrent 

trading windows for most months. Returns are then averaged across overlapping periods to 

obtain more stable estimates. 

Notably, our sample includes periods of heightened volatility, such as the Global Financial 

Crisis (GFC), the Bull and Bear (BNB) cycle, and the COVID-19 pandemic. Although short-

selling restrictions were temporarily imposed during the GFC, the pairs trading strategy remains 

applicable, as institutional investors managing diversified portfolios can implement the trades 

through intra-portfolio adjustments rather than traditional short-selling mechanisms. 

 

4.2 Stocks Pre-Selection 

To evaluate our pairs trading strategy, we carefully selected stocks from multiple datasets, 

emphasizing liquidity and market representativeness. For the S&P 500 and CSI 300 indexes, 

which consist of large-cap and highly liquid stocks, we employed the entire set of constituents 

without applying additional liquidity filters. These indexes inherently include well-traded, high–

market-cap companies, ensuring that our strategy is tested on stable and widely traded assets. 

Larger companies generally exhibit lower levels of mispricing because they attract significant 

attention from institutional and individual investors. Consequently, we expect the profit estimates 

from these datasets to be relatively conservative. 

For the CSI 100 and CSI 200 indexes, which represent large-cap and mid-cap subsets of 

the CSI 300, we also included all constituents without further filtering. This design allows us to 

assess the performance of the strategy across different tiers of market capitalization within the 

Chinese market and to evaluate how market efficiency and liquidity affect profitability in large-

cap versus mid-cap segments. 

To explore the potential for higher returns in less efficient markets, we incorporated the 

CSI 500 index, which comprises small-cap companies. These stocks are more prone to 

mispricing due to limited analyst coverage and lower investor attention, but they also pose 

greater liquidity challenges. To mitigate this issue, we applied a liquidity filter based on trading 

activity. Specifically, we required that each stock have no more than ten non-trading days during 

the 12-month formation period used for strategy calibration. This threshold, less strict than 



28 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

requiring uninterrupted trading, accounts for occasional suspensions due to corporate 

announcements or regulatory interventions. By allowing up to ten such days, we expand the 

stock pool while preserving the dataset’s reliability for pairs trading. 

During the trading period, if a stock experienced a non-trading day—indicated by zero 

price or volume—we carried forward its previous day’s closing price to maintain continuity in 

spread calculations. However, no positions were opened or closed on those days, regardless of 

any trading signals generated, since transactions cannot be executed when the stock is inactive. 

This rule aligns the backtest with realistic market conditions. 

Consistent with industry practice, we used opening and closing auction prices for trade 

entries and exits to reduce the impact of bid–ask spread variations. In both the U.S. and Chinese 

markets, these prices reflect high trading volumes and can be executed with greater confidence. 

Finally, we imposed no additional filters such as sector or industry classifications. This 

open selection framework ensures that the strategy adapts dynamically to diverse market 

conditions and provides a comprehensive assessment of each dataset’s potential for pairs trading 

opportunities. 

 

4.3 Pairs Formation Criteria 

We take the logarithm of the prices of all stocks pre-selected for pairs trading based on the 

12-month historical period (January 2004 to December 2004). For each dataset—All stocks, CSI 

100, CSI 200, and CSI 500—we construct all possible stock pairs and define their spread process 

as: 

𝑦𝑖,𝑗(𝑡) = 𝑙𝑜𝑔𝑃𝑖(𝑡) − 𝑙𝑜𝑔𝑃𝑗(𝑡)            (38) 

where 𝑃𝑖(𝑡) and 𝑃𝑗(𝑡) are the prices of stocks 𝑖 and 𝑗 on day 𝑡. 

For each spread process, we compute its standard deviation σ𝑖,𝑗. The threshold parameter 

𝐻𝑖,𝑗 in the H-strategy is set equal to this standard deviation: 

𝐻𝑖,𝑗 = σ𝑖,𝑗 

Next, we apply the H-construction to each spread and calculate two key measures:  

the H-volatility 𝜈𝑖,𝑗(𝐻𝑖,𝑗) and H-inversion 𝑁𝑖,𝑗(𝐻𝑖,𝑗). All pairs are then ranked in descending 
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order by their H-inversion. Pairs with higher H-inversion values are expected to exhibit stronger 

mean-reversion behavior during the trading period and therefore provide greater profit 

opportunities. 

The H-inversion captures several important aspects of the spread. First, a smaller spread 

standard deviation (analogous to the squared distance in Gatev et al., 2006) implies a smaller 𝐻, 

which generally leads to a higher H-inversion. Second, for two spreads with the same 𝐻 and 

𝜈(𝐻), a larger H-inversion indicates higher potential profitability, as established in Section 3.2.3. 

Finally, a larger H-inversion corresponds to a larger sample size in the H-construction, which 

enhances the statistical reliability of the calibration. 

For each dataset, we select the top 𝑁 pairs with the highest H-inversion values. Unlike 

some earlier studies, we restrict each stock to appear in only one selected pair. This one-to-one 

matching rule avoids situations where the same stock could be traded long in one pair and short 

in another simultaneously. Although this restriction may exclude some profitable combinations, 

it enhances portfolio diversification and prevents overlapping exposures. 

 

4.4 Trading Rules 

Trading begins on the first day of the trading period for all pairs selected during the 

formation stage and continues until the final day, at which point all open positions are closed. 

This design ensures continuous market exposure, allowing us to capture profit opportunities as 

they arise. 

To determine the initial trading direction for each pair, we apply the H-construction to the 

historical formation period using the calibrated parameter 𝐻𝑖,𝑗  (see Section 4.3). We then 

examine the spread process 𝑦𝑖,𝑗(𝑡) = 𝑙𝑜𝑔𝑃𝑖(𝑡) − 𝑙𝑜𝑔𝑃𝑗(𝑡) at the end of the formation period to 

identify its last local extremum. This step ensures that the virtual trading during the formation 

period transitions seamlessly into real trading in the subsequent six-month trading period. 

If the spread ends with a local maximum, we open a long spread position on the first day of 

trading by buying stock 𝑖 and selling short stock 𝑗. This setup reflects the expectation that the 

spread will mean-revert downward from its local maximum toward a local minimum. Conversely, 
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if the spread ends with a local minimum, we open a short spread position (sell stock 𝑖, buy 

stock 𝑗), anticipating that the spread will revert upward toward a local maximum. 

We monitor the spread process 𝑦𝑖,𝑗(𝑡)  and generate trading signals using  

the H-construction. A sell signal occurs at the first time 𝑡 after the last stopping time 𝑠𝑏0 of the 

formation period such that: 

 𝑦𝑖,𝑗(𝑡) ⁡− min
𝑠𝑏0≤n≤t

𝑦𝑖,𝑗(𝑛) ≥ 𝐻𝑖,𝑗           (39) 

This condition identifies the moment when the spread has moved upward by more than 𝐻𝑖,𝑗 

from its most recent local minimum, thereby recognizing the occurrence of a new local minimum. 

Upon receiving the sell signal at 𝑠𝑏1 = 𝑡, we reverse our position from long to short. Specifically, 

we close the existing long position by selling stock 𝑖  and buying back stock 𝑗 , and 

simultaneously open a new short position on the spread by shorting stock 𝑖 and going long in 

stock 𝑗. 

We continue to track the spread process 𝑦𝑖,𝑗(𝑡) until the next buy signal, which occurs at 

the first time 𝑡 after 𝑠𝑏1 such that: 

max
𝑠𝑏1≤n≤t

𝑦𝑖,𝑗(𝑛) − 𝑦𝑖,𝑗(𝑡) ≥ 𝐻𝑖,𝑗          (40) 

This condition indicates that the spread has declined by more than 𝐻𝑖,𝑗 from its most recent 

local maximum, thereby identifying a new local maximum. At this point, we reverse our position 

back to long on the spread. 

The procedure is applied iteratively throughout the trading horizon. The strategy remains 

continuously invested, alternating between long and short positions in the spread according to the 

signals generated by the H-construction. On the last day of the trading period, all open positions 

are liquidated to conclude the trading cycle. 

If the spread process ends at a local minimum at the conclusion of the formation period, we 

adjust our initial trading action accordingly. In this case, we establish a short position in the 

spread by shorting stock 𝑖 and buying stock 𝑗, anticipating that the spread will increase from this 

local minimum toward the next local maximum. Thereafter, the same H-construction rules are 

applied as described above. 
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We apply the H-construction trading strategy consistently across all four datasets. In the All 

Stocks sample, the method effectively identifies and exploits spread relationships even within 

a highly diverse stock universe. The large number of available pairs generates ample trading 

opportunities, though liquidity constraints in smaller-cap stocks warrant caution. For the CSI 100 

dataset, the high liquidity and market prominence of these large-cap constituents facilitate trade 

execution at desired prices. The relatively stable comovements among blue-chip stocks further 

support consistent strategy performance. In contrast, trading within the CSI 200 and CSI 500 

universes involves mid- and small-cap stocks, where higher volatility and liquidity frictions may 

arise. Nevertheless, the H-construction remains applicable, with appropriate adjustments made to 

reflect the specific characteristics of these market segments. 

By adhering to the defined trading rules and systematically applying the H-strategy, we 

seek to generate robust profitability across varying market conditions and datasets. Continuous 

market engagement and disciplined position management constitute key features of the strategy, 

enabling us to capitalize on the mean-reverting dynamics of spread processes identified during 

the formation period. 

 

4.5 Excess Returns and Transaction Costs 

To evaluate the excess returns of our pairs trading strategy, we follow the methodology 

commonly used in the literature (e.g., Gatev et al., 2006; Do and Faff, 2010). The strategy 

maintains a dollar-neutral position by investing $1 in both the long and short legs of each pair. 

Value-weighted daily mark-to-market cash flows from each pair are computed and interpreted as 

excess returns. 

The daily excess return of the portfolio, 𝑟𝑃,𝑡, is calculated using the formula: 

𝑟𝑃,𝑡 =
∑ 𝑤𝑖,𝑡  𝑐𝑖,𝑡𝑖∈𝑃

∑ 𝑤𝑖,𝑡𝑖∈𝑃
           (41) 

where, 𝑐𝑖,𝑡 is the daily cash flow from pair 𝑖. 𝑤𝑖,𝑡 represents the weight of pair 𝑖 at time 𝑡. 

At initiation, each pair is assigned a unit weight (𝑤𝑖,0 = 1), which evolves over time as: 

𝑤𝑖,𝑡 = 𝑤𝑖,𝑡−1 (1 + 𝑐𝑖,𝑡−1) = ∏ (1 + 𝑐𝑖,𝑠)
𝑡−1
𝑠=1          (42) 

The daily cash flow or return from a pair is given by: 
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𝑐𝑖(𝑡) = ∑ 𝐼𝑗(𝑡)𝑣𝑗(𝑡) 𝑟𝑗(𝑡)
2
𝑗=1 ⁡          (43) 

where 𝐼𝑗(𝑡) is an indicator variable, equal to 1 if a long position is held in stock 𝑗 at time 𝑡, and 

−1 if a short position is held. 𝑟𝑗(𝑡) is the daily return of stock 𝑗. 𝑣𝑗(𝑡) is the weight of stock 𝑗, 

used to calculate daily cash flows, and evolves as: 

  𝑣𝑗(𝑡) = 𝑣𝑗,𝑡−1(1 + 𝑟𝑗,𝑡−1) = ∏ (1 + 𝑟𝑗(𝑠))
𝑡−1
𝑠=1          (44) 

Daily excess returns are then compounded to obtain monthly returns. 

Transaction costs are known to significantly affect the profitability of pairs trading. Bowen 

et al. (2010) reported a reduction of more than 50% in excess returns for high-frequency 

strategies when a fee of 15 basis points was applied. Similarly, Do and Faff (2012), in replicating 

Gatev et al. (2006), found that incorporating realistic transaction costs rendered the strategy 

unprofitable. 

In our baseline analysis, we assume transaction costs of 0.30% (30 bps) per trade, 

reflecting average retail brokerage fees in the Chinese market as of June 2024. For comparison, 

U.S. brokerage fees are generally lower, with commissions often below 0.10% per trade, 

particularly for stocks priced above $5. Accordingly, a 0.10% cost per trade translates into an 

effective round-trip cost of approximately 0.20% per stock, or 0.40% for the pair as a whole. 

To incorporate transaction costs into our calculations, we adjust the cash flows when the 

direction of the trade changes at stopping times 𝑠𝑏𝑛. Specifically, we reduce the current day's 

cash flow by the weighted transaction costs: 

𝑐𝑖(𝑠𝑏𝑛) = ∑ [𝐼𝑗,𝑡𝑣𝑗,𝑡  𝑟𝑗,𝑡 − 𝑘 𝑣𝑗,𝑡(1 + 𝑟𝑗,𝑡)]
2
𝑗=1 , 𝑠𝑏𝑛 = 𝑡        (45) 

where 𝑘 = 0.0010 denotes the fee rate per transaction. Additionally, when new positions are 

established on the next trading day, the total round-trip cost of $2 is reflected by deducting 2k 

from the cash flow: 

𝑐𝑖(𝑠𝑏𝑛+1) = 𝑐𝑖(𝑠𝑏𝑛+1) − 2𝑘          (46) 

While our assumed transaction costs are conservative for institutional settings, they 

provide a realistic benchmark for retail investors. We report strategy performance both before 

and after transaction costs. Readers may scale our estimates by applying their preferred per-trade 
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cost to the effective round-trip trading volume (approximately $2 per pair) and multiplying by 

the average trade frequency reported in the results section. 

Finally, it is important to note that pairs trading inherently employs leverage. Since the 

strategy invests $1 in each leg, the effective leverage ratio is 2:1, while excess returns are 

computed relative to $1 of notional capital. Brokerage fees are thus applied on the full $2 trading 

volume, which must be considered when comparing our results with those from non-leveraged 

benchmarks such as passive buy-and-hold strategies. 

 

5. Results 

5.1 Profitability of the Strategies 

Table 2 provides a comprehensive analysis of the monthly excess returns generated by the 

Kagi and Renko pairs trading strategies across various market indices. The table is divided into 

two panels: Panel A focuses on Kagi constructions, while Panel B examines Renko constructions. 

This analysis evaluates the performance, statistical significance, and characteristics of both 

strategies across different market environments. 

Both strategies generate positive mean monthly excess returns across all indices, as shown 

in Figure 4. For the Kagi strategy, the mean returns range from 0.0047 (CSI 100) to 0.0093 (S&P 

500). The t-statistics for all indices are significant at the 99% confidence level, indicating that the 

excess returns are statistically different from zero. Similarly, for the Renko strategy, mean returns 

vary from 0.0053 (CSI 100) to 0.0089 (S&P 500), with all t-statistics also significant at the 99% 

confidence level. These findings suggest that both strategies generate robust and consistent 

profits, particularly in the S&P 500, which shows higher mean returns compared to the CSI 

indices. 

Comparing the two strategies, Kagi generally exhibits slightly higher mean returns than 

Renko in the S&P 500 and CSI 300, whereas Renko is marginally higher in CSI 100, CSI 200, 

and CSI 500. Volatility levels are similar, with monthly standard deviations tightly clustered 

around 0.014–0.017 across indices; consequently, cross-method Sharpe differences are driven 

primarily by mean-return gaps, with volatility playing a secondary role. For example, in CSI 500 

the mean-only approximation nearly reproduces the observed Sharpe gap (predicted −0.078 vs. 

actual −0.079), while in the S&P 500 and CSI 300 modestly higher volatility for Renko further 
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widens Kagi’s Sharpe advantage. Sharpe ratios therefore still differentiate performance: Kagi 

outperforms in the S&P 500 and CSI 300, whereas Renko achieves higher Sharpe ratios in CSI 

100, CSI 200, and CSI 500. Notably, Renko’s best absolute Sharpe still occurs in the S&P 500 

(0.6079), and in absolute terms both methods attain their highest risk-adjusted performance in 

the S&P 500. This pattern is consistent with Kagi capturing shorter-horizon reversals more 

effectively in efficient venues, while Renko remains relatively competitive across several CSI 

segments. 

The distribution characteristics further distinguish the two strategies. For the Kagi strategy, 

skewness values vary across indices, with positive skewness observed in the S&P 500 and CSI 

300, indicating a longer right tail (more extreme positive returns), and negative skewness in the 

CSI 100 and CSI 500, suggesting a longer left tail (more extreme negative returns). Kurtosis 

values highlight leptokurtic distributions, particularly in the S&P 500, where extreme returns are 

more likely. For the Renko strategy, skewness is consistently positive across all indices, and 

kurtosis values are particularly high in the S&P 500, suggesting a higher likelihood of extreme 

positive returns. These distribution properties emphasize the potential for both substantial gains 

and losses, which necessitates careful risk management. 

Profitability analysis reveals that both strategies experience more profitable months than 

losing months. For the Kagi strategy, the average profitable-month returns range from 0.0113 

(CSI 100) to 0.0147 (CSI 300), while the average losing-month returns range from −0.0070 

(S&P 500) to −0.0121 (CSI 500). The percentage of negative observations is lower in the S&P 

500 (20.5%) compared to the CSI indices. The Renko strategy exhibits similar trends, with 

slightly better performance in the CSI indices. To quantify what drives the monthly means, we 

decompose the mean as 𝜇 ≈ (1 − 𝑝)𝜇+ + 𝑝𝜇−, where 𝑝 is the fraction of losing months, 𝜇+ the 

average profitable-month return, and 𝜇− the average losing-month return. For Kagi in the S&P 

500, (1 − 0.205) × 0.0135 + 0.205 × (−0.0070) ≈ 0.0093, exactly matching the reported mean; 

the implied payoff ratio 𝜇+ |𝜇−|⁄ ⁡≈ ⁡1.9  indicates that gains in winning months materially 

exceed losses in losing months. A similar check for Renko in the S&P 500 yields (1 − 0.208) × 

0.0130 + 0.208 × (−0.0067) ≈ 0.0089. These diagnostics show that both a high win rate and 

favorable payoff asymmetry underpin profitability—useful for stress-testing how shifts in the 

loss frequency 𝑝⁡or in |𝜇−| would affect the mean. 
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Risk-adjusted performance metrics corroborate these findings. Kagi attains higher Sharpe 

ratios and Jensen’s alpha in the S&P 500 and CSI 300, whereas Renko posts higher Sharpe ratios 

in the CSI 100, CSI 200, and CSI 500. We report Modigliani RAP in excess-return form, 𝑅𝐴𝑃⁡ =

⁡𝑆𝑅⁡ ×⁡𝜎𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 , which preserves the same cross-market ranking: Kagi reaches its highest 

RAP in CSI 300 at 0.0364, while Renko’s RAP is relatively stable across the CSI indices at about 

0.027–0.029. Jensen’s alpha closely tracks mean excess returns—for the S&P 500, Kagi is 

0.0094 versus a mean of 0.0093, and Renko is 0.0087 versus 0.0089—consistent with near-

market-neutral exposure and low betas. To substantiate neutrality and enable formal Sharpe 

comparisons, we recommend reporting factor betas (market, size, value, momentum) and using 

Jobson–Korkie, Ledoit–Wolf, or bootstrap confidence intervals. 

Taken together, the cross-market patterns are consistent with a market-efficiency 

interpretation: Kagi tends to exploit finer price reversals in the highly liquid and efficient S&P 

500 and CSI 300, while Renko is relatively more competitive than Kagi across several CSI 

segments, namely CSI 100, CSI 200, and CSI 500. This interpretation is descriptive rather than 

causal. To assess stability, we recommend simple regime splits by volatility level and by crisis 

versus tranquil periods, together with subperiod tests or rolling-window Sharpe and alpha, to 

determine whether these rankings persist or are regime dependent. These diagnostics are directly 

relevant for deployment timing and capital allocation. 

Table 2 reports gross performance; transaction costs and execution frictions are not 

incorporated here. Given the potentially high turnover of brick-based rules, a comprehensive 

assessment requires explicit transaction-cost modeling and execution considerations. We address 

these issues subsequently and also report gross returns for comparability.  

In sum, both Kagi and Renko constructions deliver statistically significant monthly excess 

returns across indices. Kagi tends to lead in more efficient markets such as the S&P 500, whereas 

Renko is relatively stronger than Kagi across several CSI indices. Risk-adjusted metrics (Sharpe, 

Modigliani RAP, Jensen’s alpha) indicate that returns are commensurate with risk. At the same 

time, the documented skewness and kurtosis—especially in the S&P 500—underscore the 

importance of risk management; transaction costs should be incorporated to gauge real-world 

performance.  
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Table 2. Monthly excess returns of the Kagi and Renko pairs trading strategy without transaction 

costs. 

Market Index S&P 500 CSI 300 CSI 100 CSI 200 CSI 500 

Panel A: Distribution of monthly excess returns of Kagi constructions. 

Mean 0.0093 0.0071 0.0047 0.0054 0.0052 

Standard error 0.0008 0.0011 0.0010 0.0011 0.0012 

t-Statistics 12.3469 6.6946 4.7586 4.8180 4.3856 

P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 

Median 0.0084 0.0064 0.0052 0.0047 0.0059 

Standard deviation 0.0140 0.0158 0.0143 0.0158 0.0167 

Skewness 0.5024 0.2801 -0.4147 0.6116 -0.7431 

Kurtosis 5.3955 1.2752 1.8484 1.1264 2.5630 

Minimum -0.0682 -0.0415 -0.0458 -0.0311 -0.0757 

Maximum 0.0727 0.0696 0.0556 0.0602 0.0502 

Average profitable 

month 0.0135 0.0147 0.0113 

0.0140 

0.0143 

Average losing month -0.0070 -0.0105 -0.0117 -0.0103 -0.0121 

Negative observations 

(%) 20.5 30.2 28.6 

35.4 

34.3 

Sharpe ratio 0.6676 0.4493 0.3284 0.3424 0.3117 

Modigliani RAP 0.0298 0.0364 0.0263 0.0255 0.0232 

Jensen’s alpha 0.0094 0.0071 0.0047 0.0054 0.0052 

Panel B: Distribution of monthly excess returns of Renko constructions. 

Mean 0.0089 0.0057 0.0053 0.0058 0.0065 

Standard error 0.0008 0.0011 0.0010 0.0011 0.0012 

t-Statistics 11.2422 5.0275 5.3062 5.3879 5.5003 

P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 

Median 0.0069 0.0063 0.0045 0.0050 0.0055 

Standard deviation 0.0147 0.0169 0.0145 0.0151 0.0166 

Skewness 2.2261 0.3860 0.5216 0.0174 0.0320 

Kurtosis 13.2497 2.6970 2.1147 1.7205 1.8052 

Minimum -0.0306 -0.0506 -0.0417 -0.0598 -0.0616 

Maximum 0.1227 0.0900 0.0659 0.0529 0.0588 

Average profitable 

month 0.0130 0.0150 0.0126 0.0141 0.0148 

Average losing month -0.0067 -0.0115 -0.0093 -0.0091 -0.0105 

Negative observations 

(%) 20.8 35.1 33.3 35.9 32.8 

Sharpe ratio 0.6079 0.3374 0.3662 0.3829 0.3909 

Modigliani RAP 0.0272 0.0273 0.0293 0.0286 0.0292 

Jensen’s alpha 0.0087 0.0056 0.0055 0.0058 0.0065 

Note: This table presents the monthly excess returns of the Kagi and Renko pairs trading strategies across different 

market indices, without accounting for transaction costs. Panel A reports the statistical distribution of excess returns 
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for Kagi constructions, while Panel B provides the corresponding metrics for Renko constructions. The Modigliani 

risk-adjusted performance (RAP) provides a comprehensive evaluation of a strategy's performance by adjusting for 

risk. It is computed as the product of the Sharpe ratio and the standard deviation of the benchmark returns. This 

metric facilitates a direct comparison between the strategy's risk-adjusted performance and that of the benchmark. 

Results indicate statistical significance (p-value < 0.05) across all indices, highlighting the robustness of the 

strategies. Differences in Sharpe ratio, Modigliani RAP, and Jensen’s alpha between Kagi and Renko constructions 

reflect variations in their risk-adjusted returns and strategy-specific characteristics. 

The following section evaluates monthly excess returns for Kagi- and Renko-based pairs 

trading including transaction costs (Table 3) and contrasts them with the gross results in Table 2. 

We assess performance across multiple indices and compare headline profitability, statistical 

significance, and risk-adjusted returns under realistic trading frictions. 

After costs, both strategies continue to post positive mean monthly excess returns across all 

indices, although magnitudes and test statistics decline materially. For Kagi, means range from 

0.0009 in CSI 500 to 0.0052 in S&P 500. Statistical significance remains at the 1% level in S&P 

500, and in CSI 300, but not in CSI 100, CSI 200, or CSI 500, respectively. For Renko, means 

span 0.0031 in CSI 300 to 0.0064 in S&P 500 and are statistically significant across all indices. 

These results imply statistically robust net profitability in the most liquid venues—strongest in 

S&P 500 and, though economically smaller, still significant in CSI 300—whereas for Kagi the 

net means in CSI 100, CSI 200, and CSI 500 are statistically indistinguishable from zero, 

reversing the inference from Table 2. 

Transaction costs have a pronounced impact on the profitability of the strategies, leading to 

a reduction in mean returns. For the Kagi strategy, mean returns in the S&P 500 index drop by 

approximately 44%, from 0.0093 (without costs) to 0.0052 (with costs). In the CSI 500 index, 

the reduction is even more substantial, at 83%. The Renko strategy shows a smaller reduction in 

mean returns, with the S&P 500 index decreasing by 28% and the CSI 500 index by 45%. These 

results indicate that transaction costs significantly affect both strategies' profitability, with the 

Kagi strategy being more adversely impacted than the Renko strategy. Despite these reductions, 

both strategies remain profitable in the S&P 500 and CSI 300 indices after accounting for 

transaction costs, although profitability diminishes in other indices. The larger percentage drop 

for Kagi—most pronounced in CSI 200 and CSI 500—likely reflects higher turnover: its 

reversal-sensitive rules trigger more trades and therefore incur greater fees. 
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The statistical significance of the returns is also influenced by transaction costs. For the 

Kagi strategy, the t-statistics for the CSI 100, CSI 200, and CSI 500 indices drop below the 

threshold for statistical significance, with p-values exceeding 0.05. This indicates that the 

observed mean excess returns in these markets may not be reliably different from zero. 

In contrast, the Renko strategy retains statistical significance across all indices, with t-statistics 

remaining above 2 and p-values below 0.05. This suggests that the Renko strategy demonstrates 

greater robustness to transaction costs in terms of maintaining statistically significant returns. 

Risk-adjusted performance metrics also highlight the negative impact of transaction costs. 

Sharpe ratios for both strategies decrease across all indices compared to those without 

transaction costs. For the Kagi strategy, the Sharpe ratio in the S&P 500 index drops from 0.6676 

to 0.3969, while for the Renko strategy, it decreases from 0.6079 to 0.4483. Modigliani  

risk-adjusted performance (RAP) values also decline, with the Kagi strategy showing significant 

reductions, such as in the CSI 500 index where the RAP drops from 0.0232 to 0.0040. Similarly, 

Jensen’s alpha values for both strategies decrease, with the Kagi strategy in the S&P 500 index 

falling from 0.0094 to 0.0053, and the Renko strategy dropping from 0.0087 to 0.0061. Overall, 

the Renko strategy maintains relatively higher risk-adjusted performance metrics compared to 

the Kagi strategy, suggesting better adaptability to transaction costs. 

Transaction costs also increase the frequency of losing months for both strategies. For the 

Kagi strategy, the percentage of negative observations rises across all indices, with the S&P 500 

increasing from 20.5% (without costs) to 32.2% (with costs). The Renko strategy experiences 

a smaller increase, with negative observations in the S&P 500 rising from 20.8% to 28.7%. 

Average profitable month returns decrease for both strategies, and average losing month returns 

become more negative. The Kagi strategy shows a larger reduction in average profitable month 

returns compared to the Renko strategy, reflecting its greater sensitivity to transaction costs. 

The inclusion of transaction costs does not significantly alter the distribution characteristics 

of the returns. Skewness values remain similar or slightly decrease for both strategies, indicating 

relatively stable distribution shapes. Kurtosis values continue to suggest the presence of fat tails 

in certain indices, particularly in the S&P 500, where extreme returns remain possible. A notable 

change appears in Renko for CSI 200, where skewness turns slightly negative to about −0.086, 
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indicating occasional larger left-tail months after costs. These patterns underscore the need for 

continued tail-risk management even when transaction costs are incorporated. 

Comparative analysis between the Kagi and Renko strategies highlights the Renko 

strategy's greater resilience to transaction costs. While both strategies experience reduced 

profitability and risk-adjusted returns, the Renko strategy retains statistically significant excess 

returns and better performance metrics across all indices. This may be attributed to the structural 

differences between the two strategies, as the Renko strategy's emphasis on significant price 

movements likely generates fewer trades, resulting in lower transaction costs. In contrast, the 

Kagi strategy's sensitivity to price reversals may lead to more frequent trading and higher 

cumulative transaction costs. 

From an implementation standpoint, incorporating realistic costs is decisive for capital 

allocation. Choosing parameters that reduce turnover—such as larger bricks and stricter signal 

filters—and executing trades cost-efficiently can materially improve net performance. Strategy–

market matching also matters: the S&P 500 and CSI 300 remain the most favorable venues after 

costs, particularly for Renko. As a rule of thumb, when expected gross monthly returns approach 

the per-pair round-trip cost—about 0.30 percent per-trade fee—disciplining turnover becomes 

the primary lever for preserving net returns. 

In sum, transaction costs materially compress profitability and risk-adjusted performance 

for both Kagi and Renko. Kagi is more adversely affected—especially in CSI 100, CSI 200, and 

CSI 500 where net means lose statistical significance—while Renko remains significant across 

all indices and retains stronger risk-adjusted metrics in most cases. Evaluating strategies on a net 

basis and adapting design and deployment to market conditions is therefore essential for practical 

profitability. The continued leadership of the S&P 500 and CSI 300 after costs is consistent with 

liquidity and execution quality being primary drivers of deployable alpha for brick-based pairs 

strategies, although we do not claim causality. 

Table 3. Monthly excess returns of the Kagi and Renko pairs trading strategy with transaction 

costs. 

Market Index S&P 500 CSI 300 CSI 100 CSI 200 CSI 500 

Panel A: Distribution of monthly excess returns of Kagi constructions. 

Mean 0.0052 0.0031 0.0016 0.0018 0.0009 

Standard error 0.0007 0.0010 0.0010 0.0011 0.0012 
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Market Index S&P 500 CSI 300 CSI 100 CSI 200 CSI 500 

Panel A: Distribution of monthly excess returns of Kagi constructions. 

t-Statistics 7.3398 3.0260 1.5957 1.6056 0.7586 

P-Value 0.0000 0.0028 0.1121 0.1100 0.4490 

Median 0.0039 0.0023 0.0021 0.0015 0.0022 

Standard deviation 0.0131 0.0155 0.0142 0.0155 0.0164 

Skewness 0.1337 0.1796 -0.5787 0.5465 -0.8676 

Kurtosis 5.5313 1.2560 2.2679 1.1113 2.6972 

Minimum -0.0732 -0.0448 -0.0533 -0.0333 -0.0794 

Maximum 0.0607 0.0630 0.0500 0.0559 0.0417 

Average profitable 

month 0.0111 0.0124 0.0104 0.0126 0.0122 

Average losing month -0.0072 -0.0115 -0.0104 -0.0110 -0.0129 

Negative observations 

(%) 32.2 38.7 42.4 46.0 45.0 

Sharpe ratio 0.3969 0.2031 0.1101 0.1141 0.0539 

Modigliani RAP 0.0177 0.0165 0.0088 0.0085 0.0040 

Jensen’s alpha 0.0053 0.0032 0.0016 0.0018 0.0009 

Panel B: Distribution of monthly excess returns of Renko constructions. 

Mean 0.0064 0.0031 0.0033 0.0034 0.0036 

Standard error 0.0008 0.0011 0.0010 0.0011 0.0012 

t-Statistics 8.2907 2.8333 3.3946 3.2542 3.1214 

P-Value 0.0000 0.0050 0.0008 0.0013 0.0021 

Median 0.0045 0.0038 0.0027 0.0026 0.0034 

Standard deviation 0.0142 0.0166 0.0143 0.0149 0.0162 

Skewness 2.0458 0.3201 0.3691 -0.0859 -0.0575 

Kurtosis 12.5595 2.7411 2.1262 2.0463 1.8345 

Minimum -0.0354 -0.0536 -0.0446 -0.0643 -0.0631 

Maximum 0.1155 0.0856 0.0618 0.0499 0.0537 

Average profitable 

month 0.0117 0.0131 0.0115 0.0135 0.0133 

Average losing month -0.0069 -0.0126 -0.0098 -0.0093 -0.0110 

Negative observations 

(%) 28.7 38.7 38.1 44.0 39.9 

Sharpe ratio 0.4483 0.1902 0.2343 0.2313 0.2218 

Modigliani RAP 0.0200 0.0154 0.0187 0.0172 0.0165 

Jensen’s alpha 0.0061 0.0031 0.0035 0.0034 0.0036 

Note: This table presents the monthly excess returns of the Kagi and Renko pairs trading strategies across different 

market indices, with accounting for transaction costs. Panel A reports the statistical distribution of excess returns for 

Kagi constructions, while Panel B provides the corresponding metrics for Renko constructions. The Modigliani risk-

adjusted performance (RAP) provides a comprehensive evaluation of a strategy's performance by adjusting for risk. 

It is computed as the product of the Sharpe ratio and the standard deviation of the benchmark returns. This metric 

facilitates a direct comparison between the strategy's risk-adjusted performance and that of the benchmark. Results 
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indicate statistical significance (p-value < 0.05) across all indices, highlighting the robustness of the strategies. 

Differences in Sharpe ratio, Modigliani RAP, and Jensen’s alpha between Kagi and Renko constructions reflect 

variations in their risk-adjusted returns and strategy-specific characteristics. 

Figure 4. Strategy historical performance for top 20 pairs portfolio before transaction cost. 

 

Note: The strategies start on different dates based on the availability of data for each stock index. The U.S. S&P 500 

Index starts from January 1996, the China CSI 300 Index begins in January 2006, the China CSI 100 Index starts in 

January 2007, and both the China CSI 200 Index and China CSI 500 Index start from January 2008. All cumulative 

returns are calculated from these respective starting points to ensure accurate representation of out-of-sample 

performance. 

Figure 5 reports 36-month rolling Sharpe ratios. The U.S. S&P 500 series is the most stable 

and generally the highest prior to 2010, with peaks above 1.0 and a broad 0.6–0.9 range; it 

softens after 2011, dips to about 0.5–0.6 in 2011–2013, and declines further after 2016, reaching 

roughly 0.4 by 2023 before a small rebound in 2024. This persistence and relative stability are 

consistent with Tables 2 and 3: the U.S. venue delivers the strongest risk-adjusted returns on both 

a gross and a net basis, even after cost compression. 

For China, CSI 100 hovers around 0.5 from 2008 to 2021 but then falls sharply to roughly 

0.15 by 2024. CSI 200 is visibly more volatile, reaching 0.7–0.8 around 2010–2011, showing 

a brief rebound in 2020–2021, and trending down to about 0.3 thereafter. CSI 300 is 



42 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

comparatively steady near 0.4–0.8 through 2018 and then weakens, approaching zero by 2023 

and slightly below thereafter. CSI 500 is the most cyclical—very strong in 2008–2015 around 

0.9–1.1, followed by a steep decline, turning negative around 2022 and hovering near zero in 

2023 with only a mild uptick in 2024. Taken together, the Chinese series display clear regime 

dependence: strength in 2008–2015, a mixed rebound around 2020–2021, and broad weakening 

since 2021/2022, which dovetails with the net-of-cost results where CSI 300 remains deployable 

while small- and mid-cap universes erode more. 

Two practical implications follow. First, conditioning exposure on market state matters: the 

S&P 500 and, within China, CSI 300 warrant higher or steadier allocations, while CSI 

100/200/500 exposures are better made state-contingent and turnover-aware. Second, the rolling-

Sharpe evidence aligns with the cost mechanism in Table 3—segments that trade more or face 

tighter liquidity experience larger net performance decay—so parameter choices that limit 

turnover (larger bricks, stricter filters) are likely to preserve risk-adjusted returns. 

Figure 5. Three-year rolling Sharpe ratios for five market universes: S&P 500 (blue), CSI 100 

(red), CSI 200 (orange), CSI 300 (green), and CSI 500 (purple). 

 

Note: Sharpe ratios are computed from monthly excess returns using a 36-month rolling window; series begin once 

36 observations are available. Because windows overlap, the figure is descriptive; inference should rely on separate 

tests (e.g., subperiod or regime splits). 
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5.2 Risk Adjusted Performance 

This section evaluates risk-adjusted performance for Kagi and Renko before and after 

transaction costs using lower-partial-moment (LPM) and drawdown measures (Table 4). LPM 

metrics—Omega, Sortino, and Kappa-3—focus on downside deviations relative to a target return 

and are therefore informative under non-normal return distributions, a feature documented for 

our series and in prior work. This approach contrasts with the Sharpe ratio, which treats positive 

and negative deviations symmetrically, potentially underestimating risk when return distributions 

are non-normal—a characteristic observed in our return series (Eling, 2008). This design lets us 

separate “how much return” from “how that return is earned when losses matter most.” 

The tail-sensitive reward indicators point to a clear size effect. Before costs, Kagi delivers 

the strongest reward-to-risk profile in the large-cap CSI 300 (Omega 3.25, Sortino 0.53, Kappa-3 

0.66), clearly outstripping its Renko counterpart. After commissions and fees, Kagi’s edge 

narrows sharply—its CSI 300 Omega falls by about 48 percent to 1.71—yet within Kagi’s China 

sleeves CSI 300 remains the top performer. By contrast, in the mid- and small-capitalization 

universes (CSI 100, 200, 500) the Renko construction is structurally more resilient: although 

costs still erase roughly 30–37 percent of the pre-cost Omega, the post-cost levels (around  

1.8–1.9) remain materially above those for Kagi (around 1.1–1.4). This pattern is consistent with 

Renko’s brick-width filter sacrificing some upside in calm markets but curbing noise-induced 

over-trading when bid–ask spreads widen or depth thins—conditions that disproportionately 

affect the smaller CSI sleeves. 

Drawdown metrics reinforce the size-dependent narrative. Before costs, maximum peak-to-

trough losses are modest—Kagi roughly −7 to −16 percent, Renko as low as −3.23 percent in the 

S&P 500—and the recovery-weighted ratios split cleanly: Sterling exceeds one in every sleeve; 

Calmar exceeds one only for Kagi in the S&P 500 and CSI 300 and for Renko in the S&P 500; 

Burke exceeds one only for Renko in the S&P 500. After costs, adverse excursions increase non-

linearly, especially for Kagi in CSI 200 and CSI 500, where maximum drawdown more than 

doubles to about −26 and −33 percent and Calmar collapses to 0.08 and 0.03. Renko suffers 

smaller proportional deteriorations: in CSI 100, CSI 200, and CSI 500 the post-cost Calmar 

remains clearly positive, roughly 0.27 to 0.46, which preserves some compounding capacity. CSI 

300 again stands out. Kagi’s post-cost maximum drawdown is contained at −10.5 percent and 
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Calmar holds at 0.37, while Renko records −18.2 percent and 0.21. A simple check is consistent 

with the table: the Renko S&P 500 net monthly mean is about 0.0064, which annualizes to 

roughly 7.7 percent; with a 4.1 percent maximum drawdown the implied Calmar is near 1.9, in 

line with the reported value. Overall, the data show that higher turnover and tighter liquidity in 

mid- and small-cap universes make drawdowns and recovery ratios far more sensitive to costs, 

while constructions that restrain trading intensity better defend the left tail after fees. 

Taken together, the evidence supports a “horses for courses” prescription. In sleeves where 

trading is easier and execution frictions are lower—most clearly in the U.S. and, within China, in 

CSI 300—Kagi’s direction-flip logic can deliver a superior left-tail payoff despite higher 

turnover. In the more frictional mid- and small-cap sleeves—CSI 100, CSI 200, and CSI 500—

the Renko algorithm’s absolute-move trigger tempers trading intensity and better preserves both 

tail and drawdown efficiency once realistic costs are imposed. For portfolio construction, rather 

than imposing hard cut-offs that our net metrics rarely meet in China, a practical rule is to 

prioritize sleeves with higher post-cost Calmar and Burke and to allocate Kagi only where it 

actually clears a modest recovery profile. Under our results, that points to Kagi in CSI 300 and 

Renko in CSI 100/200/500, with brick widths calibrated to recent spread volatility (for example, 

a volatility-scaled factor around unity) to control turnover. 

Mechanistically, Kagi’s direction-flip logic reacts to smaller reversals and trades more 

often, so costs bite harder; Renko’s absolute-move trigger trades less, sacrificing some upside in 

calm regimes but better defending the left tail when liquidity deteriorates. Reporting turnover 

and average holding period by sleeve would validate this channel empirically; fee drag should 

co-vary positively with turnover after controlling for index effects. 

For implementation, parameter choices that limit turnover—larger bricks, stricter signal 

filters, or minimum dwelling times—can materially improve net risk-adjusted performance in 

cost-sensitive sleeves. Strategy–market matching matters: the S&P 500 and CSI 300 remain the 

most deployable after costs, particularly for Renko in the U.S. and for Kagi in CSI 300; small- 

and mid-cap sleeves warrant state-contingent exposure and tighter execution control. 

In sum, both constructions are robust on a gross basis, but net outcomes diverge with 

frictions. Renko maintains higher Omega and Sortino and more favorable drawdowns in most 

China sleeves after costs, while Kagi remains competitive—and often superior—in CSI 300. 
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These findings argue for evaluating strategies strictly net of costs and for tailoring the brick 

construction and parameters to market microstructure so that deployable, downside-aware 

performance is preserved. 

Table 4. Overview of risk-adjusted performance. 

 Lower partial moments measures Drawdown measures  

 Omega  Sortino 

ratio  

Kappa 3  Max 

Drawdown  

Calmar 

ratio  

Sterling 

ratio  

Burke 

ratio  

Panel A-I: Monthly excess returns of Kagi constructions before transaction costs 

S&P 500 7.5046 0.7862 0.8682 -0.0699 1.6851 10.9356 0.7601 

CSI 300 3.2524 0.5281 0.6596 -0.0758 1.1692 5.3884 0.4030 

CSI 100 2.4057 0.2957 0.3626 -0.0800 0.7246 2.8840 0.2049 

CSI 200 2.4814 0.4286 0.5341 -0.1130 0.5907 1.8932 0.1351 

CSI 500 2.2482 0.2985 0.3218 -0.1562 0.4111 1.6861 0.1043 

Panel A-II: Monthly excess returns of Renko constructions before transaction costs 

S&P 500 7.4142 0.9216 1.2333 -0.0323 3.4953 14.0857 1.0432 

CSI 300 2.4080 0.3828 0.4490 -0.1246 0.5653 1.8649 0.1172 

CSI 100 2.7202 0.4380 0.5110 -0.0680 0.9673 3.2316 0.2280 

CSI 200 2.7755 0.4558 0.4799 -0.0867 0.8273 3.4911 0.2358 

CSI 500 2.8727 0.4375 0.4883 -0.0894 0.9009 2.7775 0.2097 

Panel B-I: Monthly excess returns of Kagi constructions after transaction costs 

S&P 500 3.2293 0.4567 0.4394 -0.0889 0.7199 2.6607 0.1435 

CSI 300 1.7068 0.2132 0.2465 -0.1049 0.3664 1.2801 0.0812 

CSI 100 1.3564 0.1029 0.1061 -0.1049 0.1809 0.6315 0.0361 

CSI 200 1.3501 0.1283 0.1450 -0.2639 0.0811 0.1625 0.0113 

CSI 500 1.1524 0.0489 0.0491 -0.3323 0.0321 0.0658 0.0044 

Panel B-II: Monthly excess returns of Renko constructions after transaction costs 

S&P 500 4.2420 0.6408 0.7555 -0.0410 1.9302 7.7781 0.4879 

CSI 300 1.6463 0.1972 0.2262 -0.1821 0.2111 0.7848 0.0450 

CSI 100 1.8947 0.2590 0.2881 -0.0897 0.4562 1.5515 0.1005 

CSI 200 1.8401 0.2638 0.2601 -0.1125 0.3749 1.5145 0.0952 

CSI 500 1.8183 0.2356 0.2490 -0.1652 0.2662 0.7445 0.0491 

Note: This table summarizes risk-adjusted performance metrics for monthly excess returns of Kagi and 

Renko constructions, both before and after transaction costs. Metrics include Omega, Sortino ratio, Kappa 

3, Max Drawdown, Calmar ratio, Sterling ratio, and Burke ratio, evaluated for indices like S&P 500, CSI 

300, CSI 100, CSI 200, and CSI 500. 
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5.3 Sub-period Performance Analysis 

We analyse sub-period performance for the Kagi and Renko pairs-trading strategies in the 

Chinese market using Table 5 and Figure 6. The sample is partitioned into nine economically 

motivated regimes: pre-GFC (Jan 2005–Dec 2006), GFC (Jan 2007–Dec 2008), post-GFC (Jan 

2009–Dec 2010), pre-bullish and non-bullish phases (Jan 2011–Dec 2013), bullish period (Jan 

2014–May 2015), bearish period (Jun 2015–Dec 2016), pre-COVID (Jan 2017–Dec 2019), 

COVID (Jan 2020–Dec 2022), and post-COVID (Jan 2023–Jun 2024). This exogenous partition 

enables like-for-like comparisons across distinct market states and mitigates hindsight bias. 

Coverage varies by index: CSI 300 is available from 2005, whereas CSI 100, CSI 200 and CSI 

500 begin in 2007, hence the early cells are empty in Table 5. All statistics are based on monthly 

excess returns and are reported both gross and net of transaction costs. 

Before costs, both rules delivered double-digit annualized returns on CSI 300 during the 

pre-GFC boom: monthly means were about 1.3 percent for Kagi and for Renko. In the GFC 

window of 2007–08, CSI 200 was particularly strong, with mean monthly gains of 1.55 percent 

under Kagi and 1.41 percent under Renko. Renko’s Sharpe rose to 0.80–0.90 on CSI 200 and 

CSI 500, whereas Kagi’s peaked near 0.55 on CSI 200 and was lower elsewhere. This pattern is 

consistent with unusually high signal-to-noise in spread moves when cross-sectional valuation 

dispersion widened, but it was more pronounced under the Renko construction. 

Following the bubble’s burst and the global sell-off, performance moderated. In 2009–10, 

average monthly returns settled within a wider band—about 0.9 to 1.6 percent for Kagi across 

sleeves and roughly 0.4 to 1.5 percent for Renko—while Sharpe ratios generally moved into the 

0.5 to 1.1 range, depending on the index. Small caps proved most resilient in this window (Kagi 

on CSI 500 reached 1.61 percent with a Sharpe near 1.1), whereas CSI 300 under Kagi was 

closer to 0.88 percent with a Sharpe just below 0.5. A second compression emerged during the 

policy-driven sideways phase of 2011–13: on CSI 300, Renko held at about half a percentage 

point per month, whereas Kagi stayed near one percent, a split consistent with faster signal 

turnover for Kagi noted in the full-sample analysis. 

The late-2014 to mid-2015 bull run did not yield blanket Kagi dominance. Kagi leads on 

CSI 300, CSI 100, and CSI 200, but Renko is decisively ahead on CSI 500: Renko posts 0.51% 

per month with a Sharpe of 0.31, whereas Kagi records −0.26% and −0.15. After the bubble burst 
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in 2015–2016, Kagi’s monthly means compress toward zero, roughly 0.18% on CSI 200 and  

0.09% on CSI 500, and its Sharpe ratios fall into the 0.11 to 0.34 range, although CSI 100 

remains around 0.50. Renko holds up better, delivering about 0.74% per month on CSI 300 with 

a Sharpe near 0.58 and staying close to 0.60 on CSI 100 and CSI 200, while CSI 500 comes in 

lower at 0.42. 

The pre-COVID expansion from 2017 to 2019 shows a gradual erosion for both 

constructions. Mean returns settle in the 25 to 45 basis-point range, with Renko delivering 

slightly stronger risk metrics in the mid- and small-cap sleeves, while Kagi retains a modest edge 

on the blue-chip CSI 300. The pandemic years from 2020 to 2022 accentuate this split. Renko 

flattens but remains marginally positive on three of the four indices, whereas Kagi stays small-

positive across the board, including CSI 300. The pattern carries into the post-COVID window 

through mid-2024, with only a faint rebound visible for Kagi on CSI 300. When transaction costs 

are included, the divergence is sharper: Kagi turns negative on CSI 300 during 2020 to 2022, 

while Renko keeps a narrow lead in the more frictional sleeves. 

Transaction costs alter the hierarchy in predictable but material ways. On CSI 300, net 

returns remain positive in eight of nine windows for Kagi and seven of nine for Renko, but the 

margins are thin and do not consistently support strong inference. The large-cap sleeve still offers 

enough depth for Kagi to preserve a modest post-2023 Sharpe of 0.26. Across the full set of 

windows, the best net Sharpe on CSI 300 is about 0.57 for Renko during 2007–08, while Kagi’s 

best net reading is about 0.46 in 2011–13; both are well below the gross Sharpe of 0.76 that Kagi 

achieved in 2011–13, underscoring the compressive effect of costs. 

The mid-cap CSI 200 and small-cap CSI 500 become largely unattractive for Kagi once 

commissions are deducted, especially after 2015 when several windows turn negative and Sharpe 

ratios hover near zero or slip into the red. In stress phases, CSI 500 is hit hardest, with negative 

means and Sharpe readings that drop as low as about −0.26 during COVID, while CSI 200 

weakens to small negatives with Sharpe modestly below zero. Renko copes better. Its absolute-

move trigger reduces churn and caps slippage in thin order books. Even in the 2015–2016 bear 

window Renko retains about fifty basis points per month on CSI 200 and roughly forty-four 

basis points on CSI 500, with Sharpe near 0.44 and 0.28 respectively. 
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With costs included, COVID provides the sharpest contrast. Kagi turns negative or 

negligible during 2020–2022, posting roughly −14 basis points per month on CSI 300, −19 on 

CSI 200, and −36 on CSI 500, with only a marginal 3 on CSI 100. Renko holds up better: net 

averages are about 36 basis points on CSI 100 and 19 on CSI 200, and the corresponding Sharpe 

ratios are positive on these two sleeves, although CSI 300 and CSI 500 slip slightly negative. 

In the post-COVID window through mid-2024, the spread advantage compresses further: Renko 

hovers near break-even but remains slightly below zero across indices, while Kagi stays negative 

on all sleeves except CSI 300, which edges back into modestly positive territory. 

The sub-period results support a segmented implementation. In the deep, lower-friction 

CSI 300 sleeve, Kagi remains the preferred engine: execution quality contains slippage and 

allows fast reversal recycling to translate into superior post-cost outcomes. In the more friction-

sensitive mid- and small-cap sleeves of CSI 200 and CSI 500, Renko is superior, particularly in 

stress regimes when wider spreads and shallow depth amplify fee drag on higher-turnover rules. 

For CSI 100, which is liquid but still shows greater post-cost sensitivity for Kagi, Renko 

generally retains a net edge. Within the Renko framework, brick width should be volatility-aware: 

broader bricks in boom-to-bust transitions cut whipsaws and preserve crisis alpha, while 

narrower bricks in extended bull phases capture incremental mean reversion without giving up 

upside. 

In short, the statistical-arbitrage edge in Chinese equity pairs is both regime-dependent and 

cost-sensitive. Within China, depth and execution quality in the CSI 300 keep the Kagi 

construction competitive on a net basis across many regimes, whereas the more friction-prone 

mid- and small-cap sleeves favor the Renko filter, especially when turbulence rises or liquidity 

thins. A cost-aware, state-contingent allocation—tilting toward Kagi in CSI 300 and toward 

Renko in CSI 100, CSI 200, and CSI 500—combined with volatility-scaled sizing, is therefore 

advisable to preserve the net absolute-return profile documented in Tables 4 and 5. 
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Table 5. Sub-Period performance of pairs trading strategies for Chinese market. 

Market Sub-

Period 

Pre- 

Fin.C. 

In- Fin.C. Post- 

Fin.C. 

Pre-

B.N.B. 

In-

Bullish 

In-Bearish Pre-Cov. In-Cov. Post-Cov. 

  Jan 2005-

Dec 2006 

Jan 2007-

Dec 2008 

Jan 2009-

Dec 2010 

Jan 2011-

Dec 2013 

Jan 2014-

May 2015 

June 2015-

Dec 2016 

Jan 2017-

Dec 2019 

Jan 2020-

Dec 2022 

Jan 2023-

June 2024 

Panel A-I: Monthly excess returns of Kagi constructions before transaction costs 

CSI 300 Mean 0.0132 0.0116 0.0088 0.0097 0.0083 0.0042 0.0042 0.0029 0.0056 

 Sharpe 0.6345 0.4467 0.4939 0.7579 0.5178 0.3355 0.3151 0.2465 0.6304 

CSI 100 Mean - 0.0063 0.0060 0.0060 0.0046 0.0068 0.0033 0.0036 0.0010 

 Sharpe - 0.2536 0.5824 0.5385 0.2375 0.5007 0.3895 0.2479 0.0955 

CSI 200 Mean - 0.0155 0.0115 0.0093 0.0013 0.0018 0.0027 0.0019 0.0028 

 Sharpe - 0.5511 0.6265 0.7632 0.0933 0.1066 0.2215 0.1179 0.3498 

CSI 500 Mean - 0.0078 0.0161 0.0110 -0.0026 0.0009 0.0030 0.0008 0.0025 

 Sharpe - 0.2394 1.1170 0.9150 -0.1498 0.0544 0.2018 0.0544 0.2168 

Panel A-II: Monthly excess returns of Renko constructions before transaction costs 

CSI 300 Mean 0.0131 0.0130 0.0124 0.0054 0.0035 0.0074 0.0025 0.0002 0.0002 

 Sharpe 0.3553 0.7363 0.6505 0.5474 0.2185 0.5763 0.1895 0.0145 0.0126 

CSI 100 Mean - 0.0146 0.0037 0.0054 0.0013 0.0097 0.0018 0.0057 0.0004 

 Sharpe - 0.6575 0.2090 0.5136 0.0904 0.6640 0.2041 0.4339 0.0387 

CSI 200 Mean - 0.0141 0.0118 0.0054 0.0010 0.0072 0.0044 0.0043 0.0016 

 Sharpe - 0.8048 0.5954 0.5134 0.0531 0.6168 0.3038 0.2824 0.1581 

CSI 500 Mean - 0.0177 0.0146 0.0104 0.0051 0.0068 0.0025 -0.0002 0.0025 

 Sharpe - 0.9042 0.8245 0.7753 0.3144 0.4171 0.2393 -0.0108 0.1549 

Panel B-I: Monthly excess returns of Kagi constructions after transaction costs 

CSI 300 Mean 0.0094 0.0069 0.0052 0.0057 0.0039 0.0009 0.0004 -0.0014 0.0022 

 Sharpe 0.4646 0.2665 0.2951 0.4648 0.2610 0.0701 0.0331 -0.1215 0.2620 

CSI 100 Mean - 0.0024 0.0033 0.0030 0.0007 0.0043 0.0002 0.0003 -0.0016 

 Sharpe - 0.0986 0.3156 0.2744 0.0315 0.3093 0.0301 0.0232 -0.1572 

CSI 200 Mean - 0.0115 0.0079 0.0054 -0.0027 -0.0010 -0.0009 -0.0019 -0.0003 

 Sharpe - 0.4183 0.4344 0.4555 -0.1895 -0.0588 -0.0776 -0.1233 -0.0371 

CSI 500 Mean - 0.0027 0.0113 0.0064 -0.0069 -0.0023 -0.0013 -0.0036 -0.0013 

 Sharpe - 0.0858 0.7989 0.5452 -0.3863 -0.1369 -0.0899 -0.2550 -0.1213 

Panel B-II: Monthly excess returns of Renko constructions after transaction costs 

CSI 300 Mean 0.0106 0.0099 0.0099 0.0029 0.0006 0.0053 0.0001 -0.0024 -0.0019 

 Sharpe 0.2916 0.5698 0.5283 0.3064 0.0352 0.3975 0.0045 -0.1847 -0.1260 

CSI 100 Mean - 0.0121 0.0021 0.0036 -0.0012 0.0079 -0.0001 0.0036 -0.0012 

 Sharpe - 0.5547 0.1215 0.3485 -0.0784 0.5593 -0.0080 0.2859 -0.1086 

CSI 200 Mean - 0.0115 0.0094 0.0030 -0.0016 0.0053 0.0021 0.0019 -0.0004 

 Sharpe - 0.6735 0.4818 0.2974 -0.0790 0.4392 0.1495 0.1260 -0.0367 

CSI 500 Mean - 0.0141 0.0118 0.0074 0.0019 0.0044 -0.0001 -0.0033 -0.0001 

 Sharpe - 0.7504 0.6800 0.5565 0.1217 0.2816 -0.0091 -0.1731 -0.0037 
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Note: This table presents the sub-period performance of pairs trading strategies for the Chinese market, 

categorized by two charting methods: Kagi and Renko constructions, and evaluated both before and after 

transaction costs. The period is segmented into three key timeframes: Pre-Financial Crisis (Pre-Fin.C.), 

In-Financial Crisis (In-Fin.C.), and Post-Financial Crisis (Post-Fin.C.) periods; Pre-Bullish and Non-

Bullish (Pre-B.N.B.), In-Bullish, and In-Bearish periods; as well as pre-COVID-19 (Pre-Cov.), In-

COVID-19 (In-Cov.), and post-COVID-19 (post-Cov.) periods. 

Figure 6. Sub-period performance of pairs trading strategies of Chinese market. 

 

Note: This figure illustrates the sub-period performance of pairs trading strategies in the Chinese market 

across different market conditions. The panels compare the mean excess returns for Kagi and Renko 

constructions both before and after transaction costs. Sub-periods reflect various market environments, 

such as financial crises and COVID-19 periods, with each index's performance revealing the impact of 

market dynamics and costs on the profitability of pairs trading strategies. 
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5.4 Crisis Versus Non-Crisis 

We compare crisis versus normal regimes for Kagi and Renko in the Chinese market. The 

crisis window is defined as Jan 2007–Dec 2008 (24 months); the normal regime comprises the 

remaining months in the sample. Table 6A and 6B and Figure 7 report, on both a gross and a net 

basis, the mean excess return, Sharpe ratio, Sortino ratio, and the mean-to-CVaR at the 95% level. 

This setup enables like-for-like comparisons across volatility states and highlights both the 

robustness of the two constructions and the sensitivity of trading profits to market regime. 

Beginning with gross figures, the twenty-four crisis months show a clear step-up in alpha 

for both rules, with Renko capturing a much larger share. On CSI 500, Renko averages 1.77 

percent per month with a Sharpe just above 0.90, a Sortino of 3.17, and a mean-to-CVaR around 

1.41. Kagi on the same sleeve posts a mean-to-CVaR near 0.10, indicating far weaker tail 

efficiency. One notch up in size, Renko on CSI 200 records a Sharpe near 0.80 and a mean-to-

CVaR near 0.80, roughly 45 to 60 percent higher than Kagi’s 0.55 and 0.50. Even CSI 300 tilts 

toward Renko during stress, with a monthly mean of about 0.13 percent versus 0.12 for Kagi and 

a Sharpe uplift from roughly 0.45 to 0.74. These patterns are consistent with Renko’s absolute-

move filter preserving tail efficiency in high-variance regimes, while Kagi’s faster flips dilute it; 

once costs are included, the gulf widens further. 

Normal markets flatten the dispersion between rules, but the way they do so is informative. 

On CSI 300, mean excess returns drift into the 0.48 to 0.66 percent band across the two 

constructions, while on the smaller indices they cluster around 0.4 to 0.6 percent. 

The deterioration in risk metrics is uneven. On CSI 200, Kagi’s Sharpe falls from about 0.55 in 

crisis to about 0.33 in normal conditions, a decline of roughly 41 percent, while Renko drops 

from about 0.80 to about 0.35, a decline of roughly 56 percent. The average Sortino for Kagi sits 

below one on every index in normal markets, confirming that a larger share of gains is offset by 

deeper downside excursions. Renko’s Sortino stabilizes near the mid-0.5 range on the smaller 

sleeves—about 0.56 on CSI 100 and 0.54 on CSI 500—while readings are lower on CSI 300 at 

about 0.49 and on CSI 200 at about 0.58, yielding a mixed picture in which Renko retains 

a slight Sharpe edge on CSI 200 but not on CSI 300. Overall, the compression of means is broad-

based, while the compression of risk-adjusted metrics is sharper for Renko in mid and large caps. 
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Trading costs reshape the landscape in three ways. First, the mid-cap edge that Kagi shows 

on raw means during stress thins materially once costs and tail risk are considered: on CSI 200 

the crisis-era mean compresses from 1.55 percent to 1.15, the Sharpe falls by about a quarter, and 

the mean-to-CVaR drops by roughly thirty percent. On CSI 500 the hit is harsher: the net Sharpe 

shrinks from 0.24 to 0.086 and the mean-to-CVaR falls to roughly one-third of its gross value. 

Second, Renko’s cost drag is consistently smaller, preserving a viable edge on every index in the 

crisis window; even after commissions the rule delivers 1.41 percent per month on CSI 500 with 

a Sharpe near 0.75 and a mean-to-CVaR just under one. Third, in normal markets the gap 

narrows and becomes index-dependent: net monthly means settle around 8 to 29 basis points on 

CSI 200 and CSI 500, with Renko typically above Kagi on these sleeves, while on CSI 300 Kagi 

earns slightly more than Renko. This again illustrates that trade density only pays when market 

depth is sufficient to keep slippage tolerable. 

Renko dominates under stress while Kagi retains pockets of strength in calm periods 

because the two rules trigger reversals on different objects. Renko waits for an absolute price 

move of size H, so in high-variance regimes the threshold is reached sooner, yet the number of 

flips scales mainly with cumulative movement relative to H rather than with the frequency of 

short-lived oscillations. Kagi, by contrast, flips on changes of direction, which proliferate in saw-

tooth markets and drive much higher trade counts precisely when bid–ask spreads and market 

impact rise. This mechanism is consistent with the crisis results in Tables 6A and 6B: Renko 

monetizes cross-sectional dispersion while limiting churn under stress, whereas Kagi tends to 

overtrade unless depth is sufficient to neutralize the extra friction. The advantage is parameter-

dependent; appropriately sizing H to recent spread volatility is essential to avoid excessive 

turnover on Renko as well. 

In sum, the crisis–normal comparison indicates that the statistical-arbitrage edge in 

Chinese equity pairs is state-dependent and cost-sensitive, rather than structural. When cross-

sectional dispersion widens and market liquidity thins, Renko’s absolute-move filter is 

particularly advantageous and preserves tail efficiency after costs. In calmer regimes, the higher-

frequency Kagi signal remains viable on large caps—especially CSI 300— and can still 

compound at acceptable risk on a net basis. Portfolio choices should therefore be state-contingent: 

managers who extrapolate the recent winner across regimes risk seeing that advantage dissipate 

when conditions shift. 
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Table 6A. Average monthly performance in normal and crisis periods before trading costs. 

Market Mean Sharpe Ratio Sortino Ratio Mean/CVaR(95%) 

Panel A-I: Average monthly performance in crisis period of Kagi constructions 

CSI 300 0.0116 0.4467 1.6420 0.4843 

CSI 100 0.0063 0.2536 0.5477 0.1549 

CSI 200 0.0155 0.5511 1.1567 0.4998 

CSI 500 0.0078 0.2394 0.2366 0.1036 

Panel A-II: Average monthly performance in crisis period of Renko constructions 

CSI 300 0.0130 0.7363 2.2322 0.8064 

CSI 100 0.0146 0.6575 1.1614 0.5172 

CSI 200 0.0141 0.8048 2.9169 0.8025 

CSI 500 0.0177 0.9042 3.1713 1.4136 

Panel B-I: Average monthly performance in normal period of Kagi constructions 

CSI 300 0.0066 0.4650 0.7461 0.2618 

CSI 100 0.0045 0.3622 0.5111 0.1870 

CSI 200 0.0047 0.3271 0.6934 0.2239 

CSI 500 0.0050 0.3301 0.5011 0.1717 

Panel B-II: Average monthly performance in normal period of Renko constructions 

CSI 300 0.0048 0.2896 0.4937 0.1628 

CSI 100 0.0041 0.3214 0.5578 0.1904 

CSI 200 0.0053 0.3538 0.5835 0.2106 

CSI 500 0.0058 0.3562 0.5419 0.1958 

Note: This table presents the average monthly performance metrics for various CSI indices during normal 

and crisis periods (January 2007 to January 2009) before trading costs, comparing Kagi constructions and 

Renko constructions.  

 

Table 6B. Average monthly performance in normal and crisis periods after trading costs. 

Market Mean Sharpe Ratio Sortino Ratio Mean/CVaR(95%) 

Panel A-I: Average monthly performance in crisis period of Kagi constructions 

CSI 300 0.0069 0.2665 0.8134 0.2328 

CSI 100 0.0024 0.0986 0.1420 0.0546 

CSI 200 0.0115 0.4183 0.9041 0.3438 

CSI 500 0.0027 0.0858 0.0819 0.0344 

Panel A-II: Average monthly performance in crisis period of Renko constructions 

CSI 300 0.0099 0.5698 1.5892 0.5279 
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Market Mean Sharpe Ratio Sortino Ratio Mean/CVaR(95%) 

CSI 100 0.0121 0.5547 0.9666 0.3987 

CSI 200 0.0115 0.6735 1.3385 0.5936 

CSI 500 0.0141 0.7504 2.5519 0.9842 

Panel B-I: Average monthly performance in normal period of Kagi constructions 

CSI 300 0.0027 0.1957 0.2863 0.0926 

CSI 100 0.0015 0.1174 0.1552 0.0529 

CSI 200 0.0011 0.0799 0.1414 0.0458 

CSI 500 0.0008 0.0509 0.0718 0.0224 

Panel B-II: Average monthly performance in normal period of Renko constructions 

CSI 300 0.0023 0.1431 0.2303 0.0724 

CSI 100 0.0022 0.1753 0.2766 0.0932 

CSI 200 0.0029 0.1998 0.3164 0.1067 

CSI 500 0.0029 0.1841 0.2703 0.0900 

Note: This table presents the average monthly performance metrics for various CSI indices during normal 

and crisis periods (January 2007 to January 2009) after trading costs, comparing Kagi constructions and 

Renko constructions.  

Figure 7. Average monthly performance in crisis and normal periods. 
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Note: This figure illustrates the average monthly performance metrics, including Mean, Sharpe Ratio, Sortino Ratio, 

and Mean/CVaR(95%), for crisis and normal periods across CSI indices (300, 100, 200, and 500) using Kagi (7A) 

and Renko (7B) construction methods, highlighting the differences in risk-adjusted returns and downside risk 

management under varying market conditions. 

 

5.5 Robustness and Sensitivity Analysis 

5.5.1 Varying Number of Pairs Traded 

We assess robustness by varying portfolio breadth—5, 20, 35, and 50 pairs—and 

evaluating performance before and after transaction costs for both Kagi and Renko across 

markets. Table 7 reports monthly excess-return means, standard deviations, and Sharpe ratios for 

each breadth. Our objective is to test whether enlarging the number of traded pairs improves risk-

adjusted returns and their stability, and to gauge the sensitivity of these effects to trading costs 

and market conditions. Throughout, the pair-selection ranking, weighting, and rebalancing rules 

are held fixed; only the number of active pairs changes. 

Expanding the portfolio from five to fifty pairs generally lowers volatility across sleeves, 

but how that contraction translates into risk-adjusted payoff depends on the charting rule, the 

index, and the cost regime. In the S&P 500 the pattern is textbook. Before expenses, Kagi’s 
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monthly standard deviation falls by about sixty percent—from 0.0256 to 0.0103—while the 

mean slips by only 0.29 percentage points, lifting the Sharpe to 0.79. Renko shows a parallel 

volatility decline, gives up even less mean, and finishes with a Sharpe of 0.80. The lesson is that 

once noise is squeezed out of a deep market, both constructions tap essentially the same 

directional edge; the winner is the rule that surrenders less mean as breadth increases. 

The Chinese indices display a richer dynamic. On CSI 200 and CSI 500 the diversification 

benefit is clear for both rules, yet the source of the gain differs. For Kagi, once the book holds 

more than twenty pairs the average return is essentially flat on CSI 200, so the Sharpe lift from 

0.20 to 0.51 comes almost entirely from volatility compression. Renko, by contrast, not only cuts 

volatility but also preserves incremental alpha on CSI 500: the mean rises from 0.0041 to 0.0070 

as breadth expands, and the Sharpe nearly quadruples from 0.14 to 0.57. This is consistent with 

the absolute-move filter revealing more genuine mean-reversion opportunities once the cross-

section is wide enough, whereas Kagi mainly blunts risk. 

CSI 300 illustrates breadth limits. Under Kagi, the Sharpe rises to 0.45 at thirty-five pairs 

and then slips to 0.43 at fifty; Renko’s path is non-monotonic and ultimately peaks at fifty. This 

pattern is consistent with weaker pair quality once breadth exceeds roughly forty names, which 

compresses gross alpha faster than volatility declines. Introducing realistic costs compresses 

Sharpe ratios but does not eliminate the breadth premium. In U.S. large caps, after-cost Sharpe 

still climbs with breadth, from 0.26 to 0.45 for Kagi and from 0.27 to 0.59 for Renko. The 

Chinese sleeves are more sensitive. On CSI 300, Kagi peaks at thirty-five pairs and drops sharply 

at fifty, confirming that thin-edge pairs do not earn their commission. On CSI 500, Kagi turns 

positive by twenty pairs, while Renko remains cost-robust: its Sharpe rises from 0.03 to 0.36 as 

the basket widens, though the increment from thirty-five to fifty pairs is only about 0.04 Sharpe 

points, indicating diminishing returns once the best matches have been harvested. 

Looking beneath the aggregates clarifies why breadth affects the two rules differently. Kagi 

reverses on direction changes once the reversal criterion is met. As breadth increases, exposure is 

spread across more legs, the per-pair contribution to the mean dilutes, and the total number of 

executions per unit of capital does not decline and often rises. Volatility falls, but the reduction is 

paid for in alpha. Renko requires an absolute move of size H. Widening the book mainly raises 

the chance that some pairs meet H in a given month without multiplying flips in names that do 
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not. As a result, Renko retains more of the mean while delivering similar volatility savings, an 

advantage when trading frictions matter. This mechanism is parameter-dependent; sizing H to 

recent spread volatility is important to avoid unnecessary turnover as breadth grows. 

Two operational thresholds emerge. The first—expanding from five to twenty pairs—often 

delivers the largest single step-up in Sharpe, capturing the low-hanging diversification gains, 

though a few sleeves peak later. The second is the around-forty line: beyond roughly forty pairs, 

marginal Sharpe gains frequently narrow, turning negative for Kagi in several Chinese sleeves 

after costs (notably CSI 300 and at the margin CSI 500), and becoming small for Renko in CSI 

300/200/100, while remaining meaningful in S&P 500 and CSI 500. Managers considering 

breadth above thirty-five names should pair it with an explicit alpha-decay or turnover screen—

for example, dropping pairs in the bottom quartile of backtested Sharpe or those with projected 

commissions exceeding about five percent of expected gross trading profit—to prevent thin-edge 

pairs from diluting net performance. 

Finally, breadth interacts with construction choice. When the book is narrow—below 

twenty pairs—the absolute cost load is small and both rules remain viable; in deep, liquid sleeves 

such as the S&P 500 the two are close on a net basis, while in CSI 300 Renko tends to hold 

a small edge. Once breadth exceeds thirty pairs, Renko becomes the natural template: it 

preserves more of the mean while volatility continues to fall, whereas Kagi’s higher flip density 

turns into avoidable cost drag. A pragmatic blend uses a compact Kagi sleeve on the most liquid 

CSI 300 pairs and a broader Renko sleeve drawn from CSI 100, CSI 200, and CSI 500. In our 

sample this mix improved the blended after-cost Sharpe relative to either pure construction. 

Table 7. Pair Trading Sensitivity Analysis with Various Pairs Traded. 

Market Number of Pairs 5 Pairs 20 Pairs 35 Pairs 50 Pairs 

Panel A-I: monthly excess returns of Kagi constructions before trading costs. 

S&P 500 Mean 0.0110 0.0093 0.0086 0.0081 

 Standard deviation 0.0256 0.0140 0.0117 0.0103 

 Sharpe ratio 0.4294 0.6676 0.7335 0.7852 

CSI 300 Mean 0.0067 0.0071 0.0062 0.0054 

 Standard deviation 0.0309 0.0158 0.0137 0.0127 

 Sharpe ratio 0.2185 0.4493 0.4546 0.4257 

CSI 100 Mean 0.0082 0.0047 0.0037 0.0039 

 Standard deviation 0.0227 0.0143 0.0119 0.0100 
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Market Number of Pairs 5 Pairs 20 Pairs 35 Pairs 50 Pairs 

 Sharpe ratio 0.3620 0.3284 0.3140 0.3916 

CSI 200 Mean 0.0060 0.0054 0.0055 0.0055 

 Standard deviation 0.0295 0.0158 0.0122 0.0107 

 Sharpe ratio 0.2022 0.3424 0.4515 0.5146 

CSI 500 Mean 0.0045 0.0052 0.0058 0.0055 

 Standard deviation 0.0282 0.0167 0.0126 0.0111 

 Sharpe ratio 0.1595 0.3117 0.4610 0.4929 

Panel A-II: monthly excess returns of Renko constructions before trading costs. 

S&P 500 Mean 0.0094 0.0089 0.0081 0.0079 

 Standard deviation 0.0247 0.0147 0.0119 0.0098 

 Sharpe ratio 0.3783 0.6079 0.6802 0.8024 

CSI 300 Mean 0.0064 0.0057 0.0025 0.0046 

 Standard deviation 0.0265 0.0169 0.0134 0.0133 

 Sharpe ratio 0.2412 0.3374 0.1852 0.3457 

CSI 100 Mean 0.0076 0.0053 0.0044 0.0042 

 Standard deviation 0.0241 0.0145 0.0117 0.0120 

 Sharpe ratio 0.3179 0.3662 0.3725 0.3528 

CSI 200 Mean 0.0066 0.0058 0.0052 0.0046 

 Standard deviation 0.0271 0.0151 0.0129 0.0113 

 Sharpe ratio 0.2439 0.3829 0.3998 0.4091 

CSI 500 Mean 0.0041 0.0065 0.0071 0.0070 

 Standard deviation 0.0292 0.0166 0.0139 0.0124 

 Sharpe ratio 0.1395 0.3909 0.5088 0.5697 

Panel B-I: monthly excess returns of Kagi constructions after trading costs. 

S&P 500 Mean 0.0063 0.0052 0.0046 0.0044 

 Standard deviation 0.0242 0.0131 0.0110 0.0097 

 Sharpe ratio 0.2615 0.3969 0.4199 0.4493 

CSI 300 Mean 0.0023 0.0031 0.0052 0.0019 

 Standard deviation 0.0303 0.0155 0.0141 0.0126 

 Sharpe ratio 0.0755 0.2031 0.3693 0.1499 

CSI 100 Mean 0.0045 0.0016 0.0010 0.0015 

 Standard deviation 0.0220 0.0142 0.0119 0.0100 

 Sharpe ratio 0.2032 0.1101 0.0847 0.1474 

CSI 200 Mean 0.0020 0.0018 0.0021 0.0023 

 Standard deviation 0.0290 0.0155 0.0120 0.0105 

 Sharpe ratio 0.0691 0.1141 0.1786 0.2189 

CSI 500 Mean -0.0001 0.0009 0.0016 0.0014 

 Standard deviation 0.0276 0.0164 0.0124 0.0109 

 Sharpe ratio -0.0042 0.0539 0.1286 0.1251 

Panel B-II: monthly excess returns of Renko constructions after trading costs. 

S&P 500 Mean 0.0065 0.0064 0.0057 0.0055 



59 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

Market Number of Pairs 5 Pairs 20 Pairs 35 Pairs 50 Pairs 

 Standard deviation 0.0239 0.0142 0.0115 0.0094 

 Sharpe ratio 0.2738 0.4483 0.4941 0.5903 

CSI 300 Mean 0.0037 0.0031 0.0028 0.0024 

 Standard deviation 0.0258 0.0166 0.0140 0.0132 

 Sharpe ratio 0.1418 0.1902 0.2020 0.1782 

CSI 100 Mean 0.0053 0.0033 0.0026 0.0027 

 Standard deviation 0.0235 0.0143 0.0116 0.0120 

 Sharpe ratio 0.2264 0.2343 0.2251 0.2260 

CSI 200 Mean 0.0040 0.0034 0.0030 0.0026 

 Standard deviation 0.0265 0.0149 0.0128 0.0112 

 Sharpe ratio 0.1500 0.2313 0.2347 0.2305 

CSI 500 Mean 0.0009 0.0036 0.0043 0.0043 

 Standard deviation 0.0285 0.0162 0.0136 0.0120 

 Sharpe ratio 0.0310 0.2218 0.3139 0.3573 

Note: This table shows the performance of pair trading strategies with different numbers of pairs (5, 20, 35, 50) for 

Kagi and Renko constructions across markets. Panels A-I and A-II present results before trading costs, while Panels 

B-I and B-II account for costs. Metrics include mean returns, standard deviations, and Sharpe ratios, highlighting the 

impact of pair counts and costs on performance across markets. 

 

5.5.2 Varying Trading Period 

This section evaluates the sensitivity of our pairs-trading strategies to the choice of trading 

horizon. Table 8 reports monthly excess returns over the risk-free rate, standard deviations, and 

Sharpe ratios for Kagi and Renko constructions across five indices under horizons of 3, 6, 9, and 

12 months. We present results before and after transaction costs to assess how the horizon affects 

both gross performance and net performance. Panels A-I and A-II report pre-cost results. Panels 

B-I and B-II incorporate costs. The sensitivity to horizon is market specific and heterogeneous 

across indices and chart constructions. 

For the S&P 500 under Kagi constructions before costs, the Sharpe ratio varies with the 

trading horizon. At 3 months the Sharpe ratio is 0.6548 and it rises to a peak of 0.7504 at 12 

months, indicating that a longer horizon can improve risk-adjusted performance in this setting. 

The 9-month horizon, with a Sharpe ratio of 0.5571, does not outperform shorter or longer 

windows, underscoring that intermediate horizons do not uniformly confer advantages. Notably, 

the improvement at 12 months is driven more by lower volatility than by higher mean returns, as 

the standard deviation falls from 0.0170 at 9 months to 0.0124 at 12 months while the mean 

return edges down from 0.0095 to 0.0093. 
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For the Chinese indices, the relation between trading horizon and performance is more 

nuanced. Under Kagi constructions before costs, the CSI 500 shows a higher Sharpe ratio at 

9 months at 0.4965 relative to 6 months at 0.3117, while it is only marginally above 3 months at 

0.4876. This pattern suggests that some markets display mean reversion or correlation structures 

that emerge more clearly over intermediate horizons. By contrast, the CSI 300 exhibits declining 

Sharpe ratios beyond 6 months at 0.4493 at 6 months, 0.3785 at 9 months, and 0.3120 at 

12 months, implying that the benefit of waiting longer may be limited by volatility or index 

specific features. 

Renko results before costs exhibit mixed outcomes across markets. In the S&P 500, Sharpe 

ratios are broadly stable across horizons, with a mild peak at 9 months at 0.6449 and a lower 

value at 12 months at 0.6011, reflecting a slightly lower mean return and a slightly higher 

standard deviation at 12 months relative to 9 months. For the CSI 500, Sharpe improves 

monotonically from 0.3532 at 3 months to 0.4361 at 12 months, driven primarily by higher 

average monthly excess returns rising from 0.0057 to 0.0076 while volatility remains broadly 

similar. These patterns suggest that longer horizons strengthen Renko based signals in less 

efficient markets by capturing more persistent co movements rather than merely reducing 

volatility. 

Panels B-I and B-II incorporate transaction costs and provide a more practical assessment 

of horizon choice. After costs, Sharpe ratios decline across all markets and constructions. The 

horizon effect remains but its strength is market dependent. In the S&P 500 under Kagi  

the 12-month horizon still delivers the highest Sharpe at 0.4309 while cross horizon dispersion 

narrows relative to pre cost results. In the S&P 500 under Renko the 9-month horizon remains 

the best at 0.4841. In the CSI 500 under Renko the gradient with horizon strengthens, with 

Sharpe rising from 0.1765 at 3 months to 0.2836 at 12 months. 

In Chinese markets after costs, horizon effects are mixed across indices. Under Renko for 

the CSI 500, the Sharpe ratio increases from 0.1765 at 3 months to 0.2836 at 12 months, a gain 

of 0.1071 that is driven mainly by higher average monthly excess returns rising from 0.0028 to 

0.0048 while volatility remains around 0.016 to 0.017. By contrast, under Renko for the CSI 300, 

Sharpe ratios decline with longer horizons at 0.1980, 0.1902, 0.1508, and 0.1328. These patterns 

are consistent with longer horizons easing turnover pressure and transaction frictions in less 
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efficient segments, though the effect is index specific and should be corroborated with turnover 

statistics. 

There is no universal optimal trading horizon. The choice depends on market structure, 

efficiency, chart construction, and transaction costs. In an efficient market such as the S&P 500, 

mid to longer horizons can deliver superior risk-adjusted performance, although the optimum is 

chart dependent, with Kagi favoring 12 months and Renko favoring around 9 months in our 

evidence. In less efficient or more volatile segments, longer horizons can help by allowing 

transitory mispricings to resolve and by reducing turnover and trading frictions, though the effect 

is index specific as the CSI 500 improves with horizon under Renko while the CSI 300 weakens. 

The choice of chart construction shapes how horizons translate into performance. In our 

results, Renko benefits from longer horizons mainly in less efficient segments such as the CSI 

500 where Sharpe increases from 0.1765 at 3 months to 0.2836 at 12 months after costs, while in 

the S&P 500 Renko peaks around 9 months and weakens at 12 months, and in the CSI 300 

Renko deteriorates as the horizon lengthens. Kagi does not systematically favor short windows. 

In the S&P 500 the 12-month horizon is strongest before and after costs, in the CSI 300 the peak 

occurs at 6 months, and in the CSI 500 an intermediate 9-month horizon performs best. These 

patterns are consistent with Renko’s block-based filtering amplifying more persistent co 

movements in less efficient markets, whereas Kagi adapts to market specific reversion speeds, 

leaving the optimal horizon index dependent. 

Balancing return and risk is critical. Longer horizons can improve Sharpe by dampening 

volatility or by allowing average returns to accumulate, but the mechanism is market and 

construction specific. In the S&P 500 under Kagi, the 12-month horizon attains a higher Sharpe 

with lower volatility, as standard deviation falls from 0.0170 at nine months to 0.0124 at twelve 

months while the mean edges down from 0.0095 to 0.0093. In the S&P 500 under Renko,  

the 9-month horizon is superior and the 12-month horizon exhibits slightly higher volatility and 

a lower Sharpe, illustrating dilution when reversions are faster. In the CSI 500 under Renko, 

Sharpe improves steadily with horizon because average monthly excess returns rise from 0.0028 

to 0.0048 while volatility stays around 0.016 to 0.017, consistent with slower or noisier reversion 

benefiting from longer windows. 
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Trading costs materially shape the optimal horizon. After costs, horizon choice continues to 

matter, but its benefits are market specific. Longer holding periods can lower trading intensity 

and preserve a larger share of gross returns, particularly where fees are higher or liquidity is 

uneven. In the S&P 500 under Kagi the 12-month horizon delivers the highest Sharpe at 0.4309, 

consistent with fewer rebalances. In the CSI 500 under Renko the Sharpe ratio increases from 

0.1765 at three months to 0.2836 at twelve months. By contrast, in the S&P 500 under Renko the 

9-month horizon remains superior, showing that extending the horizon is not uniformly 

beneficial. Reporting turnover by horizon would further substantiate this mechanism. 

In conclusion, Kagi and Renko based pairs trading strategies are sensitive to the choice of 

trading horizon, and this sensitivity remains after accounting for transaction costs. The effect is 

heterogeneous rather than uniformly monotonic across indices and chart constructions. 

In efficient markets such as the S&P 500, mid to longer horizons can be advantageous, with the 

optimum depending on the construction as Kagi favors twelve months while Renko peaks around 

nine months in our evidence. In less efficient segments longer horizons can be beneficial as seen 

for the CSI 500 under Renko, whereas other indices weaken when the horizon lengthens as in the 

CSI 300 under Renko. 

Table 8. Pair Trading Sensitivity Analysis with Various Trading Period. 

Market 
Number of Trading 

Periods 
3 Months 6 Months 9 Months 12 Months 

Panel A-I: monthly excess returns of Kagi constructions before trading costs. 

S&P 500 Mean 0.0088 0.0093 0.0095 0.0093 

 Standard deviation 0.0135 0.0140 0.0170 0.0124 

 Sharpe ratio 0.6548 0.6676 0.5571 0.7504 

CSI 300 Mean 0.0057 0.0071 0.0070 0.0057 

 Standard deviation 0.0159 0.0158 0.0184 0.0182 

 Sharpe ratio 0.3583 0.4493 0.3785 0.3120 

CSI 100 Mean 0.0050 0.0047 0.0042 0.0045 

 Standard deviation 0.0126 0.0143 0.0139 0.0140 

 Sharpe ratio 0.3938 0.3284 0.3009 0.3232 

CSI 200 Mean 0.0056 0.0054 0.0053 0.0060 

 Standard deviation 0.0153 0.0158 0.0169 0.0197 

 Sharpe ratio 0.3636 0.3424 0.3122 0.3040 

CSI 500 Mean 0.0073 0.0052 0.0073 0.0065 
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Market 
Number of Trading 

Periods 
3 Months 6 Months 9 Months 12 Months 

 Standard deviation 0.0150 0.0167 0.0147 0.0153 

 Sharpe ratio 0.4876 0.3117 0.4965 0.4271 

Panel A-II: monthly excess returns of Renko constructions before trading costs. 

S&P 500 Mean 0.0083 0.0089 0.0091 0.0089 

 Standard deviation 0.0134 0.0147 0.0141 0.0148 

 Sharpe ratio 0.6147 0.6079 0.6449 0.6011 

CSI 300 Mean 0.0056 0.0057 0.0050 0.0048 

 Standard deviation 0.0155 0.0169 0.0178 0.0179 

 Sharpe ratio 0.3608 0.3374 0.2826 0.2709 

CSI 100 Mean 0.0044 0.0053 0.0052 0.0043 

 Standard deviation 0.0125 0.0145 0.0133 0.0151 

 Sharpe ratio 0.3547 0.3662 0.3937 0.2868 

CSI 200 Mean 0.0057 0.0058 0.0057 0.0058 

 Standard deviation 0.0135 0.0151 0.0149 0.0180 

 Sharpe ratio 0.4268 0.3829 0.3798 0.3220 

CSI 500 Mean 0.0057 0.0065 0.0066 0.0076 

 Standard deviation 0.0162 0.0166 0.0162 0.0175 

 Sharpe ratio 0.3532 0.3909 0.4064 0.4361 

Panel B-I: monthly excess returns of Kagi constructions after trading costs. 

S&P 500 Mean 0.0049 0.0052 0.0053 0.0051 

 Standard deviation 0.0126 0.0131 0.0159 0.0119 

 Sharpe ratio 0.3889 0.3969 0.3322 0.4309 

CSI 300 Mean 0.0018 0.0031 0.0036 0.0018 

 Standard deviation 0.0157 0.0155 0.0173 0.0178 

 Sharpe ratio 0.1145 0.2031 0.2068 0.1015 

CSI 100 Mean 0.0018 0.0016 0.0010 0.0015 

 Standard deviation 0.0123 0.0142 0.0138 0.0139 

 Sharpe ratio 0.1434 0.1101 0.0752 0.1104 

CSI 200 Mean 0.0019 0.0018 0.0016 0.0022 

 Standard deviation 0.0151 0.0155 0.0166 0.0188 

 Sharpe ratio 0.1235 0.1141 0.0947 0.1150 

CSI 500 Mean 0.0029 0.0009 0.0029 0.0022 

 Standard deviation 0.0147 0.0164 0.0143 0.0150 

 Sharpe ratio 0.2009 0.0539 0.2041 0.1453 

Panel B-II: monthly excess returns of Renko constructions after trading costs. 

S&P 500 Mean 0.0056 0.0064 0.0065 0.0063 

 Standard deviation 0.0129 0.0142 0.0134 0.0141 
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Market 
Number of Trading 

Periods 
3 Months 6 Months 9 Months 12 Months 

 Sharpe ratio 0.4323 0.4483 0.4841 0.4441 

CSI 300 Mean 0.0030 0.0031 0.0029 0.0024 

 Standard deviation 0.0153 0.0166 0.0195 0.0178 

 Sharpe ratio 0.1980 0.1902 0.1508 0.1328 

CSI 100 Mean 0.0024 0.0033 0.0033 0.0024 

 Standard deviation 0.0124 0.0143 0.0131 0.0149 

 Sharpe ratio 0.1935 0.2343 0.2506 0.1614 

CSI 200 Mean 0.0033 0.0034 0.0033 0.0035 

 Standard deviation 0.0132 0.0149 0.0159 0.0179 

 Sharpe ratio 0.2508 0.2313 0.2075 0.1947 

CSI 500 Mean 0.0028 0.0036 0.0036 0.0048 

 Standard deviation 0.0160 0.0162 0.0159 0.0170 

 Sharpe ratio 0.1765 0.2218 0.2295 0.2836 

Note: This table shows the performance of pair trading strategies with different numbers of trading periods (3, 6, 9, 

12) for Kagi and Renko constructions across markets. Panels A-I and A-II present results before trading costs, while 

Panels B-I and B-II account for costs. Metrics include mean returns, standard deviations, and Sharpe ratios, 

highlighting the impact of pair counts and costs on performance across markets. 

 

6. Conclusion 

The evidence in this article shows that pairs trading strategies built on Kagi and Renko 

chart constructions can deliver economically meaningful and, in many cases, statistically 

significant excess returns across a range of market conditions, with both constructions able to 

capture mean reversion signals and, when regimes persist, trend related features in spread 

dynamics. On balance, Renko exhibits stronger resilience in several settings, especially where 

transaction costs bite and downside protection matters, although this advantage is index 

dependent rather than universal. From the highly liquid and efficient S&P 500 to the more 

volatile CSI indices, performance varies with market structure, chart construction, and 

implementation choices. The results indicate that chart-based filters and portfolio adjustments 

can sharpen signal identification, strengthen diversification, and stabilize the return profile even 

after accounting for brokerage fees and slippage. 

During turbulent periods with elevated volatility and larger price dislocations, the 

opportunity set for pairs trading often improves. In our tests, both Kagi and Renko frequently 

achieved higher risk adjusted performance relative to tranquil regimes, though not in every index 
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and configuration. Frictional costs reduced net profits, yet the ability of these strategies to adapt 

under stress and to maintain positive performance in several extreme episodes underscores their 

potential as robust tools for navigating complex environments. 

Portfolio design matters. Increasing the number of traded pairs mitigates idiosyncratic 

exposure and can raise the overall Sharpe ratio and the consistency of outcomes, subject to 

capacity and execution constraints. Adjusting the trading horizon further shows that the optimal 

holding period is construction specific and market specific. In efficient segments, mid to longer 

horizons tend to be advantageous, with the optimum varying by construction, while in less 

efficient or noisier segments intermediate to longer horizons can be beneficial as they allow 

transitory mispricings to resolve and can, in many cases, ease turnover pressure and cost drag. 

These findings have practical and theoretical implications. By moving beyond strict 

cointegration screens and emphasizing volatility based statistical properties of spreads, the 

analysis connects mean reversion signals with widely used technical charting methodologies. 

The results confirm that systematic chart-based filters can complement standard pairs trading 

models, adding an axis of adaptability and robustness. The evidence is consistent with 

predictions from mean reverting processes such as the OU framework, in which contrarian 

strategies can prosper when parameters are tuned to the prevailing volatility regime. 

Limitations remain. The empirical work focuses on equities, so extending the approach to 

other asset classes would help assess generalizability. Dynamic parameter selection using 

machine learning or Bayesian updating, regime aware specifications, and richer risk controls 

such as conditional stop loss rules, leverage constraints, and explicit cost minimization merit 

further study. Future work should also report turnover by horizon, calibrate microstructure costs 

more finely, address multiple testing concerns, and expand out of sample validation. 

Overall, Kagi and Renko constructions provide flexible and effective building blocks for 

pairs trading. Under appropriate market conditions and with carefully calibrated horizons, 

portfolio breadth, and cost controls, they can enhance performance, reduce downside risk, and 

retain effectiveness through challenging periods. The dissertation advances a volatility centric 

and implementation aware perspective that can guide future developments in quantitative trading 

design. 

 



66 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

References 

Bock, M., Mestel, R., 2009. A regime-switching relative value arbitrage rule, in: Operations 

Research Proceedings 2008: Selected Papers of the Annual International Conference of the 

German Operations Research Society (GOR) University of Augsburg, September 3-5, 2008 

(pp. 9-14). Springer Berlin Heidelberg. 

Bogomolov, T., 2013. Pairs trading based on statistical variability of the spread process. 

Quantitative Finance, 13(9), pp.1411-1430. 

Bowen, D., Hutchinson, M.C., O’Sullivan, N., 2010. High frequency equity pairs trading: 

transaction costs, speed of execution and patterns in returns. The Journal of Trading, 5(3), 

pp. 31-38. 

Do, B., Faff, R., 2010. Does simple pairs trading still work? Financial Analysts Journal, 66(4), 

pp. 83-95. 

Do, B., Faff, R., 2012. Are pairs trading profits robust to trading costs? Journal of Financial 

Research, 35(2), pp.261-287. 

Do, B., Faff, R., Hamza, K., 2006, May. A new approach to modeling and estimation for pairs 

trading. In Proceedings of 2006 financial management association European conference 

(Vol. 1, pp. 87-99). 

Eling, M., 2008. Does the measure matter in the mutual fund industry? Financial Analysts 

Journal, 64(3), pp. 54-66. 

Elliott, R.J., Van Der Hoek, J., Malcolm, W.P., 2005. Pairs trading. Quantitative Finance, 5(3), 

pp. 271-276. 

Endres, S., Stübinger, J., 2019. Optimal trading strategies for Lévy-driven Ornstein–Uhlenbeck 

processes. Applied Economics, 51(29), pp. 3153-3169. 

Engle, R., Granger, C., 1991. Long-run economic relationships: Readings in cointegration. 

Oxford University Press. 

Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G., 2006. Pairs trading: Performance of a relative-

value arbitrage rule. The Review of Financial Studies, 19(3), pp. 797-827. 



67 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

Graversen, S., Peskir, G., 2000. Maximal inequalities for the Ornstein-Uhlenbeck process. 

Proceedings of the American Mathematical Society, 128(10), pp. 3035-3041. 

Herlemont, D., 2003. Pairs trading, convergence trading, cointegration. YATS Finances and 

Technology, 33, pp. 1-31. 

Pastukhov, S.V., 2005. On some probabilistic-statistical methods in technical analysis. Theory of 

Probability & Its Applications, 49(2), pp. 245-260. 

van der Hoek, J., 2009. Recombining binomial tree approximations for diffusions, in: Handbook 

of Numerical Analysis. Elsevier, Vol. 15, pp. 361-368. 

Vidyamurthy, G., 2004. Pairs trading: Quantitative methods and analysis (Vol. 217). John Wiley 

& Sons. 

Wu, P., Elliott, R.J., 2005. Parameter estimation for a regime-switching mean-reverting model 

with jumps. International Journal of Theoretical and Applied Finance, 8(06), pp. 791-806. 

 

  



68 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

Annexes 

 

Appendix A: Proofs of the Theorem 3.1 

Before proving Theorem 3.1, we establish several auxiliary lemmas that are essential for 

the proof. These lemmas explore the properties of the OU process and its relationship with 

Brownian motion, as well as certain probabilistic behaviors that are crucial for our main result. 

Lemma A.1: Representation of the Ornstein–Uhlenbeck Process as a Time-Changed 

Brownian Motion 

Let {𝑥𝑡} be an OU process defined by the SDE: 

𝑑𝑥𝑡 = 𝜅(𝜇 − 𝑥𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡          (A1) 

where 𝜅 > 0, 𝜎 > 0, 𝜇 are constants, and {𝐵𝑡} is a standard Brownian motion. Then, 𝑥𝑡 can be 

represented as a time-changed Brownian motion {𝑊(𝑡)}: 

𝑥𝑡 = 𝑥0𝑒
−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) +

𝜎

√2𝜅
𝑒−𝜅𝑡𝑊(𝑒2𝜅𝑡 − 1)        (A2) 

where {𝑊(𝑠)} is a standard Brownian motion with time parameter 𝑠 = 𝑒2𝜅𝑡−1. 

Proof of Lemma A.1: 

The solution to the OU SDE (A1) can be expressed explicitly. Starting from (A1), we can 

rearrange this equation: 

𝑑𝑥𝑡 + 𝜅𝑥𝑡𝑑𝑡 = 𝜅𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡 

This is a linear differential equation, and its integrating factor is 𝑒𝜅𝑡. Multiplying both sides by 

𝑒𝜅𝑡: 

𝑒𝜅𝑡𝑑𝑥𝑡 + 𝜅𝑒𝜅𝑡𝑥𝑡𝑑𝑡 = 𝜅𝜇𝑒𝜅𝑡𝑑𝑡 + 𝜎𝑒𝜅𝑡𝑑𝐵𝑡 

The left-hand side simplifies to the derivative of 𝑒𝜅𝑡𝑥𝑡: 

𝑑(𝑒𝜅𝑡𝑥𝑡) = 𝜅𝜇𝑒𝜅𝑡𝑑𝑡 + 𝜎𝑒𝜅𝑡𝑑𝐵𝑡 

Integrate both sides from 0 to 𝑡: 

𝑒𝜅𝑡𝑥𝑡 − 𝑥0 = 𝜅𝜇∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝑠 + 𝜎∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝐵𝑠 

Compute the integral of the deterministic term: 
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∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝑠 =
1

𝜅
(𝑒𝜅𝑡 − 1) 

Thus, the equation becomes: 

𝑒𝜅𝑡𝑥𝑡 = 𝑥0 + 𝜇(𝑒𝜅𝑡 − 1) + 𝜎∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝐵𝑠 

Simplify: 

𝑒𝜅𝑡𝑥𝑡 = 𝑥0 + 𝜇𝑒𝜅𝑡 − 𝜇 + 𝜎∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝐵𝑠 

Grouping terms: 

𝑒𝜅𝑡𝑥𝑡 = 𝑥0 + 𝜇𝑒𝜅𝑡 − 𝜇 + 𝜎∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝐵𝑠 

Now, we can write: 

𝑒𝜅𝑡𝑥𝑡 = (𝑥0 − 𝜇) + 𝜇𝑒𝜅𝑡 + 𝜎∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝐵𝑠 

Let us denote: 

𝑍𝑡 = ∫ 𝑒𝜅𝑠
𝑡

0

𝑑𝐵𝑠 

𝑍𝑡 is a Gaussian process with mean zero and variance: 

𝑉𝑎𝑟⁡(𝑍𝑡) = ∫ 𝑒2𝜅𝑠
𝑡

0

𝑑𝑠 =
𝑒2𝜅𝑡 − 1

2𝜅
 

Therefore, 𝑍𝑡 can be represented as: 

𝑍𝑡 = √
𝑒2𝜅𝑡 − 1

2𝜅
𝑊(1) 

where 𝑊(1) is a standard normal variable (since 𝑊(𝑡) is a Brownian motion, 𝑊(1) ∼ 𝑁(0,1)). 

However, to retain the time dependency in the Brownian motion, we introduce a time-

changed Brownian motion 𝑊(𝑠) with 𝑠 = 𝑒2𝜅𝑡 − 1. 

Since 𝑉𝑎𝑟(𝑊(𝑠)) = 𝑠, we can write: 
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𝑍𝑡 = √
1

2𝜅
𝑊(𝑠) 

Substitute 𝑍𝑡 back into the expression for 𝑥𝑡: 

𝑒𝜅𝑡𝑥𝑡 = (𝑥0 − 𝜇) + 𝜇𝑒𝜅𝑡 + 𝜎𝑍𝑡 

Divide both sides by 𝑒𝜅𝑡: 

𝑥𝑡 = 𝑥0𝑒
−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) + 𝜎𝑒−𝜅𝑡𝑍𝑡 

Substitute 𝑍𝑡 with its expression involving 𝑊(𝑠): 

𝑥𝑡 = 𝑥0𝑒
−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) + 𝜎𝑒−𝜅𝑡√

1

2𝜅
𝑊(𝑠) 

Simplify: 

𝑥𝑡 = 𝑥0𝑒
−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) +

𝜎

√2𝜅
𝑒−𝜅𝑡𝑊(𝑠) 

Therefore, the OU process can be represented as: 

𝑥𝑡 = 𝑥0𝑒
−𝜅𝑡 + 𝜇(1 − 𝑒−𝜅𝑡) +

𝜎

√2𝜅
𝑒−𝜅𝑡𝑊(𝑒2𝜅𝑡 − 1) 

This completes the proof of Lemma A.1. 

 

Lemma A.2: The H-Inversion of the Ornstein–Uhlenbeck Process Goes to Infinity 

Let {𝑌𝑡} be the OU process with mean zero, variance one, and 𝜅 > 0, 𝜎 > 0: 

𝑑𝑌𝑡 = −𝜅𝑌𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡         (A3) 

and let 𝑁𝑇(𝐻, 𝑌) be the number of H-inversions of the H-construction on [0, T] as defined in 

Section 2. Then for any 𝐻 > 0, 

lim
𝑇→∞

𝑁𝑇(𝐻, 𝑌) ⁡→ ∞, 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦 𝑎𝑠 𝑇 → ∞. 

Proof of Lemma A.2: 

Consider the OU process starting from 𝑌0 = −𝜀 , where 𝜀 ≥ 0. Using Lemma A.1, we 

represent 𝑌𝑡 as: 

𝑌𝑡 = −𝜀𝑒−𝜅𝑡 +
1

√2𝜅
𝑒−𝜅𝑡𝑊(𝑒2𝜅𝑡 − 1) 
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We aim to find the probability that 𝑌𝑡 > 𝜀: 

𝑃(𝑌𝑡 > 𝜀) = 𝑃(−𝜀𝑒−𝜅𝑡 +
1

√2𝜅
𝑒−𝜅𝑡𝑊(𝑒2𝜅𝑡 − 1) > 𝜀) 

As 𝑡 → ∞, 𝑒−𝜅𝑡 → 0, so the inequality simplifies to: 

𝑃(
1

√2𝜅
𝑒−𝜅𝑡𝑊(𝑒2𝜅𝑡 − 1) > 𝜀) 

But since 𝑒−𝜅𝑡𝑒2𝜅𝑡 = 𝑒𝜅𝑡 → ∞ , and 𝑊(𝑒2𝜅𝑡 − 1)  behaves like a Brownian motion 

evaluated at a very large time, the term inside the probability becomes significant. 

However, due to the properties of Brownian motion, 𝑊(𝑡)/√𝑡 converges in distribution to 

a standard normal variable as 𝑡 → ∞. Therefore, the probability 𝑃(𝑌𝑡 > 𝜀) approaches a positive 

constant less than 1. 

Similarly, 𝑃(𝑌𝑡 < −𝜀) is also positive. This implies that the process 𝑌𝑡 crosses the levels 𝜀 

and −𝜀 infinitely often as 𝑡 → ∞. Consequently, for 𝐻 ≤ 2𝜀, the H-inversion 𝑁𝑇(𝐻, 𝑌) tends to 

infinity almost surely. 

This completes the proof of Lemma A.2. 

 

Lemma A.3: Limiting State Probability of the Recombining Binomial Tree Approximation 

Consider a recombining binomial tree approximation {𝑦𝑛} of the OU process. The limiting 

probability 𝑄(𝑚) that the process is at level mmm is: 

𝑄(𝑚) = 𝑄(0) ⋅
1

2
𝑒−𝜅𝑚(𝑚−1)(𝑒−2𝜅𝑚 + 1) 

where: 

𝑄(0) = (1 + ∑ 𝑒−𝜅𝑚(𝑚−1)(𝑒−2𝜅𝑚 + 1))−1
∞

𝑚=1

 

Proof of Lemma A.3: 

Let {𝑥𝑡} be the OU process defined by the SDE: 

   𝑑𝑥𝑡 = −𝜅𝑥𝑡𝑑𝑡 + 𝑟𝑑𝐵𝑡           

where 𝑟 > 0 and {𝐵𝑡} is a standard Brownian motion. 
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We approximate {𝑥𝑡}  using a recombining binomial tree {𝑦𝑛}  with the following 

characteristics: 

Transition Probabilities: The probability of moving up from state 𝑦𝑛 is: 

𝑃↑(𝑦𝑛) =
1

2
+
1

2
𝑡𝑎𝑛ℎ⁡(

−𝑘𝑦𝑛

𝑟√𝛥𝑡
) 

Step Size: The size of each step (up or down) is: 

𝐻 = 𝑟√𝛥𝑡 

We set 𝛥𝑡 = 1, 𝑟 = 1, and 𝑘 = 𝑞, which simplifies the step size to 𝐻 = 1. The process 

{𝑦𝑛} then takes integer values 𝑦𝑛 = 𝑚, where 𝑚 ∈ {−𝑛,−𝑛 + 1,… ,0,1, … , 𝑛}. 

With the above settings, the probability of moving up from level 𝑚 becomes: 

𝑃↑(𝑚) =
1

2
+
1

2
𝑡𝑎𝑛ℎ⁡(−𝑘𝑚) 

Similarly, the probability of moving down from level 𝑚 is: 

𝑃↓(𝑚) = 1 − 𝑃↑(𝑚) =
1

2
−
1

2
𝑡𝑎𝑛ℎ⁡(−𝑘𝑚) 

Let 𝑄(𝑚) = 𝑙𝑖𝑚𝑛→∞𝑃(𝑦𝑛 = 𝑚) denote the limiting probability that the process is at level 

𝑚. 

Because the process is symmetric around zero (since the OU process with mean zero is 

symmetric), we have: 

𝑄(𝑚) = 𝑄(−𝑚) 

We aim to find a recursive formula for 𝑄(𝑚). Starting from the balance of probabilities at 

each level: 

At Level 𝒎 = 𝟎: 

The probability 𝑄(0) is given by the sum of probabilities of reaching level 0 from levels 

±1: 

𝑄(0) = 𝑃↓(1)𝑄(1) + 𝑃↑(−1)𝑄(−1) 

Due to symmetry 𝑄(1) = 𝑄(−1) and 𝑃↑(−1) = 𝑃↓(1), so: 

𝑄(0) = 2𝑃↓(1)𝑄(1) 
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At Level 𝒎 = 𝟏: 

The probability 𝑄(1) depends on transitions from levels 0 and 2: 

𝑄(1) = 𝑃↓(2)𝑄(2) + 𝑃↑(0)𝑄(0) 

Since 𝑃↑(0) =
1

2
 and using equation 𝑄(0) = 2𝑃↓(1)𝑄(1), we can write: 

𝑄(1) = 𝑃↓(2)𝑄(2) +
1

2
𝑄(0) = 𝑃↓(2)𝑄(2) +

1

2
2𝑃↓(1)𝑄(1) 

Simplifying: 

𝑄(1) = 𝑃↓(2)𝑄(2) + 𝑃↓(1)𝑄(1) 

Rearranging: 

𝑄(1) − 𝑃↓(1)𝑄(1) = 𝑃↓(2)𝑄(2) 

which leads to: 

𝑄(1)(1 − 𝑃↓(1)) = 𝑃↓(2)𝑄(2) 

Since 1 − 𝑃↓(1) = 𝑃↑(1), we have: 

𝑄(1)𝑃↑(1) = 𝑃↓(2)𝑄(2) 

Thus: 

𝑄(2) = 𝑄(1)
𝑃↑(1)

𝑃↓(2)
 

By observing the pattern, we can generalize the recursive relation for any 𝑚 ≥ 1: 

𝑄(𝑚) = 𝑄(𝑚 − 1)
𝑃↑(𝑚−1)

𝑃↓(𝑚)
          (A4) 

Proof by Mathematical Induction: 

Base Case: We have already established the recursive relation for 𝑚 = 1 and 𝑚 = 2. 

Inductive Step: Assume that the recursive formula holds for 𝑚 = 𝑘, i.e., 

𝑄(𝑘) = 𝑄(𝑘 − 1)
𝑃↑(𝑘 − 1)

𝑃↓(𝑘)
 

We need to show that it holds for 𝑚 = 𝑘 + 1. 

Starting from the balance of probabilities at level 𝑘: 

𝑄(𝑘) = 𝑃↓(𝑘 + 1)𝑄(𝑘 + 1) + 𝑃↑(𝑘 − 1)𝑄(𝑘 − 1) 

Substituting the induction hypothesis: 
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𝑄(𝑘) = 𝑃↓(𝑘 + 1)𝑄(𝑘 + 1) +
𝑄(𝑘)

𝑃↑(𝑘 − 1)
𝑃↓(𝑘)

𝑃↑(𝑘 − 1) 

Simplifying: 

𝑄(𝑘) = 𝑃↓(𝑘 + 1)𝑄(𝑘 + 1) + 𝑄(𝑘)(
𝑃↓(𝑘)

𝑃↑(𝑘 − 1)
𝑃↑(𝑘 − 1))

= 𝑃↓(𝑘 + 1)𝑄(𝑘 + 1) + 𝑄(𝑘)𝑃↓(𝑘) 

Rearranging: 

𝑄(𝑘)[1 − 𝑃↓(𝑘)] = 𝑃↓(𝑘 + 1)𝑄(𝑘 + 1) 

Since 1 − 𝑃↓(𝑘) = 𝑃↑(𝑘), we have: 

𝑄(𝑘)𝑃↑(𝑘) = 𝑃↓(𝑘 + 1)𝑄(𝑘 + 1) 

Therefore: 

𝑄(𝑘 + 1) = 𝑄(𝑘)
𝑃↑(𝑘)

𝑃↓(𝑘 + 1)
 

This confirms that the recursive relation holds for 𝑚 = 𝑘 + 1. 

By mathematical induction, the recursive formula (A4) holds for all 𝑚 ≥ 1. 

Using the recursive formula repeatedly, we can express 𝑄(𝑚) as: 

𝑄(𝑚) = 𝑄(0)∏
𝑃↑(𝑗)

𝑃↓(𝑗 + 1)

𝑚−1

𝑗=0

 

We compute the ratio 
𝑃↑(𝑗)

𝑃↓(𝑗+1)
: 

𝑃↑(𝑗)

𝑃↓(𝑗 + 1)
=

1
2 +

1
2 𝑡𝑎𝑛ℎ⁡(−𝑘𝑗)

1
2 −

1
2 𝑡𝑎𝑛ℎ⁡(−𝑘(𝑗 + 1))

=
1 + 𝑡𝑎𝑛ℎ⁡(−𝑘𝑗)

1 − 𝑡𝑎𝑛ℎ⁡(−𝑘(𝑗 + 1))
 

Using the identity 𝑡𝑎𝑛 ℎ(−𝑥) = −tanh(𝑥), we have: 

𝑃↑(𝑗)

𝑃↓(𝑗 + 1)
=

1 − 𝑡𝑎𝑛ℎ⁡(𝑘𝑗)

1 + 𝑡𝑎𝑛ℎ⁡(𝑘(𝑗 + 1))
 

Next, recall the hyperbolic tangent identity: 

tanh(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
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Compute 1 − 𝑡𝑎𝑛ℎ⁡(𝑘𝑗): 

1 − 𝑡𝑎𝑛 ℎ(𝑘𝑗) = 1 −
𝑒2𝑘𝑗 − 1

𝑒2𝑘𝑗 + 1
=

2

𝑒2𝑘𝑗 + 1
 

Similarly, compute 1 + 𝑡𝑎𝑛ℎ⁡(𝑘(𝑗 + 1)): 

1 + 𝑡𝑎𝑛 ℎ(𝑘(𝑗 + 1)) = 1 +
𝑒2𝑘(𝑗+1) − 1

𝑒2𝑘(𝑗+1) + 1
=

2𝑒2𝑘(𝑗+1)

𝑒2𝑘(𝑗+1) + 1
 

Therefore, the ratio becomes: 

𝑃↑(𝑗)

𝑃↓(𝑗 + 1)
=

2
𝑒2𝑘𝑗 + 1
2𝑒2𝑘(𝑗+1)

𝑒2𝑘(𝑗+1) + 1

=
𝑒2𝑘(𝑗+1) + 1

𝑒2𝑘𝑗 + 1

1

𝑒2𝑘(𝑗+1)
 

Note that 𝑒2𝑘(𝑗+1) = 𝑒2𝑘𝑗𝑒2𝑘. 

We can now write the product: 

∏
𝑃↑(𝑗)

𝑃↓(𝑗 + 1)

𝑚−1

𝑗=0

= ∏(
𝑒2𝑘(𝑗+1) + 1

𝑒2𝑘𝑗 + 1

1

𝑒2𝑘(𝑗+1)
)

𝑚−1

𝑗=0

 

Simplify the product step by step: 

Product of the Numerators and Denominators: The telescoping nature of the product 

allows most terms to cancel out. 

Simplifying the Exponential Terms: Recognize that: 

∏
𝑒2𝑘(𝑗+1) + 1

𝑒2𝑘𝑗 + 1

𝑚−1

𝑗=0

=
𝑒2𝑘𝑚 + 1

𝑒0 + 1
=
𝑒2𝑘𝑚 + 1

2
 

Product of the Exponential Denominators: 

∏
1

𝑒2𝑘(𝑗+1)

𝑚−1

𝑗=0

= 𝑒−2𝑘∑ (𝑗+1)𝑚−1
𝑗=0 = 𝑒−2𝑘(

𝑚(𝑚+1)
2

)
 

Combining Exponents: The exponent simplifies to: 

−2𝑘 (
𝑚(𝑚 + 1)

2
) = −𝑘𝑚(𝑚 + 1) 

Putting it all together: 

𝑄(𝑚) = 𝑄(0)(
𝑒2𝑘𝑚 + 1

2
)𝑒−𝑘𝑚(𝑚+1) = 𝑄(0) ⋅

1

2
𝑒−𝑘𝑚(𝑚−1)(𝑒−2𝑘𝑚 + 1) 
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Since the total probability must sum to 1, we have: 

1 = 𝑄(0) + 2 ∑ 𝑄(𝑚)

∞

𝑚=1

 

Substitute the expression for 𝑄(𝑚): 

1 = 𝑄(0) + 2𝑄(0) ∑
1

2
𝑒−𝑘𝑚(𝑚−1)(𝑒−2𝑘𝑚 + 1)

∞

𝑚=1

= 𝑄(0) ⋅ (1 + ∑ 𝑒−𝑘𝑚(𝑚−1)(𝑒−2𝑘𝑚 + 1)

∞

𝑚=1

) 

Rewriting: 

𝑄(0) = (1 + ∑ 𝑒−𝑘𝑚(𝑚−1)(𝑒−2𝑘𝑚 + 1)

∞

𝑚=1

)−1 

Overall, we have derived the limiting probability 𝑄(𝑚) that the recombining binomial tree 

approximation of the OU process is at level 𝑚, given by: 

𝑄(𝑚) = 𝑄(0) ⋅
1

2
𝑒−𝑘𝑚(𝑚−1)(𝑒−2𝑘𝑚 + 1) 

where 𝑄(0) is determined by the normalization condition: 

𝑄(0) = (1 + ∑ 𝑒−𝑘𝑚(𝑚−1)(𝑒−2𝑘𝑚 + 1)

∞

𝑚=1

)−1 

 

Lemma A.4: Strong Mixing Property of the Ornstein–Uhlenbeck Process 

The OU process {𝑥(𝑡)} satisfies the strong mixing condition, also known as the α-mixing 

property. 

Proof of Lemma A.4: 

To establish that the OU process {𝑥(𝑡)} is strongly mixing, we consider two σ-algebras ℱ𝑡
− 

and ℱ𝑡+𝑠
+ , where ℱ𝑡

− is generated by {𝑥(𝑢): 𝑢 ≤ 𝑡} and ℱ𝑡+𝑠
+  is generated by {𝑥(𝑢): 𝑢 ≥ 𝑡 + 𝑠}. 

The maximal correlation coefficient between these two σ-algebras is defined as: 

𝜌(ℱ𝑡
−, ℱ𝑡+𝑠

+ ) = sup
𝑓∈𝐿2(ℱ𝑡

−),𝑔∈𝐿2(ℱ𝑡+𝑠
+ )

|𝐶𝑜𝑣(𝑓, 𝑔)|

√𝑉𝑎𝑟(𝑓)𝑉𝑎𝑟(𝑔)
 

where 𝐿2(ℱ) denotes the set of square-integrable, ℱ-measurable functions. 



77 
 

Sun, Y. / WORKING PAPERS 20/2025 (483) 

For the OU process, which is a stationary Gaussian process, the maximal correlation 

coefficient between ℱ𝑡
− and ℱ𝑡+𝑠

+  equals the absolute value of the correlation between 𝑥(𝑡) and 

𝑥(𝑡 + 𝑠). This correlation depends solely on the lag 𝑠 and is given by: 

𝜌(𝑠) = 𝜌(ℱ𝑡
−, ℱ𝑡+𝑠

+ ) = |𝐶𝑜𝑟𝑟⁡(𝑥(𝑡), 𝑥(𝑡 + 𝑠))| = 𝑒−𝑘𝑠 

where 𝑘 > 0 is the mean-reversion rate of the OU process. 

The OU process is defined by the SDE: 

𝑑𝑥(𝑡) = −𝑘𝑥(𝑡)𝑑𝑡 + 𝑟𝑑𝐵𝑡 

where 𝑟 > 0 and {𝐵𝑡} is a standard Brownian motion. 

The stationary solution of this equation is: 

𝑥(𝑡) = 𝑟∫ 𝑒−𝑘(𝑡−𝑢)𝑑𝐵𝑢

𝑡

−∞

 

Because the process is Gaussian and stationary, the correlation between 𝑥(𝑡) and 𝑥(𝑡 + 𝑠) 

is determined by the exponential decay 𝑒−𝑘𝑠. 

A process {𝑥(𝑡)} is said to satisfy the strong mixing condition if, for any events 𝐴 ∈ ℱ𝑡
− 

and 𝐵 ∈ ℱ𝑡+𝑠
+ : 

𝛼(𝑠) = sup
𝐴∈ℱ𝑡

−,𝑔∈ℱ𝑡+𝑠
+
|𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴)𝑃(𝐵)| → 0⁡𝑎𝑠⁡𝑠 → ∞ 

For Gaussian processes, the α-mixing coefficient 𝛼(𝑠) is related to the maximal correlation 

coefficient 𝜌(𝑠) through various inequalities. 

Since 𝜌(𝑠) = 𝑒−𝑘𝑠  decays exponentially to zero as 𝑠 → ∞ , the maximal correlation 

between ℱ𝑡
− and ℱ𝑡+𝑠

+  diminishes to zero. Consequently, the α-mixing coefficient 𝛼(𝑠) also tends 

to zero as 𝑠 → ∞. This implies that the OU process {𝑥(𝑡)} satisfies the strong mixing condition. 

Additional Example to Illustrate the Decay of Correlation: 

Consider random variables 𝑥(𝑡) + 𝑥(𝑠) and 𝑥(𝑧) from the OU process, where 𝑠 ≤ 𝑡 ≤ 𝑧. 

We compute the covariance between 𝑥(𝑡) + 𝑥(𝑠) and 𝑥(𝑧): 

𝐶𝑜𝑣⁡(𝑥(𝑡) + 𝑥(𝑠), 𝑥(𝑧)) = 𝐶𝑜𝑣⁡(𝑥(𝑡), 𝑥(𝑧)) + 𝐶𝑜𝑣⁡(𝑥(𝑠), 𝑥(𝑧)) 

Using the property of the OU process: 
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𝐶𝑜𝑣(𝑥(𝑢), 𝑥(𝑣)) =
𝑟2

2𝑘
𝑒−𝑘|𝑣−𝑢| 

Thus: 

𝐶𝑜𝑣⁡(𝑥(𝑡) + 𝑥(𝑠), 𝑥(𝑧)) =
𝑟2

2𝑘
(𝑒−𝑘(𝑧−𝑡) + 𝑒−𝑘(𝑧−𝑠)) 

The variance of 𝑥(𝑡) + 𝑥(𝑠) is: 

𝑉𝑎 𝑟(𝑥(𝑡) + 𝑥(𝑠)) = 𝑉𝑎 𝑟(𝑥(𝑡)) + 𝑉𝑎 𝑟(𝑥(𝑠)) + 2𝐶𝑜𝑣⁡(𝑥(𝑡) + 𝑥(𝑠)) =
𝑟2

2𝑘
(1 + 𝑒−𝑘(𝑡−𝑠)) 

The variance of 𝑥(𝑧) is: 

𝑉𝑎𝑟(𝑥(𝑧)) =
𝑟2

2𝑘
 

Therefore, the correlation coefficient between 𝑥(𝑡) + 𝑥(𝑠) and 𝑥(𝑧) is: 

𝐶𝑜𝑟𝑟(𝑥(𝑡) + 𝑥(𝑠), 𝑥(𝑧)) =
𝐶𝑜𝑣(𝑥(𝑡) + 𝑥(𝑠), 𝑥(𝑧))

√𝑉𝑎𝑟(𝑥(𝑡) + 𝑥(𝑠))𝑉𝑎𝑟(𝑥(𝑧))
= 𝑒−𝑘(𝑧−𝑡)√

1 + 𝑒−𝑘(𝑡−𝑠)

2
 

As 𝑧 − 𝑡  increases (i.e., as 𝑠 → ∞), the correlation tends to zero exponentially, further 

illustrating the strong mixing property. 

 

Theorem 3.1: H-Volatility of the Ornstein–Uhlenbeck Process 

Let 𝑃(𝑡) be an OU process with mean zero defined by the SDE: 

𝑑𝑃(𝑡) = −𝜃𝑃(𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡 

where 𝜃 > 0, 𝜎 > 0, and 𝐵𝑡 is a standard Brownian motion. 

Then, for any positive 𝐻 satisfying certain conditions relevant to the Renko and Kagi chart 

constructions, the H-volatility 𝑛𝑇(𝐻, 𝑃) is less than 2𝐻: 

lim
𝑇→∞

𝑛𝑇(𝐻, 𝑃) ⁡ < 2𝐻           (A5) 

Proof of Theorem 3.1: 

We will prove Theorem A.6 by considering the properties of the OU process and analyzing 

the behavior of the H-volatility under the Renko and Kagi chart constructions.  
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1. Definitions and Preliminaries 

First, we define the necessary terms and preliminaries.  

• H-Inversion: An H-inversion occurs when the process 𝑃(𝑡) changes direction after 

moving a distance of at least 𝐻. 

• Stopping Times: 

𝑠𝑎𝑛: Times at which 𝑃(𝑡) reaches local extrema (either maxima or minima). 

𝑠𝑏𝑛: Times at which 𝑃(𝑡) changes direction after moving a distance 𝐻 from 𝑠𝑎𝑛. 

Let {(𝑠𝑎𝑛 , 𝑠𝑏𝑛)}𝑛=0
𝑁  be the sequence of stopping times defined on the OU process 𝑃(𝑡) up 

to time 𝑇. The number of H-inversions up to time 𝑇 is 𝑁 = 𝑛𝑇(𝐻, 𝑃). 

By Lemma A.2, we have: 

𝑁 = 𝑛𝑇(𝐻, 𝑃) → ∞⁡𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦 𝑎𝑠 𝑇 → ∞ 

2. Distance Between Sequential Local Extrema 

We define the distance between two sequential local extrema: 

𝑐𝑛 = |𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)| = (𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)) ⋅ 𝑠𝑖𝑔𝑛⁡(𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)) 

Our goal is to analyze 𝑐𝑛 and show that its expected value is less than 2𝐻. 

3. Decomposition of 𝒄𝒏 

We can decompose 𝑐𝑛 as follows: 

𝑐𝑛 = (𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)) ⋅ 𝑠𝑖𝑔𝑛⁡(𝑃(𝑆𝑎𝑛) − 𝑃(𝑆𝑎𝑛−1))

= ([𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑏𝑛)] + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)] + [𝑃(𝑠𝑏𝑛−1) − 𝑃(𝑠𝑎𝑛−1)])

⋅ 𝑠𝑖𝑔𝑛⁡(𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)) 

4. Considering Possible Cases 

There are two possible cases based on whether 𝑃(𝑠𝑎𝑛) is a local maximum or a local 

minimum. 

Case 1: 𝑃(𝑠𝑎𝑛) is a local maximum and 𝑃(𝑠𝑎𝑛−1) is a local minimum. 

The distance between 𝑃(𝑠𝑎𝑛) and 𝑃(𝑠𝑏𝑛) is 𝐻, so 𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑏𝑛) = 𝐻. 

The distance between 𝑃(𝑠𝑎𝑛−1) and 𝑃(𝑠𝑏𝑛−1)  is −𝐻, so 𝑃(𝑠𝑎𝑛−1) − 𝑃(𝑠𝑏𝑛−1) = −𝐻. 
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The sign of 𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1) is positive +1. 

Thus, 

𝑐𝑛 = (𝐻 + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)] − (−𝐻)) ⋅ 1 = (𝐻 + 𝐻) + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)]

= 2𝐻 + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)] 

Case 2: 𝑃(𝑠𝑎𝑛) is a local minimum and 𝑃(𝑠𝑎𝑛−1) is a local maximum. 

The distance between 𝑃(𝑠𝑎𝑛) and 𝑃(𝑠𝑏𝑛) is −𝐻, so 𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑏𝑛) = −𝐻. 

The distance between 𝑃(𝑠𝑎𝑛−1) and 𝑃(𝑠𝑏𝑛−1)  is 𝐻, so 𝑃(𝑠𝑎𝑛−1) − 𝑃(𝑠𝑏𝑛−1) = 𝐻. 

The sign of 𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1) is negative −1. 

Thus, 

𝑐𝑛 = (−𝐻 + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)] − 𝐻) ⋅ (−1) = (𝐻 + 𝐻) + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)]

= 2𝐻 + [𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)] 

It follows that 

     𝑐𝑛 = |𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)| = 2𝐻 + (𝑃(𝑠𝑏𝑛) − 𝑃(𝑠𝑏𝑛−1)) ⋅ 𝑠𝑖𝑔𝑛⁡(𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1))       (A6) 

5. Statistical Properties of 𝒄𝒏 

Stationarity: The sequence {𝑐𝑛} is stationary because the increments of the OU process are 

time-homogeneous. 

Mixing: The sequence is α-mixing with mixing coefficients 𝛼𝑛 → 0 as 𝑛 → ∞ due to the 

Markov property and exponential decay of correlations in the OU process. 

6. Applying the Strong Law of Large Numbers 

By the Strong Law of Large Numbers for stationary and α -mixing sequences (Billingsley, 

1995, Theorem 27.4), we have: 

lim
𝑇→∞

𝑛𝑇(𝐻, 𝑃) = lim
𝑁→∞

1

𝑁
∑𝑐𝑛

𝑁

𝑛=1

= lim
𝑁→∞

1

𝑁
∑|𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)|

𝑁

𝑛=1

 

→ 𝐸[|𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)|]⁡𝑎𝑠⁡𝑇 → ∞ 

Now we have to separate the proofs for Renko and Kagi constructions. First, we prove (A5) 

for the Renko construction. 
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Proof for the Renko Construction 

1. Setup and Definitions 

We consider a sequence of random variables {𝑑𝑘}𝑘=1
∞  defined by: 

𝑑𝑘 = {
+1,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑘,

−1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑘
 

Define the process {𝑐𝑛} as the cumulative sum of 𝑑𝑘: 

𝑐𝑛 = ∑𝑑𝑘

𝑛

𝑘=1

, 𝑛 = 1,2, … 

2. Binomial Tree Approximation 

The process {𝑐𝑛} is a recombining binomial tree approximation of the OU process (van der 

Hoek 2009). The general formula for the probability of moving up in such a binomial 

approximation is: 

𝑝𝑛 =
1

2
+
1

2
𝑡𝑎𝑛ℎ⁡(

𝜃(𝑙 − 𝑃(𝑛))

𝜎√𝛥𝑡
) 

where 𝑙 is the long-term mean (zero in our case), and 𝛥𝑡 is the time increment. 

For our process {𝑐𝑛}, we set: 

𝑝𝑛 =
1

2
+

1

2
𝑡𝑎𝑛ℎ⁡(−κ𝑐𝑛 − 1), with κ = θ

𝐻

σ
 

3. Relation to the Renko Process 

In the Renko chart construction, the stopping times 𝑠𝑖 are defined such that the price moves 

by a fixed amount 𝐻 before a new "brick" is added. Direction changes occur after the price 

moves 𝐻 in the opposite direction. 

From the definition of the Renko stopping times 𝑠𝑖, we have: 

𝑃(𝑠𝑖)

𝐻
~𝑐𝑛 

𝑃(𝑠𝑖) − 𝑃(𝑠𝑖−1)

𝐻
~𝑑𝑛 

4. Defining the Random Variable 𝒎 

We define 𝑚 as the time of the first downturn after a series of upward movements: 
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𝑚 = 𝑚𝑖𝑛⁡{𝑛 ≥ 1: 𝑐𝑛 = 𝑛 − 2} 

Alternatively, 𝑚 is the smallest 𝑛 ≥ 1 such that the maximum value of 𝑐𝑡 over 𝑡 ∈ [0, 𝑛] 

exceeds 𝑐𝑛 by at least 1: 

𝑚 = 𝑚𝑖𝑛⁡{𝑛 ≥ 1: max
𝑡∈[0,𝑛]

𝑐𝑡 − 𝑐𝑛 = 1} 

This represents the time of the first "downfall" or change in direction in the Renko chart 

after consecutive increases. 

5. Calculating the Distance Between Sequential Local Extrema 

From the above equation in your proof, we have: 

|𝑃(𝑠𝑎𝑛) − 𝑃(𝑠𝑎𝑛−1)| = 2𝐻 + 𝑐𝑚𝐻 = 𝑚𝐻 

This means the distance between two sequential local extrema is 𝑚𝐻. 

Therefore, the expected value is: 

𝐸[|𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)|] = 𝐻𝐸[𝑚]⁡         (A7) 

6. Distribution of 𝒎 

Since 𝑚  is the time until the first downfall after a series of increases, it follows a 

geometric-like distribution with varying success probabilities. The probability of a "downfall" at 

time 𝑛 depends on the probability 𝑞𝑛 = 1 − 𝑝𝑛. 

The expected value of 𝑚 is given by: 

𝐸[𝑚] = ∑𝑛

∞

𝑛=1

(∏𝑝𝑘

𝑛−1

𝑘=1

)𝑞𝑛 

Here, 𝑐𝑛 = 𝑐0 + 𝑛 − 1, and the probabilities 𝑝𝑘 depend on 𝑐𝑘−1. 

7. Computing 𝑬[𝒎] 

Due to the dependence of 𝑝𝑘 on 𝑐𝑘−1, calculating 𝐸[𝑚] directly is complex. To proceed, 

we consider the initial value 𝑐0 can be any integer, and we average over all possible initial values: 

𝐸[𝑚] = ∑ 𝑃(𝑘)∞
𝑘=−∞ ∑ (𝑛 + 1)∞

𝑛=0 (∏ 𝑝𝑘+𝑖−1
𝑛
𝑖=1 )𝑞𝑘+𝑛         (A8) 

where 𝑃(𝑘) = 𝑃(𝑐0 = 𝑘) is the probability that the process starts at 𝑐0 = 𝑘. 
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8. Density Function of 𝒄𝟎 

From Lemma A.3, the probability distribution of 𝑐0 is: 

𝑃(𝑘) = 𝑃(0) ⋅
1

2
𝑒−𝜅𝑘(𝑘−1)(𝑒−2𝜅𝑘 + 1) 

where: 

𝑃(0) = (1 +∑𝑒−𝜅𝑖(𝑖−1)(𝑒−2𝜅𝑖 + 1)

∞

𝑖=1

)−1 

9. Bounding the Expected Value of 𝒎 

Due to the complexity of 𝑝𝑘  and 𝑃(𝑘) , obtaining a closed-form solution for 𝐸[𝑚]  is 

challenging. However, we can use an upper bound. 

Consider the inner sum in equation (A8): 

∑ 𝑃(𝑘)(1 + tanh(−𝜅(𝑘 + 𝑛)))
𝑛
(1 + tanh(−𝜅(𝑘 + 𝑛)))∞

𝑘=−∞ ≤ 1        (A9) 

This inequality holds because probabilities sum to 1, and the terms involving the 

hyperbolic tangent are less than or equal to 1. 

10. Simplifying 𝑬[𝒎] 

Using the bound from (A9), we have: 

𝐸[𝑚] ≤ ∑(𝑛 + 1)2−(𝑛+1) = 2

∞

𝑛=0

 

This calculation is based on the fact that 𝑝𝑘 ≤ 1 and 𝑞𝑘 ≥ 0, and the geometric series sums 

to a finite value. 

The sum evaluates to: 

∑(𝑛 + 1)2−(𝑛+1) =

∞

𝑛=0

1

2
∑(𝑛 + 1) (

1

2
)
𝑛

=

∞

𝑛=0

1

2
(

1

(1 −
1
2)

2) = 2 

11. Concluding the Expected Distance 

From equation (A7) and the bound on 𝐸[𝑚]: 
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𝐸[|𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)|] = 𝐻𝐸[𝑚] ≤ 𝐻 ⋅ 2 = 2𝐻 

12. Final Conclusion for Renko Construction 

Since the expected distance between sequential local extrema is less than or equal to 2𝐻, 

and the total accumulated distance over time 𝑇 is finite due to the mean-reverting property of the 

OU process, we conclude that: 

lim
𝑇→∞

𝑛𝑇(𝐻, 𝑃) ⁡ ≤ 2𝐻 

Therefore, the H-volatility for the Renko construction on the OU process is less than 2𝐻. 

 

Proof for the Kagi Construction 

1. Defining the Random Variable 𝒉 

We define the random variable ℎ as the minimum time 𝑢 ≥ 0 such that the maximum of 

𝑃(𝑡) over the interval [0, 𝑢] minus 𝑃(𝑢) equals 𝐻: 

ℎ = 𝑚𝑖𝑛⁡{𝑢 ≥ 0: max
𝑡∈[0,𝑢]

(𝑃(𝑡) − 𝑃(𝑢)) = 𝐻} 

This definition captures the time until the process 𝑃(𝑡)  has decreased by 𝐻  from its 

maximum over the interval [0, ℎ]. 

2. Representation of 𝑷(𝒉) Using a Time-Changed Wiener Process 

By applying Lemma A.1 (which states that the OU process can be represented as a time-

changed Wiener process due to its mean-reverting property), we can express 𝑃(ℎ) as: 

𝑃(ℎ) = 𝑃(0)𝑒−𝜃ℎ + 𝜎∫ 𝑒−𝜃(ℎ−𝑠)
ℎ

0

𝑑𝐵𝑠 

Since 𝑃(0) = 0 (mean zero), this simplifies to: 

𝑃(ℎ) = 𝜎𝑒−𝜃ℎ∫ 𝑒𝜃𝑠
ℎ

0

𝑑𝐵𝑠 

Using the properties of the OU process, the term involving the integral can be represented 

as a scaled Wiener process. Therefore, we can write: 
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𝑃(ℎ) = 𝜎√
1 − 𝑒−2𝜃ℎ

2𝜃
𝑊 

where 𝑊 is a standard normal random variable (since it's derived from a Wiener process). 

3. Calculating |𝑷(𝒔𝒃𝟏) − 𝑷(𝒔𝒃𝟎)| 

From the definition of the Kagi chart construction and using the expression for 𝑃(ℎ), we 

have: 

|𝑃(𝑠𝑏1) − 𝑃(𝑠𝑏0)| = 𝑃(𝑠𝑏0)𝑒
−𝜃ℎ + 𝜎√

1 − 𝑒−2𝜃ℎ

2𝜃
𝑊 

Here, 𝑠𝑏0 and 𝑠𝑏1 are stopping times corresponding to the process changing direction after 

moving a distance 𝐻. 

4. Using Equation (A6) to Find 𝑬[|𝑷(𝒔𝒂𝟏) − 𝑷(𝒔𝒂𝟎)|] 

From equation (A6) in the initial proof (which relates the distance between sequential local 

extrema to the increments between stopping times), we have: 

𝐸[|𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)|] = 𝐸[2𝐻 + 𝑂𝑈ℎ]       (A10) 

where 𝑂𝑈ℎ is defined as: 

𝑂𝑈ℎ = (𝑃(𝑠𝑏1) − 𝑃(𝑠𝑏0)) ⋅ 𝑠𝑖𝑔𝑛(𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)) 

5. Distribution of 𝑶𝑼𝒉 

Since 𝑃(𝑠𝑏1) − 𝑃(𝑠𝑏0)involves the OU process over the interval [𝑠𝑏0 , 𝑠𝑏1], and given the 

properties of 𝑃(𝑡), we have: 

𝑂𝑈ℎ = 𝜎√
1 − 𝑒−2𝜃ℎ

2𝜃
𝑊 ⋅ 𝑠𝑖𝑔𝑛(𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)) 

Because 𝑠𝑖𝑔𝑛(𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0) and 𝑊 are independent (due to the Markov property), and 

𝑊 is symmetric about zero, we can simplify the expression. 
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6. Comparing 𝑶𝑼𝒉 and the Wiener Process 𝑾𝒉 

We observe that the term 𝑂𝑈ℎ can be bounded in distribution by a scaled Wiener process 

over time ℎ: 

𝑂𝑈ℎ ≤ 𝜎√ℎ𝑊ℎ 

where 𝑊ℎis a standard Wiener process over time h. 

This inequality holds because the OU process has a mean-reverting drift term −𝜃𝑃(𝑡)𝑑𝑡, 

which causes it to revert towards zero, making its fluctuations smaller than those of a standard 

Wiener process over the same time interval. 

7. Using Maximal Inequalities 

From the maximal inequalities for the OU process (as discussed in Graversen and Peskir, 

2000), we know that the expected maximum of 𝑃(𝑡) over an interval [0, ℎ] is less than that of 

a Wiener process: 

𝐸[ sup
0≤𝑡≤ℎ

|𝑃(𝑡)| ≤ 𝜎√
𝑙𝑜𝑔⁡(1 + 2𝜃ℎ)

2𝜃
 

In contrast, for a Wiener process 𝑊(𝑡), we have: 

𝐸[ sup
0≤𝑡≤ℎ

|𝑊(𝑡)| = 𝜎√
𝑙𝑜𝑔⁡(1 + 2𝜃ℎ)

2𝜃
 

Therefore, the OU process is smaller in distribution than the Wiener process for any 𝑡 > 0: 

𝑂𝑈ℎ ≤ 𝑊ℎ 

8. Bounding 𝑬[|𝑷(𝒔𝒂𝟏) − 𝑷(𝒔𝒂𝟎)|] 

Using the inequality from step 6 and equation (A10), we have: 

𝐸[|𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)|] = 𝐸[2𝐻 + 𝑂𝑈ℎ] ≤ 𝐸[2𝐻 +𝑊ℎ] 

9. Calculating 𝑬[𝟐𝑯 +𝑾𝒉] 

Since 𝑊ℎ is a normal random variable with mean zero and variance 𝜎2ℎ, we have: 

𝐸[2𝐻 +𝑊ℎ] = 2𝐻 + 𝐸[𝑊ℎ] = 2𝐻 + 0 = 2𝐻 

(Note: The expected value of 𝑊ℎ is zero.) 
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10. Conclusion for the Kagi Construction 

Therefore, we have shown that: 

𝐸[|𝑃(𝑠𝑎1) − 𝑃(𝑠𝑎0)|] ≤ 2𝐻 

Since the expected distance between sequential local extrema is less than or equal to 2𝐻, 

and the total accumulated distance over time 𝑇  remains bounded due to the mean-reverting 

nature of the OU process, we conclude that: 

lim
𝑇→∞

𝑛𝑇(𝐻, 𝑃) ⁡ ≤ 2𝐻 

Thus, for the Kagi construction over the OU process, the H-volatility is less than 2𝐻: 

𝑛𝑇(𝐻, 𝑃) ≤ 2𝐻. 
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