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Abstract: This review examines the growing literature on pairs trading frameworks, which 

involve relative value arbitrage strategies between two or more securities. Existing research is 

categorized into five main categories: distance methods use nonparametric distance measures to 

identify pairs trading opportunities; cointegration methods rely on formal cointegration tests to 

reveal stationary time series of spreads; time series methods focus on finding optimal trading rules 

for mean-reverting spreads; stochastic control methods aim to determine the optimal portfolio 

holdings in pairs trading relative to other available securities; and the "Other Methods" category 

encompasses other relevant pairs trading frameworks, albeit with a more limited supporting 

literature. Through a comprehensive review of over 100 papers published between 2016 and 2023, 

the survey identifies the key strengths and weaknesses of each approach, providing insights 

relevant for future research and practical implementation. 
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1. Introduction 

This review focuses on the literature published between 2016 and 2023, as the earlier period 

from 2006 to 2015 has already been comprehensively surveyed by Krauss (2017). Nevertheless, to 

provide a complete perspective, the discussion begins with the seminal study by Gatev et al. (2006), 

hereafter referred to as GGR. 

Based on the work of GGR, the concept of pairs trading is straightforward and consists of 

two main steps. First, identify two securities whose prices move in synchronize during a formation 

period. Then, in subsequent trading periods, observe the price difference between them. If the 

prices diverge and the spread widens, the strategy involves shorting the security that has gained 

more value and buying the one that has lost value. Assuming the two securities maintain an 

equilibrium relationship, the spread is expected to revert to its historical average. Once this 

reversion occurs, the position can be closed to realize a profit. 

The basic idea of univariate pairs trading can be extended to more complex scenarios. 

In quasi-multivariate models, a single security is traded against a weighted portfolio of other related 

securities. In full multivariate models, an entire group of stocks is traded against another group of 

stocks. These sophisticated strategies can be collectively referred to as (quasi-)multivariate pairs 

trading, generalized pairs trading, or statistical arbitrage. All of these methods fall under the broader 

category of "statistical arbitrage pairs trading" (or simply "pairs trading") because they represent 

the foundation of more advanced techniques (Vidyamurthy, 2004; Avellaneda and Lee, 2010). Pairs 

trading is also related to other long-short strategies, such as those exploiting deviations from the 

law of one price, lead-lag effects, and return reversals. For a detailed discussion of these and other 

long-short return phenomena, see Jacobs (2015). 

GGR's seminal paper in pairs trading has garnered considerable attention. The paper presents 

a straightforward yet powerful algorithm applied to a broad dataset of U.S. stocks, and carefully 

tuned to mitigate the effects of data-snooping bias. The results showed annualized excess returns 

of up to 11%, with minimal influence from systematic risk factors. Crucially, these returns cannot 

be attributed to previously recognized sources of profit, such as the reversal profits identified by 

Jegadeesh (1990) and Lehmann (1990) or the momentum profits described by Jegadeesh and 

Titman (1993). The persistence of these unexplained excess returns solidified GGR's strategy as 
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a notable anomaly in capital markets, maintaining its relevance and being validated by subsequent 

research, including studies by Do and Faff (2010, 2012). 

Despite these insights, it is important to note that academic research on pairs trading remains 

relatively limited compared with studies on contrarian and momentum strategies. Nevertheless, 

interest in the topic has increased markedly in recent years, giving rise to a growing array of 

theoretical frameworks and empirical applications across various asset classes. The apparent 

simplicity of GGR's strategy becomes less evident with more sophisticated models and techniques 

have been introduced. In this review, we organize the literature into five broad categories, each 

defined by its methodological approach and the underlying logic for identifying and exploiting 

trading opportunities: distance methods, cointegration methods, time series methods, stochastic 

control methods, and other methods. 

Distance Approach: This is the most extensively studied framework in pairs trading research. 

During the formation stage, various distance metrics are employed to identify pairs of securities 

that exhibit co-movement. During the trading stage, simple nonparametric threshold rules are 

applied to generate trading signals. The strengths of this strategy lie in its simplicity and 

transparency, making it well-suited for large-scale empirical applications. Empirical evidence 

consistently shows that distance-based pairs trading can be profitable across different markets, 

asset classes, and time horizons. 

Cointegration Approach: This approach applies cointegration tests during the formation 

stage to identify pairs of securities that share a statistically significant long-term equilibrium 

relationship. During the trading stage, deviations from this equilibrium are monitored and simple 

rules (often based on GGR threshold methods) are used to trigger long and short positions. By 

relying on econometric tests, this approach mitigates the risk of spurious correlations that can arise 

from purely distance-based selection. Empirical research demonstrates that cointegration-based 

strategies can generate consistent profits across various markets and asset classes, particularly 

when supported by rigorous pre-selection and model validation procedures. 

Time Series Approach: Unlike distance and cointegration frameworks, this approach 

generally ignores the formation stage, assuming that suitable co-moving securities have been 

identified through prior analysis. Instead, it focuses on the trading stage, where the spread between 

assets is modeled using time series techniques—typically employing mean-reverting processes 
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such as the Ornstein-Uhlenbeck (OU) model, or ARIMA and GARCH-type models to capture 

autocorrelation and volatility dynamics. Trading signals are generated based on the model's 

forecasts of spread movements, and parameters are optimized to balance profitability and risk. This 

approach is flexible enough to capture complex spread behavior and adapt to changing market 

conditions, but its performance depends heavily on accurate model specification and parameter 

estimation. 

Stochastic Control Approach: Similar to time series frameworks, this approach typically 

omits the formation stage and assumes that suitable trading pairs have already been identified. Its 

focus is on dynamically determining the optimal portfolio position—covering entry and exit timing, 

position sizing, and allocation between paired assets and other investment opportunities. Stochastic 

control theory is used to model the spread as a stochastic process, typically using the OU process, 

and solving the Hamilton-Jacobi-Bellman (HJB) equation to obtain the portfolio value and optimal 

strategy function. This framework can adapt to changing market conditions in real time and provide 

theoretically optimal strategies under certain assumptions, although it requires complex 

mathematical modeling and can be sensitive to parameter misspecification. 

Other Approaches: This category includes additional pairs trading frameworks that have 

relatively limited supporting literature and are not closely related to the previously discussed 

approaches. Representative examples include non–machine-learning techniques such as the copula 

approach, which models the joint distribution of asset returns to capture nonlinear dependencies, 

and the Hurst exponent approach, which quantifies long-term memory and persistence in spread 

dynamics. These methods often employ more advanced statistical or computational tools to 

uncover trading opportunities beyond conventional correlation or mean-reversion measures. While 

they can capture complex relationships missed by traditional models, their practical application is 

constrained by higher data and estimation requirements, as well as limited empirical validation. 

Table 1 provides a summary of representative studies for each approach, detailing the data 

samples and the performance evaluation metrics as reported in the respective studies. 

Considering the diversity among the above five approaches, this survey makes two key 

contributions. First, it provides a comprehensive review of the literature across these approaches. 

Second, it offers an in-depth analysis of representative studies within each category, highlighting 
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their methodological strengths and weaknesses. Drawing on more than 100 papers, the survey 

synthesizes insights that are relevant for both academic research and practical implementation. 

Table 1. Overview of pairs trading approaches. 

Approach Representative articles Data Sample Performance Evaluation 

Metrics 

Distance Bowen and Hutchinson (2016) 

 

Zhang and Urquhart (2019) 

London Stock Exchange 

stocks 1979-2012 

CSI300, HSHKI, HSAHP 

stocks 1996-2017 

Sharpe ratio, Annualized 

returns 

Average excess returns, 

Standard deviation, 

Abnormal returns 

Cointegration Ekkarntrong et al. (2017) 

 

Figuerola‐Ferretti et al. (2018) 

U.S. The Global Dow 

stocks 2002-2012 

STOXX Europe 600 

stocks 2000-2017 

Excess returns 

Sharpe ratio, Standard 

deviation 

Time series Chen et al. (2017) 

Kim and Heo (2017) 

U.S. stocks 2006-2014 

KOSPI 100 stocks 2005-

2015 

Round-trip trades, 

Annualized returns 

Cumulative returns, 

Annualized Sharpe ratio 

Stochastic control Göncü and Akyildirim (2016) 

 

Liu et al. (2017) 

U.S. U.K. commodity 

futures 1997-2015 

U.S. Oil stocks 2007-

2008, 2013-2015 

Cumulative returns, 

Annualized returns 

Annualized Sharpe ratio, 

Annualized returns 

Others: Copula Xie et al. (2016) 

 

Krauss and Stübinger (2017) 

U.S. stocks 2003-2012 

 

U.S. S&P 100 stocks 

1990-2014 

Excess returns, 

Cumulative returns 

Annualized Sharpe ratio, 

Excess returns 

Others: Hurst 

exponent 

Ramos-Requena et al. (2017) 

 

Ramos-Requena et al. (2021) 

U.S. The Global Dow 

stocks 2000-2015 

U.S.  Nasdaq Inc stocks 

2000-2021 

WO, LO, PAOW, PAOL 

Average annualized 

returns, Sharpe ratio 

Others: Entropy Amer and Islam (2023) PSX stocks 2017-2019 Annualized returns 

 

The remainder of this paper is organized as follows. Section 1 introduces the relevance of the 

research topic within the field of finance and defines the primary objectives of the study, outlining 

the key research questions and the unique contributions made to existing literature. Section 2 

reviews related work, summarizing foundational studies, main findings, methodologies, and 

research gaps. Section 3 defines the scope of the study and presents a roadmap for the subsequent 
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sections. Section 4 describes the data sources, processing techniques, and preliminary analyses 

underpinning the methodology. Section 5 examines non-machine learning models in pairs trading, 

including distance methods, cointegration methods, stochastic control methods, time series 

methods, and other approaches such as the Copula, Hurst exponent, and entropic methods, 

providing a comprehensive analysis of each model’s theoretical foundation and empirical 

applications. Section 6 presents the conclusions of the study, summarizing the key findings and 

their implications, and outlines potential directions for future research. 

 

2. Related Work 

In this section, I review the diverse applications of distance, cointegration, time series, and 

stochastic control methods in pairs trading, discussing how each has been adapted to improve 

trading performance. The review also traces the evolution of these approaches, highlighting the 

shift from traditional statistical techniques to more advanced computational models. 

 

2.1 Distance Methods 

This review begins by reviewing the distance approach. Miao and Laws (2016) investigate 

the out-of-sample performance of a simple pairs trading strategy across 12 international stock 

markets, covering both developed and emerging economies. Building on the methodology of Gatev 

et al. (2006) and Do and Faff (2010), they select trading pairs by minimizing the sum of squared 

errors (SSE) or sum of absolute errors (SAE) of normalized price differences, and implement 

a rolling 12-month formation period followed by a 6-month trading period. The results show that 

the strategy delivers consistent and statistically significant positive returns in most markets, 

including during periods of market downturns. Even after accounting for realistic transaction costs, 

the strategy remains profitable in several markets. Furthermore, returns from the pairs trading 

portfolios exhibit low correlation with local market indices, indicating strong market-neutral and 

diversification properties. This study offers robust international evidence supporting the viability 

of simple statistical arbitrage strategies beyond the U.S. market. 

Quinn et al. (2018) develop a distance-based pairs trading strategy using UK gilt futures 

across long, medium, and short-term maturities. The strategy applies a threshold-based entry and 

exit rule based on historical spread deviations, incorporating stop-loss mechanisms and 
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adjustments for repo financing costs. Their findings indicate that arbitrage opportunities persist—

particularly between long and medium gilt futures—despite the market's high liquidity and 

efficiency. Although profits are modest, the study contributes valuable evidence to the relatively 

sparse literature on arbitrage in government bond markets. 

Extending traditional distance-based approaches, Diao et al. (2020) propose a bi-objective 

optimization framework for selecting stock pairs in the Chinese A-share market. Unlike earlier 

studies that rely solely on historical price similarity (e.g., SSE or Euclidean distance), their model 

jointly minimizes the deviation between normalized price series and maximizes a measure of 

cointegration-like stability, thereby improving the robustness of pair selection. Using daily data 

from 2011 to 2018, the strategy demonstrates strong mean-reversion properties and consistent 

profitability across various periods, including during episodes of market volatility. By integrating 

multiple criteria into the matching process, the study advances distance-based methods toward 

more robust and adaptive pair selection techniques. 

In the paper by Ramos-Requena et al. (2020), various methods for pairs trading are explored, 

including minimal distance, cointegration, correlation, and Hurst exponent approaches. The study 

focuses on identifying stock pairs using these methods and trading based on price deviations, with 

particular emphasis on long memory characteristics and mean reversion in time series. The findings 

indicate that employing these diverse methods can improve the profitability of pairs trading 

strategies, especially during periods of market anomalies and high volatility. 

In summary, the reviewed studies demonstrate the effectiveness and adaptability of distance-

based methods in pairs trading across diverse asset classes and markets. These range from 

traditional approaches relying on historical price co-movement (Miao and Laws, 2016; Quinn et 

al., 2018) to more refined models incorporating multi-objective optimization (Diao et al., 2020) as 

well as hybrid selection criteria (Ramos-Requena et al., 2020). The literature consistently shows 

that distance-based strategies deliver positive returns and exhibit strong market-neutral 

characteristics. These findings underscore the method’s robustness, particularly during volatile 

periods, and highlight the benefits of integrating additional features such as cointegration 

relationships or long-memory dynamics to enhance strategy performance. 
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2.2 Cointegration Methods 

Cointegration methods identify pairs of assets that share a long-term equilibrium relationship, 

despite the non-stationarity of the individual series. Using econometric techniques such as the 

Engle–Granger method or the Johansen test, these approaches assess whether a linear combination 

of asset prices forms a stationary series. This enables traders to exploit deviations from the long-

term equilibrium by initiating trades based on the expectation that the spread will mean revert. 

Cointegration methods are valued for their ability to uncover persistent relationships between 

assets, but they require ample historical data and rest on the assumption that these relationships 

persist over time. 

Cartea and Jaimungal (2016) present an optimal trading strategy for cointegrated assets by 

modeling the structural dependence between asset prices via a cointegration factor, which they term 

“short-term alpha.” They derive an explicit closed-form solution for the dynamic investment 

strategy, which is affine in the value of the cointegration factor, and demonstrate the effectiveness 

of the strategy using simulations calibrated with high-frequency Nasdaq data from Google, 

Facebook, and Amazon. The study illustrates how short-term deviations in asset prices can be 

exploited for profit, with potential extensions including out-of-sample testing and application to 

portfolios containing both liquid and illiquid assets. 

Huang and Martin (2019) develop pairs trading strategies within a cointegration framework, 

applying the Engle–Granger test and an Error Correction Model (ECM) combined with a Dynamic 

Conditional Correlation GARCH (ECM–DCC–GARCH) model to test for and model long-term 

equilibrium relationships between asset pairs. The study compares several trading rules, including 

a percentage-threshold strategy, a strategy based on the standard deviation of cointegration 

residuals, and Bollinger Bands, with an emphasis on optimizing the profit factor. Their results show 

that Bollinger Bands without GARCH confirmation yielded the highest profit factor, highlighting 

the effectiveness of cointegration-based approaches in pairs trading. 

Thazhugal (2021) explores pairs trading potential in the Indian metals market using 

a cointegration approach. The study applies Johansen cointegration tests and Vector Error 

Correction Models (VECM) to examine the long-term equilibrium relationships between spot and 

futures prices of metals including aluminum, copper, nickel, and zinc. The results provide evidence 
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of the effectiveness of cointegration-based strategies in uncovering price discovery and in 

supporting pairs trading strategies in volatile commodity markets. 

Brunetti and De Luca (2023) propose a cointegration-based pairs trading strategy, employing 

the Johansen cointegration test to identify stock pairs exhibiting long-term equilibrium 

relationships. The study examines the impact of pre-selection methods by comparing seven pre-

selection metrics, including log-price correlation and covariance, aimed at reducing computational 

complexity. The results reveal substantial variation in both profitability and risk exposure 

depending on the pre-selection metric used, highlighting the critical role of metric choice in the 

design of pairs trading strategies. 

In summary, cointegration methods offer a statistically rigorous framework for detecting 

long-term equilibrium relationships between assets and exploiting mean reversion in price spreads. 

The studies reviewed demonstrate the effectiveness of these methods in various markets. For 

example, Cartea and Jaimungal (2016) highlight the practical application of cointegration-based 

strategies in high-frequency trading (HFT), using a cointegration factor to derive dynamic 

investment strategies that leverage short-term deviations. Building on this, Huang and Martin 

(2019) compare multiple trading rules within a cointegration framework, finding that Bollinger 

Bands without GARCH confirmation yielded the highest profit factor, underscoring the potential 

for profit optimization. Extending this approach to commodity markets, Thazhugal (2021) shows 

that cointegration-based strategies facilitate price discovery and enhance trading performance in 

the volatile Indian metals market. More recently, Brunetti and De Luca (2023) analyze the role of 

pre-selection metrics, demonstrating that metric choice substantially influences both profitability 

and risk exposure. Collectively, these studies affirm the robustness and versatility of cointegration 

methods, highlighting their capacity to adapt across asset classes, trading frequencies, and market 

conditions. 

 

2.3 Stochastic Control Methods 

Stochastic control methods in pairs trading use dynamic optimization to continuously adjust 

portfolio positions in response to the stochastic behavior of asset prices. Price dynamics are 

typically modeled using stochastic differential equations (SDEs) and solved via techniques such as 

the HJB equation, enabling the strategy to maximize returns or minimize risks in real time. In 
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contrast to static approaches such as cointegration or distance-based methods, stochastic control 

frameworks offer adaptive decision-making capabilities in volatile markets, albeit at the cost of 

high mathematical complexity and substantial computational demands. 

Deshpande and Barmish (2016) propose a control-theoretic framework for pairs trading that 

accommodates flexible definitions of spread functions while requiring minimal assumptions 

regarding the underlying price dynamics. By formulating trading as a feedback control problem 

within a stochastic control setting, their algorithm adaptively adjusts positions based on the mean-

reverting behavior of the spread. Simulation experiments using a leveraged ETF pair (YINN and 

YANG) indicate that the strategy generates substantial returns while maintaining low drawdowns, 

outperforming buy-and-hold approaches in simulated scenarios. This study demonstrates the 

applicability of stochastic control techniques to statistical arbitrage in financial markets. 

Endres and Stübinger (2019) propose an optimal pairs trading strategy based on a Lévy-

driven OU process within a stochastic control framework. The method dynamically determines 

entry and exit thresholds by solving first-passage time problems to maximize expected returns. 

Using high-frequency data on S&P 500 constituents from 1998 to 2015, the authors provide 

empirical evidence of the strategy’s profitability across multiple economic sectors, demonstrating 

robustness in various market environments. 

Zhu et al. (2021) explore optimal pairs trading strategies within a dynamic mean–variance 

framework, using the OU process to model the mean-reverting behavior of the price spread 

between two correlated assets. Within a stochastic control setting, the method solves HJB equations 

to derive time-consistent optimal trading policies. Empirical analysis using stock and futures data 

from China’s markets provides evidence of the approach’s effectiveness in maximizing returns 

while controlling risk. 

Xing (2022) proposes an optimal pairs trading strategy within a singular stochastic control 

framework that incorporates proportional transaction costs. The method models the mean-reverting 

behavior of the asset price spread using an OU process and solves HJB equations to determine the 

optimal timing and size of trades dynamically. Empirical analysis using U.S. stock data provides 

evidence of the approach’s effectiveness in maximizing terminal wealth while managing 

transaction costs. 
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Das et al. (2023) investigates pairs trading within a regime-switching mean-reversion 

framework, allowing both the long-term equilibrium level and mean-reversion speed of the spread 

to shift across unobserved regimes. Modeling the spread with a continuous-time OU process 

subject to Markovian regime switching, the authors derive optimal trading rules via a verification 

theorem and analyze entry and exit thresholds under different regimes. Numerical experiments 

demonstrate superior performance, particularly under frequent or pronounced regime shifts. This 

work underscores the importance of incorporating structural changes in spread dynamics and offers 

a more adaptive framework for statistical arbitrage. 

In summary, stochastic control offers a powerful and flexible framework for real-time, 

adaptive optimization of pairs trading decisions in response to stochastic price dynamics. The 

reviewed literature demonstrates that variations of the mean-reverting OU process—including 

extensions with Lévy dynamics (Endres and Stübinger, 2019), regime-switching structures (Das et 

al., 2023), or mean-variance considerations (Zhu et al., 2021)—can be effectively integrated into 

control-theoretic models to enhance profitability and risk management. These approaches typically 

involve solving HJB equations to derive optimal entry, exit, and position-sizing policies. 

Furthermore, the incorporation of practical considerations, such as proportional transaction costs 

(Xing, 2022), underscores the robustness and applicability of these models. Collectively, these 

studies highlight the growing relevance of stochastic control in statistical arbitrage, yielding 

theoretically sound and empirically validated strategies capable of adapting to regime shifts, market 

volatility, and structural uncertainties. 

 

2.4 Time Series Methods 

Time series methods in pairs trading aim to capture statistical dependencies and dynamic 

interactions between asset prices over time. These models commonly employ techniques such as 

autoregressive processes, moving averages, and mean-reverting dynamics—most notably the OU 

model—to represent and analyze price spreads. By examining historical price patterns, they 

forecast potential future movements and generate trading signals. Compared with stochastic control 

methods, time series approaches are generally more straightforward to implement, relying on fixed 

entry and exit rules, but they may exhibit limited adaptability to rapid market changes. 
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De Moura et al. (2016) propose a pairs trading strategy that employs linear state space models 

and the Kalman filter to represent the spread between two related assets. By estimating the 

conditional probability of mean reversion, the framework determines optimal entry and exit points. 

The approach blends stochastic control principles—through dynamic optimization—with 

traditional time series modeling techniques. 

Chodchuangnirun et al. (2018) design a strategy based on nonlinear autoregressive models 

augmented with GARCH effects, incorporating Markov Switching, Threshold, and Kink 

specifications. By modeling return spreads and detecting regime shifts, the method captures both 

dynamic volatility and nonlinear behaviors in financial time series, resulting in improved signal 

precision. Empirical results indicate that the Markov Switching specification slightly outperforms 

the others in generating profitable trades. 

Zhang (2021) develops a pairs trading framework using a general state space model to 

capture the spread dynamics between asset pairs. Modeling the spread as a mean-reverting process 

with non-Gaussian features and heteroscedasticity, the study applies a Monte Carlo-based 

optimization to determine optimal trading rules. This enables superior profitability and risk-

adjusted returns compared to conventional models by more effectively capturing the complex 

dynamics in financial data. 

Lee et al. (2023) propose a diversification framework for multiple pairs trading strategies, 

modeling the mean-reverting behavior of asset spreads with OU processes. The framework 

incorporates dynamic capital allocation methods—Mean Reversion Budgeting (MRB) and Mean 

Reversion Ranking (MRR)—to optimize trading across multiple pairs. Empirical evidence shows 

that these techniques enhance portfolio performance by leveraging mean-reversion properties and 

improving diversification. 

In summary, recent time series approaches in pairs trading have evolved to integrate 

advanced statistical modeling and dynamic optimization. De Moura et al. (2016) employ linear 

state space models with the Kalman filter to dynamically determine optimal entry and exit points. 

Chodchuangnirun et al. (2018) adopt nonlinear autoregressive models with GARCH effects, 

including Markov Switching and Threshold specifications, to capture regime shifts and volatility 

patterns, thereby improving signal precision and profitability. Zhang (2021) advances this line of 

research by using a general state space model with non-Gaussian features and heteroscedasticity, 
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combined with Monte Carlo-based optimization to derive superior trading rules and risk-adjusted 

returns. Lee et al. (2023) extend the scope by introducing a multi-pair diversification framework 

with OU processes and adaptive capital allocation, further improving overall portfolio efficiency. 

Collectively, these studies highlight the adaptability and effectiveness of time series methods in 

pairs trading, offering strategies that are both statistically rigorous and operationally robust. 

 

2.5 Other Methods 

Beyond above four methods, several alternative approaches have been employed in pairs 

trading to enhance strategy performance and manage risks. These methods explore different 

statistical and optimization techniques to refine trade signals and optimize portfolio returns. 

 

2.5.1 Copula Approach 

A prominent alternative is the Copula approach, which models the dependence structure 

between assets in a more flexible manner than simple correlation analysis. By capturing tail 

dependencies and accommodating complex joint return distributions, copula models offer a more 

comprehensive representation of co-movements and associated risks. Variants such as the Mixed 

Copula model further extend this flexibility by combining multiple copula functions to reflect both 

linear and nonlinear dependencies. 

Nadaf et al. (2022) proposed a copula-based pairs trading strategy that employs the Laplace 

marginal distribution to model asset returns. By constructing a copula function that accounts for 

heavy-tailed behavior, the method more accurately captures dependency structures between asset 

pairs, thereby improving the precision of trading signals derived from the joint distribution. 

In a related study, da Silva et al. (2023) introduced a mixed copula model that combines 

different copula types to jointly capture linear and nonlinear relationships. The authors calculate 

a mispricing index using an optimal linear combination of copulas, which enhances the adaptability 

of the strategy to changing market conditions and improves both profitability and robustness. 
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2.5.2 Hurst Exponent Approach 

The Hurst exponent is a statistical measure that quantifies the tendency of a time series to 

exhibit persistent trending behavior or mean-reverting characteristics. A higher Hurst exponent 

indicates stronger persistence, whereas a lower value suggests greater mean reversion; both 

properties can inform the design and calibration of trading strategies. 

Ramos-Requena et al. (2021) proposed a cooperative dynamic pairs trading approach that 

incorporates the Hurst exponent and volatility as primary selection criteria to identify stock pairs 

with stable historical co-movement. After pair selection, a mean-reversion strategy is applied to 

exploit deviations from the long-term relationship. By integrating refined filtering criteria, the 

method improves trading performance by focusing on pairs characterized by low volatility and 

high co-movement. 

 

2.5.3 Entropic Approach 

Entropy-based methods focus on quantifying the uncertainty or randomness within financial 

data. By analyzing the entropy of asset price distributions, these approaches can identify periods 

of elevated uncertainty, providing additional insights for trading decisions. 

Amer and Islam (2023) proposed a pairs trading strategy that integrates cointegration 

techniques with an entropic framework to optimize trading decisions. The strategy models mean 

reversion using an OU process while incorporating entropy as a penalty function to account for 

model uncertainty. By determining optimal entry and exit thresholds, the approach improves both 

profitability and risk control. 

In summary, alternative approaches to pairs trading—such as the Copula approach, Hurst 

exponent, and entropy-based methods—offer refined tools for enhancing strategy performance and 

managing risk. The Copula approach, as demonstrated by Nadaf et al. (2022) and da Silva et al. 

(2023), provides a sophisticated framework for modeling dependencies between asset pairs, 

capturing tail dependencies and complex relationships beyond traditional correlation measures, 

thereby enhancing signal accuracy and adaptability under varying market conditions. The Hurst 

exponent approach, exemplified by Ramos-Requena et al. (2021), employs persistence and mean-

reversion metrics to filter and select pairs, improving the effectiveness of mean-reversion strategies 

through refined selection criteria. The entropy-based approach, proposed by Amer and Islam (2023), 
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integrates entropy as a measure of uncertainty into a cointegration framework, enhancing trade 

timing precision and improving risk-adjusted returns. Collectively, these methods broaden the 

methodological scope of pairs trading, offering more nuanced and adaptable strategies for complex 

financial environments. 

 

3. Landscape Overview 

In this section, we outline the key literature forming the foundation of our research. The 

primary paper, together with supporting studies, was identified through comprehensive searches 

across major academic databases, including Scopus, Google Scholar, Springer, IEEE Xplore, 

ScienceDirect, and Web of Science. A targeted search strategy was employed, using a diverse set 

of keywords—such as “Pair Trading,” “Pair Trading with Statistical Approaches,” “Pair Trading 

using Distance Measures,” “Pair Trading with Cointegration Techniques,” “Pair Trading through 

Stochastic Control Models,” and “Pair Trading utilizing Time Series Methods”—to ensure broad 

coverage of pairs trading methodologies in finance. Studies that were not directly relevant to the 

thematic focus of our analysis were excluded from further consideration. Table 2 presents the 

chronological distribution of the reviewed articles, along with complete reference citations for each 

entry. 

Table 2. Summary of the number of publications analyzed per year, spanning from 2016 to 2023. 

Year Count Article 

2016 21 [1-13] 

2017 16 [14-29] 

2018 24 [30-53] 

2019 12 [54-65] 

2020 14 [66-79] 

2021 19 [80-98] 

2022 12 [99-110] 

2023 13 [111-123] 

 

Table 3 summarizes the distribution of pairs trading methods across the reviewed studies. 

Cointegration methods are the most prevalent, appearing in 43 studies, where they exploit long-

term equilibrium relationships between asset prices to identify profitable trading opportunities. 

Stochastic control methods follow closely, featuring in 40 studies and emphasizing stochastic 

processes and dynamic optimization to manage market uncertainty. Distance methods are used in 
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21 studies, focusing on price divergence to capture mean reversion, while time series methods 

appear in 20 studies, leveraging temporal price patterns and trends. Finally, 16 studies employ other 

approaches, including copula, Hurst exponent, and entropic methods, which fall outside the 

primary categories. This distribution underscores the dominance of cointegration and stochastic 

control methods in pairs trading research, while also reflecting the variety of alternative strategies 

adapted to specific market conditions. 

Notably, some studies employ more than one pairs trading method, reflecting the complexity 

and adaptability of such strategies. Researchers often integrate approaches—such as cointegration 

with stochastic control—to enhance performance and capture diverse market dynamics. 

Consequently, the counts in Table 3 represent instances of method usage rather than unique study 

counts. 

Within the reviewed literature, a subset 21 articles — [5, 7, 16, 33, 46, 64, 68, 69, 75, 76, 81, 

84, 88, 91, 94, 103, 105, 106, 117, 118, 122] — primarily focus on theoretical development. These 

works propose, validate, or refine trading strategies through mathematical modeling and derivation, 

typically validated via simulations or historical backtesting rather than live market implementation. 

Their contributions are substantial, providing deeper insights into potential returns and risks, 

evaluating performance under varying market conditions, and establishing a robust theoretical 

foundation for future empirical research. 

Table 3. Summary of the number of publications analyzed per pairs trading method. 

Methods Count Article 

Distance Methods 21 [6, 10, 13, 14, 22, 25, 26, 43, 45, 

51, 56, 60, 63, 72, 73, 77-79, 97, 

98, 120] 

Cointegration Methods 43 [4, 8, 11, 13-15, 24, 26-28, 30, 34, 

35, 37, 43-45, 50, 52, 53, 55, 61, 

62, 67, 69, 72, 73, 75, 79, 86, 89, 

93, 96-98, 102, 107, 109, 114, 115, 

120, 121, 123] 

Stochastic Control Methods 40 [1, 3, 5, 7, 12, 18, 20, 31-33, 39-41, 

45-47, 49, 54, 59, 64, 65, 68, 75, 

76, 81, 84, 88, 91, 92, 94, 100, 103-

106, 117-120, 122] 
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Methods Count Article 

Time Series Methods 20 [2, 23, 29, 36, 39, 47, 48, 57, 66, 

70, 74, 82, 83, 85, 90, 95, 99, 108, 

111, 120] 

Other Methods 20 [9, 13, 16, 17, 19, 21, 38, 42, 58, 

71, 79, 80, 87, 98, 101, 110, 112, 

113, 116, 120] 

 

Table 4 provides a comprehensive summary of the major financial indices examined in this 

study, highlighting the broad geographic diversity of the markets analyzed. The selection covers 

developed and emerging economies across North America, Europe, and Asia, ensuring that the 

analysis reflects a wide range of economic environments and market conditions. 

For the United States, several significant indices were included, such as the S&P 100, Dow 

Jones Industrial Average, Nasdaq 100, Russell 2000 ETF, and S&P 500. These indices represent 

a cross-section of the U.S. market, capturing a variety of market capitalizations and sectors, thus 

providing a robust understanding of the U.S. equity market's performance. 

In Europe, the FTSE 100 represents the UK market, the STOXX Europe 600 captures pan-

European equities across multiple countries and capitalizations, and the SBF 120 provides targeted 

exposure to the French market—one of the region’s largest economies. The OMX Baltic index adds 

coverage of Lithuania, Latvia, and Estonia, reflecting the growing relevance of Baltic economies 

in the European context. 

Asia is represented by the CSI 300 and SSE 50 from China, which track large-cap companies 

and capture the performance of the Chinese stock market; the Nikkei 225, TPX 100, and TOPIX 

30 from Japan, reflecting key segments of the Japanese economy; and the KOSPI 100 from South 

Korea, providing coverage of another significant Asian market. Additional representation from the 

Asia-Pacific region includes the ASX 100 from Australia and the Sensex 30 from India, both 

offering insights into major southern hemisphere economies. 

Overall, Table 4 demonstrates the extensive global scope of the indices analyzed, enabling 

a more comprehensive evaluation of pairs trading strategies across diverse regional market 

structures. 
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Table 4. Summary of major stock indices and markets analyzed in this study 

Index Country 

S&P 100 U.S. 

Dow Jones Industrial Average U.S. 

Nasdaq 100 U.S. 

Russell 2000 ETF U.S. 

S&P 500 U.S. 

FTSE 100 UK 

CSI 300 China 

SSE 50 China 

STOXX Europe 600 Europe 

Nikkei 225 Japan 

TOPIX 30 Japan 

TPX 100 Japan 

KOSPI 100 South Korea 

OMX Baltic Lithuania, Latvia, Estonia 

SBF 120 France 

ASX 100 Australia 

Sensex 30 India 

 

4. Data Analysis 

The majority of the studies in our review employed daily datasets containing standard 

OHLCV information—opening, highest, lowest, and closing prices, along with trading volume. 

Some researchers, however, used higher-frequency datasets, such as tick data recorded at one-, 

five-, or fifteen-minute intervals. 

 

4.1 Daily Interval Historical Price Data 

Daily interval data typically includes a stock’s open, high, low, close, and volume for each 

trading day. Table 5 presents an example of Apple’s daily stock data, as reported in numerous 

studies [1-3, 6, 9-15, 17, 19, 21-24, 26, 29-32, 35-37, 39-41, 43-45, 47, 48, 50-52, 55, 57, 58, 60-

63, 65-67, 71-73, 77-80, 82, 83, 85, 89, 90, 92, 93, 95-98, 100-102, 107, 109-115, 119, 121, 123]. 

This dataset is arranged chronologically by date. 

In our analysis, we found that 78 of the studies reviewed specifically utilized daily interval 

data for their examinations. This represents a substantial proportion, with 75% of the papers relying 

on daily data intervals for their research. The widespread use of daily granularity reflects the strong 
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preference among researchers for studying daily market movements, emphasizing the importance 

of capturing daily price trends and patterns to gain a deeper understanding of financial market 

behavior over time. 

Table 5. A sample of Apple Inc.'s daily historical stock data. 

Date Open High Low Close Adj Close Volume 

8/23/2023 178.520004 181.550003 178.330002 181.119995 180.197906 52722800 

8/24/2023 180.669998 181.100006 176.009995 176.380005 175.482025 54945800 

8/25/2023 177.380005 179.149994 175.820007 178.610001 177.700684 51449600 

8/28/2023 180.089996 180.589996 178.550003 180.190002 179.272644 43820700 

8/29/2023 179.699997 184.899994 179.500000 184.119995 183.182632 53003900 

8/30/2023 184.940002 187.850006 184.740005 187.649994 186.694672 60813900 

8/31/2023 187.839996 189.119995 187.479996 187.869995 186.913544 60794500 

9/1/2023 189.490005 189.919998 188.279999 189.460007 188.495468 45732600 

9/5/2023 188.279999 189.979996 187.610001 189.699997 188.734207 45280000 

… … … … … … … … … … … … … … 

 

4.2 One-Minute Interval Historical Price Data 

One-minute interval historical data offers a detailed perspective on stock market activity by 

recording price and volume changes every minute during the trading session. This resolution 

provides a middle ground between the highly granular nature of tick data and the broader view of 

longer intraday intervals. Each observation typically includes the open, high, low, and close prices, 

along with the trading volume for that minute. 

Such data are particularly valuable for medium-frequency trading strategies, as they enable 

the detection of short-term patterns and the formulation of decisions based on minute-by-minute 

market dynamics. By examining one-minute data, researchers and traders can gain richer insights 

into price volatility and intraday momentum—factors critical for strategies that rely on rapid 

market fluctuations. While the dataset size is smaller than that of tick data, processing one-minute 

data still demands considerable computational resources and sophisticated analytical techniques. 

Table 6 provides an example of Apple’s one-minute stock data, as used in select studies [4, 38, 

49, 54, 59, 86, 104, 120]. This granularity offers an effective compromise between detail and 

efficiency, making it well-suited for developing predictive models and implementing intraday 

trading strategies that require both timeliness and accuracy. 
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Table 6. A sample of Apple Inc.'s one-minute historical stock data. 

Datetime Open High Low Close Adj Close Volume 

8/14/2024 9:30:00 220.5650 220.7600 220.2100 220.5200 220.5200 2664372 

8/14/2024 9:31:00 220.3500 220.5500 219.7900 219.8500 219.8500 436127 

8/14/2024 9:32:00 219.9299 220.0900 219.7000 219.7500 219.7500 279503 

8/14/2024 9:33:00 219.7900 220.3600 219.7300 220.3600 220.3600 194167 

8/14/2024 9:34:00 220.3600 220.9400 220.3100 220.9050 220.9050 240008 

8/14/2024 9:35:00 220.9100 221.1800 220.6150 221.0300 221.0300 279137 

8/14/2024 9:36:00 221.0500 221.4400 221.0200 221.3650 221.3650 209326 

8/14/2024 9:37:00 221.3700 221.5675 221.0596 221.5675 221.5675 334528 

8/14/2024 9:38:00 221.5700 221.7500 221.4210 221.4900 221.4900 203597 

8/14/2024 9:39:00 221.5300 222.0000 221.4900 221.9800 221.9800 259714 

… … … … … … … … … … … … … … 

 

4.3 Five-Minute Interval Historical Price Data 

Five-minute interval historical data provide a broader overview of market activity by 

aggregating the open, high, low, close prices, and trading volume into five-minute segments. This 

interval is particularly suited for traders and analysts who seek to capture intraday price dynamics 

without the fine-grained noise present in tick or one-minute data. 

The five-minute frequency effectively reveals broader intraday patterns—such as short-term 

trends, support and resistance levels, and potential breakouts—while filtering out high-frequency 

fluctuations. It strikes a balance between retaining sufficient detail to analyze market behavior and 

presenting a cleaner, more interpretable view of price movements. This makes it especially valuable 

for strategies targeting short- to medium-term price changes. 

Although its data volume is smaller than that of higher-frequency datasets, five-minute data 

still requires robust analytical techniques to identify meaningful patterns. Table 7 presents 

an example of Apple’s five-minute stock data, as cited in studies [18, 43, 73, 108, 120]. This 

interval plays a key role in building predictive models with an extended intraday scope, supporting 

trading strategies that operate within short- to medium-term horizons. 

Table 7. A sample of Apple Inc.'s five-minute historical stock data. 

Datetime Open High Low Close Adj Close Volume 

2024-08-14 09:30:00 220.5650 220.9400 219.7000 220.9050 220.9050 3814177 

2024-08-14 09:35:00 220.9100 222.0000 220.6150 221.9800 221.9800 1286302 
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Datetime Open High Low Close Adj Close Volume 

2024-08-14 09:40:00 221.9700 222.0200 221.1690 221.4600 221.4600 842724 

2024-08-14 09:45:00 221.4700 221.6750 221.0400 221.1050 221.1050 772010 

2024-08-14 09:50:00 221.1006 221.2700 220.6814 220.7300 220.7300 561586 

2024-08-14 09:55:00 220.7517 221.1399 220.7100 220.9500 220.9500 452026 

2024-08-14 10:00:00 220.9450 221.2000 220.6900 221.1700 221.1700 448701 

2024-08-14 10:05:00 221.1899 221.3499 220.8100 221.1501 221.1501 398965 

2024-08-14 10:10:00 221.1650 221.4404 220.7900 221.4300 221.4300 497368 

2024-08-14 10:15:00 221.4400 221.7000 221.2500 221.5973 221.5973 515541 

… … … … … … … … … … … … … … 

 

4.4 Fifteen-Minute Interval Historical Price Data 

Fifteen-minute interval historical data provide an aggregated view of market activity by 

consolidating open, high, low, close prices, and trading volume into fifteen-minute segments. This 

frequency offers a broader perspective on intraday price movements, trading off fine-grained detail 

for a clearer overview compared with tick or one-minute data. 

The fifteen-minute interval is particularly effective for identifying larger intraday trends, 

monitoring significant support and resistance levels, and detecting potential breakout points, while 

reducing high-frequency noise that may obscure these patterns in more granular datasets. It strikes 

a balance between retaining essential detail and ensuring analytical manageability, making it 

suitable for strategies aimed at capturing medium-term intraday movements. Although the number 

of observations is substantially lower than in higher-frequency datasets, fifteen-minute data still 

require advanced analytical techniques to extract actionable market signals. 

Table 8 presents an example of Apple’s fifteen-minute stock data, as analyzed in studies [87, 

116]. This interval proves valuable for developing predictive models with a broader intraday scope, 

supporting trading strategies that target medium-term opportunities within the trading day. 

Table 8. A sample of Apple Inc.'s fifteen-minute historical stock data. 

Datetime Open High Low Close Adj Close Volume 

8/14/2024 09:30:00 220.5650 222.0200 219.7000 221.4600 221.4600 5943203 

8/14/2024 09:45:00 221.4700 221.6750 220.6814 220.9500 220.9500 1785622 

8/14/2024 10:00:00 220.9450 221.4404 220.6900 221.4300 221.4300 1345034 

8/14/2024 10:15:00 221.4400 221.7000 220.9500 221.1104 221.1104 1248147 

8/14/2024 10:30:00 221.1100 221.4800 220.4550 221.4000 221.4000 1292931 
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Datetime Open High Low Close Adj Close Volume 

8/14/2024 10:45:00 221.4100 221.7260 221.2700 221.6901 221.6901 1092996 

8/14/2024 11:00:00 221.6950 222.2900 221.6000 222.2500 222.2500 1267633 

8/14/2024 11:15:00 222.2500 222.5600 222.2000 222.5587 222.5587 864267 

8/14/2024 11:30:00 222.5500 222.8900 222.3900 222.4000 222.4000 935396 

8/14/2024 11:45:00 222.4000 223.0300 222.4000 222.9701 222.9701 881023 

… … … … … … … … … … … … … … 

 

4.5 Hourly Interval Historical Price Data 

Hourly historical data aggregate open, high, low, close prices, and trading volume within 

each hour of the trading day. This interval offers a balance between high-frequency datasets, such 

as tick data, and lower-frequency daily summaries, making it suitable for extended intraday 

analysis without the data intensity of high-frequency trading. 

Hourly data are particularly useful for identifying intraday momentum changes, monitoring 

emerging trends, and detecting potential breakouts. These patterns often arise from news releases, 

economic announcements, or shifts in market sentiment. While hourly data lack the fine detail of 

tick or minute-level observations, they retain enough granularity to capture meaningful market 

behavior throughout the trading day. 

Although less resource-intensive than higher-frequency datasets, hourly interval data still 

require robust analytical methods to derive actionable insights. Table 9 illustrates an example of 

Tesla’s hourly stock data, as analyzed in studies [73, 99, 120]. This frequency is well-suited for 

developing predictive models that provide a concise yet comprehensive perspective on intraday 

dynamics, supporting trading strategies that target opportunities within hourly time horizons. 

Table 9. A sample of Apple Inc.'s hourly historical stock data. 

Datetime Open High Low Close Adj Close Volume 

2024-08-14 09:30:00 220.5650 222.0200 219.7000 221.1104 221.1104 10322006 

2024-08-14 10:30:00 221.1100 222.5600 220.4550 222.5587 222.5587 4517827 

2024-08-14 11:30:00 222.5500 223.0300 221.0150 221.3050 221.3050 4029799 

2024-08-14 12:30:00 221.3200 221.4600 220.3800 221.1750 221.1750 3645945 

2024-08-14 13:30:00 221.1600 221.7690 220.9100 221.5400 221.5400 3099853 

2024-08-14 14:30:00 221.5300 221.6100 220.8100 221.1600 221.1600 2990194 

2024-08-14 15:30:00 221.1600 222.3500 221.1531 221.6200 221.6200 4112373 

2024-08-15 09:30:00 224.5500 224.9900 222.7600 224.7900 224.7900 9897134 
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Datetime Open High Low Close Adj Close Volume 

2024-08-15 10:30:00 224.7800 225.3400 223.9000 224.0050 224.0050 5316678 

2024-08-15 11:30:00 224.0100 225.0150 223.8500 224.9950 224.9950 3233561 

… … … … … … … … … … … … … … 

 

4.6 Weekly Interval Historical Price Data 

Weekly historical data aggregate open, high, low, close prices, and trading volume over the 

course of an entire trading week. Compared with daily datasets, this frequency offers a broader 

perspective by consolidating multiple trading days into a single observation, smoothing short-term 

fluctuations while preserving longer-term market trends. 

Weekly data are particularly valuable for longer-horizon strategies, such as swing trading and 

position trading, where intraday or daily volatility is less relevant. They facilitate the identification 

of sustained market trends, key support and resistance levels, and momentum shifts developing 

over several weeks. By filtering out the high-frequency noise present in shorter intervals, weekly 

datasets provide a clearer view of underlying market direction, aiding in the evaluation of asset 

performance over extended periods. 

Although less computationally demanding than intraday or tick-level data, weekly datasets 

still require robust analytical techniques to detect meaningful patterns that influence long-term 

market behavior. Table 10 presents an example of Apple’s weekly stock data, as analyzed in studies 

[53, 74]. This frequency is well-suited for developing models aimed at capturing significant price 

movements across extended horizons while keeping data volume manageable. 

Table 10. A sample of Apple Inc.'s weekly historical stock data. 

Datetime Open High Low Close Adj Close Volume 

4/1/2024 169.0800 171.9200 168.2300 169.5800 169.1545 192780800 

4/8/2024 169.0300 178.3600 167.1100 176.5500 176.1070 322249600 

4/15/2024 175.3600 176.6300 164.0800 165.0000 164.5860 309039200 

4/22/2024 165.5200 171.3400 164.7700 169.3000 168.8752 241302700 

4/29/2024 173.3700 187.0000 169.1100 183.3800 182.9199 441926300 

5/6/2024 182.3500 185.0900 180.4200 183.0500 182.5907 300675100 

5/13/2024 185.4400 191.1000 184.6200 189.8700 189.6505 288966500 

5/20/2024 189.3300 192.8200 186.6300 189.9800 189.7603 208619700 

5/27/2024 191.5100 193.0000 189.1000 192.2500 192.0277 230454300 

6/3/2024 192.9000 196.9400 192.5200 196.8900 196.6624 245994400 

… … … … … … … … … … … … … … 
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4.7 Millisecond and Nanosecond Interval Historical Price Data 

Millisecond and nanosecond datasets, as in [25, 27, 28, 34], provide the most granular 

representation of market activity, capturing ultra-short-term price changes, trade volumes, and 

order flows. Millisecond data, recorded at 1/1,000th of a second, typically include timestamps, bid 

and ask quotes, trade prices, trade sizes, and detailed order book information. These datasets are 

critical in HFT environments for detecting fleeting price patterns, arbitrage opportunities, and 

market inefficiencies that can be exploited within fractions of a second. Their sheer size demands 

substantial computational resources and specialized infrastructure for real-time processing, 

limiting their use to institutional traders and advanced algorithmic trading firms. Millisecond-level 

data also enable detailed examination of market microstructure, including latency, execution speed, 

and price formation processes. 

Nanosecond data, recorded at 1/1,000,000,000th of a second, offer an even finer resolution, 

capturing the precise sequence and timing of trades, orders, and quote changes with unmatched 

accuracy. This ultra-high-frequency data is essential for ultra-low-latency trading strategies, 

including market making and latency arbitrage, where speed is the primary competitive edge. 

However, the massive volume generated at this level presents significant challenges in data storage, 

processing, and analysis. Both millisecond and nanosecond datasets require highly sophisticated 

analytical tools and infrastructure, making them indispensable for specialized trading models 

where execution timing within microseconds can determine profitability. 

 

5. Non-Machine Learning Models in Pair Trading 

This chapter reviews several commonly used non-machine learning, or purely statistical, 

approaches to pairs trading. Each method has distinct features that make it more or less suited to 

specific market conditions and trading objectives. The discussion covers Distance Methods, 

Cointegration Methods, Stochastic Control Methods, Time Series Methods, and several other 

specialized approaches. By synthesizing recent research findings and practical implementations, 

this chapter evaluates the strengths, limitations, and adaptability of each method. 
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5.1 Distance Methods 

This section provides a detailed examination of the distance method, a widely used approach 

in pairs trading research. To contextualize our discussion, Table 11 compiles representative studies 

published between 2016 and 2023, summarizing their research scope, data samples, and frequency 

of observations. The studies cover a variety of markets—including equities, commodities, and 

cryptocurrencies—and employ data ranging from millisecond-level to monthly intervals. This 

diversity highlights how the distance method has been adapted to different asset classes and 

temporal resolutions, offering a basis for the comparative analysis that follows. 

Table 11. A summary of distance methods in pair trading from year 2016 to 2023. 

Articles Publish Year Sample Data Frequency 

6 2016 London Stock Exchange 

stocks, 1979-2012 
Daily 

10 2016 Stock Indexes in 12 

Countries, 1987-2011 
Daily 

13 2016 U.S. stocks, 1962-2014 Daily 

14 2017 U.S. stocks, 1980-2014 Daily 

22 2017 36 Stocks in DJIA, NYSE, 

and NASDAQ, 2006-2014 
Daily 

25 2017 Stocks in OMX Baltic, 

2014-2015 
Millisecond 

26 2017 Chinese Commodity 

Futures, 2005-2016 
Daily 

43 2018 Oslo Stock Exchange 

stocks, 2005-2014 
5-min, daily 

45 2018 U.S. Financial Sector 

stocks, 2008-2013 
Daily 

51 2018 Gilt Futures in ICE, 2013-

2015 
Daily 

56 2019 U.S. stocks, 1931-2007 Monthly 

60 2019 CSI300, HSHKI, HSAHP 

stocks, 1996-2017 
Daily 

63 2019 Stockholm Stock 

Exchange stocks, 1995-

2015 

Daily 

72 2020 Commodity Futures in 

MCX, 2011-2017 
Daily 

73 2020 181 Cryptocurrencies, 

2018-2019 
Daily, hourly, 5-min 

77 2020 SSE 50 stocks, 2016-2018 Daily 
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Articles Publish Year Sample Data Frequency 

78 2020 DJIA, Sensex 30 and 

TOPIX 30 stocks, 2008-

2016 

Daily 

79 2020 Nasdaq 100 stocks, 1999-

2003 2007-2012 
Daily 

97 2021 NSE stocks, 2011-2017 Daily 

98 2021 Toronto Stock Exchange 

stock, 2017-2020 
Daily 

120 2023 405 Cryptocurrencies, 

2022 
1-min, 5-mins, hourly 

5.1.1 The GGR’s Baseline Approach 

Although our review primarily covers studies published from 2016 onwards, it is essential to 

begin with the seminal work of GGR, which first formalized the distance method in pairs trading. 

Their study analyzes all liquid U.S. stocks using daily data from the CRSP database between 1962 

and 2002. 

In the 12-month formation period, a cumulative total return index 𝑃𝑖𝑡 is constructed for each 

stock and normalized to 1 on the first day. For a universe of n stocks, the squared Euclidean 

distances are computed for all possible 𝑛 (𝑛 − 1)/2 stock pairs based on these normalized price 

series. The 20 pairs with the smallest historical distance are selected for the subsequent six-month 

trading period. 

During the trading period, prices are re-normalized on the first day, and trades are triggered 

when the spread between paired stocks deviates by more than two historical standard deviations 

(𝜎). Positions are closed when the spread reverts to its mean, when the six-month trading window 

ends, or when a stock is delisted. 

The key steps of the GGR baseline methodology are outlined in the following section. 

 

Data and Sample Selection 

The data for this study were obtained from the CRSP daily files, covering the period from 

1962 to 2002. The sample includes all liquid U.S. stocks listed on major exchanges, including the 

NYSE, AMEX, and NASDAQ. To ensure liquidity and avoid biases associated with thinly traded 

stocks, any security that experienced at least one non-trading day during the sample period was 

excluded. This filtering procedure ensured that all selected stocks had reliable and continuous price 

series, thereby supporting robust pair construction. 
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Formation Period  

The methodology begins with a 12-month formation period, during which a cumulative total 

return index (including dividend reinvestments) is calculated for each stock. This index is 

normalized to 1 on the first day of the formation period to ensure comparability across securities. 

The core of the pair selection process is based on the SSD between the normalized price series of 

each pair of stocks. For two stocks 𝑖 and 𝑗, SSD is defined as: 

  𝑆𝑆𝐷𝑖𝑗 = ∑ (𝑃𝑖𝑡 − 𝑃𝑗𝑡)2𝑇
𝑡=1           (5.1) 

where 𝑇 is the number of trading days in the formation period, and 𝑃𝑖𝑡 is the normalized cumulative 

return index of stock 𝑖 on day 𝑡. All possible 𝑛(𝑛 − 1)/2 stock pairs are evaluated, and those with 

the smallest historical SSD values are considered the strongest candidates for price convergence. 

The top-ranked pairs are retained for the subsequent trading period. 

 

Trading Period  

The trading period spans six months and follows directly after the formation period. During 

this phase, the selected stock pairs are traded according to predefined rules. The trading signal is 

based on the spread between the normalized prices of the two stocks in each pair. A position is 

initiated when the spread deviates from its historical mean—calculated during the formation 

period—by more than two standard deviations (𝜎), where σ is derived from the historical residuals 

of the spread over the 12-month formation period. When the threshold is breached, a long position 

is established in the underperforming stock (“loser”) and a short position in the outperforming stock 

(“winner”). Positions are closed upon spread reversion to the historical mean, upon expiration of 

the six-month trading window, or upon delisting of either stock in the pair. 

 

Risk-Adjusted Excess Returns  

The profitability of the strategy is assessed in terms of annualized excess returns. GGR report 

that self-financing portfolios of the top-ranked pairs achieved average annualized excess returns of 

approximately 11%. To assess robustness, the authors incorporate risk adjustments and transaction 

cost estimates. Using bootstrap analysis, they demonstrate that the observed returns cannot be 

explained solely by simple mean-reversion effects. Additional out-of-sample testing for the period 
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1999 to 2002 confirms that the strategy continued to deliver positive excess returns, supporting its 

validity over time. 

 

Model-Free Nature 

A key strength of the GGR approach is its model-free design. The method does not rely on 

any specific asset pricing model, thereby mitigating the risk of model misspecification. Instead, 

trading decisions are entirely driven by the historical price relationships between paired securities, 

allowing for flexibility and adaptability across different asset classes and market regimes. 

 

Trading Frequency and Holding Periods  

On average, selected pairs are traded approximately twice during each six-month trading 

period, with individual positions held for an average of 3.75 months. Even after accounting for 

transaction costs and market frictions, fully invested portfolios of stock pairs maintain statistically 

significant excess returns. However, performance is not uniform over time: profitability tends to 

vary with market volatility, and Sharpe ratios decline in certain subperiods, suggesting that the 

strategy’s effectiveness may depend on prevailing market conditions. Furthermore, as the original 

sample focuses on U.S. equities between 1962 and 2002—a period with distinct microstructure 

characteristics—the results may not directly generalize to other markets or more recent trading 

environments without recalibration. 

 

Transaction Costs and Market Neutrality  

GGR carefully evaluate the impact of transaction costs on the profitability of their pairs 

trading strategy. Their analysis incorporates reasonable estimates for transaction costs, including 

bid–ask spreads and short-selling fees, with a baseline assumption of a 0.5% round-trip cost per 

trade. Sensitivity tests under higher cost scenarios confirm that the strategy remains profitable, 

although net returns decline as expected. 

The strategy is inherently market-neutral, as it involves taking both long and short positions 

in stocks expected to move relative to each other rather than in tandem with the broader market. 

Empirical results support this property: portfolio returns exhibit an estimated market beta close to 
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zero, indicating minimal exposure to systematic market risk. This neutrality focuses returns on the 

relative performance of the paired stocks—the essence of the arbitrage opportunity. 

This approach offers several clear advantages. As Do et al. (2006) observe, the GGR 

methodology does not rely on any specific asset pricing model, thereby avoiding the risk of model 

specification errors. It is straightforward to implement, resistant to data-snooping biases, and 

capable of generating statistically significant risk-adjusted excess returns. By applying a simple yet 

effective approach to a large dataset spanning more than four decades, GGR firmly established 

pairs trading as a notable capital market anomaly. 

Nevertheless, certain aspects of the methodology leave room for refinement. The use of 

squared Euclidean distance (SSD) for pair selection, while intuitive, may not be analytically 

optimal for the ultimate objective of maximizing excess returns per pair. From a profit-

maximization perspective, the most desirable pairs would combine two features: (1) frequent and 

sizable deviations from equilibrium, and (2) strong mean-reversion tendencies. These 

characteristics enable more frequent and profitable round-trip trades. While GGR’s ranking logic—

selecting pairs with the smallest historical SSD—implicitly favors pairs with stable long-term 

relationships, it may only partially align with these profit-maximizing conditions. Future research 

could investigate alternative distance metrics that directly incorporate both spread variance and 

mean-reversion speed. 

 

5.1.2 Extension Methods Based on GGR 

Compared to GGR's method, later papers introduce various differences and improvements 

built upon its foundation. 

Bowen and Hutchinson (2016) extend the GGR framework to examine the performance of 

pairs trading in a non-U.S. setting. Their methodology closely follows that of GGR to ensure 

comparability and to minimize potential data-mining bias. Specifically, they form stock pairs over 

a 12-month formation period based on the minimum SSD of their normalized price series, and trade 

these pairs over a subsequent 6-month period using the same trading rule as GGR. Like the original 

study, their strategy remains model-free, relying solely on historical price relationships between 

paired securities. This replication facilitates a direct comparison of results between the U.S. and 
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UK equity markets, allowing for a meaningful assessment of the strategy’s robustness across 

different market environments. 

The study introduces several extensions to the GGR approach. Most notably, it applies the 

methodology to the UK equity market, providing evidence on the strategy’s adaptability beyond 

the U.S. context. In addition to measuring profitability, Bowen and Hutchinson conduct a detailed 

risk–return analysis, evaluating performance metrics such as volatility and Sharpe ratios. They also 

investigate the influence of market conditions—including overall market volatility and liquidity—

on pairs trading outcomes, thereby offering insights into the drivers of strategy performance. 

Using a more recent dataset than GGR, their analysis reflects changes in market 

microstructure and trading behavior over time. Furthermore, they examine strategy performance 

across individual industry sectors within the UK market—an aspect not explored in detail in GGR’s 

study—adding a sectoral dimension to the evaluation of pairs trading. 

In summary, Bowen and Hutchinson expand the GGR framework by (1) applying it to a non-

U.S. market, (2) incorporating a comprehensive risk–return assessment, (3) considering the 

influence of market conditions, (4) using more contemporary data, and (5) introducing sector-level 

analysis. These contributions enhance the understanding of pairs trading performance and highlight 

the strategy’s potential adaptability to different markets and economic contexts. 

Chen et al. (2019) corroborate the findings of GGR by demonstrating that pairs trading 

strategies can yield significant abnormal returns. Using a framework that identifies highly 

correlated stock pairs and exploits temporary return divergences, they extend GGR’s analysis by 

attributing profitability to factors such as short-term reversal and pairs momentum, and by 

exploring the influence of industry momentum, liquidity, and information diffusion. 

Methodologically, the two studies differ in several key aspects. In GGR, pairs are selected 

according to the SSD between normalized price series during a 12-month formation period, with 

the lowest-SSD pairs chosen for trading. In contrast, Chen et al. identify pairs based on five years 

of historical daily return correlations, matching each stock with its 50 most correlated counterparts. 

Moreover, while GGR adopt a fixed 12-month formation followed by a 6-month trading period, 

Chen et al. implement a rolling monthly evaluation of return divergences over the subsequent year, 

allowing for continuous identification of opportunities. Trading rules also diverge: GGR open 

positions when the price spread exceeds two historical standard deviations, whereas Chen et al. 
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take a contrarian stance on return divergence—buying the underperformer and shorting the 

outperformer—anticipating reversal in the following month. 

Finally, the scope of risk factor analysis differs substantially. GGR focus on overall 

profitability without decomposing returns by source, while Chen et al. explicitly examine the roles 

of short-term reversal, momentum (including pairs momentum), and liquidity. They find that pairs 

momentum contributes significantly, particularly in the first month post-divergence. These 

differences in pair selection, trading signals, and risk factor integration yield a richer understanding 

of the mechanisms driving pairs trading profitability. 

Gupta and Chatterjee (2020) present notable methodological innovations over the original 

GGR framework for pairs trading. While GGR select pairs based on the SSD between normalized 

price series over a fixed formation period, Gupta and Chatterjee incorporate a dynamic dimension 

via the Dynamic Cross-Correlation Type (DCCT) measure. 

A key innovation is the explicit modelling of lead–lag relationships. The DCCT measure, 

computed over rolling windows, identifies the lag value that maximizes cross-correlation and 

allows it to adjust over time. This approach captures evolving temporal dependencies, where one 

asset may lead or lag another during different subperiods, in contrast to the static relationships 

assumed in GGR. In their framework, SSD remains the primary proximity measure, but the 

selection process is enhanced by applying DCCT as a secondary filter. This ensures that chosen 

pairs not only display small price deviations but also exhibit favourable dynamic correlation 

structures and stable lead–lag characteristics. 

Empirical tests using constituents of the DJIA (U.S.), Sensex 30 (India), and Topix 30 (Japan) 

indices show that the SSD+DCCT approach outperforms SSD alone in profitability and reduces 

the incidence of false-positive pairs. The method’s adaptability makes it particularly effective under 

volatile or structurally shifting market conditions, where static approaches may underperform. By 

extending GGR with dynamic temporal analysis, this study offers a more responsive distance-based 

strategy with strong performance across diverse markets. 

Other papers using distance methods are also based on the expansion and optimization of 

GGR. The above is the analysis of three papers for reference. 
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5.1.3 Explanation of Pair Trading Profitability 

Bowen and Hutchinson (2016) analyze pairs trading profitability in the UK equity market 

from 2002 to 2012, with particular attention to the 2007–2008 financial crisis. They find that the 

strategy delivered annualized returns of 36%–48% during the crisis period, even as the FTSE All-

Share Index declined by 34%, highlighting its potential diversification benefits and resilience under 

market stress. The portfolios show low exposure to conventional equity risk factors—including 

market, size, value, momentum, and reversal—indicating that profitability arises mainly from 

exploiting short-term pricing inefficiencies rather than broad market trends. Although transaction 

costs, primarily from bid–ask spreads, reduce annual returns by up to 4%, the strategy remains 

profitable and consistent across both quote-driven and order book trading regimes. Return 

distributions exhibit positive skewness and high kurtosis, suggesting generally stable returns 

punctuated by occasional large windfalls, particularly during periods of severe market dislocation 

when the strategy may also provide liquidity. 

Quinn et al. (2018) examine distance-based pairs trading in the UK gilt futures market, 

focusing on long–medium gilt combinations over nine quarters. Using a trigger–stop-loss 

framework, they show that a 10% trigger yields a cumulative return of 3.51%, while a 15% trigger 

generates 1.78%, demonstrating that profitability can be achieved even in highly liquid and 

regulated markets. Lower trigger levels increase trading frequency and aggregate returns, whereas 

higher triggers reduce the number of trades but remain profitable. A 30% stop-loss consistently 

protects and enhances profitability for long–medium gilt pairs, underscoring the importance of 

effective risk management. The strategy exploits mean reversion in the yield spread between 

different maturities, and its success is robust to varying market conditions, making it a low-risk, 

systematic arbitrage approach to government bond futures. 

Chen et al. (2019) investigate return-difference-based pairs trading in the U.S. equity market 

and report significant short-term profitability. Value-weighted portfolios sorted by return 

differences (RetDiff) earn an average monthly return of 1.40% in the first month after divergence, 

but performance declines sharply thereafter, with losses observed beyond month one. Abnormal 

returns are not explained by standard risk factors such as market, size, book-to-market, or 

momentum, suggesting that profits are driven by micro-level mispricings rather than broad factor 

exposures. Liquidity risk plays a minimal role, while profitability varies across sectors, with 
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industries characterized by slower information diffusion and higher volatility exhibiting stronger 

pairs momentum and short-term reversal effects. These results underscore the importance of 

prompt execution and sector selection in enhancing performance. 

Zhang and Urquhart (2019) evaluate pairs trading within and across the mainland China and 

Hong Kong stock markets from 2002 to 2016. They find that intra-market strategies do not produce 

significant abnormal returns, whereas cross-market pairs trading achieves annualized abnormal 

returns of up to 9% after accounting for risk factors and transaction costs, including commissions, 

taxes, and short-selling fees. Profitability is time-varying, peaking during periods of market 

turbulence and declining in stable conditions. Fama–French five-factor, momentum, and short-term 

reversal models confirm that significant abnormal returns are concentrated in cross-market trades, 

underscoring the role of low market integration in creating arbitrage opportunities. Dual-listed 

stocks (H-shares and A-shares) perform particularly well, benefiting from common cash flow 

sources and persistent pricing inefficiencies between the two exchanges. 

Gupta and Chatterjee (2020) propose a hybrid approach combining the traditional SSD 

measure with a DCCT measure to capture both price proximity and evolving lead–lag relationships 

between stocks. Using constituents of the DJIA (U.S.), Sensex 30 (India), and Topix 30 (Japan), 

they show that the SSD+DCCT method consistently outperforms correlation+SSD and SSD-only 

methods. For example, in the DJIA dataset with a 35-day trading window, SSD+DCCT (𝜓 =  25) 

achieves a profit margin of 0.427, while in the Sensex 30 dataset under a 21-day window, it attains 

0.576, far exceeding alternative measures. The DCCT is estimated over rolling windows to adapt 

to changing temporal dependencies, reducing false-positive pair selections and improving 

profitability, particularly over longer horizons. The findings suggest that incorporating dynamic 

temporal dependencies into pair selection enhances robustness and transferability across markets. 

Collectively, these studies demonstrate that pairs trading profitability depends on market 

conditions, asset class characteristics, and methodological refinements. While the core distance-

based approach introduced by GGR remains foundational, enhancements such as incorporating 

sector effects, cross-market opportunities, dynamic lead–lag analysis, and precise trading 

parameter calibration can significantly improve performance. The evidence also highlights that 

transaction costs and execution timing are critical determinants of net profitability, especially in 

highly liquid or regulated markets. 
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5.2 Cointegration Methods 

In the cointegration method, the extent of co-movement between the paired assets is 

evaluated using cointegration tests, such as the Engle-Granger or Johansen approaches. A summary 

of the results can be found in Table 12, which summarizes pairs trading studies employing 

cointegration methods between 2016 and 2023, covering a wide variety of markets, asset classes, 

and data frequencies. The dataset spans traditional equities (e.g., S&P 500, DJIA, STOXX Europe 

600), commodity futures (both U.S. and Chinese), foreign exchange rates, cryptocurrencies, and 

derivatives such as options and CDSs. Sampling frequencies range from weekly to nanosecond-

level data, with daily frequency remaining dominant. In recent years, there has been a notable 

increase in high-frequency applications (e.g., millisecond and nanosecond futures trading) and the 

extension of cointegration to novel asset classes such as Bitcoin, Ethereum, and other 

cryptocurrencies.  

Several trends emerge from the literature. First, high-frequency cointegration strategies have 

been tested in both equity and commodity markets, leveraging ultra-short-term price corrections, 

though profitability is highly sensitive to transaction costs and market microstructure effects. 

Second, cointegration has been applied beyond equities to capture long-term co-movements in 

commodities, currencies, and digital assets, demonstrating its adaptability across asset classes. 

Third, studies using emerging market data—such as Indian commodities, Chinese futures, and 

MCX contracts—show that cointegration can remain profitable outside developed markets, albeit 

with greater sensitivity to liquidity constraints. Finally, post-2020 research reflects a growing 

interest in cryptocurrency markets, where high volatility and structural inefficiencies create fertile 

ground for cointegration-based strategies. 

Table 12. A summary of cointegration methods in pair trading from year 2016 to 2023. 

Articles 
Publish 

Year 
Sample 

Data 

Frequency 

4  2016 U.S. stocks, November 3, 2014 1-min 

8  2016 U.S. stocks, 2015 to 2016  1-min 

11 2016 Stocks in DJIA, 1 January 2009 until 31 December 2009 daily 

13 2016 U.S. stocks, 1962-2014 daily 

14 2017 U.S. stocks, 1980-2014 daily 

15 2017 Stocks in Global Dow, 2002-2012 daily 

24 2017 38 Commodity Futures in China, 2006-2016 daily 
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Articles 
Publish 

Year 
Sample 

Data 

Frequency 

26 2017 Commodity Futures in China, 2005-2016 daily 

27 2017 Commodity Futures in US, August 1, 2015-August 31, 2015 nanosecond  

28 2017 Commodity Futures in US, August 1, 2015-August 31, 2015 nanosecond  

30 2018 Stocks in SPX 100, TPX 100, SBF 120, ASX 100, 2007-2016 daily 

34 2018 Commodity Futures in US, August 1, 2015-August 31, 2015 
nanosecond, 

millisecond 

35 2018 Chinese stocks, 2010-2016 daily 

37 2018 S&P 500 stocks, 2012-2014 daily 

43 2018 Oslo Stock Exchange stocks, 2005-2014 5-min, daily 

44 2018 STOXX Europe 600 stocks, 2000-2017 daily 

45 2018  US Financial Sector stocks, 2008-2013 daily 

50 2018 S&P 500 stocks, 1990-2015 daily 

52 2018 General Motors and Ford Motor, 2010-2015 daily 

53 2018 6 Greek bank stocks, 2001-2007 weekly 

55 2019 20 Global Currencies Against Indian Rupee, 1994-2017 daily 

61 2019 U.S. stocks, 2012-2016 daily 

62 2019 250 stocks in Europe, 2001-2017 daily 

67 2020 Commodity Futures, 2016-2020 daily 

69 2020 - - 

72 2020 Commodity futures in MCX, 2011-2017 daily 

73 2020 181 Cryptocurrencies, 2018-2019 
daily, hourly, 

5-min 

75 2020 - - 

79 2020 Nasdaq 100 stocks, 1999-2003 2007-2012 daily 

86 2021 Cryptocurrency, September 2018 to October 2019 1-min 

89 2021 30 European stocks, 2008-2018 daily 

93 2021 NYSE, AMEX and NASDAQ stocks, 1970-2016 daily 

96 2021 Indian Metals Commodities, 2008-2019 daily 

97 2021 NSE stocks, 2011-2017 daily 

98 2021 Toronto Stock Exchange stocks, 2017-2020 daily 

102 2022 Energy futures, stocks, and ETFs, 2015-2021 daily 

107 2022 NYSE and NASDAQ ETFs and stocks, 2007-2021 daily 

109 2022 Russell 2000 ETF and SPDR S&P 500 ETF, 2004-2020 daily 

114 2023 CDSs, November 2020-November 2021 daily 

115 2023 Bitcoin and Ethereum, 2016-2022 daily 

120 2023 405 Cryptocurrencies, January 2022-March 2022 
1-min, 5-mins, 

hourly 

121 2023 5 Stock Indexes options, 2007-2017 daily 

123 2023 S&P 500 stocks, 1998-2018 daily  
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5.2.1 Analysis of Cointegration Theoretical Framework 

Engle and Granger's (1987) were the first to systematically introduce the theory of 

cointegration and to formalize the ECM. They demonstrated that if two or more non-stationary 

time series share a stable long-run equilibrium, their linear combination may be stationary, defining 

what is now known as a “cointegration relationship.” The Engle–Granger two-step cointegration 

test—consisting of an initial unit root test followed by a residual-based stationarity test—was also 

proposed. While limited to identifying a single cointegration vector in the bivariate case, this 

framework laid the foundation for modern time series econometrics and has been widely applied 

in finance, including asset pricing and pairs trading. 

Alexander (1999) explored the application of cointegration theory to hedging, using long-

term equilibrium relationships to derive dynamic hedge ratios. Although the work does not focus 

on pairs trading per se, it introduced a risk management perspective to modelling long-run asset 

relationships and influenced subsequent financial research employing cointegration for identifying 

and trading related assets. 

Vidyamurthy (2004) published the first comprehensive book on applying cointegration and 

other quantitative methods to pairs trading strategies. The book covers statistical foundations, the 

design of trading rules, and the integration of cointegration theory with other financial models such 

as the Arbitrage Pricing Theory (APT) and the Cost-of-Carry Trading Model (CTM). His 

framework, although primarily theoretical and lacking extensive empirical testing, has been 

influential among practitioners. It involves three key steps: (1) identifying potential cointegrated 

pairs using statistical or fundamental criteria, (2) evaluating the tradability of these pairs using 

a proprietary measure, and (3) designing trading rules via nonparametric techniques. Rather than 

emphasising rigorous statistical testing for cointegration, Vidyamurthy prioritises the practical 

implementation of strategies grounded in the concept, making his work a cornerstone reference for 

both academics and practitioners. For further exploration of his approach, see the related works by 

Do et al. (2006) and Puspasingrum (2012). 

 

Pairs Selection 

The selection of asset pairs constitutes the first stage in Vidyamurthy (2004) framework for 

pairs trading. The primary objective of this stage is to identify pairs of securities that are likely to 
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be cointegrated, meaning that despite potential short-term deviations, their prices share a long-run 

equilibrium relationship. 

Vidyamurthy builds upon the Common Trends Model (CTM) of Stock and Watson (1988), 

which decomposes the logarithmic price of security 𝑖  into two components: a common 

nonstationary trend and a stationary idiosyncratic deviation: 

  𝑝𝑖𝑡 = 𝑛𝑖𝑡 + 𝜀𝑖𝑡             (5.2) 

where, 

𝑛𝑖𝑡  denotes the nonstationary common trends component, representing price movements 

driven by broad market factors; 

𝜀𝑖𝑡 denotes the stationary idiosyncratic component, capturing deviations from the common 

trend specific to the security. 

Similarly, the return of the security 𝑖, 𝑟𝑖𝑡, can similarly be decomposed into common-trend 

returns 𝑟𝑖𝑡
𝑐  and specific returns 𝑟𝑖𝑡

𝑠 : 

  𝑟𝑖𝑡 = 𝑟𝑖𝑡
𝑐 + 𝑟𝑖𝑡

𝑠            (5.3) 

Here, 𝑟𝑖𝑡
𝑐  reflects returns driven by macroeconomic or other common factors (e.g., interest 

rate shifts, aggregate economic growth), while 𝑟𝑖𝑡
𝑠  captures security-specific characteristics. 

To operationalize the identification of cointegrated pairs, Vidyamurthy introduces the 

Arbitrage Pricing Theory (APT) of Ross (2013), which expresses returns as a linear combination 

of common factor returns: 

 𝑟𝑖𝑡 − 𝜇𝑖 = 𝛽𝑖
′𝑓𝑡 + 𝜀𝑖𝑡          (5.4) 

where, 

𝑟𝑖𝑡 is the return of security 𝑖; 

𝜇𝑖 is the expected mean return of stock 𝑖; 

𝛽𝑖
′ is a 𝑘 × 1 vector of factor loadings for stock 𝑖; 

𝑓𝑡 is a 𝑘 × 1 vector of common factor returns (such as macroeconomic factors); 

𝜀𝑖𝑡 is the idiosyncratic error of the return 𝑟𝑖𝑡. 

To simplify the model, Vidyamurthy assumes that the mean return 𝜇𝑖 is zero (i.e., returns are 

standardized). The key to identifying potential cointegrated pairs is to find securities with 
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sufficiently similar factor loadings 𝛽𝑖 and 𝛽𝑗, so that the common-trend components of their returns 

offset one another in the long run. 

Consider a portfolio that is long one share of stock 𝑖 and short 𝛾 shares of stock 𝑗. The price 

spread, 𝑚𝑖𝑗𝑡, between the two securities can be expressed as: 

 𝑚𝑖𝑗𝑡 = 𝑝𝑖𝑡 − 𝛾𝑝𝑗𝑡 = 𝑛𝑖𝑡 − 𝛾𝑛𝑗𝑡 + 𝜀𝑖𝑡 − 𝛾𝜀𝑗𝑡         (5.5) 

For this spread to be stationary—and thus suitable for cointegration-based trading—the 

common-trend components 𝑛𝑖𝑡  and 𝑛𝑗𝑡 must be proportional via the constant 𝛾 , allowing the 

common factors to cancel and leaving a stationary spread driven solely by idiosyncratic 

components. 

The first difference of the price spread, which represents the return of the portfolio, can be 

written as: 

∆𝑚𝑖𝑗𝑡 = 𝑟𝑖𝑗𝑡 = 𝑟𝑖𝑡
𝑐 − 𝛾𝑟𝑗𝑡

𝑐 + 𝑟𝑖𝑡
𝑠 − 𝛾𝑟𝑗𝑡

𝑠         (5.6) 

To achieve mean-reversion, the common-trend return components 𝑟𝑖𝑡
𝑐  and 𝑟𝑗𝑡

𝑐  must offset each other, 

leaving the spread dynamics driven by stationary specific returns. 

For preselection, Vidyamurthy employs a distance metric based on the Pearson correlation 

coefficient of the common-trend returns: 

   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) =∣ 𝐶𝑜𝑟𝑟(𝑟𝑖𝑡
𝑐 , 𝑟𝑗𝑡

𝑐 )|         (5.7) 

where 𝐶𝑜𝑟𝑟(𝑟𝑖𝑡
𝑐 , 𝑟𝑗𝑡

𝑐 ) is the Pearson correlation coefficient between the common trend returns of 

stocks 𝑖 and 𝑗. 

Pairs are ranked in descending order of absolute correlation, with the assumption that 

securities with the most similar common-trend returns are more likely to be cointegrated and thus 

more promising for trading. 

This preselection step serves as a practical filter before engaging in more computationally 

intensive analyses. While this method does not constitute a formal statistical cointegration test, it 

provides an economically intuitive starting point for identifying candidate pairs, consistent with 

the theoretical underpinnings of both CTM and APT. 
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Testing for Tradability 

Once candidate pairs have been preselected, the next stage in Vidyamurthy’s framework is 

to assess their tradability—that is, whether they exhibit sufficiently strong mean-reversion to be 

viable for trading. Rather than applying formal cointegration tests such as the Engle–Granger two-

step method, Vidyamurthy adopts a more pragmatic approach centered on mean-reversion 

diagnostics. He argues that the most informative metric for tradability is the zero-crossing 

frequency of the spread, which measures how often the price difference between two assets crosses 

its mean value. 

The tradability test involves estimating the following static regression model for the log 

prices of the preselected stocks: 

  𝑝𝑖𝑡 = 𝜇 + 𝛾𝑝𝑗𝑡 + 𝜀𝑖𝑗𝑡           (5.8) 

where 𝑝𝑖𝑡 and 𝑝𝑗𝑡 are the log prices of stocks 𝑖 and 𝑗, 𝜇 represents the long-run premium of 𝑖 over 

𝑗 , 𝛾  is the cointegration coefficient, and 𝜀𝑖𝑗𝑡 denotes the residual spread. If the spread exhibits 

frequent zero-crossings, this suggests a high degree of mean-reversion, indicating stronger 

tradability. 

To increase robustness, Vidyamurthy recommends employing bootstrap simulations to 

estimate the standard errors of the average holding time—the interval between consecutive zero-

crossings. This guards against overfitting to transient patterns and ensures that observed mean-

reversion is persistent rather than noise-driven. While this approach is operationally practical, it 

sacrifices the statistical rigor of formal stationarity testing. Consequently, a pair passing this 

tradability test may still face risks of non-stationary behavior under certain market regimes. 

 

Trading Design 

Following preselection and tradability assessment, Vidyamurthy’s framework proceeds to the 

design of trading rules, which determine the timing of trade entries and exits. His method employs 

nonparametric threshold rules, where a trade is initiated when the spread deviates from its historical 

mean by a certain number of standard deviations 𝑘. 

In contrast to GGR, who use fixed entry and exit thresholds (typically ±2𝜎), Vidyamurthy 

advocates optimizing 𝑘 for each pair individually. The optimization process involves simulating 
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trading performance for a range of thresholds and then selecting the value that maximizes 

cumulative profit. This process starts by counting the number of threshold breaches at each 

candidate 𝑘, followed by calculating the profit generated per breach, and finally identifying the 𝑘 

that yields the highest aggregate profit.  

While this customization can improve historical profitability, it also introduces the risk of 

overfitting—a threshold finely tuned to past data may fail to perform in out-of-sample conditions. 

Vidyamurthy further cautions that if the optimal 𝑘 is reached only toward the end of the sample 

period, realized profits may be minimal, highlighting the importance of considering the temporal 

distribution of trade signals when conducting such optimization.  

 

Practical Implications and Challenges 

While Vidyamurthy’s preselection methodology is both practical and grounded in economic 

theory, several critical aspects remain open to interpretation and warrant further refinement. 

A primary challenge stems from its reliance on the APT and the CTM to identify potentially 

cointegrated pairs. This framework implicitly assumes that the common factors driving asset prices 

are relatively stable over time—an assumption that is often violated in dynamic and volatile 

markets. During episodes of market instability or structural change, the underlying drivers of asset 

prices can shift materially, potentially undermining the predictive power of models calibrated on 

historical correlations. 

A second limitation lies in the specification of the APT itself. Vidyamurthy does not provide 

concrete guidance on the optimal number of factors to include. This choice is crucial: omitting 

relevant factors may fail to capture essential components of return variation, whereas incorporating 

too many can introduce estimation noise and dilute predictive accuracy. Empirical evidence 

reported by Avellaneda and Lee (2010) indicates that between 10 and 30 factors may be necessary 

to explain a substantial proportion of cross-sectional return variance in U.S. equities, complicating 

the practical implementation of the model. For practitioners, the challenge lies in determining the 

most relevant set of factors for a given market, sector, or time period. 

The preselection procedure—ranking pairs based on the Pearson correlation of their common 

factor returns—also introduces subjectivity. Vidyamurthy leaves the choice of the correlation 

measurement window to the practitioner, yet the time horizon has a substantial influence on results. 
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Short horizons may capture ephemeral relationships that break down quickly, whereas long 

horizons may obscure more recent structural changes. Moreover, the absence of a clearly defined 

threshold for inclusion means that the degree of “sufficient” correlation required for tradability is 

left ambiguous, potentially resulting in inconsistent pair selection across applications. 

Another critical assumption is the stationarity of idiosyncratic return components. The 

framework presumes that the spread between two cointegrated assets will revert to its mean due to 

the stationary nature of these components. However, in real markets, structural breaks, regime 

shifts, or firm-specific events can disrupt this property, leading to extended non-convergence 

episodes. Such deviations can translate into losses or protracted holding periods, diminishing 

strategy profitability. 

Transaction costs and liquidity constraints represent an additional source of friction often 

underappreciated in academic treatments. Vidyamurthy’s framework, like many others, implicitly 

assumes frictionless execution. In practice, bid–ask spreads, commissions, and slippage can 

materially reduce net profitability, particularly in less liquid markets where even moderate order 

sizes can influence prices. The problem is exacerbated in high-frequency trading contexts, where 

frequent rebalancing to capture small deviations accumulates substantial trading costs over time. 

Addressing these frictions may require prioritizing liquid securities and adopting execution 

algorithms designed to minimize market impact. 

Finally, risk management considerations receive limited attention in Vidyamurthy’s 

formulation. While the emphasis is on identifying mean-reverting relationships, little guidance is 

offered on handling adverse market movements. In practice, robust pairs trading strategies require 

stop-loss mechanisms, dynamic position sizing, and contingency plans for extreme market events. 

Without these safeguards, even statistically sound strategies may incur severe losses during black 

swan episodes or periods of systemic dislocation. 

 

Potential Extensions and Enhancements 

A promising extension of Vidyamurthy’s framework involves the integration of machine 

learning techniques to enhance the preselection process. Advanced algorithms, such as random 

forests, gradient boosting machines, or neural networks, may uncover complex and potentially 

nonlinear relationships between securities that conventional statistical methods such as the APT 
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and CTM could overlook. Furthermore, these approaches can facilitate automated factor selection, 

thereby reducing the subjectivity inherent in determining the most relevant explanatory variables 

within the APT framework—albeit potentially at the expense of model interpretability. 

Nevertheless, the application of machine learning presents its own challenges, including substantial 

data requirements, the need for careful hyperparameter tuning, and the risk of overfitting to 

historical patterns that may not persist in live market conditions. 

A second enhancement lies in the adoption of dynamic factor models, which allow factor 

loadings to evolve over time. This directly addresses a key limitation of the static APT formulation, 

which assumes that the relationship between asset returns and common factors is time-invariant. 

By modelling time-varying sensitivities, dynamic factor approaches can better capture the 

changing nature of financial markets and, in turn, improve the robustness of preselected pairs. 

Relatedly, the incorporation of regime-switching models offers another avenue for 

improvement, particularly in addressing structural breaks and changes in market regimes. Such 

models enable the identification of shifts in the statistical properties of price series, signalling 

periods in which the mean-reversion characteristics of a pair may deteriorate. By embedding 

regime-detection mechanisms within the strategy, traders can proactively adjust exposures when 

underlying market dynamics shift, thereby mitigating the risk of persistent non-convergence. 

Finally, transaction cost analysis should be embedded directly into the strategy design phase. 

Rather than optimizing entry and exit thresholds purely on the basis of theoretical profitability, 

practitioners should explicitly account for realistic execution frictions, including bid–ask spreads, 

market impact, slippage, and latency constraints. This may involve conducting historical backtests 

and out-of-sample validations across multiple market conditions to ensure that the strategy remains 

profitable after accounting for these costs. 

In summary, Vidyamurthy’s framework provides a coherent and practical blueprint for 

identifying, testing, and executing cointegration-based pairs trades. However, there is scope for 

further refinement through the integration of advanced modelling techniques, dynamic market 

adaptation, and cost-aware trading design. Future research could build upon this foundation by 

exploring hybrid approaches that combine statistical rigour with machine learning adaptability, 

while systematically evaluating performance across heterogeneous market environments. 
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5.2.2 Expanding Cointegration Methods 

In comparison to Vidyamurthy’s method, subsequent research presents several 

methodological differences and improvements while building upon its foundational framework. 

In contrast to Vidyamurthy's original approach to pairs trading—which primarily focuses on 

identifying cointegrated stock pairs exhibiting long-term equilibrium relationships and executing 

trades based on mean reversion—subsequent research has expanded and refined the methodology 

to address its limitations and improve adaptability to diverse market environments. One notable 

advancement is presented by Ekkarntrong et al. (2017), who propose a multiclass pairs trading 

model that integrates mean reversion with the coefficient of variance (CV) to better classify and 

manage stock pairs. Unlike Vidyamurthy’s method, which concentrates on the price relationship of 

a single pair, the multiclass model groups stocks into different CV classes based on volatility and 

correlation. This classification allows for cross-class trading, enabling the simultaneous trading of 

pairs from different volatility classes, thereby enhancing diversification and mitigating risk. The 

incorporation of CV as a volatility measure provides a dynamic dimension to the strategy, allowing 

traders to anticipate directional changes and adapt their trading approaches accordingly. Moreover, 

the advanced mean-reversion algorithm applied within each class improves the precision of trading 

signals, leading to more consistent returns. These innovations not only enhance the identification 

of profitable trading opportunities but also introduce sophisticated risk management mechanisms 

absent from Vidyamurthy’s original framework, resulting in a more flexible and adaptive strategy 

for modern volatile markets. 

Chen et al. (2017) introduce further advancements to the cointegration approach originally 

proposed by Vidyamurthy (2004). While Vidyamurthy’s framework emphasizes static 

cointegration for pair selection, Chen et al. employ an adaptive cointegration methodology better 

suited to the non-stationary and time-varying nature of financial markets, particularly in 

commodity futures. Their method dynamically updates cointegration relationships over time, 

ensuring that trading pairs remain relevant throughout the investment horizon. This continuous 

recalibration addresses one of the major drawbacks of static cointegration: the risk of outdated 

relationships. Additionally, Chen et al. enhance the error-correction model (ECM) to refine trading 

signals, ensuring that trades occur at optimal points of mean reversion. By integrating these 

elements, the adaptive cointegration approach improves the flexibility and robustness of pairs 
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trading, especially in high-volatility and structurally evolving markets such as Chinese commodity 

futures. 

The methodology proposed by Figuerola-Ferretti et al. (2018) presents several important 

innovations over Vidyamurthy's framework. First, they introduce the concept of price discovery by 

identifying which asset acts as the "leader" in the pair—an asset whose price movements predict 

those of the "follower." This leader–follower dynamic allows for predictive trading, improving the 

precision of entry and exit decisions. In contrast, Vidyamurthy’s model treats both assets 

symmetrically, without distinguishing leadership roles. Second, they implement a dynamic 

threshold mechanism that adjusts according to the speed of mean reversion. As the persistence of 

the cointegration error increases, the trading trigger threshold is raised, optimizing trade timing. 

This contrasts with Vidyamurthy’s reliance on fixed statistical thresholds, which ignore variations 

in reversion speed. Third, error persistence is treated as a core strategic element—lower persistence 

correlates with higher profitability, a finding that Vidyamurthy’s framework does not explore in 

depth. Finally, the authors employ an extended VECM to capture evolving cointegration dynamics 

more effectively. This represents a clear advancement over Vidyamurthy’s simpler, static 

cointegration tests, enabling more responsive and data-driven strategies. 

Feng et al. (2020) make several methodological contributions relative to Vidyamurthy's 

(2004) work, with a strong emphasis on real-world trading frictions. One significant improvement 

is the explicit modelling of transaction costs and asset illiquidity—factors often overlooked in 

academic models. By incorporating these frictions, the strategy becomes more realistic and 

applicable in practice, where trading costs can substantially erode profits. Another enhancement is 

the introduction of position limits on illiquid assets, constraining trade size and timing to avoid 

unrealistic portfolio allocations. Additionally, Feng et al. adopt dynamic trading boundaries using 

a singular control framework, optimizing entry and exit points while accounting for frictions and 

position constraints—surpassing Vidyamurthy’s static statistical triggers. The strategy is further 

strengthened by solving HJB equations to maximize utility, integrating both cointegration and 

market frictions into a single optimization problem. The inclusion of illiquid instruments and 

synthetic assets also adds nuance, particularly for markets where asset liquidity is uneven. In 

contrast, Vidyamurthy’s approach assumes both assets are equally tradable, ignoring liquidity 

disparities. 
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Tadi and Kortchemski (2021) extend Vidyamurthy’s methodology with several innovations 

tailored to cryptocurrency markets. The most notable improvement is the adoption of dynamic 

cointegration testing, continuously updating relationships via Engle–Granger and Johansen tests to 

adapt to rapidly changing conditions. They also introduce look-back window optimization to 

calibrate the speed of mean reversion using an OU process, ensuring responsiveness to market 

shifts. The framework integrates both linear and nonlinear cointegration tests—combining the 

Augmented Dickey–Fuller (ADF) test with the nonlinear Kapetanios–Snell–Shin (KSS) test—to 

capture complex asset relationships often present in volatile crypto markets. Furthermore, they 

incorporate market microstructure elements such as best bid/ask quotes and order execution gaps, 

bringing the backtesting process closer to live trading conditions—an aspect absent in 

Vidyamurthy’s model. 

Finally, Kato and Nakamura (2023) broaden the application of cointegration beyond equities 

by applying it to hazard rates in the credit default swap (CDS) market. This represents a significant 

conceptual shift from price-based to credit-risk-based pairs trading. Their approach incorporates 

dynamic cointegration that adjusts for term structures across different CDS maturities, addressing 

maturity effects ignored in Vidyamurthy’s static framework. Estimation of hazard rate dynamics is 

performed via Bayesian inference combined with an ODE-based solver, a more advanced 

methodology than traditional econometric techniques. Moreover, cointegration is embedded within 

an arbitrage-free pricing framework, ensuring theoretical consistency—an integration absent from 

Vidyamurthy’s methodology. 

Overall, subsequent developments in cointegration-based pairs trading significantly extend 

the scope and robustness of Vidyamurthy’s original framework. The reviewed studies demonstrate 

innovations across multiple dimensions: enhancing pair classification through volatility metrics 

(Ekkarntrong et al., 2017), introducing adaptive and dynamic cointegration mechanisms (Chen et 

al., 2017; Tadi and Kortchemski, 2021), incorporating market microstructure and trading frictions 

into model design (Feng et al., 2020), and expanding the domain of application to alternative asset 

classes such as credit derivatives (Kato and Nakamura, 2023). Methodological refinements such as 

leader–follower identification, dynamic thresholds, error persistence analysis, and the use of 

advanced econometric and optimization techniques collectively improve the predictive accuracy, 

adaptability, and practical feasibility of pairs trading strategies. These advancements suggest that 

the evolution of cointegration methods is moving towards more context-aware, data-adaptive, and 
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execution-sensitive frameworks, making them increasingly applicable in complex, high-frequency, 

and multi-asset market environments. 

 

5.2.3 Empirical Results Analysis 

This section reviews empirical evidence from recent studies evaluating cointegration-based 

pairs trading strategies across diverse markets, asset classes, and methodological variations. By 

examining their reported performance, risk profiles, and robustness to transaction costs, it is 

possible to assess both the practical effectiveness and limitations of these strategies under varying 

market conditions. 

Ardia et al. (2016) test pairs trading strategies using a Bayesian simulation-based procedure 

for predicting stable ratios of stock prices. They evaluate the model’s performance by applying 

both 5-day and 10-day moving averages, combined with different risk thresholds. The results are 

promising: even after accounting for USD 100 in transaction costs per round turn, the average 

annual return remains above 18%. This approach demonstrates the potential of Bayesian techniques 

to stabilize the long-term relationship between stock pairs, offering a robust framework for pairs 

trading strategies across different market regimes. 

Similarly, Kato and Nakamura (2023) develop and test a pairs trading strategy using 

cointegration analysis between CDS spreads, focusing on the cointegration of hazard rates. 

Leveraging an ODE-based Bayesian inference method, they forecast stable relationships between 

CDS spreads and apply a VECM to capture price divergences. Tested on Japanese corporate CDSs, 

the strategy targets mean reversion in spread differentials to maintain long-term equilibrium. 

Extensive backtesting shows that, even after transaction costs, the strategy consistently achieves 

an annualized return exceeding 12%. This finding underscores the applicability of Bayesian 

methods in enhancing pairs trading strategies within credit derivatives markets. 

Several studies employ large-scale equity datasets. For example, Rad et al. (2016) evaluate 

the profitability of pairs trading strategies using three distinct methods—distance, cointegration, 

and copula—on a comprehensive U.S. equity dataset covering over 23,000 stocks from 1962 to 

2014. They find that distance and cointegration methods deliver similar performance, with 

significant average monthly excess returns of 0.91% and 0.85%, respectively, before transaction 

costs. The copula method produces fewer trades but exhibits greater stability in the frequency of 
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trading opportunities, albeit with lower returns. After incorporating time-varying transaction costs, 

the cointegration and distance methods yield annualized returns of 3.3% and 3.8%, respectively, 

while the copula method lags at 0.5%. These results indicate that complex models like cointegration 

and copula can be effective in volatile markets, with cointegration generally outperforming. 

Smith and Xu (2017) compare the distance and cointegration approaches using U.S. equity 

market data from 1980 to 2014, testing various parameterizations. They find that the distance 

approach generally outperforms cointegration, particularly during the 1980s and 1990s, achieving 

annualized returns as high as 40% for smaller portfolios. However, after factoring in transaction 

costs, profitability declines sharply in the 2000s. The cointegration approach performs well only in 

the 1980s and struggles in later decades. These findings suggest that while the distance method can 

be more robust in certain market regimes, both methods face challenges in sustaining profitability 

over time. 

Brunetti and De Luca (2023) analyze the impact of seven different pre-selection metrics on 

the profitability of cointegration-based pairs trading strategies. Using S&P 500 constituents from 

1998 to 2018, they compare measures such as SSD, price ratio, and spectral coherence. Their results 

show substantial variation in performance depending on the pre-selection metric. For example, 

pairs selected based on log-price correlation achieve an annualized return of over 12%, while 

spectral coherence yields less consistent results. This highlights the importance of pre-selection in 

optimizing cointegration-based strategies, as the chosen metric significantly influences returns, risk 

exposure, and the degree of market neutrality. 

Overall, these empirical studies demonstrate that cointegration-based pairs trading can 

deliver economically meaningful returns across multiple asset classes and market environments. 

However, performance is highly sensitive to factors such as transaction costs, portfolio construction 

rules, pre-selection criteria, and market regimes. Advanced techniques—including Bayesian 

inference, adaptive cointegration, and refined pre-selection metrics—tend to enhance robustness 

and profitability, particularly in volatile or specialized markets. In contrast, simpler approaches 

may yield strong results in certain historical periods but often face difficulties in maintaining 

consistent performance in evolving market conditions. These findings underscore the importance 

of methodological adaptability and parameter calibration when implementing cointegration 

strategies in practice. 
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5.3 Stochastic Control Methods 

This section provides a comprehensive review of studies applying stochastic control 

techniques to pairs trading. Table 13 summarizes the key literature from 2016 to 2023, detailing 

the asset classes examined, sample periods, and data frequencies. The compilation covers a wide 

range of markets, including equities, ETFs, commodity futures, and cryptocurrencies, across both 

developed and emerging markets. Data frequencies vary substantially, from high-frequency 

intervals of one minute and five minutes to daily observations, reflecting the adaptability of 

stochastic control frameworks to different market microstructures. 

The table highlights several notable patterns. First, while early studies (2016–2018) 

predominantly focus on daily equity and ETF datasets—particularly U.S. and Japanese stocks—

later research increasingly incorporates high-frequency data, especially in the context of intraday 

trading for S&P 500 constituents and cryptocurrencies. Second, the scope of assets has expanded 

beyond equities to include commodity futures (e.g., energy and precious metals) and credit-related 

instruments, suggesting a diversification of stochastic control applications. Third, recent years 

(2021–2023) show greater attention to non-U.S. markets, including Chinese A-shares and energy 

futures, indicating the growing relevance of stochastic control methods in emerging market 

contexts. 

Table 13. A summary of stochastic control methods in pair trading from year 2016 to 2023. 

Articles Publish Year Sample Data Frequency 

1  2016 Direxion ETF, 2011-2015 daily 

3  2016 Commodity Futures, 1997-2015 daily 

5  2016 - - 

7  2016 - - 

12 2016 U.S. stocks, 2007-2014 daily 

18 2017 

U.S. Oil Company stocks, June 2013-April 2015 July 

2007-December 2008 5-min 

20 2017 

Cryptocurrency in Bitstamp, BTC-e, itBit, January 2014-

June 2016 1-min 

31 2018 - - 

32 2018 - - 

33 2018 - - 

39 2018 Nikkei 225 stocks, 2012-2016 daily 

40 2018 - - 
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Articles Publish Year Sample Data Frequency 

41 2018 82 Stock Pairs, 2010-2015 daily 

45 2018 U.S. Financial Sector stocks, 2008-2013 daily 

46 2018 - - 

47 2018 Nikkei 225 stocks, 2011-2016 daily 

49 2018 S&P 500 stocks, 1998-2015 1-min 

54 2019 S&P 500 stocks, 1998-2015 1-min 

59 2019 S&P 500 stocks, 1998-2015 1-min 

64 2019 - - 

65 2019 U.S. stocks, 2012-2017 daily 

68 2020 - - 

75 2020 - - 

76 2020 - - 

81 2021 - - 

84 2021 - - 

88 2021 - - 

91 2021 - - 

92 2021 

Chinese stocks, 2012-2016 

Futures au1612 and au1702, February 2016-August 2016 daily 

94 2021 - - 

100 2022 6 Stock Pairs, 2014-2015 daily 

103 2022 - - 

104 2022 Chinese Energy Futures, January 2020-November 2021 1-min 

105 2022 - - 

106 2022 - - 

117 2023 - - 

118 2023 - - 

119 2023 SSE and SZSE stocks, 2019-2022 daily 

120 2023 405 Cryptocurrencies, January 2022-March 2022 1-min, 5-min, hourly 

122 2023 - - 

 

5.3.1 Structure of Ornstein-Uhlenbeck Process Application 

In the context of pairs trading, stochastic control methods provide a rigorous framework for 

constructing and optimizing trading strategies under uncertainty. Among these, the OU process 

represents one of the most widely adopted models for mean-reverting strategies. By modeling the 

spread between two assets as a continuous-time mean-reverting stochastic process, the OU 

framework offers an analytically tractable basis for predicting the tendency of the spread to revert 
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toward its long-term equilibrium following deviations. This property aligns closely with the core 

principle of pairs trading, which seeks to exploit temporary mispricings between economically 

related assets to achieve market-neutral arbitrage. 

As indicated in Table 2, more than half of the 40 reviewed studies employing stochastic 

control methods between 2016 and 2023 incorporate some form of the OU process. Jurek and Yang 

(2007) remain a foundational reference in this domain, presenting one of the earliest and most 

influential treatments of the finite-horizon optimal control problem in pairs trading based on an OU 

model. 

Application of the OU Process: Insights from Jurek and Yang 

Jurek and Yang (2007) made a significant contribution to the field of arbitrage trading by 

modeling the price differential between two similar assets—commonly referred to as a spread—

using a mean-reverting OU process. This modeling choice is particularly well suited for pairs 

trading strategies, which are based on the premise that economically linked assets will exhibit 

a stable long-term relationship. However, short-term market forces can drive temporary deviations 

in their prices, creating arbitrage opportunities. 

The OU process is effective for capturing the dynamics of such spreads, as it models the 

tendency of the price differential to revert to a long-term average over time. This mean-reversion 

property aligns directly with the principles of pairs trading, where temporary price deviations are 

expected to self-correct. The mathematical formulation employed by Jurek and Yang specifies the 

spread 𝑆𝑡 as evolving according to the following stochastic differential equation (SDE): 

𝑑𝑆𝑡 = 𝜃(𝜇 − 𝑆𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡          (5.9) 

Here, 𝑆𝑡 represents the spread at time 𝑡, 𝜇 is the long-term mean to which the spread reverts, 

and 𝜃 denotes the speed of mean reversion, with larger values indicating faster adjustment. The 

parameter 𝜎  measures the volatility of the spread, introducing randomness through the Wiener 

process 𝑑𝑊𝑡. This OU framework reflects the expectation that, although the spread may fluctuate 

due to market factors, it will eventually return to its historical mean. Such dynamics make the OU 

process a natural and effective tool for arbitrageurs seeking to exploit temporary mispricings. 
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Addressing Horizon Risk and Divergence Risk 

In their model, Jurek and Yang identify two critical risks encountered by arbitrageurs: horizon 

risk and divergence risk. 

Horizon risk refers to the uncertainty over whether the spread will revert to its mean within 

the arbitrageur’s limited investment horizon. Institutional traders, such as fund managers, typically 

operate under fixed timelines—such as a fiscal quarter or year—and thus cannot wait indefinitely 

for convergence to occur. If the spread fails to revert within this period, positions may need to be 

closed at a loss. This risk is particularly pronounced in finite-horizon models, where trade 

profitability depends heavily on timing. 

Divergence risk, in contrast, concerns the possibility that the spread may widen further before 

ultimately converging. Although the OU process ensures mean reversion in the long run, it offers 

no guarantee against substantial short-term divergence. This risk is often quantified by the variance 

of the running maximum of the spread, which measures how far it can move away from the mean 

before reversing. Traders must incorporate this consideration into their strategies to avoid 

significant interim losses that could erode capital before convergence is realized. 

 

Development of the Optimal Dynamic Strategy 

Jurek and Yang’s principal contribution lies in formulating an optimal dynamic strategy for 

arbitrage trading based on the OU process. This strategy continuously adjusts the allocation of 

capital between the mispriced assets and a risk-free asset, taking into account both the current level 

of the spread and the time remaining until the trading horizon ends. 

A key insight from their approach is the concept of time-varying allocation. As the investment 

horizon shortens, the strategy adopts a more conservative stance. With less time available for the 

spread to revert to its mean, the likelihood of horizon-related losses increases, prompting a gradual 

reduction in the optimal allocation to the mispricing as the end date approaches. 

The strategy is also highly responsive to the magnitude of the spread. When the spread 

deviates markedly from its mean, it may recommend a larger position to take advantage of the 

anticipated mean reversion. However, if the divergence becomes excessively large, the strategy 

advises reducing the position to mitigate the elevated risk of further divergence. This reflects sound 
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risk management principles, in which potential gains are carefully weighed against the increased 

likelihood of interim losses. 

Moreover, Jurek and Yang incorporate intertemporal hedging demands to account for 

uncertainties in future market conditions. Unlike simpler pairs trading rules that focus solely on 

exploiting current mean-reversion opportunities, their model adjusts allocations to manage the risk 

of future divergence. This forward-looking component ensures that the strategy not only captures 

present mispricings but also remains resilient to potential shifts in the spread’s dynamics over time. 

 

Hedging Demands and Position Adjustments 

A distinctive feature of Jurek and Yang’s framework is the decomposition of the optimal 

position into two components: the myopic demand and the intertemporal hedging demand. The 

myopic demand represents the immediate response to the current mispricing, emphasizing the 

exploitation of present arbitrage opportunities by increasing position size when the spread deviates 

significantly from its long-term mean. In contrast, the intertemporal hedging demand is a forward-

looking adjustment that incorporates the risks associated with future changes in the spread and the 

time remaining in the investment horizon. For instance, if the spread widens substantially as the 

horizon approaches, the hedging demand may recommend reducing the position size to limit 

exposure to further divergence, even if the current opportunity appears profitable. This dual-

demand structure enables a more sophisticated approach to arbitrage trading, allowing position 

sizes to be calibrated not only to current market conditions but also to anticipated future risks. 

 

Comparison with Threshold-Based Rules 

To assess the effectiveness of their dynamic strategy, Jurek and Yang compare it with 

a simpler threshold-based rule, a common approach in pairs trading. The threshold-based rule 

entails opening a position when the spread deviates from its mean by more than a predetermined 

number of standard deviations and closing the position once it reverts. Their findings show that the 

OU-based strategy offers several notable advantages over this static approach. First, it enables 

dynamic positioning by continuously adjusting the position size in response to changes in the risk–

return profile, making it more adaptable to evolving market conditions than fixed threshold triggers. 

Second, it explicitly incorporates key risks—such as divergence risk and horizon risk—that are 

typically ignored in threshold-based strategies. By accounting for these risks, the OU-based 
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framework achieves superior risk-adjusted returns, effectively managing downside exposure while 

still capturing profitable opportunities. 

 

Empirical Testing and Results 

Jurek and Yang evaluate their strategy using empirical data, notably the well-known Royal 

Dutch and Shell shares (Siamese twin shares). The results indicate that the dynamic OU-based 

strategy consistently outperforms the threshold rule in terms of risk-adjusted returns, particularly 

when the spread exhibits strong mean-reversion.  

For example, the Sharpe ratio—a measure of risk-adjusted performance—improves 

markedly under the optimal strategy. In the case of Royal Dutch–Shell pairs, the Sharpe ratio ranges 

from 0.50 to 0.61, depending on the specific calibration of risk aversion. These findings highlight 

the strategy’s ability to achieve superior performance by effectively balancing risk and return, 

especially in markets characterized by pronounced mean-reversion. 

 

Limitations and Future Research Directions 

Although Jurek and Yang’s model offers notable advantages, it is not without limitations. 

A key drawback is its exclusion of transaction costs. The model assumes a frictionless market, 

enabling continuous rebalancing; however, in practice, frequent trading would generate substantial 

transaction costs, which could erode profitability. In contrast, simpler threshold-based rules, which 

involve fewer trades, may prove more cost-effective in real-world settings. 

Moreover, the model could be further enhanced by testing its robustness across larger datasets 

and diverse market environments, including periods of heightened volatility or financial crises. 

Such extensions would provide deeper insights into the strategy’s performance under varying 

conditions and could reveal areas where adjustments to the framework might be necessary. 

The framework itself builds upon and extends prior research, notably the work of 

Boguslavsky and Boguslavskaya (2004), who developed an optimal investment strategy for 

a single risky asset following an OU process under power utility, and Boguslavsky and 

Boguslavskaya (2004), who also addressed a stochastic control problem for pairs trading using the 

OU process. By focusing on non-myopic arbitrageurs, incorporating intertemporal hedging 

demands, and adopting a dynamic portfolio allocation approach, Jurek and Yang’s contribution 
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provides substantial value for understanding optimal trading strategies in real-world financial 

markets. 

 

5.3.2 Empirical Research based on Ornstein-Uhlenbeck Process 

Building on the theoretical framework of the OU process discussed earlier, a number of 

empirical studies have explored its applications in various financial markets, often enhancing the 

model to address specific market characteristics. These works demonstrate how incorporating 

features such as non-Gaussian innovations, regime-switching dynamics, jump-diffusion 

components, or stochastic volatility can improve the realism and profitability of OU-based pairs 

trading strategies. 

Göncü and Akyildirim (2016) extend the traditional OU process by introducing a Lévy 

process with generalized hyperbolic (GHYP) distributed marginals to model the spread between 

commodity pairs. Using daily data from January 2007 to December 2014 across multiple 

commodity futures markets, their model captures empirical features of commodity spreads—such 

as pronounced peaks and fat tails—that are often observed in real-world data but are poorly 

represented by Gaussian models. The Lévy process accounts for the non-Gaussian nature of the 

spreads, while the GHYP distribution captures the skewness and kurtosis inherent in the data. The 

authors derive optimal trading thresholds by maximizing expected profits from spread positions, 

and their strategy, applied to pairs such as crude oil and natural gas, yields an average annual return 

of 15.3%, significantly outperforming traditional Gaussian-based models. This advancement 

results in a more accurate representation of market behavior and a more robust pairs trading 

strategy in commodity futures markets. 

Liu et al. (2017) adopt a novel approach by applying a doubly mean-reverting process to 

model spreads between stock pairs, using high-frequency intraday data from the NYSE and 

NASDAQ between January 2015 and December 2016. Their model combines two mean-reverting 

processes to capture both the long-term trend and short-term fluctuations of the spread: the long-

term trend follows an OU process, while short-term deviations are modeled conditionally. This 

structure enables the strategy to exploit temporary market inefficiencies that may be missed by 

daily-data-based models, which typically assume static relationships between asset pairs. By 

leveraging high-frequency data, the model dynamically adjusts positions in response to rapidly 

changing market conditions. Applied to technology and financial sector stocks, the strategy 
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achieves an average annualized return of 18.2%, outperforming standard daily-frequency pairs 

trading models and demonstrating the potential of exploiting short-term mispricings in high-

frequency trading environments. 

Suzuki (2018) introduces an OU-based model with a regime-switching mechanism that 

allows dynamic transitions between long, short, and neutral (square) positions. This extends the 

traditional binary long/short OU framework by allowing traders to remain neutral during periods 

of uncertainty. Using real-world data from “stub” pairs—such as parent and subsidiary 

companies—the optimal switching points between regimes are determined through Monte Carlo 

simulations. Empirical results show that this approach achieves significantly higher Sharpe ratios 

(around 0.69 on average) than classical two-sigma strategies, even after accounting for transaction 

costs. This added flexibility improves risk-adjusted returns and enhances the model’s robustness 

under complex market conditions. 

Luo et al. (2023) propose an enhanced OU process incorporating both jump-diffusion 

dynamics and regime-switching to model spreads between Chinese energy futures contracts. Using 

minute-level data from January 2, 2020, to November 30, 2021, across five major contracts (fuel 

oil, thermal coal, coke, crude oil, and coking coal), their model captures the mean-reverting nature 

of spreads while accounting for large, sudden price jumps. The study compares several pairs trading 

strategies, including minimum distance and classical cointegration, against their advanced OU 

models. Results show that the three-regime-switching OU model (3RS-OUM) achieves an 

annualized return of 167.11%, and the two-regime-switching OU model (2RS-OUM) achieves 

101.66%, both far exceeding the performance of traditional approaches. This highlights the value 

of incorporating jump-diffusion and regime-switching when operating in volatile high-frequency 

markets. 

Zhang and Xiong (2023) further extend the OU process by integrating a fast-mean-reverting 

stochastic volatility model, specifically the Scott model, to better reflect the dynamic nature of 

volatility in pairs trading. Here, volatility itself follows its own OU process, addressing the 

limitations of constant or deterministic volatility assumptions. Using data from the Chinese stock 

market—particularly in clean energy and coal energy sectors—the authors find that their enhanced 

strategy outperforms constant-volatility models, achieving a 57% win rate, an average profit of 



55 
 

 
 

Sun, Y. / WORKING PAPERS 19/2025 (482) 

0.14% per trade, and a Sharpe ratio of 3.58 in out-of-sample testing. These results demonstrate the 

effectiveness of incorporating stochastic volatility into OU-based strategies. 

Overall, these empirical studies illustrate the adaptability of the OU process framework. By 

integrating features such as non-Gaussian innovations, high-frequency adjustments, regime-

switching, jump-diffusion, and stochastic volatility, researchers have significantly improved the 

robustness and profitability of pairs trading strategies across diverse asset classes and market 

conditions. These findings reinforce the relevance of the OU process as a foundational tool while 

highlighting the importance of tailoring its structure to capture the specific statistical and dynamic 

properties of the targeted spreads. 

 

5.3.3 Theoretical Research based on Ornstein-Uhlenbeck Process 

As shown in Table 12, 22 out of the 40 papers are theoretical studies, accounting for more 

than half of the total. This highlights the importance of reviewing these works in detail, as they 

form the conceptual foundation for many empirical applications discussed in the previous section. 

The following studies represent key theoretical developments in pairs trading models based on the 

OU process, each extending the framework to incorporate more realistic market features and 

rigorous optimization techniques. 

Ngo and Pham (2016) extend the traditional pairs trading model by formulating the problem 

as an optimal switching problem with three distinct regimes: a flat position (no holdings), a long 

position (buying the underpriced asset and selling the overpriced one), and a short position (selling 

the underpriced asset and buying the overpriced one). The spread between the two cointegrated 

assets is modeled as an OU process, with transactions triggered when the spread deviates 

sufficiently from its long-term mean. The authors use a viscosity solutions approach to determine 

the optimal switching boundaries between regimes, ensuring smooth-fit conditions for the value 

functions. This approach offers a mathematically rigorous method for deriving trading rules, 

improving upon traditional threshold-based strategies that rely primarily on empirical calibration. 

Bai and Wu (2018) model the spread between two highly correlated stocks using a regime-

switching mechanism within the OU framework. Specifically, they adopt a Markov-modulated 

Ornstein–Uhlenbeck (MMOU) process, in which key parameters—including the mean reversion 

rate, long-term mean, and volatility—change dynamically according to regimes determined by an 
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underlying Markov chain. The authors derive closed-form solutions to a double boundary stopping 

time problem, enabling the optimization of entry and exit points for pairs trades under varying 

market conditions. This extension allows the mean-reversion dynamics to adapt across different 

market states, enhancing the flexibility and responsiveness of OU-based strategies to real-world 

fluctuations. 

Holý and Černý (2022) adopt an OU process to model the spread between two cointegrated 

assets, building on Bertram’s original framework for pairs trading. They enhance the strategy by 

incorporating a risk-bounded constraint, which limits the variance of profit per time unit, thus 

addressing both regulatory requirements and practical risk management considerations. This 

transforms the optimization problem from an unconstrained maximization of expected profit into 

one that balances profitability with explicit risk limits. The study also examines the impact of 

parameter misspecification, quantifying the losses that can arise when the OU parameters—such 

as mean reversion speed and volatility—are inaccurately estimated. 

Xie et al. (2023) also follow Bertram’s approach, assuming the spread follows a stationary 

Gaussian–Markov process in continuous time with mean-reverting behavior. Their key 

contribution lies in extending the framework to include constraints on the volatility of the expected 

profit per time unit, ensuring the strategy remains within predefined risk boundaries. They provide 

solutions to the resulting optimization problem, even in non-convex cases, and analyze the 

consequences of parameter estimation errors based on finite samples. This approach ensures that 

the strategy not only maximizes expected returns but also maintains compliance with specified risk 

thresholds, making it more applicable to real-world trading environments. 

In summary, these theoretical studies advance the OU process framework by incorporating 

optimal switching, regime-dependent dynamics, and explicit risk constraints. They also address 

practical issues such as parameter estimation errors, making the resulting strategies more robust 

and applicable to real trading scenarios. Collectively, they bridge the gap between idealized mean-

reversion models and the complexities of real-world financial markets, providing a solid theoretical 

foundation for empirical implementations. 
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5.4 Time Series Methods 

This section provides a detailed review of the time series approach to modeling mean 

reversion in pairs trading, focusing on methodologies that do not rely on cointegration. Table 14 

summarizes 20 representative studies published between 2016 and 2023, detailing their data 

samples and observation frequencies. The research covers a wide range of asset classes, including 

equities from major indices such as the DJIA, KOSPI, Nikkei 225, and CSI 300, sector-specific 

portfolios such as private banks and artificial intelligence stocks, as well as commodities, ETFs, 

foreign exchange, and cryptocurrencies. This diversity highlights the versatility of time series 

methods in adapting to various market environments and asset characteristics. 

A notable feature of these studies is the variation in data frequency, ranging from low-

frequency weekly commodity futures data to ultra-high-frequency 1-minute cryptocurrency price 

series. While the majority of studies rely on daily observations, the inclusion of high-frequency 

datasets—particularly in the post-2019 period—reflects the growing interest in exploiting intraday 

mean-reversion patterns, especially in cryptocurrency and futures markets. The time spans of the 

datasets also differ significantly, from relatively short windows of less than one year to multi-year 

samples exceeding a decade, suggesting that time series-based pairs trading models are applied in 

both short-term tactical strategies and long-term structural analyses. These patterns provide 

valuable context for understanding how methodological choices, data characteristics, and market 

conditions influence the design and performance of time series-based mean reversion strategies. 

Table 14. A summary of time series methods in pair trading from year 2016 to 2023. 

Articles Publish Year Sample Data Frequency 

2  2016 

XOM and LUV, September 2011-March 2013 

VALE5 and BRAP4, August 2011-April 2013 daily 

23 2017 

28 stocks in DJIA, 8 stocks in NYSE and NASDAQ, 2006-

2014 daily 

29 2017 KOSPI 100 stocks, 2005-2015 daily 

36 2018 Private Banks Sector stocks, 2006-2016 daily 

39 2018 Nikkei 225 stocks, 2012-2016 daily 

47 2018 Nikkei 225 stocks, 2011-2016 daily 

48 2018 36 stocks in DJIA, NYSE and NASDAQ, 2005-2016 daily 

57 2019 AAPL, GOOGL, META, MSFT, MU, 2012-2017 daily 

66 2020 EWA, EWC, IGE, 2017-2020 daily 

70 2020 ETF, FX, Stocks, 2012-2019 1-min 
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Articles Publish Year Sample Data Frequency 

74 2020 Commodity Futures, 2004-2018 weekly 

82 2021 AOS and DUK, 2018-2021 daily 

83 2021 EWA, EWC, IGE, 2017-2020 daily 

85 2021 

Bitcoin, Ethereum, Litecoin and Monero, January 2019-

November 2019 daily 

90 2021 5 U.S. AI stocks, 2016-2019 daily 

95 2021 U.S. Banks in NYSE, 2012-2019 daily 

99 2022 BTC-USD, ETH-USD, 2021-2022 hourly 

108 2022 CSI 300 Stocks, 2008-2019 5-min 

111 2023 U.S. stocks, January 2021-December 2022 daily 

120 2023 405 Cryptocurrencies, January 2022-March 2022 1-min, 5-mins, hourly 

 

5.4.1 Use of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model 

Chen et al. (2017) employ a Smooth Transition GARCH (ST-GARCH) model to enhance 

pairs trading performance. The ST-GARCH framework, incorporating a second-order logistic 

transition function, is used to model nonlinear shifts in conditional volatility. By forecasting risk 

measures such as Value-at-Risk (VaR), the model generates entry and exit signals and adjusts 

position sizing in response to changing volatility regimes. This approach enables a more adaptive 

risk management process compared with standard GARCH models. The authors conduct an 

empirical evaluation to demonstrate that the ST-GARCH-based strategy improves the timing of 

trades and enhances overall profitability relative to conventional threshold-based rules. 

 

Model Selection and Specification 

The paper employs a ST-GARCH model to capture conditional heteroskedasticity in financial 

time series. The model incorporates a second-order logistic transition function, allowing for two 

smooth thresholds that govern shifts between volatility regimes. This structure is particularly suited 

for financial data, as it can flexibly model nonlinear dynamics in the conditional variance. 

The ST-GARCH specification accommodates several empirical characteristics commonly 

observed in asset returns. First, it captures volatility clustering, whereby periods of high (low) 

volatility tend to persist. Second, it accounts for asymmetric responses to positive and negative 

shocks, reflecting the non-symmetric nature of market reactions. Third, the model is estimated 

under a Student’s t-distribution for innovations, thereby accommodating fat-tailed return 

distributions in which extreme movements occur more frequently than under the normality 
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assumption. While mean reversion in the spread is primarily governed by the mean equation, the 

ST-GARCH component allows volatility to adjust dynamically around this equilibrium, improving 

the robustness of risk forecasts such as VaR. 

The model is specified as follows: 

   𝑦𝑡 = 𝜇𝑡
(1)

+ 𝐹(𝑧𝑡−𝑑; 𝛾, 𝑐1, 𝑐2)𝜇𝑡
(2)

+ 𝑎𝑡       (5.10) 

where 𝑦𝑡denotes the demeaned return spread between the two assets in a pair, 𝜇𝑡
(1)

 and 𝜇𝑡
(2)

 are the 

conditional means in the two regimes, and 𝑎𝑡 is the innovation term: 

      𝑎𝑡 = √ℎ𝑡 ⋅ 𝜀𝑡, 𝜀𝑡 ∼ 𝑖. 𝑖. 𝑑.  𝑡∗(𝜈)        (5.11) 

Here, ℎ𝑡 is the conditional variance and 𝜀𝑡 follows a standardized Student’s t-distribution with 𝜈 

degrees of freedom. The conditional variance evolves according to: 

     ℎ𝑡 = ℎ𝑡
(1)

+ 𝐹(𝑧𝑡−𝑑; 𝛾, 𝑐1, 𝑐2)ℎ𝑡
(2)

        (5.12) 

where ℎ𝑡
(1)

 and ℎ𝑡
(2)

 are the conditional variances under different regimes. 

The transition function 𝐹(𝑧𝑡−𝑑; 𝛾, 𝑐1, 𝑐2) is specified as: 

𝐹(𝑧𝑡−𝑑; 𝛾, 𝑐1, 𝑐2) =
1

1+exp {
−𝛾(𝑧𝑡−𝑑−𝑐1)(𝑧𝑡−𝑑−𝑐2)

𝑠𝑧
}
       (5.13) 

where 𝑐1 < 𝑐2 , 𝑐1 and 𝑐2  are the transition thresholds, 𝛾  controls the smoothness of regime 

changes, and 𝑠𝑧 is the sample standard deviation of 𝑧𝑡−𝑑. 

 

Data Preparation and Normalization 

To identify stock pairs with similar price dynamics, the Minimum Squared Distance (MSD) 

method is applied to standardized price series. Standardization removes the effects of differing 

price scales and volatilities, ensuring that the MSD reflects only the similarity in relative 

movements rather than differences in absolute price levels. 

The standardized price of asset 𝑗 at time 𝑡 is computed as: 

    𝑝𝑡
𝑗

=
𝑃𝑡

𝑗
−𝑃̅𝑗

𝜎𝑗
         (5.14) 
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where 𝑃𝑡
𝑗
 denotes the closing price of asset 𝑗 at time 𝑡, 𝑃̅𝑗 is the sample mean of the price series, 

and 𝜎𝑗  is the sample standard deviation. This transformation produces a unit-free series with zero 

mean and unit variance, allowing direct comparison of price trajectories across assets. The MSD is 

then calculated between standardized series to select pairs with the smallest average squared 

deviations, indicating the highest degree of co-movement. 

 

Parameter Estimation Method 

The parameters of the ST-GARCH model are estimated within a Bayesian framework using 

Markov Chain Monte Carlo (MCMC) simulation. This approach allows the incorporation of prior 

information and yields full posterior distributions for the parameters, providing a richer 

characterization of estimation uncertainty compared with point estimators. 

Posterior sampling is conducted using algorithms from the Metropolis–Hastings family, with 

block sampling applied to partition parameters into groups with high intra-group correlation. This 

design improves sampling efficiency and accelerates convergence by reducing cross-parameter 

dependencies. 

For each trading pair, a total of 30,000 MCMC iterations are performed. The initial 10,000 

draws are discarded as a burn-in period to allow the Markov chain to converge toward its stationary 

distribution, thereby mitigating the influence of initial parameter values. The remaining 20,000 

draws are retained for inference and model-based decision-making. 

 

Generating Trading Signals 

The paper proposes two methods for generating trading signals: 

1. Threshold Method – In this approach, the upper and lower trading thresholds are 

estimated from the ST-GARCH model using Bayesian inference. When the observed 

return spread exceeds the estimated upper threshold, the strategy enters a short position 

in stock A and a long position in stock B. Conversely, when the spread falls below the 

lower threshold, a long position is taken in stock A and a short position in stock B. 

2. Quantile Forecasting Method – This method relies on one-step-ahead quantile forecasts 

of the return spread derived from the ST-GARCH model. For example, the 20% and 
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80% quantiles are used as dynamic decision boundaries. A trading position is initiated 

when the forecasted return spread lies outside the specified quantile interval, allowing 

the strategy to adapt to time-varying volatility conditions. 

 

Model Validation and Empirical Analysis 

To validate the effectiveness of the MCMC sampling scheme, the paper conducts both 

a simulation study and an empirical analysis. In the simulation study, the accuracy and stability of 

parameter estimation are evaluated under various sample sizes and initial conditions, with the 

results confirming the robustness of the proposed MCMC approach. In the empirical analysis, two 

six-month out-of-sample periods in 2014, as well as the entire year, are examined. Annualized 

returns and profits are calculated with and without accounting for transaction costs. The findings 

indicate that the proposed ST-GARCH model-based methods are capable of effectively capturing 

market arbitrage opportunities, delivering annualized returns of at least 35.5% in the absence of 

transaction costs and 18.4% when transaction costs are included. 

Chodchuangnirun et al. (2018) apply nonlinear autoregressive GARCH models to analyze 

and construct a pairs trading strategy, specifically employing the Kink-AR-GARCH, Threshold-

AR-GARCH, and Markov Switching AR-GARCH (MS-AR-GARCH) models. These nonlinear 

specifications, incorporating GARCH effects, are designed to capture key features of financial time 

series such as volatility clustering, asymmetry in conditional mean and variance, and fat-tailed 

return distributions. By modeling the dynamic behavior of return spreads under varying market 

regimes, the models enhance the ability to optimize trading strategies. Model parameters are 

estimated using the Maximum Likelihood Estimation (MLE) method, and the optimal model is 

selected based on the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC). Trading signals are generated by defining upper and lower thresholds for return spreads 

predicted by the models. When the observed spread exceeds the upper threshold, a sell–buy 

operation is initiated, while a buy–sell operation is triggered when the spread falls below the lower 

threshold. Empirical results indicate that the MS-AR-GARCH model outperforms the other two in 

generating trading signals, as it more effectively captures structural changes and volatility regime 

shifts, thereby delivering superior returns compared to traditional trading rules. 

Lin et al. (2021) employ the GARCH model to develop a multi-asset pairs trading strategy 

that optimizes trading signals through volatility forecasting. One-step-ahead volatility forecasts are 
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generated for asset pairs, serving as the basis for identifying optimal entry and exit points according 

to expected movements in return spreads under different market conditions. These forecasts are 

combined with semi-parametric tolerance limits to refine the trading signal generation process, 

adjusting the spreads to define dynamic upper and lower bounds that guide trade execution. The 

strategy calls for selling one asset and buying the other when the adjusted spread exceeds the upper 

bound, and reversing the trade when it falls below the lower bound. A rolling-window framework 

is adopted for model training and testing, with performance assessed at the end of each testing 

period. Empirical findings show that this integrated approach effectively captures evolving market 

conditions, produces consistently positive returns across multiple periods, and offers a more precise 

and adaptable framework for multi-asset pairs trading. 

 

5.4.2 Applying Ornstein-Uhlenbeck Process 

Before proceeding with the analysis in this section, it is important to distinguish between the 

applications of the OU process in stochastic control frameworks and in time series modeling. 

In stochastic control, the OU process is used to describe the dynamics of systems influenced 

by both deterministic trends and stochastic disturbances. The primary objective is to formulate and 

solve an optimization problem—typically to minimize a cost function or maximize a performance 

criterion—while continuously adjusting the control variables over time. This setting explicitly 

incorporates the randomness of the process and the impact of control actions. For instance, in 

portfolio optimization, the OU process can model asset prices or interest rates with mean-reverting 

behavior, enabling the derivation of optimal asset allocations that balance return and risk. In such 

cases, the OU process is embedded in a SDE framework, where the system’s evolution is analyzed 

under active control. 

By contrast, time series modeling applies the OU process primarily as a statistical tool to 

capture the mean-reverting property of a single stochastic variable over time. This approach is 

common in financial econometrics for modeling variables such as stock prices, exchange rates, or 

interest rate spreads that fluctuate around a long-term equilibrium. The focus is on estimating model 

parameters from historical data, assessing goodness-of-fit, and using the fitted model for 

forecasting or scenario analysis. Unlike stochastic control, there is no optimization over control 
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variables; the goal is to understand and predict the intrinsic mean-reversion dynamics based solely 

on the observed time series. 

The following examples illustrate these differences in application. 

 

Stochastic Control Methods: Optimal Portfolio Management 

Consider a fund manager aiming to optimize a portfolio that includes a stock whose price 

exhibits mean-reverting behavior. The stock price 𝑆(𝑡) is modeled using an OU process to capture 

its tendency to revert toward a long-term mean 𝜇. The objective is to determine, at each time 𝑡, the 

optimal quantity of the stock to hold in order to maximize expected portfolio returns while 

controlling risk over a fixed investment horizon. This constitutes a stochastic control problem in 

which the holdings are continuously adjusted in response to observed prices and volatility. 

The OU process for the stock price dynamics can be expressed as: 

𝑑𝑆(𝑡) = 𝜃(𝜇 − 𝑆(𝑡)) 𝑑𝑡 + 𝜎 𝑑𝑊(𝑡)        (5.15) 

where 𝜃  is the mean reversion speed, 𝜎  is the volatility, and 𝑊(𝑡)  denotes a standard Wiener 

process. 

Given this model, the optimal trading strategy π(t) is derived by solving the control problem 

with respect to a specified utility function, such as a mean–variance criterion or constant absolute 

risk aversion (CARA) utility. The strategy explicitly incorporates the mean-reverting dynamics of 

𝑆(𝑡), enabling the manager to anticipate price reversion and adjust holdings dynamically to balance 

expected return against risk. 

 

Time Series Modeling: Forecasting Interest Rate Movements 

Consider a financial analyst aiming to forecast future interest rates for purposes such as bond 

pricing or interest rate risk management. Interest rates often display mean-reverting behavior, 

fluctuating around a long-term equilibrium level due to macroeconomic forces and monetary policy 

interventions. In this context, the short-term interest rate 𝑟(𝑡) can be modeled using an OU process, 

which in the continuous-time form is equivalent to the Vasicek model: 

 𝑑𝑟(𝑡) = 𝛼(𝛽 − 𝑟(𝑡)) 𝑑𝑡 + 𝜎 𝑑𝑊(𝑡)       (5.16) 
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where 𝛼 > 0 denotes the speed of mean reversion (a higher value implies faster reversion toward 

the mean), 𝛽  is the long-term equilibrium level of the interest rate, 𝜎 > 0  represents the 

instantaneous volatility, and 𝑊(𝑡) is a standard Wiener process. 

In this setting, the analyst’s primary task is to estimate 𝛼, 𝛽, and 𝜎 from historical interest 

rate data. Estimation methods may include MLE, generalized method of moments (GMM), 

or ordinary least squares (OLS) applied to a discretized version of the process. Once calibrated, the 

fitted model can be used to produce probabilistic forecasts of future interest rates, evaluate portfolio 

VaR, or assess potential outcomes under different macroeconomic scenarios. The OU process 

framework captures the tendency of interest rates to revert toward a central value while allowing 

for random fluctuations around it. 

Thus, unlike the stochastic control example in the previous section, where the OU process is 

embedded within an optimization problem involving continuous portfolio rebalancing decisions, 

time series modeling focuses solely on characterizing and predicting the intrinsic mean-reverting 

behavior of the observed variable. The former integrates control actions to influence the system's 

evolution in real time, whereas the latter emphasizes statistical inference and predictive accuracy 

based on past observations. 

Lee and Leung (2020) employ the OU process to construct and optimize a pairs trading 

strategy by modeling the mean-reverting behavior of asset pairs’ return spreads. These spreads 

typically revert to a long-term average after short-term fluctuations. In their framework, the value 

of each asset pair portfolio is fitted to an OU process, enabling the capture of the mean-reversion 

characteristics commonly observed in financial markets. The model parameters—including the 

speed of mean reversion, long-term mean, and volatility—are estimated via MLE using historical 

price data for each asset pair. This parameterization allows the OU model to accurately describe 

the dynamics of portfolio values over time. 

Within this OU-based framework, the authors develop an optimized exit rule. Specifically, 

they analyze the effect of liquidating a position when the portfolio value deviates from its mean by 

a multiple of the standard deviation, and derive an analytical expression for the optimal exit point 

that maximizes expected profitability. This optimized rule is then compared to a conventional 

mean-reversion exit strategy. Empirical tests using eight asset pairs—including stocks, ETFs, 

currencies, and futures—demonstrate that the optimized rule substantially increases annualized 
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returns while reducing trade frequency, thereby lowering transaction costs. As the OU process is 

a standard model in time series analysis, this work primarily falls within the time series methods 

category, relying on historical data to estimate model parameters and design an optimal exit strategy. 

Xiang et al. (2023) extend the classic OU process by adopting the fractional Ornstein–

Uhlenbeck (fOU) process to capture the long-range dependence and anti-persistence observed in 

asset price spreads. The fOU process incorporates fractional Brownian motion, offering a more 

flexible representation of spread dynamics compared to the traditional OU model. Parameters such 

as the mean-reversion speed and the fractional order (Hurst exponent) are estimated from historical 

data, and these estimates are used to adaptively determine optimal trading thresholds. This adaptive 

mechanism dynamically adjusts trade entry and exit points, triggering trades when the spread 

deviates from its mean beyond the estimated threshold, thereby improving the responsiveness and 

profitability of the strategy. 

The performance of the fOU-based strategy is evaluated through both simulation and 

empirical analysis. Simulation results show that the fOU model outperforms the traditional OU 

model in capturing spread dynamics, delivering higher returns and lower risk across different 

market scenarios. Empirical tests on real market data further confirm its robustness in generating 

trading signals and enhancing strategy performance. Although the fOU process builds on concepts 

from stochastic processes and fractional Brownian motion, its application here is firmly rooted in 

time series analysis, where historical data are used to model and forecast the mean-reverting 

behavior of asset price spreads. 

 

5.5 Other Methods 

Table 15 summarizes studies that adopt alternative approaches to pairs trading between 2016 

and 2023, covering a wide spectrum of asset classes, markets, and data frequencies. The reviewed 

literature spans traditional equity markets—including U.S. stocks (NYSE, NASDAQ, AMEX), 

major indices such as the S&P 500, S&P 100, DJIA, and FTSE 100, as well as sector-specific 

portfolios like energy sector equities—to non-equity assets such as foreign exchange (EUR/USD, 

EUR/SGD), cryptocurrencies (Bitcoin and altcoins), and electricity spot prices (EPEX SPOT). The 

temporal coverage varies considerably, with datasets ranging from short-term intraday samples 
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(e.g., 1-minute, 5-minute, and 15-minute intervals in Forex and cryptocurrency markets) to long-

term daily series spanning several decades (e.g., 1962–2014 for U.S. stocks). 

The methods employed in these studies are diverse, reflecting the exploratory nature of this 

category. While some research applies statistical or econometric techniques—such as regime-

switching models, distributional fitting, and spread-based filters—others integrate more recent 

computational tools, including clustering algorithms, graph-theoretic approaches, and machine 

learning-based signal generation. High-frequency studies tend to focus on markets where 

microstructure effects and rapid price adjustments are prominent, such as Forex and cryptocurrency 

markets, whereas daily-frequency analyses dominate in equities and other traditional assets. 

Overall, the studies in Table 15 illustrate the expanding scope of pairs trading beyond classical 

cointegration or time series frameworks, highlighting both methodological innovation and 

diversification in targeted asset classes. 

Table 15. A summary of other methods in pair trading from year 2016 to 2023. 

Articles 
Publish 

Year 
Sample Data Frequency 

9 2016 NYSE, AMEX, and NASDAQ stocks, 2003-2012 daily 

13 2016 U.S. stocks, 1962-2014 daily 

16 2017 - - 

17 2017 

U.S. stocks, 1987-2011 

UPM and Stora Enso, 1987-2003 daily 

19 2017 DJIA stocks, 2000-2015 daily 

21 2017 S&P 100 stocks, 1990-2014 daily 

38 2018 

EUR/USD and EUR/SGD, June 2017-November 

2017 1-min 

42 2018 - - 

58 2019 U.S. Nasdaq energy sector stocks, 2012-2014 daily 

71 2020 FTS 100 stocks, 2010-2019 daily 

79 2020 Nasdaq 100 stocks, 1999-2003 2007-2012 daily 

80 2021 Nasdaq stocks, 2000-2021 daily 

87 2021 38 Forex, September 2017-July 2018 15-min 

98 2021 Toronto Stock Exchange, January 2017-June 2020 daily 

101 2022 103 NASDAQ 100 stocks, 2000-2021 daily 

110 2022 NYSE:LUV, NASDAQ:AAPL, 2015-2020 daily 

112 2023 S&P 500 stocks, 1990-2015 daily 

113 2023 64 PSX stocks, 2017-2019 daily 
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Articles 
Publish 

Year 
Sample Data Frequency 

116 2023 EPEX SPOT, 2020-2022 15-min 

120 2023 405 Cryptocurrencies, January 2022-March 2022 

1-min, 5-mins, 

hourly 

 

5.5.1 Copula Approach 

Within the category of alternative methods, the Copula approach offers a flexible and robust 

framework for modeling the dependence structure between asset returns without relying on linear 

correlation assumptions. Unlike traditional cointegration or time series techniques, which primarily 

capture linear relationships, Copula models can describe complex, nonlinear, and tail-dependent 

relationships that are often observed in financial markets. 

Xie et al. (2016) employs the Copula method to enhance pairs trading strategies by more 

accurately capturing the joint distribution and dependency structure between stock pairs. The 

following subsection provides a detailed description of the process used in their study. 

Motivation for Using Copula  

The study begins by noting that traditional pairs trading strategies frequently adopt the so-

called “distance method,” which measures the normalized price distance between two stocks to 

detect potential mispricing. This method is effectively analogous to relying on linear correlation to 

assess the relationship between the assets, which implicitly presumes that their returns follow 

a joint normal distribution. However, empirical evidence suggests that stock returns rarely conform 

to joint normality and may exhibit nonlinear dependence structures, including tail dependence. 

Consequently, conventional approaches risk overlooking critical aspects of the dependence 

structure, potentially leading to suboptimal or misleading trading signals. 

 

Modeling Joint Distribution with Copula 

To more precisely characterize the joint distribution between stock returns, the study adopts 

a Copula-based approach. According to Sklar’s theorem, if two random variables 𝑋 and 𝑌 have 

marginal distribution functions 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦), respectively, their joint cumulative distribution 

function 𝐻(𝑥, 𝑦) can be expressed as: 

  𝐻(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))         (5.17) 
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where 𝐶  denotes a Copula function that fully captures the dependence structure between the 

variables. This framework allows the modeling of the joint distribution independently of the 

marginal distributions, thereby accommodating non-normal and potentially heavy-tailed or skewed 

marginals frequently observed in financial returns. 

 

Constructing Mispricing Measures 

To quantify the relative valuation between two stocks, X and Y, the paper defines two 

mispricing indices, |𝑀𝐼𝑡
𝑋|𝑌

| and |𝑀𝐼𝑡
𝑌|𝑋

|, which measure the degree of mispricing between the two 

assets at time 𝑡 . Let 𝑅𝑡
𝑋 and 𝑅𝑡

𝑌  denote the daily returns of stocks 𝑋  and 𝑌 , with marginal 

distribution functions 𝐹𝑋 and 𝐹𝑌, respectively. According to Sklar’s theorem, their joint distribution 

function 𝐻 can be expressed as: 

 𝐻(𝑟𝑡
𝑋 , 𝑟𝑡

𝑌) = 𝐶(𝐹𝑋(𝑟𝑡
𝑋), 𝐹𝑌(𝑟𝑡

𝑌))        (5.18) 

where 𝐶 denotes the copula function that captures the dependency structure between 𝑅𝑡
𝑋 and 𝑅𝑡

𝑌. 

The mispricing indexes are defined in terms of conditional probabilities: 

         𝑀𝐼𝑡
𝑋|𝑌

= 𝑃(𝑅𝑡
𝑋 < 𝑟𝑡

𝑋|𝑅𝑡
𝑌 = 𝑟𝑡

𝑌), 𝑀𝐼𝑡
𝑌|𝑋

= 𝑃(𝑅𝑡
𝑌 < 𝑟𝑡

𝑌|𝑅𝑡
𝑋 = 𝑟𝑡

𝑋)       (5.19) 

By the properties of copulas, these conditional probabilities can be expressed using the partial 

derivatives of 𝐶: 

𝑀𝐼𝑡
𝑋|𝑌

=
𝜕𝐶(𝑢,𝑣)

𝜕𝑣
, 𝑀𝐼𝑡

𝑌|𝑋
=

𝜕𝐶(𝑢,𝑣)

𝜕𝑢
       (5.20) 

where 𝑢 = 𝐹𝑋(𝑟𝑡
𝑋) and 𝑣 = 𝐹𝑌(𝑟𝑡

𝑌).  

The indices |𝑀𝐼𝑡
𝑋|𝑌

| and |𝑀𝐼𝑡
𝑌|𝑋

| take values in the range [0,1]. A value close to 0.5 indicates 

that the two assets are relatively fairly valued, given their historical joint distribution. Values above 

0.5 suggest that the asset in the numerator is relatively overvalued with respect to the other asset, 

while values below 0.5 indicate relative undervaluation.  

 

Strategy Construction and Trading Signal Generation 

The trading strategy consists of two phases: the formation period and the trading period. 

During the formation period, the daily return series of the candidate stocks are calculated, and their 



69 
 

 
 

Sun, Y. / WORKING PAPERS 19/2025 (482) 

marginal distributions are estimated. Different types of Copulas (e.g., Gumbel, Frank, Clayton, 

normal, and Student's t Copulas) are fitted to the joint distribution, with the Copula that has the 

highest likelihood being chosen as the final model. 

In the trading period, the Copula obtained from the formation period is used to compute the 

daily mispricing indexes |𝑀𝐼𝑡
𝑋|𝑌

| and |𝑀𝐼𝑡
𝑌|𝑋

|. Trading rules are based on two key parameters: the 

deviation threshold 𝐷 (set to 0.6) and the stop-loss parameter 𝑆 (set to 2). The deviation threshold 

𝐷 determines the minimum level of cumulative relative mispricing needed to trigger a trade, while 

the stop-loss parameter 𝑆 acts as a risk control mechanism, forcing the closure of positions when 

the accumulated deviation moves unfavorably beyond a certain magnitude. Economically, 𝑆 limits 

downside risk by ensuring that adverse price movements do not escalate into large losses, 

particularly during abnormal market conditions where the mean-reversion assumption may 

temporarily fail. 

Two auxiliary variables, FlagX and FlagY, are introduced to accumulate the relative 

mispricing indexes of the two stocks over time, thereby capturing persistent deviations rather than 

reacting to transient noise. Specifically, FlagX tracks the cumulative deviation of stock X, defined 

as |𝑀𝐼𝑡
𝑋|𝑌

− 0.5|, while FlagY tracks the cumulative deviation of stock Y, defined as |𝑀𝐼𝑡
𝑌|𝑋

− 0.5|. 

At the beginning of the trading period, both flags are initialized to zero. Each day, the value of 

|𝑀𝐼𝑡
𝑋|𝑌

− 0.5| is added to FlagX, and the value of |𝑀𝐼𝑡
𝑌|𝑋

− 0.5| is added to FlagY. 

A trading signal is triggered when either flag reaches 𝐷 or falls below −𝐷. If FlagX reaches 

𝐷, stock X is deemed overvalued relative to stock Y, prompting a short-sell of X and a purchase of 

Y; if FlagX reaches −𝐷, stock X is considered undervalued, leading to a purchase of X and a short-

sell of Y. Similarly, if FlagY reaches 𝐷 , stock Y is considered overvalued relative to stock X, 

triggering a short-sell of Y and a purchase of X; if FlagY falls to −𝐷 , stock Y is considered 

undervalued, prompting a purchase of Y and a short-sell of X. 

Finally, when the absolute value of either FlagX or FlagY reaches 𝑆, the position is forcibly 

closed to limit potential losses. This symmetrical decision framework ensures that both 

overvaluation and undervaluation scenarios are treated consistently, while the combined use of 𝐷 

and 𝑆 balances return-seeking behavior with risk management. 
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Empirical Analysis and Return Data 

The effectiveness of the Copula-based method is evaluated through an empirical analysis 

involving different stock pairs, such as Brookdale Senior Living Inc. and Emeritus Corporation, as 

well as a large sample of utility sector stocks. The results demonstrate that the Copula strategy 

substantially outperforms the traditional distance method, delivering higher excess returns and 

reducing the frequency of negative returns. 

When the Copula method is applied without the “one-day waiting” strategy—that is, trades 

are executed immediately on the day of price divergence—an initial investment of USD 10,000 

generates a profit of USD 847. In contrast, the same setting under the traditional distance method 

results in a loss of USD 592. When incorporating the “one-day waiting” rule, the performance gap 

widens further: the Copula method yields a profit of USD 1,060, whereas the distance method 

produces a loss of USD 1,526. 

A broader sample analysis, conducted on utility sector stocks, reinforces these findings. 

Across different subsets of stock pairs—including the top 5, top 20, and those ranked 101–120—

the Copula-based strategy consistently achieves higher annualized excess returns than the distance 

method. This performance advantage is particularly pronounced in the top-ranked pairs, suggesting 

that the Copula approach is more effective in capturing persistent mispricing patterns. 

These empirical results highlight the Copula strategy’s ability to identify a greater number of 

profitable trading opportunities while simultaneously reducing transaction costs, thus offering 

a robust enhancement over traditional correlation-based approaches in pairs trading. 

Krauss and Stübinger (2017) apply the Copula method to pairs trading with the aim of more 

accurately capturing the non-linear dependence structure between stocks. The dataset comprises 

S&P 100 index constituents over the period 1990–2014. The strategy employs 

a 60-month rolling formation window, divided into a 12-month estimation period followed by 

a 1-month pseudo-trading period, during which all possible stock pairs are fitted using a Student’s 

t-Copula model. The choice of the t-Copula is motivated by its ability to capture tail dependencies 

often observed in financial return series. In the estimation phase, a semi-parametric procedure is 

adopted: empirical marginal distribution functions are first computed for each stock’s log returns, 

which are then transformed into uniform variables and used to fit the  

t-Copula via MLE. The fitted Copula model allows for the computation of conditional distribution 
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functions for each pair, from which trading signals are derived based on deviations from the 

equilibrium relationship. When the conditional probability indicates overvaluation or 

undervaluation of one stock relative to the other, the model generates the corresponding buy or sell 

signals. 

The approach is tested in an out-of-sample trading period, where each selected pair is traded 

according to individualized rules, including profit-taking and stop-loss thresholds determined from 

the cumulative return series in the estimation period. Furthermore, the study distinguishes between 

mean-reverting and momentum pairs: while the former tends to revert to equilibrium after a Copula 

signal, the latter exhibit further divergence, prompting a reversal of the trading rules to capture the 

momentum effect. Empirical results indicate that the Copula-based pairs trading strategy 

effectively captures complex dependencies between stocks, producing statistically significant 

annualized returns and elevated Sharpe ratios during the out-of-sample period, even under 

challenging market conditions. 

Nadaf et al. (2022) also adopt a Copula-based approach to pairs trading, enhancing its 

effectiveness by integrating the Laplace marginal distribution. The study examines two stocks—

Apple (AAPL) and Southwest Airlines (LUV)—using in-sample data from January 1, 2015, to 

December 31, 2019, and out-of-sample data from January 4, 2020, to November 20, 2020. Daily 

closing prices are converted to log returns, which are then modeled with the Laplace distribution 

to account for the pronounced leptokurtic (fat-tailed) nature of financial return data, a feature less 

accurately captured by the normal distribution. Parameters for the Laplace distribution are 

estimated via MLE, and goodness-of-fit tests confirm its adequacy. The marginal Laplace 

distributions are then combined through a Gaussian Copula, also estimated via MLE, to model the 

joint dependence structure between the two assets. 

Trading signals are generated from the joint probabilities implied by the Copula model: when 

the conditional probability of one stock relative to the other reaches extreme values, indicating 

potential overvaluation or undervaluation, buy or sell orders are initiated. The strategy assumes 

negligible transaction costs and operates with a one-day holding period, opening positions at the 

market open and closing them at the close based on the generated signals.  

Out-of-sample testing demonstrates that this Copula-based framework successfully captures the 

non-linear dependencies between the assets, resulting in consistent and significant profitability. 
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5.5.2 Hurst Exponent Approach 

Ramos-Requena et al. (2017) introduce a novel pairs trading framework that integrates the 

Hurst exponent as a key criterion for identifying asset pairs with strong mean-reverting behavior. 

The Hurst exponent, denoted as H, measures the long-term memory or persistence of a time series. 

Values of 𝐻 < 0.5indicate anti-persistence, meaning the series exhibits mean-reverting tendencies; 

𝐻 = 0.5  corresponds to a random walk with no memory; and 𝐻 > 0.5  suggests persistence or 

trend-following behavior. This property makes the Hurst exponent a valuable tool for 

distinguishing between pairs whose price spreads are likely to revert to a long-term mean and those 

that are not. 

Traditional pairs trading methods, such as those based solely on distance measures or 

correlation coefficients, typically capture only short-term linear relationships and may fail to reflect 

the long-range dependence structure inherent in financial time series, particularly under volatile or 

non-stationary market conditions. By incorporating the Hurst exponent into the pair selection 

process, the proposed approach aims to identify spreads with stronger mean-reverting dynamics, 

thereby improving the robustness and profitability of the trading strategy. 

 

Understanding the Hurst Exponent 

The H is a statistical measure used to assess whether a time series tends to revert to its mean, 

persist in a given trend, or behave like a random walk. It is estimated by analyzing the scaling 

behavior of the rescaled range (R/S) statistic over different time windows, following the method 

introduced by Hurst (1951). The relationship can be expressed as: 

  
𝑅(𝑛)

𝑆(𝑛)
∝ 𝑛𝐻         (5.21) 

where 𝑅(𝑛) is the range of cumulative deviations from the mean within a time window of size 𝑛 

(i.e., the maximum value minus the minimum value of the cumulative sum of deviations), 𝑆(𝑛) is 

the standard deviation of the time series over the same window, and H is the Hurst exponent. 

The value of H provides insight into the underlying behavior of the time series: 

• 𝐻 = 0.5: The series behaves like a random walk, with no significant correlation between 

increments. 
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• 𝐻 < 0.5 : The series exhibits anti-persistent or mean-reverting behavior, indicating 

negative autocorrelation. 

• 𝐻 > 0.5: The series displays persistence, meaning that positive (negative) changes tend 

to be followed by further positive (negative) changes, reflecting long-term positive 

autocorrelation. 

 

Using the Generalized Hurst Exponent (GHE) 

To provide a more accurate estimation, the study employs the GHE, which extends the 

concept of the Hurst exponent to different moments of the distribution, offering a more flexible 

tool for capturing mean reversion over various time scales. The GHE is calculated using: 

   𝐸[|𝑋(𝑡 + 𝜏) − 𝑋(𝑡)|𝑞] ∝ 𝜏𝑞𝐻(𝑞)        (5.22) 

where 𝑋(𝑡)  is the log-price of a stock at time 𝑡 , 𝜏  represents the time lag, 𝑞  is the order of the 

moment (typically set to 1 or 2 for mean-reversion analysis), and 𝐻(𝑞) is the generalized Hurst 

exponent. 

Unlike the classical Hurst exponent, which is restricted to analyzing the second moment (𝑞 =

2) and thus provides only a single measure of persistence or mean reversion, the GHE evaluates 

the scaling behavior for different moments 𝑞. This allows the method to capture a richer set of 

dependencies in financial time series, including asymmetries between small and large fluctuations. 

If 𝐻(𝑞) remains constant across different 𝑞 values, the process is considered monofractal, 

meaning its scaling properties are uniform. In contrast, variations in 𝐻(𝑞)  across 𝑞  indicate 

multifractality, a property often observed in financial markets, where different magnitudes of price 

changes may follow different scaling laws. 

In the context of pairs trading, using the GHE offers two main advantages. First, it enhances 

the detection of mean reversion by analyzing 𝐻(𝑞) for values below 0.5 across multiple scales, 

making it easier to identify stock pairs whose spread dynamics consistently revert to the mean. 

Second, it improves robustness to non-Gaussianity, as the GHE does not assume normally 

distributed returns and accounts for higher-order moments, enabling it to capture the heavy tails 

and volatility clustering present in financial data. 
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Pair Selection Process 

The study begins by collecting historical price data for a given universe of stocks. In the 

empirical example, data from constituents of the Dow Jones Index are used over the designated 

sample period. For each possible stock pair, the log-price differences are computed over time, 

generating a time series that reflects the relative price movements between the two assets. 

The mean-reversion characteristics of each pair are then assessed by computing the GHE, as 

discussed above, across a range of time lags τ. This approach allows the analysis to capture 

persistence or anti-persistence in the price spread over multiple time scales, providing a more 

nuanced measure than the traditional Hurst exponent. 

Once the GHE values are obtained for all candidate pairs, the pairs are ranked in ascending 

order. Those with the lowest GHE values—indicating the strongest mean-reverting behavior—are 

selected as candidates for trading. A low GHE suggests a higher probability that the spread will 

return to its historical mean, which is a desirable characteristic for pairs trading strategies. 

The selected pairs are then carried forward into the trading phase, where entry and exit signals 

are generated based on subsequent deviations from the estimated equilibrium relationship. This 

ensures that the pair selection process is directly linked to the profitability potential of the trading 

strategy. 

 

Trading Strategy Based on Hurst Exponent 

Opening positions occur when the log-price spread of a selected pair deviates from its rolling 

mean by a predefined threshold, such as one standard deviation. A sell signal is generated when the 

spread exceeds the upper threshold, indicating that the spread is unusually wide and likely to 

contract, while a buy signal is generated when the spread falls below the lower threshold, 

suggesting that the spread is unusually narrow and likely to widen. The use of pairs with low Hurst 

exponents ensures that these signals are more reliable, as low H values (below 0.5) indicate strong 

mean-reverting tendencies, meaning the spread is statistically more likely to return to its 

equilibrium level. 

Closing positions take place when the spread reverts to its mean or crosses another predefined 

boundary, thereby capturing the profit from the reversion. 
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The strategy also requires setting specific parameters for entry and exit points, with 

thresholds typically defined as multiples of the standard deviation of the spread. Both the rolling 

mean and standard deviation are calculated over a chosen rolling window, such as 60 days, with 

the window length selected to balance responsiveness and stability—shorter windows react faster 

but may generate more false signals, whereas longer windows provide smoother signals but 

respond more slowly to market changes. 

Trades are executed according to the generated signals. When a pair's spread moves above or 

below the threshold, the corresponding long or short positions are taken and held until the spread 

reverts to the mean or another threshold triggers an exit. 

 

Empirical Validation 

The paper validates the effectiveness of the Hurst exponent-based strategy using historical 

data from the Dow Jones Index. In the backtesting, the strategy achieved an annualized return of 

17.14% with a Sharpe ratio of 1.34, compared to 12.56% and a Sharpe ratio of 0.97 for the 

traditional distance method. The proportion of profitable trades was 64%, which is higher than the 

55% observed for the distance-based approach. These results indicate that the Hurst exponent 

method not only delivers higher returns but also improves risk-adjusted performance. The method 

performed particularly well during volatile market periods, showing greater robustness and 

adaptability to changing conditions by consistently selecting stock pairs with stronger mean-

reverting properties. 

Fernández-Pérez et al. (2020) enhance pairs trading strategies by incorporating the Hurst 

exponent to identify stock pairs with pronounced mean-reverting behavior. Originally developed 

in hydrology, the Hurst exponent has been adapted to financial time series to detect long-term 

memory and autocorrelation, thereby capturing the extent to which asset prices revert to their 

historical equilibrium levels. In their approach, the GHE is employed to evaluate mean-reversion 

characteristics by analyzing the scaling behavior of the time series. Stock pairs with a Hurst 

exponent value below 0.5—indicating statistically significant mean-reverting properties—are 

selected for trading. The strategy is implemented in two stages: a 250-day formation period, during 

which the pairs with the lowest Hurst exponent values are identified, followed by a trading phase 

where positions are opened when the price spread between the selected stocks deviates from its 



76 
 

 
 

Sun, Y. / WORKING PAPERS 19/2025 (482) 

moving average by a predefined threshold. Empirical tests on FTSE 100 constituents from 2010 to 

2019 show that the optimal threshold depends on portfolio size: a standard deviation threshold of 

1 yields the best results for smaller portfolios, whereas 1.5 is optimal for larger portfolios. 

Performance metrics such as the Sharpe ratio and Maximum Drawdown reveal that the strategy 

delivers superior risk-adjusted returns, particularly during periods of heightened market volatility 

such as the 2016 Brexit referendum. 

Bui and Ślepaczuk (2022) also apply the Hurst exponent to pairs trading, focusing on stocks 

in the NASDAQ 100 index to identify pairs with strong mean-reverting tendencies. Using daily 

price data from January 1, 2000, to December 31, 2018, and an out-of-sample period extending to 

July 1, 2021, the study computes the Hurst exponent for the log-price ratio of each stock pair via 

the GHE method. Every six months, the ten pairs with the lowest Hurst exponent values are selected. 

Trading signals are generated when the spread between two stocks exceeds an upper threshold (sell 

signal) or falls below a lower threshold (buy signal), with positions closed when the spread reverts 

to its mean or crosses the opposite threshold. The parameters for moving averages, rolling standard 

deviations, and thresholds are optimized using historical data to minimize bias. Empirical findings 

suggest that while the Hurst exponent serves as a viable alternative to correlation-based selection 

methods, its performance in terms of risk-adjusted returns is sensitive to factors such as the number 

of pairs selected, rebalancing frequency, and the application of leverage. 

 

5.5.3 Entropic Approach 

Amer and Islam (2023) apply an entropic approach to pairs trading, aiming to mitigate model 

uncertainty and determine optimal trading thresholds. The method addresses issues such as non-

converging pairs and model misspecifications that may cause substantial losses, by incorporating 

entropy as a penalty term in the optimization process. This penalization framework not only 

enhances robustness but also reduces downside risk. To empirically test the approach, the authors 

use daily data from 64 companies listed on the Pakistan Stock Exchange (PSX) between 2017 and 

2019, spanning sectors including cement, chemicals, automobiles, food, oil, gas, and power. Firms 

are selected based on their price-to-earnings ratio (PER) within each sector, with those having 

a PER below the sectoral median considered undervalued and included in the sample. 
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The Johansen cointegration test is employed to identify stock pairs that exhibit a long-term 

equilibrium relationship, resulting in 79 unique cointegrated pairs suitable for trading. The entropic 

approach builds upon the OU process to model the mean-reverting behavior of these pairs, 

expressed as: 

   𝑑𝑋𝑡 = −𝜇(𝑋𝑡 − 𝛼)𝑑𝑡 + 𝜎𝑑𝐵𝑡, 𝑋0 = 𝛼       (5.23) 

where 𝜇 is the speed of mean reversion, 𝛼 is the mean-reversion level, 𝜎 is the volatility, and 𝐵𝑡 

represents Brownian motion. Parameters 𝜇 , 𝛼 , and 𝜎  are estimated using maximum likelihood 

methods. The selection of these parameters, along with the discount rate 𝜌 and confidence level 𝜆, 

follows the empirical settings and theoretical guidance from prior studies, ensuring consistency 

with established literature. 

The optimization of boundary points is framed as an optimal stopping problem, aiming to 

maximize profit while minimizing relative entropy (model risk). The optimal boundaries are 

calculated using the solution: 

𝑣0(𝑡, 𝑥) = 𝑠𝑢𝑝𝜏∈ℑ𝐸𝑥
𝑆[𝑒−𝜌(𝜏−𝑡)𝑋𝜏]       (5.24) 

where ℑ is the set of all stopping times, 𝜌 is the discount rate, and S represents the stock pair. The 

trading strategy involves shorting the stock pair when it reaches its highest value and liquidating it 

when it reverts to the mean, or taking a long position when it reaches the mean and liquidating it 

at the boundary. 

The study explores different values of 𝜆  (0.001, 0.01, 0.1, and ∞) to compute optimal 

boundary points and returns, with lower 𝜆 values corresponding to higher confidence levels. The 

empirical results indicate that lower 𝜆 values yield better returns, highlighting a higher confidence 

level in the reference measure. Moreover, paired t-tests confirm that the performance differences 

between the entropic approach and benchmark strategies are statistically significant at the 5% level, 

further validating the robustness of the results. 

When compared with buy-and-hold, distance-based, and machine learning methods, the 

entropic approach consistently delivers higher returns, demonstrating its effectiveness in managing 

model uncertainty and enhancing profitability in the volatile Pakistani market. 

Yoshikawa (2017) develops a robust control framework for pairs trading that explicitly 

accounts for model uncertainty by adopting an entropic approach. Conventional pairs trading 
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strategies often rely on a single reference model—typically assuming mean-reversion dynamics—

which can lead to substantial losses when the model is misspecified or when the assumed mean-

reversion fails to hold. To mitigate these risks, the study formulates the optimal stopping problem 

under uncertainty using relative entropy (Kullback–Leibler divergence) as a penalty term. This 

approach seeks the trading policy that maximizes performance in the worst-case scenario over all 

alternative probability measures within a prescribed entropy bound from the reference measure. 

The reference model assumes that the spread between two stocks follows an OU process, 

characterized by a mean-reversion speed, a long-term equilibrium level, and volatility. These 

parameters are estimated via MLE to reflect the observed spread dynamics in the Tokyo Stock 

Exchange data. 

Incorporating the entropic penalty modifies the optimal entry and exit thresholds relative to 

the standard, uncertainty-free case. As the level of model uncertainty increases—corresponding to 

a larger entropy bound—the optimal boundaries shift inward, resulting in more conservative entry 

and exit decisions. This contraction reduces exposure to adverse price movements when the true 

dynamics deviate from the reference model. 

A numerical example demonstrates the approach by calculating optimal trading boundaries 

under various uncertainty levels. The results show that higher uncertainty leads to systematically 

narrower trading bands, thereby improving robustness against model misspecification and 

enhancing the resilience of the pairs trading strategy. 

 

6. Conclusion and Future Research Direction 

We have conducted a thorough review of the literature related to the broad concept of pairs 

trading. Organized by the different pairs trading approaches, our findings can be summarized along 

with recommendations for future research as follows. 

 

6.1 Distance Methods 

The review of distance-based approaches in pairs trading underscores their robustness and 

adaptability across diverse market environments and asset classes. Originating from the seminal 

work of GGR, the distance method has been widely adopted and refined to improve profitability 
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and mitigate risk. As a model-free approach, it selects pairs based solely on historical price 

relationships—measured via Euclidean distance—without imposing the structural constraints of 

economic or cointegration models. This simplicity, combined with the implicit assumption of 

mean-reverting price differentials, has enabled the method to consistently identify relative 

mispricing opportunities in financial markets. 

Subsequent extensions have demonstrated the method’s versatility. For instance, Bowen and 

Hutchinson (2016) applied the GGR framework to the UK equity market, showing that its 

profitability persisted, albeit with increased volatility, during the global financial crisis. Other 

studies have extended the method across multiple geographies and asset classes, including 

commodities, cryptocurrencies, and high-frequency data environments. Overall, empirical 

evidence suggests that the distance method retains profitability under varied market conditions, 

though performance can be sensitive to factors such as market liquidity, transaction costs, and the 

statistical properties of the selected asset pairs. 

Nonetheless, the distance method is subject to certain limitations. High transaction costs can 

erode returns, particularly in illiquid markets or those with significant trading frictions. Its reliance 

on historical price data may also reduce its effectiveness when market dynamics undergo structural 

shifts—such as changes in market microstructure, regulatory frameworks, or the competitive 

landscape. Some studies (e.g., Chen et al., 2019) report a decline in profitability in more recent 

years, underscoring the need for adaptive methodologies. 

Future research could focus on integrating the traditional distance metric with advanced 

statistical or machine learning techniques to improve both pair selection and trade execution. 

Dynamic modeling frameworks that capture evolving market states, or the incorporation of 

alternative data sources—such as news sentiment, order book information, or macroeconomic 

indicators—may enhance predictive accuracy and robustness. Additionally, examining the effects 

of regulatory changes, market microstructure evolution, and the increasing prevalence of 

algorithmic trading could yield valuable insights for optimizing strategy design. 

In summary, the distance method remains a cornerstone of pairs trading research and practice. 

Continued innovation, particularly through the integration of adaptive and data-driven approaches, 

holds promise for enhancing its effectiveness in increasingly complex and competitive financial 

markets. 
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6.2 Cointegration Methods 

The review of cointegration-based approaches to pairs trading underscores their theoretical 

rigor and broad applicability across asset classes and market conditions. Cointegration strategies 

exploit long-term equilibrium relationships between asset prices, enabling the identification of 

mean-reverting opportunities even when individual price series are non-stationary. From the 

foundational work of Engle and Granger (1987), who introduced the concept of cointegration and 

the error correction model (ECM) via a two-step estimation procedure, to Vidyamurthy's (2004) 

application of these concepts to pairs trading, the method has evolved into a cornerstone of 

statistical arbitrage. Subsequent developments maximum likelihood approach, have expanded the 

framework to multivariate settings. 

Recent advances have shifted from static testing to dynamic and adaptive cointegration 

frameworks, enhancing robustness to changing market conditions. Techniques such as rolling-

window estimation, Kalman filter–based cointegration, VECM, and Bayesian inference 

approaches allow continuous recalibration of model parameters, maintaining the validity of 

cointegration relationships across different regimes. Applications have extended beyond equities 

to include derivatives, CDSs, and cryptocurrencies, illustrating the method’s adaptability across 

fundamentally different market structures. 

Empirical evidence generally supports the profitability of cointegration-based pairs trading, 

even after accounting for transaction costs and market frictions, with notable success during periods 

of market stress or structural breaks. However, performance can be sensitive to pre-selection 

metrics, estimation windows, trading frequency, and the stability of the identified relationships. In 

illiquid markets or under high transaction costs, profitability can be substantially diminished. 

Future research directions include integrating cointegration frameworks with advanced 

machine learning and artificial intelligence methods for pair selection and trade execution, as well 

as exploring nonlinear cointegration models to capture more complex dependencies. The 

incorporation of alternative data sources—such as news sentiment, order book dynamics, and 

macroeconomic variables—may further enhance predictive accuracy. Additionally, examining the 

role of ESG-related signals and extending the methodology to emerging asset classes could open 

new avenues for application. 
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Overall, cointegration methods provide a theoretically sound and empirically validated 

foundation for pairs trading. Continued methodological innovation, particularly through adaptive 

modeling and the incorporation of alternative datasets, holds promise for improving strategy 

resilience in increasingly complex financial markets. 

 

6.3 Stochastic Control Methods 

Stochastic control approaches to pairs trading provide a rigorous and adaptable framework 

for managing the dynamic and often volatile nature of financial markets. These methods formulate 

the trading problem as a continuous-time optimization task, enabling the systematic adjustment of 

trading positions in response to evolving market conditions. A central component in many 

stochastic control models is the OU process, which characterizes the mean-reverting behavior of 

asset spreads. 

Foundational work, such as Jurek and Yang (2007), applies the OU process to model spread 

dynamics and explicitly addresses key risks in pairs trading, notably horizon risk—the risk that the 

spread has not converged by the end of the investment horizon—and divergence risk—the risk of 

adverse price movements prior to convergence. By deriving optimal dynamic strategies that adjust 

capital allocation based on both the spread level and the time remaining, stochastic control methods 

represent a significant advance over static, threshold-based trading rules. 

Subsequent research has extended the classical OU framework to incorporate jump-diffusion 

processes, regime-switching dynamics, and stochastic volatility, thereby capturing non-normality, 

state dependence, and time-varying volatility in spread behavior. These extensions have been 

applied across diverse contexts, including high-frequency data environments, commodity futures, 

cryptocurrencies, and energy markets. Empirical studies frequently report improvements in Sharpe 

ratios and annualized returns relative to simpler strategies, particularly in complex or rapidly 

changing markets. 

Theoretical innovations—such as Markov-modulated OU processes and the incorporation of 

explicit risk constraints into the control problem—have deepened understanding of optimal trading 

behavior under uncertainty and risk aversion. Many of these models require solving Hamilton–

Jacobi–Bellman equations or employing simulation-based numerical methods, reflecting the 

computational complexity of advanced stochastic control approaches. 
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Despite these advancements, practical challenges remain. Many models assume frictionless 

trading, whereas real-world markets impose transaction costs and liquidity constraints that can 

materially affect performance. Although some recent studies have begun to incorporate such 

frictions into the control framework, further work is needed to develop tractable yet realistic 

formulations. 

Future research could explore extending stochastic control methods to alternative 

investments and emerging markets, as well as integrating them with machine learning and artificial 

intelligence techniques to enhance adaptability and predictive capability. AI-driven approaches 

may uncover nonlinear dependencies and structural patterns beyond the reach of traditional models, 

potentially improving trade timing and profitability. Additionally, greater attention to the role of 

market frictions and the development of robust cost-aware control strategies will be critical for 

enhancing the practical applicability of these methods. 

In summary, stochastic control methods offer a robust, theoretically grounded, and highly 

flexible framework for pairs trading. Continued methodological innovation—particularly in 

integrating advanced modeling techniques with realistic trading constraints—holds promise for 

improving the resilience and profitability of such strategies across diverse market environments. 

 

6.4 Time Series Methods 

Time series approaches have proven effective in modeling the mean-reverting behavior of 

asset spreads and in providing robust frameworks for exploiting short-term pricing inefficiencies. 

Compared with cointegration-based methods, which emphasize long-term equilibrium 

relationships, time series techniques such as the GARCH family and OU processes focus more on 

short-term dynamics, volatility clustering, and higher-frequency market fluctuations, offering 

greater flexibility and responsiveness in pairs trading strategies. 

GARCH-type models—including ST-GARCH and nonlinear autoregressive GARCH (NAR-

GARCH) variants—have been employed to capture complex volatility structures in spread returns. 

These models are capable of modeling features commonly observed in financial markets, such as 

volatility clustering, asymmetry, and heavy tails. By forecasting conditional variances and 

adjusting trading thresholds based on volatility predictions, GARCH-based frameworks can 

generate risk-adjusted entry and exit signals, potentially improving profitability while mitigating 
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downside risk. Empirical studies have reported that incorporating GARCH volatility forecasts into 

pairs trading can enhance performance, even after accounting for transaction costs. 

The OU process has also been widely used to model mean-reversion in asset spreads. 

Extensions such as the fOU process allow for the modeling of long-range dependencies and anti-

persistence, offering a richer representation of spread dynamics. Although primarily examined in 

academic research, fOU-based strategies—when combined with adaptive trading thresholds—have 

been shown to outperform traditional OU implementations in certain market settings, delivering 

improved returns and risk metrics. 

Future research directions include the integration of time series models with machine 

learning algorithms, such as neural networks and reinforcement learning, to enhance adaptability 

and predictive accuracy. Hybrid frameworks that combine time series methods with other 

quantitative approaches—such as copula-based dependence modeling or stochastic control 

techniques—may yield greater robustness and profitability. Incorporating transaction cost analysis, 

slippage, and liquidity constraints into time series models would also improve the realism and 

practical applicability of these strategies, as real-world trading frictions can significantly influence 

net performance. 

Expanding the application of time series methods to emerging markets, alternative asset 

classes, and high-frequency data environments presents further opportunities for research. 

As financial markets continue to evolve, the adaptability and precision of time series modeling will 

remain crucial for identifying and exploiting arbitrage opportunities in increasingly complex and 

volatile environments. 

In summary, time series methods offer a versatile and theoretically grounded toolkit for pairs 

trading, capable of capturing intricate short-term dynamics and volatility features. Continued 

methodological refinement, coupled with attention to practical trading constraints, holds significant 

potential for advancing both the robustness and profitability of such strategies. 

 

6.5 Other Methods 

Beyond the widely studied approaches to pairs trading, several alternative methodologies—

most notably the Copula approach, the Hurst exponent approach, and the entropic approach—have 

been developed to address specific limitations of traditional techniques. These methods aim to 
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capture non-linear dependencies, account for long-memory effects, and incorporate model 

uncertainty, thereby enhancing the robustness and adaptability of pairs trading strategies across 

diverse market environments. 

The Copula approach provides a flexible framework for modeling the joint distribution of 

asset returns, enabling the capture of non-linear and tail dependencies that cannot be represented 

by simple linear correlation. By selecting appropriate Copula families—such as t-Copulas or 

Archimedean Copulas (e.g., Clayton, Gumbel)—researchers can model dependence structures 

more accurately, particularly under extreme market conditions. Empirical studies have reported 

that Copula-based pairs trading strategies may outperform conventional distance or correlation 

methods, especially for volatile or weakly correlated asset classes. Future research could focus on 

exploring a wider range of Copula families, improving parameter estimation under time-varying 

dependence, and incorporating real-time analytics to increase responsiveness to changing market 

conditions. 

The Hurst exponent approach measures the degree of long-term memory or persistence in 

time series, offering a means to identify pairs with stronger mean-reverting characteristics. By 

applying the GHE, this method evaluates persistence or anti-persistence across multiple time scales, 

providing a more comprehensive assessment of mean-reversion potential than single-horizon 

metrics. Empirical evidence suggests that Hurst-based pair selection can, in certain settings, 

improve profitability relative to standard approaches, particularly during volatile periods. 

Promising future directions include developing dynamic models that adjust the Hurst exponent 

estimates in real time and integrating machine learning algorithms to forecast changes in 

persistence, thereby enabling more adaptive trading strategies. 

The entropic approach, exemplified by Yoshikawa (2017), addresses model uncertainty by 

incorporating relative entropy (Kullback–Leibler divergence) as a penalty function in the 

optimization of entry and exit boundaries. This robust control framework accounts for deviations 

between a reference model and alternative probability measures within a specified entropy bound, 

mitigating the risk of significant losses from model misspecification or non-converging spreads. 

Empirical studies indicate that entropy-based strategies can enhance robustness and, in some 

contexts, improve returns, even in challenging market conditions. Future research could extend this 
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method to multi-asset-class contexts, investigate alternative entropy measures, and evaluate its 

performance in high-frequency trading environments where rapid adjustments are essential. 

In summary, Copula, Hurst exponent, and entropic approaches offer valuable extensions to 

traditional pairs trading techniques by capturing complex dependence structures, incorporating 

long-term memory, and managing model uncertainty. Integrating these methods with modern data 

analytics, machine learning, and artificial intelligence could further advance the sophistication and 

adaptability of pairs trading, enabling strategies to remain effective across a wide range of asset 

classes, market conditions, and trading horizons. 
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