
Warsaw 2016

Working Papers
No. 15/2016(206)

DOROTA CELIŃSKA

WHO IS FORKED ON GITHUB?
COLLABORATION AMONG OPEN

SOURCE DEVELOPERS

Working Papers contain preliminary research results.
Please consider this when citing the paper.

Please contact the authors to give comments or to obtain revised version.
Any mistakes and the views expressed herein are solely those of the authors.

Who is forked on GitHub?
Collaboration among Open Source developers

DOROTA CELIŃSKA
Faculty of Economic Sciences

University of Warsaw
e-mail: dcelinska@wne.uw.edu.pl

Abstract
In this article we investigate which characteristics of the developers involved in the creation of Open
Source software favor innovation in the Open Source community. We utilize a unique database, obtained
by web-scrapping GitHub from January to March, 2016. The results of the analysis show that higher
reputation in the community improves up to a certain degree the probability of gaining collaborators, but
developers are also driven by reciprocity, which is consistent with the concept of gift economy. There
exists also a statistically significant network effect emerging from the standarization – developers using
the most popular programming languages in the service are likely to have more collaborators. Providing
additional contact information improves the chance of having coworkers. The obtained results can be
generalized for the population of mature users of GitHub.

Keywords:
Open Source, GitHub, fork, collaboration, innovations, reputation, gift economy, network externality,

standarization, reciprocity

JEL:
L15, L86, L17, L14, D85

1 Introduction

The Open Source software license allows the end users to study, modify,
and distribute the publicly accessible source code to anyone and for any
purpose. The creation of this kind of software usually relies on volunteer
contributions and is associated with occurring communities, i. e. groups
of people interested in or working on specific projects [32]. Communities
form social networks, where innovations are created and distributed. By
innovation, we mean “the process of commercialization of a newly developed
or adopted product or practice” [12]. In particular, collaboration among
developers which leads to the creation of a new product (new software, or
improvements to previously existing one) can be viewed as a process which
generates innovations.

The existing empirical research regarding Open Source software usually
focuses on extracting the determinants of the Open Source license choice
made on an enterprise or a project level [23, 3, 18, 9]. Additionally, a
substantial literature revolves around explaining the incentives that motivate
the individual developers to contribute to the Open Source projects [15, 36,
3, 20]. Economists focus on public good nature of this kind of software.
Although Open Source products are also subjects to network externalities
[3, 29, 7], it is a surprisingly rarely mentioned issue in the relevant literature.

Socially connected computing is rooted in the study of corporate por-
tals and groupware [13]. A great amount of research has been conducted
on examining SourceForge, an Open Source repository that started in 1999
[21, 11, 28]. SourceForge, despite its popularity, lacks features to make social
ties and keeping up with other developer’s updates [22, 6]. More recently
implemented, GitHub is currently one of the largest repository hosting ser-
vices related to the development of Open Source software, featuring elements
of a social network service. As of Dec 31, 2015, GitHub repository hosting
service has more than 16 million of registered users, and over 25 million of
repositories. Although the registrations of the early users were in 2007, the
service officially launched in April 2008.

The aim of this article is to investigatate which characteristics of de-
velopers involved in the creation of Open Source software favor innovation
in the Open Source community. We analyze the volunteer developers. We
will accomplish our objective by estimating the values of the parameters of
logit model. The dependent variable will be the binary variable, indicating
whether or not the collaboration with the particular developer happened
(and the innovation was generated). We will utilize a unique database, ob-
tained by web-scrapping GitHub.

1

This article is organized as follows. In Section 2 we give a short review
of the existing empirical background. The GitHub’s fork&pull model of
collaboration is presented in Section 3. A brief characteristics of the social
networks described in this study is provided in Section 4. The data set is
presented in Section 5. In Section 6 we formulate the research hypotheses
and introduce the empirical model, and the results of the conducted analysis
are given in Section 7. The Section 8 provides discussion of the results and
Section 9 concludes the research.

2 Factors promoting collaboration between Open
Source developers

Innovations in the Open Source community are created through collabora-
tion among developers working in a distributed environment [17]. Partici-
pation of developers in creating the publicly accessible source code is one of
the popular topics in economic analysis of Open Source software [9, 33, 5].
Open Source software constitutes a kind of contradiction in terms of clas-
sical economic analysis: a special definition of ownership expressed in the
license agreements and the common lack of direct remuneration for develop-
ers should discourage them from making effort, thus the source code should
not be created. In fact, the behavior of developers is quite the opposite.
The current empirical research has identified 3 types of factors encouraging
developers to write the publicly accessible source code [9, 34]:

• extrinsic motivation – factors originating from the external sources:
the environment in which the developers work;

• intrinsic motivation – psychological factors driving developers;

• internalized extrinsic motivation – factors that can be both external
and psychological.

The results of empirical analyses pointed out that determinants of deci-
sion whether or not to take part in creating Open Source code include the
increase in subjective value of created software and satisfying one’s needs by
adding a missing functionality [15, 23, 16, 35]. Having fun while coding and
a potential boost in the professional career are also significant factors for de-
velopers [15, 23, 14, 21, 19]. According to Lerner and Tirole [23] developers
decide to write publicly accessible source code, because they expect this to
enhance their employment opportunities. Taking part in the Open Source

2

community and gaining visible popularity is treated as a kind of signal for
the potential employers. The employers are aware of the existence of high
quality Open Source projects that require excellent skills in programming,
so if the given developer is mentioned in the log files of such projects, it
can be treated as a proof of their skills and knowledge. The interest in de-
veloping the project arises also from the user’s needs – lack of a necessary
functionality encourages to provide it. Apart from economic factors, the
developers of Open Source software are also driven by altruism [14, 35].

Having abundance of “survival necessities”, like computing power and
disk space in the Open Source community reveals this phenomenon’s gift
economy nature. Gift economy creates social structures and shapes the
behavior of agents in case of excess instead of scarcity. In Open Source
software case social status is related to “what you give away” and not to
“what is under your control” [30, 26]. This leads to the situation in which
reputation among developers’ peers is the measure of competitive success.
Several other studies also have shown that developers’ anticipated increase
in reputation (popularity in the community) resulting from the number of
fixed bugs encourages them to take part in writing the Open Source code [15,
4, 31, 23]. Beside the reputation, due to the gift economy the expectations
of the future gifts in return also shape the behavior of the developers. The
reciprocity as a motivational factor for developers was reported in various
studies [10, 1, 21].

The diverse motivational components are not necessarily mutually ex-
clusive and may co-exist within a developer. The main focus of this stream
of literature is to understand how developers’ motivations drive their par-
ticipation/effort on Open Source project which in turn affects the overall
performance and effectiveness of developers and projects.

3 Github’s fork&pull model of contributing to the
source code

Every registered user of GitHub has their own site that integrates social
media functionality directly with code management tools [25]. Each indi-
vidual user’s profile contains public information about their biographical
characteristics (the date of joining the service and the optional description
of location, employer, personal site and e-mail address), the list of public
project repositories, and the number of people following the user as well as
the number of people that the user follows. Everyone, even unregistered
users of the service may browse the profiles and download public project

3

repositories.
The contribution to the project may occur in at least two ways [6]:

• by sending via e-mail the patches to the author of the original project;

• by submitting the pull requests – the proposed changes to the projects
that may be accepted or declined by the maintainers of the project.

The difference between those two options is that the submitting of pull
request requires the prior registration in the repository hosting service. The
developer that is willing to commit to the original repository (and thus
make it an upstream repository commit) has to fork the existing project
repository. Forking means creating developer’s own copy of the source code.
As a result the user (according to the GitHub’s jargon now known as a
member) is granted the access to the complete source code. The access also
includes all branches that were created before the project had been forked.
The members may introduce their commits (proposed bug fixes and changes
to the source code) locally, but are also allowed to synchronize the state of
their repositories with the state of the original project. If the maintainer
of the original project repository accepts the changes introduced in the pull
request, both repositories are merged and the history of submitted commits
by the individual users is preserved.

4 Collaboration and reputation emerging from GitHub’s
social networks

GitHub is a collaborative repository hosting service that includes social fea-
tures bringing a new transparency to the development project [27]. The
activity of its registered users forms several kinds of social networks. The
most intuitive one is the network of collaboration between developers within
the project repositories. The existence of such a network stems directly from
the Open Source licenses’ statements, that enable modifications of the pub-
licly accessible source code. Due to the special model of collaboration in
the GitHub repository hosting service, this network is embedded in the ob-
servable network of users that are granted permission to contribute to the
projects – members. Collaboration among GitHub users can be seen in at
least two ways. Firstly, one can analyze bipartite graphs of developers and
their particular repositories they contribute to. Secondly, as suggested by
Lima et al. [24], one can project the mentioned graph onto the set of users –
this way, developers who contribute to at least one common repository are

4

connected to each other. Moreover, we utilize the third way of mapping the
relationship of collaboration: the connection between the initial owner of the
project repository and the members of the repository (however, the mem-
bers themselves are not connected). This way we preserve the hierarchical
nature of the most popular model of collaboration in GitHub.

The second type of social network that can be observed in the GitHub
repository hosting service is the network of followers – users who agreed
to be sent notifications about one’s activity on GitHub. The network of
followers may be seen as a proxy of influence and reputation process in the
service. As Goggins and Petakovic [13] state: following a developer gives
them a degree of influence. The more followers a developer has, the larger
the group potentially interested in their work, creating a potential for even
greater influence. Even if not capable of contributing to the projects of
“globally” popular developers, users of GitHub are interested in their work.
This explains enormous numbers of followers of celebrities, like GitHub’s
staff. On the other hand, following less popular developers improves the
efficiency of matching possible coworkers. This is closely related to the
spillover effect. Knowledge spillovers are reported by Fershtman and Gan-
dall [11] to be correlated with the structure of the social networks, since
contributors who work on several projects are likely to exchange informa-
tion and knowledge. While following a person, one is alerted about their
activity in the service: the creation of new repositories, submitted commits,
issues and pull requests, along with starring (giving a distinction to) another
developer’s project repository. The process of following should considerably
decrease the cost of acquiring information about the possible coworkers and
the projects one would like to contribute to, since developers are quickly
given the notification instead of browsing the service on their own. What is
more, the analysis of 199 GitHub’s most followed users and their followers
by Blincoe et al. [2] showed that popular users influence their followers by
guiding them to new projects.

Similar to the network of followers, yet of different kind of information
provided, is the network of watchers. A watcher is a follower of the par-
ticular repository. While notifications stemming from following a developer
supply quite a diverse range of information, the alerts for watchers are con-
fined to the activity within one repository (mostly issues, bug fixes, and the
collaborations within project). Intuitively, watchers have probably been al-
ready interested in the development of that particular project, but one may
also see the process of gaining new watchers as another proxy for reputation
of the developer.

5

5 Data set

The data was collected using the web-scrapping technique, i.e. automatic
extraction of information from websites by web crawlers – Internet bots
which systematically browse the World Wide Web. Scrapping is focused
on the transformation of unstructured data on the web, typically in HTML
format, into structured data that can be stored and analyzed, e.g. in a
spreadsheet. The data about registered users and their repositories is pub-
licly available but very distributed. We have collected the snapshots of the
networks observed in GitHub repository hosting service from January to
March, 2016.

The population of this research consists of users of GitHub repository
hosting service registered in 2007-2011, which means 1 296 987 entities. We
limited the span of registrations to make sure the developers had a chance
to gain popularity, learned how to use the service and had enough time to
start collaborating with others. Similarly to Lima et al. [24], our sample is
smaller (553 370 observations): it consists only of registered users that are
active (did not delete their profiles) and have at least one public repository.
We disregard the “organization” accounts due to the non-random missing
data patterns connected with those profiles.

6 Methodology

We consider a group of agents (developers) V = {1, . . . , N}, who are mem-
bers of a social network represented by a directed graph G(V, E), where the
set of edges E represents connections between agents. Self-loops are not
allowed in this graph. Each agent (a node in the graph) is described with
a set of characteristics, such as number of repositories hosted on GitHub,
number of stars (distinctions) given to their projects, number of followers,
number of followed developers, number of watchers, etc.

In this study we consider three types of social networks. We represent the
relation of forking one’s project repository (and thus creating an innovation
by collaboration with the owner of the repository) by means of directed
graph Gm, which we call the members graph. The edges of this graph show
the hierarchical structure of forking: there is an edge in Gm between A and
B if and only if A is a member of a project repository owned by B. The
second directed graph is the followers graph Gf representing the following
relations among developers. There is an edge in Gf between A and B if and
only if A follows B. The third social network described in this study is the

6

bipartite graph of developers and the repositories they own: the repository
graph Gr.

6.1 Model, design and research hypotheses

We utilize a logit model. Logit models form the family where the depen-
dent variable is categorical. The binary logit model is used to estimate the
probability of a binary response based on one or more independent variables
[8]. In our case, the dependent binary variable denotes whether a particular
developer was forked (and thus the inovation by collaboration with them
was generated) or not. This is equal to the dummy indicating in-degree of
the node in Gm greater than 0. We divide our independent variables into a
set of five types:

• Reputation: the number of developer’s followers (in-degree of a node
in Gf), stars obtained by a developer and the number of developer’
watchers (respectively, the sum of stars and the sum of watchers of
developer’s repositories in Gr);

• Attitude toward others: the number of developers followed by a de-
veloper (out-degree of a node in Gf), a dummy denoting forking or
not other developers (1 being the nodes with out-degree in Gm greater
than 0), and stars given to other developers’ repositories;

• Standarization: a set of dummies indicating whether developer owns
a project written in one of the 13 most popular languages in the service
(constructed upon the characteristics of developer’s repositories in Gr);

• Information: a set of dummies indicating whether developer provides
a valid e-mail address or a valid url to their personal site;

• Control: the number of repositories (the out-degree of the nodes in
Gr), the year of developer’s registration.

We will verify following hypotheses:

Hypothesis 1 The reputation proxies significantly and positively affect the
probability that others would like to contribute with a particular developer.
However, this impact is nonlinear.

Hypothesis 2 The attitude proxies significantly and positively affect the
probability that one would have the coworkers (one of the motivational fac-
tors for developers is reciprocity).

7

Hypothesis 3 There exists a significant network effect emerging from stan-
darization: the users of the most popular programming languages tend to be
more likely to have collaborators.

Hypothesis 4 Developers who provide additional contact information pub-
licly are more probable to be forked. The contact information means e-mail
address or url of the personal site.

7 Results

The results of the conducted analysis in the form of the values of coefficients
of logit model are presented in Table 1.

To validate the functional form of the model, we performed the linktest.
The result turned out to be statistically insignificant (p-values > 0.05), which
means that the functional form of our model is correct.

The coefficients for the independent variables from the reputation set
were always statistically significant. The significance of the squares of the
variables supports Hypothesis 1 about the non-linear impact of reputation
proxies on the probability of collaborating with a developer. Intuitively: de-
velopers with excellent programming skills are likely to be highly rewarded
in the community, but their projects may be at the same time characterized
by such high entrance costs and the degree of specialization that they dis-
courage other developers from collaboration. Thus the reputation proxies
evince diminishing returns to scale. The only exception is the case of fol-
lowers related variables, which show increasing returns to scale. But this
results is consistent with the result obtained by Celińska [6] and Lima et.
al. [24] about the power-law scaling behavior of the Gf . The results re-
garding reputation are similar to those described in the existing literature
[15, 21, 23].

The obtained results for the attitude set of variables support Hypothesis
2. Developers are driven by reciprocity as reported in [10, 1, 21], but only
up to a certain degree. Exaggeration while giving distinctions to others may
lead to perception of a diminishing value of those distinctions. Such behavior
in connection with lower reputation may also indicate the users with lower
programming skills, which in turn may discourage from collaboration with
them.

The coefficients of the programming language related variables were al-
ways statistically significant. Having a project repository written in one of
the most popular languages in the service increases the probability of finding

8

new collaborators. This supports Hypothesis 3 that the Open Source soft-
ware is characterized by a network effect derived from specialization. This
kind of externality can be also seen as the lock-in effect.

The obtained results support Hypothesis 4. People providing valid e-
mail adresses and urls to their personal sites reduce the cost of obtaining
information about them. It also helps in forming one’s impression in the
service which corresponds with the suggestions of Marlow et. al. [25].

8 Discussion and further research

Due to the power-law scaling behavior characterizing networks emerging
from GitHub as reported by Lima et. al. [24] and Celińska [6] the results of
this study are representative for the population of active users of GitHub.
However, the utilized data set contains mostly information about mature
users of the service. This is one of the major limitations of the current
study. We lack the comparison with the possible “newcomers”, e.g. users
who have recently registered.

We are fully aware that our data set suffers a time bias: we are not able
to collect data about the whole repository hosting service in a preferably
short time. The data utilized in this study is a snapshot of the service, the
exact networks may differ. However we do not find this observation a threat
to the obtained results: rare random missing observations should not impact
the correlation structure, which was the topic of our interest.

This study focuses on determining the factors enhancing one’s proba-
bility of gaining collaborators in GitHub. In particular, we investigate the
characteristics of the graph nodes. A competitive approach basing on the
characteristics of dyadic data sets would provide further insight into the
determinants of collaboration among developers. This problems is equal to
the problem of the occurance of edges in the graph. We suppose that the
set of variables utilized in this study is not complete: further studies would
include e.g. the gender aspects and the spatial analysis of the collaboration
in the service.

9 Conclusion

The analysis of the relationships among the Open Source software develop-
ers is a rare subject of the relevant literature. In this article we have shown
that higher reputation in the community improves up to a certain degree
the probability of gaining collaborators, but developers are also driven by

9

reciprocity. This is consistent with the gift economy concept. There exists
also a statistically significant network effect emerging from the standariza-
tion. Providing additional contact information also improves the chance of
having collaborators.

This analysis differs from the existing research in various dimensions.
Firstly, we propose a different specification of the collaboration network,
preserving its underlying hierarchical structure. We also limit the popula-
tion of the users, to assure that they had enough time to gain popularity and
collaborate with other developers. Furthermore, we apply statistical tests
and combine the social network analysis with econometric model to quanti-
tatively describe the phenomenon. The obtained results can be generalized
for the population of mature users of GitHub.

References

[1] Magnus Bergquist and Jan Ljungberg. The power of gifts: Organizing
social relationships in open source communities. Information Systems
Journal, 4(11):305–320, 2001.

[2] Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, and Daniela
Damian. Understanding the popular users: Following, affiliation influ-
ence and leadership on github. Information and Software Technology,
70:30–39, 2016.

[3] Andrea Bonaccorsi and Cristina Rossi. Why open source software can
succeed. Research Policy, 32(7):1243–1258, 2003.

[4] Andrea Bonaccorsi and Cristina Rossi. Comparing motivations of in-
dividual programmers and firms to take part in the open source move-
ment: From community to business. Knowledge, Technology and Policy,
18(4):40–64, 2006.

[5] Dorota Celińska. Użycie oprogramowania Open Source co poza gift
economy? Ekonomia journal, 37, 2014.

[6] Dorota Celińska. Information and influence in social network of open
source community. Unpublished manuscript, 2016.

[7] Dorota Celińska and Miroslawa Lasek. Why do users choose Open
Source software? Analysis of the network effect. Working Papers 2015-
05, Faculty of Economic Sciences, University of Warsaw, 2015.

10

[8] David R. Cox. The regression analysis of binary sequences (with dis-
cussion). J Roy Stat Soc B, 20:215–242, 1958.

[9] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins.
Free/libre open-source software development: What we know and what
we do not know. ACM Comput. Surv., 44(2):7:1–7:35, March 2008.

[10] Paul David and Joseph Shapiro. Community-based production of open
source software: What do we know about the developers who partici-
pate? Discussion Papers 08-003, Stanford Institute for Economic Policy
Research, 2008.

[11] Chaim Fershtman and Neil Gandal. Microstructure of collaboration:
The ’social network’ of open source software. CEPR Discussion Papers
6789, C.E.P.R. Discussion Papers, 2008.

[12] Chris Freeman and Luc Soete. The Economics of Industrial Innovation,
3rd Edition, volume 1. The MIT Press, 3 edition, 1997.

[13] Sean Goggins and Eva Petakovic. Connecting theory to social technol-
ogy platforms: A framework for measuring influence in context. Amer-
ican Behavioral Scientist, 58(10):1376–1392, 2014.

[14] Il-Horn Hann, Jeff Roberts, and Sandra Slaughter. Why developers
participate in open source software projects: an empirical investigation.
International Conference on Information Systems 2004, 2004.

[15] Alexander Hars and Shaosong Ou. Working for free? motivations
for participating in open-source projects. Int. J. Electron. Commerce,
6(3):25–39, April 2002.

[16] Guido Hertel, Sven Niedner, and Stefanie Herrmann. Motivation of
software developers in open source projects: an internet-based survey
of contributors to the linux kernel. Research Policy, 32(7):1159–1177,
2003.

[17] Bruce Kogut and Anca Metiu. Open-source software development and
distributed innovation. Oxford Review of Economic Policy, 17(2):248–
264, 2001.

[18] Heli Koski. Private-collective software business models: Cordinatitons
and commercialization via licensing. Discussion Papers 1091, The Re-
search Institute of the Finnish Economy, 2007.

11

[19] Sandeep Krishnamurthy. On the intrinsic and extrinsic motivation of
free/libre/open source developers. Knowledge, Technology and Policy,
18(4):17–39, 2006.

[20] Sandeep Krishnamurthy, Shaosong Ou, and Arvind K. Tripathi. Ac-
ceptance of monetary rewards in open source software development.
Research Policy, 43(4):632–644, 2014.

[21] Karim Lakhani and Robert Wolf. Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software
Projects. MIT Press, Cambridge, 2005.

[22] Michael Lee, Bruce Ferweda, Junghong Choi, Jungpil Hahn, Jae Yun
Moon, and Jinwoo Kim. Github developers use rockstars to overcome
overflow of news. In CHI ’13 Extended Abstracts on Human Factors in
Computing Systems, pages 133–138, 2013.

[23] Josh Lerner and Jean Tirole. Some simple economics of open source.
Journal of Industrial Economics, 50:197–234, 2002.

[24] Antonio Lima, Luca Rossi, and Mirco Musolesi. Coding together at
scale: Github as a collaborative social network. Eighth International
AAAI Conference on Weblogs and Social Media, 2014.

[25] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression forma-
tion in online perrs production: Activity traces and personal profiles
in github. In Proceedings of 2013 Conference on Computer Supported
Cooperative Work, pages 117–128, 2013.

[26] Graziella Marzi. If not for money for what? Digging into the OS/FS
contributors motivations. Working Papers 166, University of Milano-
Bicocca, Department of Economics, July 2009.

[27] Nora McDonald, Kelly Blincoe, Eva Petakovic, and Sean Goggins. Mod-
elling distributed collaboration on github. Advances in Complex Sys-
tems, 17(07n08):14500–14524, 2014.

[28] Regis Meissonier and Isabelle Bourdon. Toward an enacted approach
to understanding oss developers motivations. International Journal of
Technology and Human Interactions, 8(2):38–54, 2012.

[29] Ioana Popovici. The determinants of open source quality: An empirical
investigation. Working Papers 704, Florida International University,
2007.

12

[30] Eric Raymond. Homesteading the noosphere. First Monday, 3(10),
1998.

[31] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2001.

[32] Eric S. Raymond. The Art of UNIX Programming. Pearson Education,
2003.

[33] Aaron Schiff. The economics of open source software: A survey of the
early literature. Review of Network Economics, 1, 2002.

[34] Georg Von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin W.
Wallin. Carrots and rainbows: Motivation and social practice in open
source software development. MIS Q., 36(2):649–676, June 2012.

[35] Chorng-Guang Wu, James H. Gerlach, and Clifford E. Young. An
empirical analysis of open source software developers’ motivations and
continuance intentions. Information & Management, 44(3):253–262,
2007.

[36] Yunwen Ye and Kouichi Kishida. Toward an understanding of the moti-
vation open source software developers. In Proceedings of the 25th Inter-
national Conference on Software Engineering, ICSE ’03, pages 419–429,
Washington, DC, USA, 2003. IEEE Computer Society.

13

Table 1: The results of the logit model
Set Variable Estimate Std. error z-value p-value

Reputation

followers 5.420e-03 3.799e-04 14.266 < 2e-16 ***
followers2 4.667e-06 2.470e-07 18.895 < 2e-16 ***
watchers 4.060e-02 5.573e-04 72.850 < 2e-16 ***
watchers2 -1.256e-05 1.363e-06 -9.217 < 2e-16 ***

stars obtained 1.134e-02 2.019e-04 56.169 < 2e-16 ***
stars obtained2 -5.446e-06 8.341e-08 -65.290 < 2e-16 ***

Attitude

following 4.073e-03 2.944e-04 13.836 < 2e-16 ***
following2 -2.510e-08 1.824e-09 -13.761 < 2e-16 ***
stars given 1.848e-05 3.680e-05 0.502 0.6156
stars given2 -3.721e-08 4.710e-09 -7.901 2.76e-15 ***

forking others 1.667e-02 8.027e-03 2.076 0.037858 **

Standarization

langCSS 2.652e-01 9.766e-03 27.154 < 2e-16 ***
langHTML 3.006e-01 1.097e-02 27.415 < 2e-16 ***
langJava 4.442e-01 7.720e-03 57.543 < 2e-16 ***
langPHP 3.262e-01 8.673e-03 37.615 < 2e-16 ***

langPython 4.177e-01 8.105e-03 51.538 < 2e-16 ***
langRuby 2.062e-01 8.373e-03 24.627 < 2e-16 ***
langShell 4.576e-01 9.887e-03 46.285 < 2e-16 ***

langC 4.645e-01 9.602e-03 48.373 < 2e-16 ***
langC# 3.636e-01 1.197e-02 30.369 < 2e-16 ***
langCPP 4.510e-01 9.889e-03 45.609 < 2e-16 ***

langObjectiveC 8.909e-02 1.199e-02 7.432 1.07e-13 ***
langJavaScript 4.184e-01 7.728e-03 54.144 < 2e-16 ***

langGo 7.781e-02 1.609e-02 4.837 1.32e-06 ***

Information
e-mail 1.785e-01 7.390e-03 24.158 < 2e-16 ***

site 1.715e-01 7.807e-03 21.965 < 2e-16 ***

Control

year2009 -1.644e-01 1.748e-02 -9.407 < 2e-16 ***
year2010 -1.175e-01 1.639e-02 -7.172 7.37e-13 ***
year2011 -4.330e-01 1.592e-02 -27.193 < 2e-16 ***

repositories -2.663e-03 6.985e-04 -3.813 0.000137 ***
repositories2 -1.373e-04 2.994e-06 -45.854 < 2e-16 ***

(Intercept) -2.077e+00 1.735e-02 -119.729 < 2e-16 ***

Source: Own calculations made in R.
* denotes variable significant at significance level 0.1
** denotes variable significant at significance level 0.05
*** denotes variables significant at significance level 0.01

14

	WNE WP 15/2016 (206)
	Introduction
	Factors promoting collaboration between OpenSource developers
	Github's fork&pull model of contributing to thesource code
	Collaboration and reputation emerging from GitHub'ssocial networks
	Data set
	Methodology
	Results
	Discussion and further research
	Conclusion

