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Abstract

In this paper an alternative approach to modelling and forecasting single asset returns volatility is
presented. A new, bivariate, flexible framework, which may be considered as a development of
single-equation ARCH-type models, is proposed. This approach focuses on joint distribution of
returns and observed volatility, measured by Garman-Klass variance estimator, and it enables to
examine simultaneous dependencies between them. Proposed models are compared with benchmark
GARCH and range-based GARCH (RGARCH) models in terms of prediction accuracy. All models
are estimated with maximum likelihood method, using time series of EUR/PLN spot rate quotations
and WIG20 index. Results are very encouraging especially for foreasting Value-at-Risk. Bivariate
models achieved lesser rates of VaR exception, as well as lower coverage tests statistics, without
being more conservative than its single-equation counterparts, as their forecasts errors measures are
rather similar.
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1. Introduction

Volatility modeling is at the forefront of finan¢iaconometrics interest. Still growing
importance of this subject comes from both busiraess regulatory institutions of financial
markets. Over past three decades, dozens of moaedsbeen proposed. All of them address
to a very specific challenges of volatility modejitike leptokurtosis of empirical returns
distribution, volatility clustering or asymmetryfe€t. There is a common belief that volatility
is predictable, at least to a certain degree. Modelilt to forecast volatility are called
conditional volatility models, because they tryinder about future volatility conditional on
present set of informations. Generally, they candbeded into two competing groups:
Autoregressive Conditional Heteroskedasticity (ARQHhodels pioneered by Engle (1982)
and Stochastic Volatility (SV) models. This papecuses on the former group. Its aim is to
propose a flexible framework that not only enharfoescasting performance of ARCH-type
models, but also allows to draw some conclusiormitabelationship between asset returns
and its observed volatility, measured by some kihdariance estimator. The main feature of
proposed approach is focusing on joint distributddmeturns and observed volatility by using
dual-equation structure. Such an approach is pessi®e to use of more efficient range-based
daily variance estimators instead of squared ret(mninnovations) as a volatility proxy.

In this paper two financial time series are iniggged: EUR/PLN spot rate quotation
and WIG20 index. Four conditional volatility modedse employed to obtain volatility of
assets returns predictions. These are well knowrRGA model and its range-based
counterpart (RGARCH), as well as two newly devetbfmvariate models derived from
GARCH and RGARCH models respectively. Bivariate eledshow very promising
performance especially in terms of forecasting ¥attRisk. Moreover, they allow to
examine simultaneous dependencies between obsesladity and returns.

The rest of paper is organized as follows. Seidmiefly describes volatility models
that are most relevant from this paper’s pointiefw as well as reviews volatility estimators
based on high, low, open and close prices (rangeeba&stimators). Section 3 contains
derivation of proposed models. In section 4 emainiesults are presented for both in-sample
and out-of-sample analysis. Section 5 concludes.

2. Literaturereview

The main difference between Stochastic Volatilityd aAutoregressive Conditional
Heteroskedasticity models is an assumption abauhé#ture of volatility: in case of ARCH-
type models volatility is considered as a deterstiniprocess, whereas in case of SV models
volatility has a fully stochastic nature. Regardleg chosen approach, researchers try to
incorporate an asymmetry effect, when negative lshot asset returns have different impact
on future volatility than positive ones. In caseS¥ models an asymmetry effect is usually
examined by introducing the correlation betweerowations in returns and volatility. This
kind of asymmetry is often called a leverage effantl was described by Harvey and
Shephard (1996). It should be noticed that leveedtprt excludes cases when negative and
positive innovations have an impact with the saiga and differ only in magnitude. Asai
and McAleer (2005) developed a more general asynuom®V model that does not impose
such a restriction and can accomodate both levemadesize effect. Despite its conceptual
attractiveness, Stochastic Volatility models areaspopular as its ARCH-type counterparts.
The main reason for this is the fact that SV modmis, in general, computationally
demanding, as their likelihood can not be obtainedosed form. There are many methods of
parameters estimation in Stochastic Volatility medbowever not all of them are feasible in
case of models with leverage effect. Harvey andpBael proposed Quasi-Maximum



Likelihood Estimation (QMLE) method and employed Iidan filter to obtain quasi-
likelihood function. The comprehensive descript@nSV models estimation techniques can
be found in Broto and Ruiz (2004).

Autoregressive Conditional Heteroskedasticity medelre widely used among
practitioners, mostly due to their flexibility arstraightforward estimation. Since seminal
Engle’s paper, dozens of ARCH-type models have Ipeeposed, usually they differ only in
parameterization of conditional variance equatfnguably, the most important derivation of
ARCH model is a Generalized Autoregressive Caomukil Heteroskedasticity model
proposed by Bollerslev (1986) which forms a bagisaimost all modern ARCH-type models,
mostly due to its flexible framework and relativédyv number of parameters.

There are several ways to incorporate an asymmeéfeygt in ARCH-type models, but two of
them are especially popular. The first one is tastder separately positive and negative
squared innovations: this approach has been prdpoegeGlosten, Jaganathan and Runkle
(1993) and formally established as a GJR-GARCH rodlbe second approach is to
formulate conditional variance equation in expor@nform and allow for arbitrary
dependency between volatility and lagged, standaddinnovations. Exponential form of
equation guarantees that even if negative corogldbetween volatility and returns occurs,
conditional variance is still greater than zeroclsa model, allowing to capture various kind
of asymmetry, including leverage effect, was detiby Nelson (1991) and is widely known
as an EGARCH (Exponential GARCH) model. Both afoeatroned models focus on how
past returns influence present volatility. Howe\am, implication in opposite direction may
also occur: increased level of (conditional) vditstcan raise probability of negative returns.
Such an effect is usually examined by using GAR@HAean models (GARCH-M), where
present conditional variance is used as a regr@ssonditional mean equation.

In classical framework, ARCH-type models demandydmhe series of asset close
prices. Recently, models using additional variallesbecoming more popular. They base on
assumption that there exist better volatility pesxthan simple squared close-to-close returns
(innovations). Indeed, using high, low, close apeéro (HLCO) daily prices, one can obtain
more efficient variance estimators than squaredy daturns. Those estimators are often
called range-based, most important of them wereldped by Parkinson (1980), Garman and
Klass (1986) and Rogers and Satchell (1992), aegldhe given by following formulas:
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In above formulasi, L, C andO are respectively: highest, lowest, close and qpe.
The common feature of range-based daily estimasothat they are up to 10 times more
efficient than simple squared daily return. Howewerempirical works those estimators turn
to be downward biased due to discrete nature adrgbd asset prices.

It was a matter of time before range-based estirmdtave been used in volatility
modelling. This pioneering research was conduciedllzadeh, Brandt and Diebold (2001).
In their paper range-based Stochastic Volatilitydelovas proposed. Authors found results
encouraging mostly due to useful distributional gendy of range (logarithm of range is
approximately Gaussian) that improves performarid@MLE method. A different approach
was chosen by Chou (2005). He examined dynamicviomlraof range and formulated a
Conditional Autoregressive Range (CARR) model. CARRodel is a member of
Multiplicative Error Models class. Using CARR modmnditional volatility is obatined in



two steps: first conditional range is predictedernthforecast of volatility is computed by
inserting conditional range into Parkinson form{da The main weakness of CARR model is
that it focuses only on range, ignoring asset nstutistribution, thus it often underestimate
returns variance. The most widespread range-baskadiliy model is certainly REGARCH
(Range-based Exponential GARCH) proposed by Bramdt Jones (2006). Authors used
aforementioned distributional property of log-ranged reformulated conditional variance
equation of EGARCH model in following way:

R = 043+Inh, + 029,
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WhereR is a logarithm of range,is daily return andh is conditional variance.

A different approach was chosen by Lildholdt (2008uthor leaves conditional
variance equation unchanged in comparison to claG®&RCH(1,1) model, but estimate
model parameters using joint distribution of veatbrmaximal, minimal and close (HLC)
prices. The exact formula for density function L.C prices distribution is complicated and
would not be presented in this paper. Moreovewiitains infinite sum, thus require some
truncation and may be difficult in implementatidtecently an extension of model proposed
by Lildhold have been developed by Fiszeder andZa&r(2013). Authors not only use joint
distribution of HLC prices, but also modify condital variance equation inserting custom
range-based variance estimator in place of squaneyations.

Over the last few years, several others range-bAs&@dH-type models have been
developed (e.g. Molnar (2011), Skoczylas (2013420Most of them show rather promising
performance when compared to their return-basedtecparts.

3. Modelsderivation

Certain parametrisations of single equation ARCpktynodels are able to investigate
lagged dependencies like: assymetry, leveragetefieinfluence of conditional volatility on
present returns. However, what single equation ARgt¢ models can not do, is to capture
simultaneous dependency between returns and obsergkatility. A natural way to
incorporate such an effect is to treat observedtiity (measured by variance estimator) as a
random variable and focus on joint distributiorretiurns and observed volatility.

In classical ARCH framework, returns are assumetbeaanormally distributed with
conditional mean4 and conditional variancl. Conditional mean is usually modeled as an
ARMA process, however due to simplicity a constaetin is assumed in this paper:
r=u+¢E

t /’[ t (5)
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It is necessary to make some assumptions on olaseolatility distribution. The first and the
most intuitive one is that observed volatility imaisy approximation of returns volatility. In
this paper, Garman-Klass estimator is used as aerefd volatility measure. The second
assumption is that observed volatility distributienapproximately log-normal. Empirical
results shows that range-based variance estimatersndeed well described by log-normal
distribution (e.g. Alizadeh et al. (2001)). Moreoven most option pricing models, from
which proposed approach draws some inspiratioriatiity is assumed to be distributed log-
normally. Under these assumptions, relationshigvéeinh observed and conditional volatility
may be expressed in following way:
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Where o°ck is an observed volatility measured by Garman-Klastimator andh is
conditional variance of returns. A const&nts included to capture potential bias in Garman-
Klass estimator. Taking logarithms of both sideslketo:

nod, =k+nh+n7 (7

Where 17 has Gaussian distribution with zero mean. The m®ep is to investigate joint

distribution of £ and 7. They are both normally distributed with zero metlus their joint
distribution is fully described by their covarianoatrix:

B I

Now it is quite easy to see some similarities betwproposed framework and Heston option
pricing model (1993). A correlatignbetweens andz is set to be constant, while variance of
nis assumed to be time-varying and follow ARCH(19qa&ss:
Vt = VO +V1 t2—l (9)
To obtain full parameterization of model, it is essary to plug conditional variance equation.
The main advantage of proposed approach is thatangitional variance equation can be
chosen. In this paper, conditional variance equnafrom much celebrated GARCH(1,1)
model is used (10), therefore, the proposed mod#l be called BGARCH (Bivariate
GARCH):
h =w+ael, + (10)

Additionally, alternative form of conditional variee equation is analyzed. This
equation comes from RGARCH(1,1) model and may lpeesssed as follow:
h =a+ aaéK ta T JE (11)
Analogically, this model will be called BRGARCH.
It is worth to notice, that equation (11) alreadgs range-based variance estimator (Garman-
Klass) as a volatility proxy, so it is a very irgsting question whether BRGARCH model
will show any significant improvement over RGARCHhere exists one theoretical
advantage of BRGARCH model over RGARCH. In BRGARGtddel, it is possible to
obtain formula for unconditional variance. One dHowmotice that in single equation
RGARCH model unconditional variance can not berdateed, because in general:
EO'ZGK,t ¢ht
However, in BRGARCH model, using properties of lomanal distribution, equation (6) and
(9), it could be shown that:

Eogc, = EKhé, = KhEE = KexpEy, /2)h, =expk + 05v, /(L-v,))h, (12)
Thus, unconditional variance in BRGARCH model mayelzpressed as:
Var(e,) = w (13)

1-expk+ 05v, /1-v))a -8
Now it follows, that sufficient condition for covance stationarity of is:
expk + 05v, /Q-v,))a+ <1 (14)
It should be underlined that such an inference wassible due to bivariate nature of
BRGARCH model, and could not be conducted in alsiequation RGARCH model.

Using well known properties of bivariate normal tdution it is possible to
determine conditional distribution gfgiven &
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A sign of conditional expectation @k given & depends solely on signs afandp. Knowing

p, one can find how present returns affect presdigeiwved volatility. In equities and
securities markets increased volatility usuallyusscduring periods of downward trend, thus
one should expect negative valueg ol is less so clear in case of foreign exchangekets,
where convention of quotation plays crucial rolen@rally, if base currency is considered to
be stronger than counter currency, the pair raeg to follow upward trend during turbulent
periods — in such a case one should expect positives ofp. The opposite conclusion holds
when a reverse relation between currencies occurs.

4. Data and results

Daily data including open, high, low and close esi@re used. The data set is obtained
from financial website stooq.pl and it covers péricom 1.01.2008 to 31.12.2014. Two time
series are examined: EUR/PLN spot rate and WarsamkSExchange WIG20 index.
Logarithmic returns are analysed.

In the first step, in-sample analysis is conduckdddels were estimated for the whole
analysed period (from 1.01.2008 to 31.12.2014). iMamn likelihood estimates of
parameters of four aforementioned models are preddor EUR/PLN (table 1) and WIG20
(table 2) respectively.

Table 1. Parameters estimates for EUR/PLN spot rate.

GARCH BGARCH RGARCH | BRGARCH

y7i -0.0095 0.0039 -0.0018 -0.0024
0.353 0.725 0.656 0.528

g 0.0030 0.0064 -0.0021 0.0045
0.003 0.000 0.270 0.000

c 0.1099 0.1213 0.2808 0.2742
0.000 0.000 0.000 0.000

i) 0.8882 0.8681 0.7681 0.7474
0.000 0.000 0.000 0.000

Jel - 0.1402 - 0.1127
0.000 0.000

Vo - 0.5056 - 0.4678
0.000 0.000

vy - 0.0324 - 0.0393
0.129 0.078

k - -0.4001 - -0.3568
0.000 0.000

Looking at these tables, some patterns become rdvid€oefficienta is slightly larger,
whereas[3 slightly smaller in BGARCH, comparing to GARCH, wh indicates that
BGARCH model is more responsive to recent innovetiodn both cases parameteris
insignificant in RGARCH model, while the same paeten in BRGARCH is significant and
comparable in magnitude to GARCH and BGARCH one$atMs encouraging, is that
parametreg, Vo, V1 andk estimates are quite similar, regardless of wharddional variance
equation is used. According to expectation, parameis negative for stock exchange index,



and positive for EUR/PLN pair (as it is obviousttE8JR is considered as stronger currency
than PLN). For both assets, parametgestimates are small (in case of EUR/PLN even
insignificant at 0.05 confidence level), thus vada of 7 seems to be rather constant over

time, at least for analysed time series.

Table 2. Parameters estimates for WIG20.

GARCH BGARCH RGARCH | BRGARCH
7 0.0053 -0.0214 -0.0326 -0.0261
0.648 0.451 0.247 0.357
@ 0.0156 0.0303 0.0092 0.0290
0.009 0.000 0.350 0.000
o 0.0698 0.0888 0.1872 0.2692
0.000 0.000 0.000 0.000
i) 0.9242 0.8973 0.8872 0.8294
0.000 0.000 0.000 0.000
Je) - -0.1811 - -0.1777
0.000 0.000
Vg - 0.5139 - 0.4943
0.000 0.000
vy - 0.0120 - 0.0095
0.008 0.013
K - -0.8101 - -0.8078
0.000 0.000

Using well known formulas for returns-based GARClddals, as well as recently derived
equation (13), unconditional variances may be cdstu

Table 3. Unconditional variances.

GARCH | BGARCH | RGARCH |BRGARCH
EUR/PLN 1.560 0.599 - 0.568
WiG20 2.579 2,172 - 1.780

As mentioned before, in case of RGARCH models ias possible to obtain unconditional
variance. It is worth to notice that unconditiomahriance calculated using GARCH
parameters estimates is highest in both cases.
Though several diagnostic tests for ARCH-type me&dah be conducted, two of them
are mainly popular. These are tests for autocdmel@af squared, standardized residuals, and
normality of standardized residuals. Their resalts presented in table 4. In all except one
cases (RGARCH for WIG20), models seem to deal witatility clustering phenomena, as
p-values of Ljung-Box test are greater than 0.05n#odels fail to pass test for normality of

standardized residuals.



Table 4. Ljung-Box and Jarque-Bera tests results.
| GARCH | BGARCH | RGARCH |BRGARCH

EUR/PLN
Ljung-Box test 3.386 2.928 3.625 4.853
p-value 0.641 0.711 0.605 0.434
Jarque-Bera test 52.09 55.66 2024 2305
p-value 0.000 0.000 0.000 0.000
WiG20
Ljung-Box test 8.245 8.157 14.972 10.183
p-value 0.143 0.148 0.010 0.070
Jarque-Bera test 97.75 94 65 112.42 107.66
p-value 0.000 0.000 0.000 0.000

In figure 1, histogram of standardized residualsnffBRGARCH model estimated for W1G20
is presented, along with standard normal densityecWisual assesment suggests that more
fat-tailed distribution could be more approprigttawever, one should keep in mind that in
case of BGARCH and BRGARCH standardized residu@giloution is in fact marginal
distribution, as both bivariate models assume joormality of& and.

Figure 1. Histogram of standardized residuals from BRGARH el@s$timated for WIG20.
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In the second step of research, out-of-sampleysisails conducted. All four models
were estimated on a rolling window of 750 obseoret. Each time, every model was
estimated using most recent 750 observation amddag-ahead volatility forecasts were
obtained. Analysed period again cover 1.01.20081t42.2014, thus data set was enlarged to
include 750 necessary observations prior to 1.@B20

A standard way to assess forecasting performasctw icalculate forecast errors
measures, which is not an issue provided thatvalees of forecasted variable are available.
It is well known that exact volatility can not béserved, thus measuring volatility forecast
errors heavily rely on volatility proxy. Patton (@@ thoroughly reviews several forecast
errors measures and finds that particularly tws fosiction seem to be more robust to noise



in volatility approximations than others. These &dean Squared Error, and QLIKE function
given by following formula:

L(g?,h) =In(h)+o?/h (16)

Where ¢® is observed volatility measured by some kind ofiarce estimator, ant is a
volatility forecast.

It should be noticed that QLIKE is an asymmetrigsldunction, thus it tends to favor models
that overestimate rather than underestimate trisdibty. In this paper, two kind of observed
daily volatility measures are used: squared dailyrn and Garman-Klass estimator.

Both MSE and QLIKE measures were computed foraaeahead volatility forecasts
obtained from all four analyzed models. In tabkatues of aforementioned loss functions are
presented, values computed using Garman-Klassastiras volatility proxy are marked with
asterisk (*).

Tableb5. Values of loss functions, out-of-sample analysis.

| GARCH | BGARCH | RGARCH | BRGARCH
EUR/PLN
MSE 1.1583 1.1635 1.1541 1.1571
MSE(*) | 0.4204 0.4201 0.3821 0.3792
QLIKE | -0.2262 -0.2239 -0.2569 -0.2551
QLIKE(™) | -0.3059 -0.3050 -0.3278 -0.3281
WIG20
MSE 30.9895 31.2269 31.4655 32.0069
MSE(*) | 87258 8.5677 9.8766 10.0666
QLIKE | 16123 1.6136 1.6031 1.5992
QLIKE(™) |  1.2099 1.2070 1.1937 1.1857

Range-based models seem to outperform their ré@sed counterparts in case of EUR/PLN
spot rate. The picture is less clear for WIG20 indbiere GARCH and BGARCH models are
better in terms of MSE. Pairwise comparison betwe&RCH and BGARCH, as well as
RGARCH and BRGARCH, shows that their values of losgtions are pretty similar.

Many researchers argue that while forecastingtiMiojaparticular emphasis should be
placed on ability to properly predict tail obsergas, thus an ultimate test of model’s
forecasting performance should be computing VatuRisk and backtesting. In this paper
VaR at99% level was computed using one-day-ahead volatiigdictions from analyzed
models. After counting VaR exceptions, tests foretage accuracy were conducted: one for
unconditional coverage (Kupiec test) and secondcforditional coverage (Christoffersen
test). The null hypothesis of Kupiec test is thagerved VaR exceptions @tp)% level, over
the period ofn days, come from binomial distribution with paramete andn. This test
focuses on frequency of VaR exceptions. Christeffertest additionally tests whether VaR
exceptions are independent. Full results of batikiggprocedure are presented in table 6.
Proposed models perform much better than theitesiaguation counterparts. For both assets,
using bivariate versions of models leads to lowaR\exception rate, as well as decreases
values of tests statistics. It is worth to notittegt in case of EUR/PLN spot rate, transition
from single- to dual equation model is sufficiemipiass both coverage tests.



Table 6. Results of backtesting Val, computed using out-of-sample volatility forecasts.
| GARCH | BGARCH | RGARCH |BRGARCH

EUR/PLN

% of VaR ;45 breaches 1.616% 1.393% 1.616% 1.337%
unconditional coverage test 5.792 2.492 5.792 1.863
p-value 0.0161 0.1144 0.0161 0.1723
conditional coverage test 7.199 3.940 7.199 3.334
p-value 0.0273 0.1395 0.0273 0.1888

WIG20

% of VaR ;45 breaches 1.770% 1.599% 1.542% 1.485%
unconditional coverage test 8. 541 8.372 4.458 3.679
p-value 0.0035 0.0205 0.0347 0.0571
conditional coverage test 19.067 12.774 22.004 16.411
p-value 0.0000 0.0017 0.0000 0.0003

Another interesting question is a behavior of paaterp across out-of-sample period.
In figures 2 and 3 point estimates pffor both bivariate models are presented. It become
apparent that, at least in case of EUR/PLN spet @drametep significantly fluctuate over
time, thus assumption of constant correlation betweand 77 should be repealed. Allowing
for time-varying correlation will be a subject @itér research, as it requires reformulation of
both BGARCH and BRGARCH models. Analyzing grapren2 3 one should remember that
these are not fitted values of correlation at titpdut a parameter values obtained from
estimating model on 750 observations priot. to

Figure 2. Parametep estimates for EUR/PLN spot rate across time.

0.3 -
0.25
0.2
0.15 v
0.05 }
04
0.05 |
0.1 +— : : ‘
0""@ 0’\'@ 0'\"& 0’\@ 0'\’\9 0’\'\9 0"’\/ % 0""0 i 0'\’0 ’\\;b 0'\’\? /\\,V
U N N A N N N 2 L\ N 2 N N R A\
—— BGARCH — BRGARCH




Figure 3. Parametep estimates for WIG20 index across time.
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5. Conclusions

In this paper a new approach to modelling volatikt proposed. The main feature of
this approach is a dual equation structure thatvallto model joint distribution of returns and
their observed volatility. The first equation is ARCH-type conditional variance equation,
while the second one describes the relationshiwdsrt observed and conditional volatilities.
Proposed framework is very flexible, as it can bedifled to incorporate any ARCH-type
conditional variance equation. In this paper, eignatcoming from GARCH and RGARCH
(Range-based GARCH) models are used. Efficientgedrased, Garman-Klass variance
estimator is used as an observed volatility appnation. All models are estimated using time
series of EUR/PLN spot rate and WIG20 index. P@&entomparison between single- and
dual equation models is conducted. Bivariate modelsot differ significantly from their
single-equation counterparts in terms of forecgsenrors measures, however, they much
better cope with Value-at-Risk forecasting, resgltin lesser rate of VaR exceptions, as well
as lower values of coverage tests statistics.

Approach presented in this paper enables to firgblation of certain theoretical
problem associated with Range-based GARCH modelsingle equation RGARCH model,
it is not possible to obtain unconditional varianbecause the expected value of volatility
proxy used is unknown. Incorporating RGARCH comhisil variance equation into proposed
bivariate framework solves this problem, as it\addo determine unconditional variance and
infer about stationarity of asset returns process.

Due to assumed joint normality of returns and ldgars of observed volatility, it is
possible to investigate simultaneous dependenaeydaet returns and observed volatility. The
findings are in line with expectation: in equitiesarkets a correlation between returns and
observed volatility is negative, while in case afreign exchange markets the sign of
correlation depends on relative strength of cuiesmndEmpirical results from out-of-sample
analysis indicate that aforementioned correlati@nds to fluctuate, thus a further
development of proposed models is required to pm@te time-varying correlation.
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