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Abstract 
This paper models income distribution in four Central and Eastern European (CEE) countries (the 
Czech Republic, Hungary, Poland and the Slovak Republic) in 1990s and 2000s using parametric 
models of income distribution. In particular, we use the generalized beta distribution of the second 
kind (GB2), which has been found in the previous literature to give an excellent fit to income 
distributions across time and countries. We have found that for Poland and Hungary, the GB2 
model fits the data better than its nested alternatives (the Dagum and Singh-Maddala distributions). 
However, for Czech Republic and Slovak Republic the Dagum model is as good as the GB2 and 
may be preferred due to its simpler functional form. The paper also found that the tails of 
parametric income distribution in the Czech Republic, Poland and the Slovak Republic have 
become fatter in the course of transformation to market economy, which provides evidence for 
growing income bi-polarization in these societies. Statistical inference on changes in income 
inequality based on parametric Lorenz dominance suggests that, independently of inequality index 
used, income inequality in the Czech Republic, Poland and the Slovak Republic has increased 
during transformation. For Hungary, there is no Lorenz dominance and conclusions about the 
direction of changes in income inequality depend on the cardinal inequality measure used. 
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1. Introduction 

 

Parametric statistical models have been used to model income distributions since the times of 

Vilfredo Pareto (1897). The models applied in the distributional literature have grown in 

complexity. After the one-parameter Pareto model, the two-parameter models such as the log-

normal model (Gibrat 1931), the gamma (Salem and Mount 1974), and the Weibull model 

(Bartels and Van Metele 1975) were introduced. In the mid-1970s, the three-parameter mod-

els appeared, such as the generalized gamma (Taille 1981), Singh-Maddala (Singh and Mad-

dala 1976) and Dagum (Dagum 1977). In 1984, McDonald (1984) introduced the four-

parameter models known as the generalized beta of the first and second kind (GB1 and GB2). 

The GB1 and GB2 models include all of the previously mentioned distributions as special or 

limiting cases. Parker (1999) has presented a theoretical model in which firm optimizing be-

haviour under uncertainty leads to wages that follow a GB2 distribution. Empirically, it was 

shown that the GB2 distribution fits income distribution data better than the alternative mod-

els that it encompasses (the Singh-Maddala, Dagum, generalized gamma, log-normal and 

Weibull) (Bordley et al. 1996, Bandourian et al. 2003, Dastrup et al. 2007, McDonald and 

Ransom 2008).
1
  

 Using parametric models of income distribution is associated with several advantages. 

Fitting parametric models allows one to represent the entire income distribution through 

means of a small number of estimated parameters (Brachman et al. 1996). The estimated pa-

rameters may be then used to reconstruct the entire income distribution, if, for example, in-

come distribution data released in future are published in grouped form (Hajargasht et al. 

2012) or if available micro data are censored or “top coded” (Burkahuser et al. 2012). This 

kind of reconstruction can be also achieved with the help of a reliable parametric model, when 

for a given income distribution only empirical estimates of poverty and inequality measures 

are available (as published for example by the Eurostat or other statistical agency), with no 

direct access to the underlying micro-data (Graf and Nedyalkova 2013). In addition, a reliable 

parametric model can be used for poverty and inequality analysis in computable general equi-

librium micro-simulation models (Boccanfuso et al. 2013). 

The parameters of theoretical models often possess also economic interpretation, 

which allows, for example, to gain insights about the causes of the evolution of income distri-

bution over time or interpret the differences between income distributions across countries. 

Moreover, once a given parametric model is fitted to a data set, one can straightforwardly 

compute inequality and poverty measures, which are analytical functions of the parameters of 

the model. It is also possible to use estimated parameters to perform stochastic dominance 

testing (Kleiber and Kotz 2003), which allows for robust inference on inequality and welfare 

differences between distributions. Finally, estimated parameters may be used in empirical 

modelling of the impact of macroeconomic conditions (e.g. GDP growth, unemployment and 

inflation rates, etc.) on the evolution of the personal income distribution (Jäntti and Jenkins 

2010). 

The present paper models income distribution in four Central and Eastern European 

(CEE) countries (the Czech Republic, Hungary, Poland and the Slovak Republic) using para-

metric models of income distribution. In particular, we use the GB2 distribution as it has been 

found in the previous literature to give an excellent fit to income distributions across time and 

countries. We perform goodness-of-fit and model selection tests to verify if the GB2 model is 

a better fit to CEE data than the simpler models (the Singh-Maddala and Dagum) that it en-

                                                 
1
 McDonald and Xu (1995) have proposed a 5-parameter generalized beta (GB) distribution, which encompasses 

both GB1 and GB2 distributions. However, empirically this distribution does not seem to improve the fit to data. 

This was also confirmed in our empirical experiments (not reported). Kleiber and Kotz (2003, p. 232) called the 

GB distribution “a curious theoretical generalization”. 
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compasses. We also compute inequality indices and perform statistical dominance tests using 

fitted GB2 models to evaluate changes in income inequality in CEE countries in the period of 

economic transformation to market economy. Moreover, we analyze and interpret economi-

cally the evolution of the GB2 parameters estimates over time.  

The paper is related to the previous empirical literature on parametric modelling of in-

come distribution in CEE countries. Kordos (1990) argued that the two-parameter log-normal 

distribution reasonably describes Polish data on wages until 1980. The log-normal model has 

been also found to be fitted well to the income distribution of the Polish poor in 2003 and 

2006 by Jagielski and Kutner (2010). These authors also found that the income distribution of 

the middle class and the rich is fitted well by the Pareto model. Domański and Jędrzejczak 

(2002) have compared several parametric models (the Dagum, Singh-Maddala, gamma and 

lognormal) using data on Polish wages in 1990s. They found that the Dagum model best de-

scribed their data. Łukasiewicz and Orłowski (2004) compared the Dagum and Singh-

Maddala models for the distribution of individual incomes in Poland in 2000. The Dagum 

model gave a slightly better fit to data in their study. Dastrup et al. (2007) provided an exten-

sive comparison of parametric models of income distribution for several countries (including 

Poland as the only CEE country) roughly in the period from 1980s to 1990s and using several 

“income” concepts: gross (pre-tax and pre-transfer) household income, disposable (post-tax 

and post-transfer) household income and earnings. The data used were in grouped format. The 

authors found that in general the GB2 model gives the best fit to Polish data for each of the 

income definition used. In particular, the GB2 model seemed to describe Polish data better 

than its nested alternatives (Dagum and Singh-Maddala), although the differences between 

these models were not always  statistically significant. 

Bandourian et al. (2003) provided a comparison of parametric models of income dis-

tribution for 23 countries (including Poland, Czech Republic, Hungary and Slovak Republic) 

in the period from 1970s to the mid-1990s. The main income concept used in gross (pre-tax 

and pre-transfer) household income, grouped in twenty equal probability intervals. In the con-

text of CEE countries, the results of Bandourian’s et al. (2003) study suggest that for Czech 

Republic in 1992 and 1996, Hungary in 1991 and Poland in 1985, 1992 and 1995, the GB2 

model gives the best fit. However, the advantage of the GB2 over alternatives is only statisti-

cally significant for Czech Republic in 1992 and Poland in 1986. For Slovak Republic the 

GB1 has a small advantage over the GB2, but the difference is not statistically significant. 

Most of the existing studies on parametric modeling of income distributions suffer 

from some limitations. Many of them use rather grouped data (data in the form of income 

classes or income proportions) than individual income data. Other studies do not include new-

er models like the GB2 distribution, or do not test rigorously for goodness of fit or model se-

lection. The present paper removes these drawbacks by using individual income data and by 

applying rigorous statistical methods to the GB2 model and its closest rivals. 

 The paper is structured as follows. The next Section presents the definition and statis-

tical properties of the GB2 model, while Section 3 describes statistical methods used for par-

ametric estimation, goodness-of-fit and model selection testing, as well as tools for testing for 

stochastic dominance with parametric models. Section 4 introduces the data used. Empirical 

results and discussion follow in Section 4. The last section concludes. 

 

2. The GB2 distribution – definition and properties  

 

The four-parameter (a, b, p, q) GB2 model was introduced by McDonald (1984). The proba-

bility density function for the model takes the form: 

 
 (         )  

      

    (   )   (   )     
      (1) 
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where B(u,v) = (u) (v)/(u + v) is the Beta function, and (.) is the Gamma function. All 

four parameters are positive with b being the scale parameter and a, p and q being the shape 

parameters. The a parameter governs the overall shape of the distribution, while p and q affect 

the shape of, respectively, the left and the right tail. In particular, the larger the value of a, the 

thinner the both tails of the GB2 density (Kleiber and Kotz 2003). The larger the value of p, 

the thinner the left tail and the larger the value of q, the thinner the right tail. Therefore, the 

smaller values of ap and aq increase density at the, respectively, lower and upper tail. When 

both ap and aq decrease simultaneously, both tails of the GB2 become fatter. In economic 

terms, this can be interpreted as an evidence in favour of larger income bi-polarization. The 

concept of polarization, which is related to but different from inequality, aims at capturing 

separation or distance between clustered groups in a distribution (Esteban and Ray 1994, 

2011, Foster and Wolfson 2010). For the GB2 model, we may interpret the simultaneous de-

crease in the estimates of ap and aq as growing bi-polarization in the sense of tighter cluster-

ing around two income poles – the poor and the rich. 

The relative values of p and q affect the skewness of the GB2 distribution. The cumu-

lative distribution function (cdf) of the GB2 distribution does not have an explicit form as it 

involves an infinite series, but it can be approximated using functions implemented in most of 

popular statistical packages (see, e.g., Jenkins 2007, Graf and Nedyalkova 2012). 

 The often used in the income distribution literature three-parameter models of Singh-

Maddala and Dagum are the special cases of the GB2 model. In particular, the Singh-Maddala 

model is the GB2 model with p = 1, while the Dagum model is the GB2 model with q = 1. 

Also, the log-normal model can be obtained from the GB2 model assuming that q goes to in-

finity and a goes to 0.
2
  

 The moment of order k (existing for –        ) for the GB2 is defined as fol-

lows: 

 

 (  )  
   (  

 
    

 
 )

 (   )
  (2) 

Parametric modelling of income distributions is often performed in order to make inferences 

about income inequality. For this purpose, one can use cardinal inequality indices such as the 

most popular Gini index of inequality (for a review of various inequality measures, see, e.g., 

Cowell 2000) or one can test for Lorenz dominance, which provides an unambiguous ranking 

of distribution in terms of their inequality. The relationship of Lorenz dominance is based on 

the concept of the Lorenz curve (see, e.g., Kleiber 2008), which is a plot of the cumulative 

income shares against cumulative population shares, with units (e.g., individuals, households) 

ordered in ascending order of income. If the Lorenz curve for a distribution y1 lies nowhere 

below and at least somewhere above the Lorenz curve of the distribution y2, then y1 Lorenz 

dominates y2.
 3

 Any inequality index satisfying popular axioms like anonymity and the Pigou-

Dalton transfer principle will in this case display less inequality for the distribution y1 than for 

y2 (Atkinson 1970). 

 For the GB2 model and its nested models, the relationship between model parameters 

and popular inequality indices is complex. McDonald (1984) has derived the analytical for-

mula for the Gini coefficient of the GB2, which, however, takes a rather complicated form:  

 
  

  (   
 
 

    
 
 
)

  (   ) (  
 
 

   
 
 
)

  (3) 

                                                 
2
 See McDonald and Xu (1995) for a full characterization of families of distributions nested within the GB1 and 

GB2 models. 
3
 It is worth noting here that the popular Gini index of inequality is equal to the twice the area between the Lo-

renz curve and the 45% degree line of perfect equality. 
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The generalized hypergeometric function 3F2 involves an infinite series and present computa-

tional difficulties. For the purposes of the present paper, the Gini coefficient for the GB2 dis-

tribution has been implemented in Stata using an algorithm for computing the 3F2 function 

proposed by Wimp (1981).  

 The Gini index of inequality is most sensitive to income differences around the mode 

of distribution and therefore is it not suitable to detecting distributional changes that occur in 

the bottom or in the top of distribution. For this purpose, a family of distribution-sensitive 

generalized entropy inequality measures GE() has been designed (Shorrocks 1984). The 

more positive parameter  is, the more sensitive GE() is to income differences at the top of 

the distribution; the more negative it is, the more sensitive is GE() to income differences at 

the bottom of the distribution. The most popular members of the GE family include the mean 

logarithmic deviation, GE(0), the Theil index, GE(1) and the half the square of the coefficient 

of variation, GE(2). In this paper, we are especially interested in the GE(2) inequality meas-

ure, as it has been shown that inequality measures are particularly sensitive to the presence of 

extremely large income observations (Cowell and Flachaire 2007). Generalized entropy ine-

quality measures for the GB2 distribution have been recently derived by Jenkins (2009). The 

GE(2) index for the GB2 model takes the form: 

 

   ( )   
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 )   (  
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  (4) 

The appropriate expressions for all indices presented above in the cases of the Singh-Maddala 

and Dagum distributions can be obtained by setting, respectively, the parameter p to 1 and 

parameter q to 1. 

Kleiber (1999) showed that for two GB2 distributions, Xi  ~ GB2(ai, bi, pi, qi), i = 1, 2, 

if a1  ≤ a2, a1p1 ≤ a2p2, and a1q1 ≤ a2q2, then distribution X2 Lorenz-dominates (is less unequal 

than) distribution X1.
4
 Necessary conditions for Lorenz dominance were derived by Wilfling 

(1996): if distribution X2 Lorenz-dominates (is less unequal than) distribution X1, then a1p1 ≤ 

a2p2, and a1q1 ≤ a2q2. 

 

3. Methods 

 

3.1. Parameter estimation, goodness of fit and model selection techniques 

 

All models analyzed in this paper were fitted to individual income data using the maximum 

likelihood estimation (MLE). The expressions for the log-likelihoods of the GB2 and its nest-

ed models (the Singh-Maddala and Dagum) are given in Kleiber and Kotz (2003). MLE 

methods for the GB2 model with sampling weights is carefully discussed in Graf and 

Nedyalkova (2013).
5
 For fitting models to data, we use Stata programs developed by Stephen 

Jenkins (Jenkins 2007). The programs maximize the likelihoods numerically using the modi-

fied Newton–Raphson algorithm, or optionally Berndt–Hall–Hall–Hausman, Davidon–

Fletcher–Powell or Broyden–Fletcher–Goldfarb–Shanno algorithms.
6
 Parameter variances are 

based on the negative inverse Hessian. Inequality and poverty indices implied by a fitted GB2 

                                                 
4
 Notice that Kleiber’s conditions are sufficient, but not necessary. Therefore there may be some practical cases 

in which it will be impossible to verify Lorenz dominance on the basis of these conditions.  
5
 Hajargasht et al. (2012)  developed an optimal GMM estimator for fitting the GB2 and its nested models to 

grouped data (i.e. data available in n income classes).  
6
 For an implementation of GB2 maximum likelihood estimation in R, see Graf and Nedyalkova (2012). 
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model, and their associated standard errors computed using the delta method, can be obtained 

using the gb2dist Stata command developed by the author.
 7

  

 The plausibility of models’ fit to data should be in principle assessed using goodness-

of-fit tests like the Kolmogorov-Smirnov (KS) or Anderson-Darling (AD) tests (see, e.g., Ste-

phens 1986), with p-values determined using a nonparametric bootstrap approach.
8
 However, 

our experiments have shown that for our data sets the goodness-of-fit tests always reject the 

hypothesis that the data follow even the best model selected by model selection tests (see be-

low). This is not surprising as it often happens in the literature on fitting parametric models to 

income distribution data and in other large-sample settings (McDonald 1984), when even 

small deviations from a model result in model rejection. For this reason, often graphical and 

numerical methods for assessing goodness of fit are used (see, e.g., Graf and Nedyalkova 

2013). The most popular graphical method is the quantile-quantile (q-q) plot, which for a giv-

en model plots the theoretical quantiles versus empirical quantiles of a variable. If the esti-

mated model fits the data perfectly, the resulting q-q plot would coincide with the 45-degree 

line. The numerical approach to assessing goodness of fit relies on comparing the numerical 

values of theoretical and sample indicators such as the mean, the median, the standard devia-

tion, the Gini index, the poverty rate, and others. In Section 4, we use both graphical and nu-

merical methods in evaluating our fitted models. 

 In order to compare the fit of the GB2 model and its nested alternatives (the Singh-

Maddala and Dagum), we use the likelihood ratio test. The likelihood ratio statistics takes the 

form: 

 

 
    (  ̂    ̂)    ( )  (5) 

where   ̂ and   ̂ are, respectively, the log-likelihood values corresponding to the unconstrained 

(GB2) and restricted or nested models (Singh-Maddala and Dagum), and h is the difference in 

the number of parameters in the two compared models (equal to 1 in our setting). The differ-

ences between GB2 and its nested alternatives can be thus compared using a chi-square distri-

bution with one degree of freedom. 

 

3.2. Testing for Lorenz dominance with the GB2 model 

 

As pointed out in Section 2,  Kleiber (1999) showed that for two GB2 distributions, Xi  ~ 

GB2(ai, bi, pi, qi), i = 1, 2, if a1  ≤ a2, a1p1 ≤ a2p2, and a1q1 ≤ a2q2, then distribution X2 Lorenz-

dominates (is less unequal than) distribution X1. After the GB2 model is fitted to data, the set 

of conditions implying Lorenz dominance can be tested using parameter estimates and their 

variances. In order to test equality of the Lorenz curves for two GB2 distributions with vec-

tors of parameters θi = (ai, bi, pi, qi)
T
, i = 1, 2, we may use the following Wald test (Prieto-

Alaiz 2007): 

 

   [ ( ̂ )   ( ̂ )]
 
 ̂  

  [ ( ̂ )   ( ̂ )]  (6) 

where  ̂ is the MLE of θ, H() is the 3  1 vector of nonlinear functions of the GB2 parame-

ters, which state the Lorenz dominance (i.e. H(θ) = [h1(θ), h2(θ), h3(θ)]
T
 = [a, ap, aq]

T
). The W 

statistics is distributed as chi-square with three degrees of freedom. Assuming independence 

between compared distributions, i = 1, 2, the matrix  ̂   is given by: 

                                                 
7
 The command can be obtained from the author’s webpage. The implementation covers also poverty indices for 

this distribution, which have been recently derived by Chotikapanich et al. (2013). 
8
 The distributions of the goodness-of-fit tests based on the empirical distribution function (as the KS and the AD 

tests are) depend on the assumption that the data are drawn from the known (fixed) distributions. In our case, the 

distributions are fitted by the maximum likelihood procedure and hence they are not fixed. For this reason, the 

nonparametric bootstrap procedure should be used (see Clauset et al. 2009). 
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where n1 and n2 are the sample sizes for respective distributions,  ̂ is the covariance matrix of 

MLE evaluated at  ̂ and  ̂ is the (3  4) matrix with elements defined as follows: 

 

 

 

 ̂   [
   ( )

   
]
   ̂

                    (8) 

If the equality of the Lorenz curves is rejected, then if Kleiber’s (1999) conditions are satis-

fied for a pair of GB2 distributions, Xi  ~ GB2(ai, bi, pi, qi), i = 1, 2, that is if a1  ≤ a2, a1p1 ≤ 

a2p2, and a1q1 ≤ a2q2, then we may conclude that distribution X2 Lorenz-dominates (is less 

unequal than) distribution X1. 

 

3. Data 

 

We use individual income data taken from two sources. For Poland, we use yearly data for the 

period 1993-2010 coming from the Household Budget Survey (HBS) study conducted by the 

Polish Central Statistical Office. Data for other countries analysed in this paper (the Czech 

Republic, Hungary, the Slovak Republic) was obtained from the Luxembourg Income Study 

(LIS) database.
9
 LIS data is available in roughly 5-year intervals; this paper uses all data sets 

available for our choice of countries since the early 1990s to the most recent year available.  

 

Table 1. Descriptive statistics for the real equivalent household disposable income variable 

Data set Mean Median Std. Dev. Max.  No. of 

households 

Czech Republic      

1992 103135.6 95509.62 49028.06 1271468 16234 

1996 152586.8 134757.8 87317.75 3741595 28148 

2004 177948.3 154467.5 107963 3095899 4351 

Hungary      

1991 1209948 1073457 749995.7 8275354 2019 

1994 1032074 864613 764597.3 2.03e+07 1936 

1999 993708.6 854647 620465.9 7423942 1636 

2005 1219921 1042275 859600.5 2.26e+07 2035 

Poland      

1993 864.7 750.6 604.2 20127.1 32108 

1998 1138.1 1003.0 778.3 21338.6 31745 

2004 1102.7 949.4 847.0 27578.9 32214 

2010 1503.6 1254.3 1741.1 181072.3 37127 

Slovak Republic      

1992 115519.7 108743.8 46462.17 1208909 15990 

1996 142847 132141.9 73055.85 1319030 16336 

2004 156054.5 140326.3 94531.2 1844909 5147 

2010 7299.088 6594.618 4759.55 291874.1 5198 

 

The main income variable that is modelled in the paper is disposable (post-tax and 

post-transfer) household income, equivalized using the square root equivalence scale. In order 

to obtain personal income distributions, in all our estimations we have used weights defined 

                                                 
9
 See www.lisdatacenter.org for a detailed description of the LIS database. 

http://www.lisdatacenter.org/
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as a product of the household sampling weights and the number of household members. In-

come is measured in real (inflation-corrected) national currency units. Observations with neg-

ative and zero incomes were excluded from the analysis, but this affected less than 1% of all 

observations for all of our data sets. Table 1 presents descriptive statistics for the income vari-

able used in our empirical analyses. 

 

4. Empirical results 

 

4.1. Fitting models to CEE data 

 

Tables 2-9 present our estimates of models’ parameters together with their standard errors. 

We also give the values of log-likelihoods and the results of likelihood ratio tests for the fitted 

models. Results of the likelihood ratio tests for Poland, presented in Table 3, suggest that the 

GB2 model for Poland is preferred to the Singh-Maddala and Dagum models for all years 

under study. The results of model selection for other countries are less straightforward. In the 

case of the Czech Republic, at least one nested model seems to be as good as the GB2 for 

each studied year. For Hungary, the GB2 model is a better fit to data in all years except 1999. 

For the 1999 Hungarian sample, the three models are empirically indistinguishable. Similar 

conclusion applies do the Slovak Republic in 1992, but in 1996 the GB2 fits the data better 

than the alternatives. For both 2004 and 2010 Slovakian samples, the Dagum model is as good 

as the GB2. In general, the GB2 model fits the data best in 8 out of 15 analyzed data sets. 

However, there are stark differences between countries. The GB2 model is clearly the best 

model for Polish data. It seems also to be the best model for Hungary. For the Czech Republic 

and the Slovak Republic, the Dagum model is often as good as the GB2 and may be preferred 

in practical applications due to its simpler functional form. 

 Goodness of fit is assessed using both visual and numerical methods. Figures 1-2 show 

quantile-quantile plots for Poland in 1993 and 2010.
10

 It can be easily seen that for Poland, the 

GB2 model gives the best fit to data. Other models are visibly worse, especially for higher 

quantiles. It can be also observed that the two-parameter log-normal model gives a signifi-

cantly worse fit to Polish data than the three-parameter Singh-Maddala and Dagum models.  

Goodness of fit is also evaluated numerically in Tables 10-13, by comparing the sam-

ple values of chosen distributional indicators with their counterparts implied by the fitted 

models. For brevity, the analyses are performed only for the last available year for each coun-

try. The results suggest that for most of the indices, the best fitting models produce indices’ 

values that are often in a close agreement with the corresponding sample values. The two ex-

ceptions are the top-sensitive inequality index, GE(2), and the poverty rate.
11

 The GE(2) index 

for Poland for the best fitting GB2 distribution differs by about as much as 54% from its sam-

ple counterpart. For Slovak Republic, the respective difference is also large and reaches about 

33%. These facts reflect the high sensitivity of some inequality indices to the presence of ex-

tremely large incomes (Cowell and Flachaire 2007). The estimates implied by fitted paramet-

ric models seem to be much less sensitive to extreme observations than sample estimates. It is 

worth stressing here that both types of estimates (the sample estimates and estimates implied 

by the fitted model) for the most popular inequality measure – the Gini index – differ in our 

analyses by no more than 1.1%. This suggests that the GB2 model is quite successful in de-

                                                 
10

 We have also included a log-normal model in Figures 1-2 in order to show how the three-parameter models 

improve the fit in comparison with a two-parameter model. We do not provide quantile-quantile plots for the 

Czech Republic, Hungary and the Slovak Republic as the data for these countries were taken from LIS, which is 

a remote-execution data access system not allowing for producing graphs.  
11

 The poverty rate here is defined as the proportion of the population that has an income lower or equal to the 

60% of the median income. 
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scribing the inequality of income distribution in the CEE countries, at least if one is focusing 

on the Gini index. 

 

Table 2. Maximum likelihood estimates of models’ parameters for Poland 

Parameter estimates Singh-Maddala Dagum GB2 

1993    

a 3.660 (0.031) 3.652 (0.0293) 5.463 (0.199) 

b 739.7 (6.058) 769.6 (6.087) 749.4 (4.841) 

p - 0.955 (0.018) 0.575 (0.027) 

q 0.951 (0.018) - 0.564 (0.027) 

Log-likelihood -235121.2 -235121.6 -235047.4 

1998    

a 3.391 (0.028) 3.695 (0.031) 4.673 (0.167) 

b 1041.2 (9.672) 1066.6 (8.531) 1044.0 (7.727) 

p - 0.860 (0.016) 0.638 (0.030) 

q 1.093 (0.022) - 0.710 (0.034) 

Log-likelihood -241793.3 -241771.5 -241746.8 

2004    

a 2.991 (0.024) 3.396 (0.029) 4.330 (0.159) 

b 1018.6 (10.84) 1040.5 (8.858) 1011.7 (8.189) 

p - 0.814 (0.015) 0.600 (0.028) 

q 1.161 (0.024) - 0.702 (0.035) 

Log-likelihood -246737.2 -246703.7 -246678.7 

2010    

a 3.289 (0.026) 3.220 (0.024) 4.014 (0.131) 

b 1226.1 (10.69) 1255.5 (11.03) 1238.7 (9.582) 

p - 1.004 (0.018) 0.752 (0.033) 

q 0.946 (0.017) - 0.726 (0.032) 

Log-likelihood -295975.1 -295979.6 -295954.5 

Note: standard errors are given in parentheses.  

 

 

Table 3. Likelihood ratio test for Poland 

Year Singh-Maddala vs. GB2 Dagum vs. GB2 

 LR p-value LR p-value 

1993 147.6 0.000 148.4 0.000 

1998 93.0 0.000 49.4 0.000 

2004 117.0 0.000 50.0 0.000 

2010 41.1 0.000 50.2 0.000 
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Table 4. Maximum likelihood estimates of models’ parameters for Czech Republic 

Parameter estimates Singh-Maddala Dagum GB2 

1992    

a 5.373 (0.064) 4.811 (0.055) 5.823 (0.274) 

b 90938.49 (709.664) 91353.39 (877.08) 91574.01 (757.937) 

p - 1.157 (0.034) 0.885 (0.060) 

q 0.845 (0.022) - 0.762 (0.048) 

Log-likelihood -192443.57 -192450.99   -192441.99 

1996    

a 4.146 (0.040) 3.782 (0.033) 3.776 (0.133) 

b 129775.2 (1080.466) 128804.7 (1198.58) 128810 (1206.311) 

p - 1.151 (0.026) 1.153 (0.061) 

q 0.882 (0.019) - 1.002 (0.052) 

Log-likelihood -350202.42 -350198.63 -350198.63 

2004    

a 3.902 (0.093) 3.711 (0.083) 3.864 (0.372) 

b 152841 (3406.206) 153019.8 (3587.802) 152764.1 (3513.3) 

p - 1.072 (0.060) 1.014 (0.140) 

q 0.929 (0.051) - 0.941 (0.131) 

Log-likelihood -54971.207 -54971.296 -54971.202 

Note: standard errors are given in parentheses.  

 

Table 5. Likelihood ratio test for Czech Republic 

 Singh-Maddala vs. GB2 Dagum vs. GB2 

 LR p-value LR p-value 

1992 3.16 0.075 18.0 0.000 

1996 7.58 0.006 0.000 1 

2004 0.01 0.920 0.188 0.665 
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Table 6. Maximum likelihood estimates of models’ parameters for Hungary 

Parameter estimates Singh-Maddala Dagum GB2 

1991    

a 3.176 (0.099) 3.912 (0.135) 5.096  (0.685) 

b 1203528 (48852.41) 1221943 (34794.49) 1177459  (33980.01) 

p - 0.725 (0.050)  0.525 (0.088) 

q 1.295 (0.109) - 0.676  (0.123) 

Log-likelihood -29239.886    -29234.724 -29232.439 

1994    

a 2.908 (0.097) 3.314 (0.108) 5.455 (0.912) 

b 930855.5 (41540.52) 963970.8 (31761.01) 898641.1 (26572.51) 

p - 0.799 (0.055) 0.445 (0.087) 

q 1.148 (0.096) - 0.489 (0.105) 

Log-likelihood -28132.567 -28128.831 -28123.03 

1999    

a 3.719 (0.146) 3.309 (0.116) 4.005 (0.574) 

b 791106.6 (28950.39) 800571 (33804.23) 796783.6 (29573.6) 

p - 1.159 (0.104) 0.896 (0.182) 

q 0.833 (0.071) - 0.756 (0.149) 

Log-likelihood -23594.707 -23595.511   -23594.561 

2005    

a 3.548 (0.117) 3.549 (0.114) 5.065 (0.700) 

b 1035360 (34819.89) 1073059 (35182.79) 1049593 (28627.22) 

p - 0.958 (0.071) 0.609 (0.109) 

q 0.959 (0.073) - 0.603 (0.109) 

Log-likelihood -29729.559 -29729.542   -29725.822 

Note: standard errors are given in parentheses.  

 

 

Table 7. Likelihood ratio test for Hungary 

Year Singh-Maddala vs. GB2 Dagum vs. GB2 

 LR p-value LR p-value 

1991 14.894 0.000 4.57 0.033 

1994 19.074 0.000 11.60 0.001 

1999 0.292 0.589 1.9 0.168 

2005 7.474 0.006 7.44 0.006 
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Table 8. Maximum likelihood estimates of models’ parameters for Slovak Republic 

Parameter estimates Singh-Maddala Dagum GB2 

1992    

a 5.351 (0.063) 5.364 (0.065) 5.734 (0.269) 

b 108484.6 (897.56) 109062.6 (920.735) 108848.1 (886.55) 

p - 0.987 (0.028) 0.901 (0.061) 

q 0.994 (0.028) - 0.906 (0.060) 

Log-likelihood -190613.23   -190613.16 -190612.06 

1996    

a 3.032 (0.030) 5.107 (0.064) 8.109 (0.432) 

b 180820 (2979.55) 166536.4 (1143.753) 153834.3 (1280.921) 

p - 0.488 (0.010) 0.293 (0.017) 

q 2.123 (0.073) - 0.502 (0.035) 

Log-likelihood -203463.67   -203232.53 -203177.56 

2004    

a 3.383 (0.066) 4.107 (0.093) 4.413 (0.389) 

b 156102.5 (3777.48) 156104.4 (2832.94) 154814.9 (3048.3) 

p - 0.752 (0.035) 0.686 (0.081) 

q 1.301 (0.069) - 0.898 (0.113) 

Log-likelihood -64425.834 -64421.299 -64420.94 

2010    

a 3.099 (0.058) 4.402 (0.098) 4.811 (0.382) 

b 8266.501 (239.84) 7873.509 (122.922) 7724.4 (164.85) 

p - 0.616 (0.026) 0.554 (0.055) 

q 1.690 (0.102) - 0.868 (0.104) 

Log-likelihood -49330.235 -49313.165   -49312.467 

Note: standard errors are given in parentheses.  

 

 

Table 9. Likelihood ratio test for Slovak Republic 

Year Singh-Maddala vs. GB2 Dagum vs. GB2 

 LR p-value LR p-value 

1992 2.34 0.126 2.2 0.138 

1996 572.22 0.000 109.94 0.000 

2004 9.788 0.002 0.718 0.396 

2010 35.536 0.000 1.396 0.237 

  

The differences between sample estimates and estimates implied by fitted models for 

poverty rates in Hungary and Slovak Republic are also rather big and reach 10-12%. This 

suggests that, at least in some cases, the parametric distributions may have troubles in model-

ling also the lower tails of income distributions.  

Figure 3 plots the evolution of the estimated GB2 parameters over time. The scale pa-

rameter, b, has increased markedly throughout the analyzed period in all countries, except for 

Hungary, representing the increase in mean income during the transition to market econo-

mies.
12

  There are no visible trends in other parameters’ behaviour for Hungary. For the Slo-

vak Republic, the values of all three shape parameters – a, p, and q – have fallen over 1992-

2010. This means that both tails of the fitted GB2 distribution have become fatter in the peri-

od under study. As suggested in Section 2, this can be interpreted as evidence for growing 

                                                 
12

 The parameter b is proportional to the mean of the GB2 distribution (see equation 2). 
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income bi-polarization in the Slovakian society. The bi-polarization process, which concen-

trates incomes around two distributional poles (grouping the poor and the rich), shrinks the 

size of the middle class and in this way it can have significant negative consequences for eco-

nomic growth and social stability.
13

 

 

Figure 1. Quantile-quantile plots, Poland, 1993 

 
 

Figure 2. Quantile-quantile plots, Poland, 2010 

 
 

 

                                                 
13

 Recent theoretical literature has linked polarization to the intensity of social conflicts (Esteban and Ray 1994,  

2011). 
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Table 10. Numerical goodness of fit, Czech Republic, 2004 

 Empirical Percentage difference between empirical index and an 

index implied by a fitted model 

  GB2 Singh-Maddala Dagum 

Mean 177948.3 0.2 0.2 0.3 

Std. Dev. 107963 4.8 4.6 6.0 

Median 154467.5 -1.6 -1.6 -1.6 

Gini index 0.267 0.5 0.4 0.7 

GE(2) index 0.184 10.0 8.7 11.2 

P90/P10 3.212 1.0 1.1 1.0 

P75/P25 1.801 1.1 1.1 0.9 

Poverty rate 0.115 -0.9 -0.9 -1.4 

Note: P90/P10 and P75/P25 denote, respectively, the ratio of the 90
th

 percentile to the 10
th

 

percentile and the ratio of the 75
th

 percentile to the 25
th

 percentile. 

 

Table 11. Numerical goodness of fit, Hungary, 2005 

 Empirical Percentage difference between empirical index and an 

index implied by a fitted model 

  GB2 Singh-Maddala Dagum 

Mean 1219921 0.1 0.6 1.1 

Std. Dev. 859600.5 0.3 8.8 12.6 

Median 1042275 -1.0 -1.0 -1.2 

Gini index 0.291 0.2 1.1 2.2 

GE(2) index 0.248 0.5 16.0 21.8 

P90/P10 3.311 -5.4 -6.1 -6.1 

P75/P25 1.845 0.6 -1.5 -1.5 

Poverty rate 0.125 -11.6 -10.4 -12.1 

 

Table 12. Numerical goodness of fit, Poland, 2010 

 Empirical Percentage difference between empirical index and an 

index implied by a fitted model 

  GB2 Singh-Maddala Dagum 

Mean 1503.7 0.7 1.0 1.5 

Std. Dev. 1741.15 32.4 36.6 39.0 

Median 1254.3 -0.1 -0.1 -0.3 

Gini index 0.319 1.1 1.9 2.7 

GE(2) index 0.670 53.7 59.0 61.7 

P90/P10 3.847 -1.1 -1.5 -1.6 

P75/P25 1.955 0.3 -1.0 -1.1 

Poverty rate 0.157 -0.2 -1.3 -2.1 
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Table 13. Numerical goodness of fit, Slovak Republic, 2010 

 Empirical Percentage difference between empirical index and an 

index implied by a fitted model 

  GB2 Singh-Maddala Dagum 

Mean 7299.088 0.5 0.6 0.7 

Std. Dev. 4759.55 18.6 22.6 20.3 

Median 6594.618 -1.1 -0.7 -1.1 

Gini index 0.265 0.0 0.8 0.5 

GE(2) index 0.213 33.3 39.3 35.7 

P90/P10 3.253 -4.6 -5.1 -4.7 

P75/P25 1.814 -0.4 -2.6 -0.9 

Poverty rate 0.134 -14.7 -12.6 -12.1 

 

 

Figure 3. The evolution of the GB2 parameters over time (b measured on the right axis) 

 
There was a notable fall in the value of a parameter for Poland and the Czech Repub-

lic. At the same time, the values of p and q for these countries have increased. These trends 

are similar to those reported for household income in Germany for 1984–93 by Brachmann et 

al. (1996), and for 1970–1990 for the US family income as reported by Bordley et al. (1996). 

For Poland and the Czech Republic, the fall in a, which is making both tails of the GB2 dis-

tribution fatter is combined with increases in both p and q, which have opposite effects on, 

respectively, the left and the right tail of income distributions. The conclusions with respect to 

changes in bi-polarization depend therefore on the joint changes in ap and aq, which is inves-

tigated in the next section. 
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4.2. Inference on changes in income inequality 

 

In this section, we perform statistical tests on Lorenz dominance, which allow to make robust 

(independent of the choice of inequality measure) inferences on changes in income inequality. 

Table 14 presents sample estimates of four widely used inequality indices: the Gini index, the 

GE(2) index, and the two percentile ratios. According to these estimates, income inequality 

during the transformation to market economy has increased substantially in the Czech Repub-

lic, Poland and the Slovak Republic. For Hungary, the Gini and the GE(2) indices suggest that 

the inequality increased, but the percentile ratios suggest otherwise. The scale of the inequali-

ty increase in the Czech Republic, Poland and the Slovak Republic depends on the particular 

cardinal inequality measure used, but all of them suggest that income inequality has risen. 

However, we cannot be sure that this conclusion would remain valid for other cardinal ine-

quality indices that could be used. Testing for Lorenz dominance allows one to reach a con-

clusion that is valid for a wide range of popular inequality measures (see Section 2). Moreo-

ver, as shown in Section 3.2, parametric Lorenz dominance can be tested statistically and thus 

provide a conclusion, which is statistically significant.
14

 

 

Table 14. Inequality indices for the CEE countries, sample estimates 

Data set Inequality index 

 Gini GE(2) P90/P10 P75/P25 

Czech Republic     

1992 0.206 0.112 2.360 1.548 

1996 0.256 0.163 2.974 1.765 

2004 0.267 0.184 3.212 1.801 

Hungary     

1991 0.283 0.186 3.355 1.873 

1994 0.321 0.273 4.138 1.970 

1999 0.292 0.195 3.432 1.888 

2005 0.291 0.248 3.311 1.845 

Poland     

1993 0.284 0.239 3.312 1.808 

1998 0.286 0.220 3.469 1.856 

2004 0.313 0.259 4.000 1.981 

2010 0.319 0.670 3.847 1.955 

Slovak Republic     

1992 0.189 0.081 2.251 1.519 

1996 0.250 0.131 3.038 1.716 

2004 0.268 0.179 3.286 1.810 

2010 0.265 0.213 3.253 1.814 

Note: P90/P10 and P75/P25 denote, respectively, the ratio of the 90
th

 percentile to the 10
th

 

percentile and the ratio of the 75
th

 percentile to the 25
th

 percentile. 

 

 The results of the tests for Lorenz curves equality for chosen pairs of years are pre-

sented in Table 15. For Hungary, the fall in both a and q combined with a rise in p implies 

that the necessary conditions for Lorenz dominance are not satisfied and neither distribution 

Lorenz-dominates the other one (see Section 2). Therefore, the conclusions about the direc-

tion of inequality changes in Hungary depend on a particular cardinal inequality measure ap-

                                                 
14

 Statistical inference on inequality changes could be, of course, also conducted using tests based on sampling 

variances for particular inequality indices. However, such tests would have to be performed for all (possibly 

many) inequality measures used. 
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plied. It is notable that for Hungary the ap index, which regulates the fatness of the GB2 left 

tail, has increased over time. It means that the left tail of the Hungarian income distribution 

has become thinner; this had an inequality-reducing effect according to some inequality indi-

ces (including the percentile ratios, see Table 14). 

For the Czech Republic, Poland and the Slovak Republic, the conditions of the Lorenz 

dominance for the GB2 model are fulfilled. In particular, we observe that in these countries a 

fall in a over time is combined with a fall in both ap and aq. Therefore, income distributions 

observed in these countries in early 1990s Lorenz-dominate (are less unequal than) income 

distributions observed in the respective countries in the mid- or late-2000. P-values from the 

chi-square test confirm that these conclusions are statistically significant. The fall in both ap 

and aq means also that Poland and the Czech Republic have experienced a rise in income bi-

polarization, similar to that occurring in the Slovak Republic. This confirms earlier results on 

changes in income polarization in Poland, obtained in a non-parametric framework (Kot 2008, 

Brzezinski 2011). 

 

Table 15. Test results for equality of the Lorenz curves  

 Combinations of estimated parameters and test statistics 

 a p q ap aq χ
2
 p-value 

Czech Republic        

1992 5.823 0.885 0.762 5.153 4.437 
63.49 0.000 

2004 3.864 1.014 0.941 3.918 3.636 

Hungary        

1991 5.096 0.525 0.676 2.6754 3.445 
- - 

2005 5.065 0.609 0.603 3.085 3.045 

Poland        

1993 5.463 0.575 0.564 3.141 3.081 
114.63 0.000 

2010 4.014 0.752 0.726 3.019 2.914 

Slovak Republic        

1992 5.734 0.901 0.906 5.166 5.195 
278.24 0.000 

2010 4.811 0.554 0.868 2.665 4.176 

Note: p-values in the last column are Sidak-adjusted. 

 

 

5. Conclusions 

 

The objective of this paper was to model income distributions in four Central and Eastern 

European (CEE) countries (the Czech Republic, Hungary, Poland and the Slovak Republic) in 

1990s and 2000s using parametric statistical models proposed in the theoretical literature. In 

particular, we have used the generalized beta distribution of the second kind (GB2) and the 

models that it encompasses (the Singh-Maddala and Dagum distributions). The models were 

fitted to micro-data on household incomes using the maximum likelihood estimation. We 

have found that for Poland, and to somewhat lesser extent for Hungary, the GB2 model fits 

the data better than the considered alternatives. For the Czech Republic and the Slovak Re-

public, the Dagum model is often in practice as good as the GB2 and may be preferred in em-

pirical research due to its greater simplicity. 

 The paper also found that the tails of the fitted GB2 models for the Czech Republic, 

Poland and the Slovak Republic have become fatter over time. This can be interpreted as an 

evidence in favour of the view that the process of transformation to market economies in these 

countries has brought growing income bi-polarization – incomes began to cluster around the 

poles situated around the tails of the distribution. Our analysis for Hungary suggests that this 
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country is the only one in our sample for which the left tail has become thinner – some of the 

probability mass has shifted to the middle or to the right tail of the distribution. 

 We have also provided statistical inference on changes in income inequality based on 

parametric Lorenz dominance. The results show that for a wide class of popular inequality 

indices, the period of economic transformation since the early 1990s to the mid- or late-2000s 

has brought unambiguously an increase in income inequality in the Czech Republic, Poland 

and the Slovak Republic. There is no Lorenz dominance in case of Hungary – income ine-

quality has increased in this country according to some measures, but decreased according to 

others.  

Overall, this paper has shown that parametric modelling is a useful tool to describe the 

shape and the evolution of income distributions in the CEE countries. The results of this paper 

concerning the best fitting parametric model for a given country can be used in applying the 

model to study more specific economic problems involving income distribution – for exam-

ple, to study the effect of economic reforms on income distribution in general equilibrium 

modelling. 

 

References 

 

Bandourian, R., McDonald, J.B., and Turley, R.S. (2003). “A comparison of parametric mod-

els of income distribution across countries and over time”. Estadistica, 55, 135–152. 

Bartels, C.P.A., Van Metele, H. (1975). Alternative Probability Density Functions of Income. 

Vrije University Amsterdam: Research memorandum 29. 

Boccanfuso, D., Richard, P., Savard, L. (2013). “Parametric and nonparametric income distri-

bution estimators in CGE micro-simulation modelling”. Economic Modelling, 

http://dx.doi.org/10.1016/j.econmod.2013.07.002. 

Bordley, R. F., McDonald, J.B., and Mantrala, A. (1996). “Something New, Something Old: 

Parametric Models for the Size Distribution of Income,” Journal of Income Distribu-

tion, 6, 91–103. 

Brachmann, K., Andrea, S., and Trede, M. (1996). “Evaluating Parametric Income Distribu-

tion Models,” Allegemeine Statistiches Archiv, 80, 285–98. 

Brzezinski, M. (2011). “Statistical inference on income polarization in Poland,” Przeglad 

Statystyczny, 58, 102–113. 

Burkhauser, R. V., Feng, S., Jenkins, S. P., & Larrimore, J. (2012). “Recent trends in top in-

come shares in the United States: reconciling estimates from March CPS and IRS tax re-

turn data”. Review of Economics and Statistics, 94(2), 371–388. 

Chotikapanich, D., Griffiths, W., & Karunarathne, W. (2013). “Calculating Poverty Measures 

from the Generalised Beta Income Distribution,” Economic Record, 89, 48–66. 

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). “Power-law distributions in empiri-

cal data,” SIAM Review, 51(4), 661–703. 

Cowell, F. A. (2000). “Measurement of Inequality,” in A. B. Atkinson and F. Bourguignon 

(eds), Handbook of Income Distribution, Vol. 1, Elsevier, Amsterdam, 87–166. 

Cowell, F. A. and Flachaire, E. (2007). “Income distribution and inequality measurement: The 

problem of extreme values,” Journal of Econometrics, vol. 141(2), 1044–1072. 

Dagum, C. (1977). “A new model for personal income distribution: specification and estima-

tion,” Economie Appliquée, 30, 413–437. 

Dastrup, S. R., R. Hartshorn and J. B. McDonald (2007). “The Impact of Taxes and Transfer 

Payments on the Distribution of Income: A Parametric Comparison,” Journal of Eco-

nomic Inequality, 5, 353–369. 



 

18 

 

Domański, C. and Jędrzejczak, A. (2002). “Income Inequality Analysis in the Period of Eco-

nomic Transformation in Poland,” International Advances in Economic Research, 8, 

215–220. 

Esteban, J. and Ray, D. (1994). “On the measurement of polarization,” Econometrica, 62(4), 

819–851. 

Esteban, J., Ray, D. (2011). “Linking conflict to inequality and polarization,” American Eco-

nomic Review, 101(4), 1345–1374. 

Foster, J., and Wolfson, M. (2010). “Polarization and the decline of the middle class: Canada 

and the U.S,” Journal of Economic Inequality, 8(2), 247–273. 

Gibrat, R. (1931). Les Inegalites Economiques. Sirey, Paris. 

Graf, M. and Nedyalkova, D. (2012). GB2: Generalized Beta Distribution of the Second 

Kind: Properties,Likelihood, Estimation, R Package Version 1.1. 

Graf, M., and Nedyalkova, D. (2013). “Modeling of Income and Indicators of Poverty and 

Social Exclusion Using the Generalized Beta Distribution of the Second Kind”. Review 

of Income and Wealth, doi: 10.1111/roiw.12031. 

Hajargasht, G., Griffiths, W., Brice, J., Rao, D.S.P. and Chotikapanich, D. (2012), “Inference 

for Income Distributions Using Grouped Data”, Journal of Business of Economic Statis-

tics, 30, 563–76. 

Jagielski, M. And Kutner, R. (2010). “Study of Households’ Income in Poland by Using the 

Statistical Physics Approach,” Acta Physica Polonica A, 117(4), 615–618. 

Jäntti, M., and Jenkins, S. P. (2010). “The Impact of Macroeconomic Conditions on Income 

Inequality”, Journal of Economic Inequality, 8, 221–240. 

Jenkins, S. P. (2007), “gb2fit: Stata Module to fit Generalized Beta of the Second Kind Dis-

tribution by Maximum Likelihood,” Statistical Software Components Archive S456823, 

(http://ideas.repec.org/c/boc/bocode/s456823.html). 

Jenkins, S. P. (2009). “Distributionally-sensitive inequality indices and the GB2 income dis-

tribution”. Review of Income and Wealth, 55(2), 392–398. 

Kleiber, C. (1999). “On the Lorenz Order Within Parametric Families of Income Distribu-

tions,” Sankhyā, B61, 514–17. 

Kleiber, C. (2008). “The Lorenz Curve in Economics and Econometrics”. In: Gianni Betti and 

Achille Lemmi (eds.): Advances on Income Inequality and Concentration Measures. 

London: Routledge, 2008, 225–242. 

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial 

Sciences, John Wiley, Hoboken, NJ. 

Kordos, J. (1990). “Research on income distribution by size in Poland”. In: C. Dagum and M. 

Zenga (eds.), Income and Wealth Distribution, Inequality and Poverty. New York, Ber-

lin, London, and Tokyo: Springer, pp. 335–351. 

Kot, S. M. (2008). Polaryzacja ekonomiczna. Teoria i zastosowanie. Warszawa: PWN. 

Łukasiewicz, P. and Orłowski, A. (2004). “Probabilistic Models of Income Distributions,” 

Physica A, 344, 146–151. 

McDonald, J. B. (1984), “Some Generalized Functions for the Size Distribution of Income,” 

Econometrica, 52, 647–63. 

McDonald, J. B. and Xu, Y. J. (1995). “A Generalization of the Beta Distribution with Appli-

cations,” Journal of Econometrics, 66, 133–52, (Erratum: Journal of Econometrics, 69, 

427–8, 1995). 

McDonald, J. B. and Ransom, M. (2008). “The Generalized Beta Distribution as a Model for 

the Distribution of Income: Estimation and Related Measures of Inequality,” in D. Chot-

ikapanich, (ed.), Modeling Income Distributions and Lorenz Curves, Springer, New 

York, 147–66. 

Pareto, V. (1897). Cours d’e´conomie politique. Lausanne: Ed. Rouge. 

http://ideas.repec.org/c/boc/bocode/s456823.html


 

19 

 

Parker, S. C. (1999). “The Generalized Beta as a Model for the Distribution of Earnings,” 

Economics Letters, 62, 197–200. 

Prieto-Alaiz, M. (2007). “Spanish Economic Inequality and Gender: A Parametric Lorenz 

Dominance Approach”. Research on Economic Inequality, 14, 49–70. 

Salem, A.B., and Mount, T. D. (1974). “A convenient descriptive model of income distribu-

tion: The gamma density,” Econometrica 42, 1115–1127. 

Shorrocks, A. F. (1984). “Inequality decomposition by population subgroups,” Econometrica, 

52, 1369–1388. 

Singh, S.K., Maddala, G.S. (1976). “A function for the size distribution of incomes”. Econo-

metrica, 44, 963–970. 

Stephens, M. A. (1986). “Tests based on EDF statistics,” in: D’Agostigno, R. B., Stephens, 

M. A. (eds.), Goodness-of-fit techniques, Marcel Dekker, New York, pp. 95–193. 

Taille, C. (1981). “Lorenz ordering within the generalized gamma family of income distribu-

tions”. In: Taille, C., Patil, G.P., Balderssari, B. (eds.) Statistical Distributions in Scien-

tific Work, vol. 6, pp. 181–192. Reidel, Boston. 

Wilfling, B. (1996). “Lorenz ordering of generalized beta-II income distributions,” Journal of 

Econometrics, 71, 381–388. 

Wimp, J. (1981). “The computation of 3F2(1)”. International Journal of Computer Mathemat-

ics, 10, 55–62. 




	WNE WP 31/2013 (116)
	Introduction
	The GB2 distribution – definition and properties
	Methods
	Data
	Empirical results
	Conclusions

