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A caliper mechanism is a common tool used to prevent from inexact matches. The existing 
literature discusses asymptotic properties of matching with caliper. In this simulation study 
we investigate properties in small and medium sized samples. We show that caliper causes a 
significant bias of the ATT estimator and raises its variance in comparison to one-to-one 
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1. Introduction 
 

Matched sampling methodology is frequently applied in evaluation studies. The role of 
matching is to adjust a non-treated sample in order to make it comparable with a treated 
sample. It allows us to alter the differences in the distributions of characteristics between a 
treated and a non-treated sample. Even when the differences are observed it is necessary to 
adjust for those differences to obtain unbiased estimates of treatment effects. Matching 
estimators link units from a treated sample with those from the non-treated sample. They are 
widely applied to remove existing differences of unit characteristics in different samples. 
Matching is typically done without replacement, so each non-treated observation is used as a 
match only once and matches are independent (Abadie, Imbens, 2011). The procedure seeks 
for each treated observation a non-treated observation, also called control observation, 
identical or very similar to it in observed characteristics. The most widely used types of 
matching are Mahalanobis distance matching, propensity score matching and kernel based 
matching. Among them the propensity score matching plays a fundamental role, since it 
reduces the curse of dimensionality problem and allows for one dimensional non-parametric 
regression (Rosenbaum and Rubin, 1983). The propensity score itself is a probability of 
receiving a treatment. It is also important to mention that matching on the propensity score is 
sufficient to balance the observed covariates. More recently developed nonparametric 
matching estimators described, for example, in Heckman et al. (1997, 1998) use weighted 
average over multiple observations to construct matches. However, those methods are 
computationally demanding.  

Several studies looked into asymptotic properties of matching procedures , to mention 
Heckman et al. (1998), Hirano, Imbens and Ridder (2003), Abadie and Imbens (2011). All of 
them show that most matching techniques provide consistent estimates for the average 
treatment effect; however, only few of them are efficient, such as the class of reweighting 
estimators. Secondly, pair matching is asymptotically inefficient (Abadie and Imbens, 2006). 
In a recent article, Abadie and Imbens (2011) showed that simple matching estimators may 
include bias and that bias does not disappear in large samples. On the other hand, there is only 
a limited number of studies dealing with finite sample properties of matching estimators. Here 
it is worth noting the works by Frölich (2004), Austin (2009) and Busso, DiNardo and 
McCrary (2009). 

Frölich (2004) examined properties of various propensity score matching estimators 
and showed that one-to-one matching is outperformed by ridge matching. However, the Mean 
Squared Error (MSE) of ridge matching procedure is lower than that of one-to-one only if the 
optimal bandwidth is known. Usually, the optimal value of bandwidth is not known a-priori 
and has to be estimated. Austin (2009) also compared several matching techniques in a Monte 
Carlo study. He concentrated mainly on one-to-one matching. All examined estimators 
resulted in a similar number of matched pairs and similar balance of variables between treated 
and untreated samples. Moreover, matching on the propensity score with caliper size not 
exceeding 0.03 tends to result in estimates with negligible relative bias. Similarly, Busso, 
DiNardo and McCrary (2009) and Huber, Lechner and Wunch (2010) emphasise the role of 
trimming to account for common support. Controlling for common support condition 
effectively improves matching performance regardless of the estimator used.  

Deheija and Wahba (1999, 2002) evaluate the performance of propensity score 
matching methods, including pairwise matching and caliper matching. They find that these 
simple matching estimators succeed in closely replicating the experimental results. Smith and 
Todd (2001) reconcile those findings and show that matching estimates cause substantial bias. 
More recently, Zhao (2004) studied small sample properties of propensity score matching 
versus covariate matching estimators and those of different matching metrics. He showed that 
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propensity score matching is a good choice when the correlation between covariates and the 
participation indicator is high. On the other hand, propensity score matching does not perform 
well in small samples in comparison with other estimators. 

Matching estimators frequently suffer from bias. In a seminal work by Rosenbaum and 
Rubin (1985b) three sources of bias in matching were identified. The first is departure from 
strong ignorable treatment assignment, which means that assignment to treatment is based on 
observable pre-treatment variables only. The second one is bias due to incomplete matching 
and, finally, the third component is due to inexact matching. The bias caused by incomplete 
matching can be severe and is much worse than the bias due to inexact matching. Assuming 
that the strong ignorability condition holds, we want to assess empirically which source of 
matching bias makes larger distortions. Recently, Busso, DiNardo and McCrary (2009) 
showed that pair matching performs best in terms of bias among all procedures usually 
applied. 

In this paper we focus on a particular matching technique, that is, matching with 
caliper. The caliper mechanism has been proposed to control for matching quality and prevent 
from inexact matches. There is a practical trade-off when obtaining matched samples between 
desires to (i) find matches for all treated units and (ii) use only matched treated-control pairs 
that are extremely similar to each other (Rosenbaum and Rubin 1985b). The former situation 
leads to inexact matching, as matched objects may differ substantially, while the latter leads 
to incomplete matching.  

It is also worth mentioning that the literature discusses the properties of caliper applied 
to covariates and not the propensity score matching. The main motivation is that the finite 
sample properties of caliper mechanism applied to the propensity score have not been subject 
of a comprehensive study. In our work we try to shed some light on the properties of caliper 
matching with caliper used to control the differences in the propensity score. Our work is 
broader than Austin (2009). We consider different distributions of the propensity score and 
outcome equation. We also compare the nearest-neighbour matching with and without caliper. 
Our main result is that using caliper may lead to biased estimates. Usually, bias is heavy, 
especially when the outcome value is non-linearly related to the propensity score. Only when 
either outcome equation is constant or the propensity score distribution is uniform the 
matching with caliper procedure is able to provide unbiased results. Secondly, the bias 
becomes smaller as the caliper value increases. Thirdly, to efficiently control for poor 
matches, the size of the caliper should be within the range recently proposed by Austin 
(2009). The novelty of our approach is that the literature discusses the properties of caliper 
imposed on covariates and not the propensity score. 

The article is organised as follows. Section 2 introduces notation, matching estimators 
and caliper mechanism in detail. In the third section we describe Monte Carlo experiment for 
different distributions of the propensity score and the outcome equations. In the fourth section 
we present our main results. The last section summarises and concludes. 

 
2. Caliper matching 

 
The main problem in treatment effect literature is the estimation of the average 

treatment effect on the treated. We follow a standard notation. Let Y1i be an outcome when 
individual i receives a treatment and Y0i when he or she does not. The latter situation is called 
control treatment. Let Pi Î{0,1} be an indicator of treatment status. The average treatment 
effect on the treated (ATT) is defined as 

 
ATT= E[Y1|P=1]- E[Y0|P=1]    (1) 
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A typical matching estimator has the form (Smith & Todd, 2005) 
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of distance between i and j, and N is a number of matched pairs. The fundamental problem of 
inference is that, for each individual we can observe only one of these potential outcomes, 
because each unit will receive either treatment or control, not both. The estimation of 
treatment effects can thus be thought of as a missing data problem (Rubin, 1973), where we 
are interested in replicating the unobserved potential outcomes. 

It is assumed that, conditional on all factors that influence the potential outcome and 
the decision to participate, P is independent of Y0. This assumption has several names in the 
literature. It is called unconfoundness, conditional independence or overlap, or selection on 
observables (Imbens, 2004). The counterfactual mean can be identified, provided that the 
support of X for the treated sample is contained in the support for X in the non-treated one. 
This property is called common support condition. An additional assumption is the Stable 
Unit Treatment Value Assumption (Rubin, 1980), which states that the outcomes of one 
individual are not affected by treatment assignment of any other individual.  

The idea of matching is to compute a similarity measure and use the algorithm to 
match observations from the treatment sample with their closest counterpart from the control 
sample. The aim is to construct an adequate comparison sample that replaces missing data and 
allows us to estimate E(Y0i|Pi=1) without imposing additional a-priori assumptions (Blundell 
and Costa-Dias, 2009). Objects are matched according to the estimated value of the similarity 
measure. The straightforward algorithm is to choose for each object in the treatment sample 
an object with the most proximal value of the similarity measure p from the control sample. 
Usually the propensity score, which is the probability of receiving the treatment, is chosen for 
that purpose. Let us define a set Ai such that only one comparison unit i belongs to Ai: 
    { }{ }jii ppnjjA -Î= min:1| K      (3) 

where ||.|| is a metric. In case of the nearest neighbour matching, set Ai can be treated 
as weighting matrix. The weight matrix P(i,j) is a square matrix with zeros and ones as 
elements. The value one is assigned to the closest neighbour, and zeros to all remaining units. 
This type of matching is called one-to-one matching. Each unit from the treatment sample is 
linked with only one element in the control sample. 
  The nearest neighbour matching estimator has good statistical properties if pi and pj 
are defined on a common set. The role of the evaluator is to decide how to treat poorly 
matched observations (Lee 2005, pp. 89). The total distance, the average distance or the 
median distance between matched pairs pi-pj may be viewed as a measure of matching quality 
(Rosenbaum, 1985). The lower the measure, the better the fit. For the ideal procedure all 
quality measures should equal 0. Relying on all matched pairs regardless of matching quality 
may affect the balance. The balance is a weaker condition than close matching within each 
pair, and since it is weaker it can often be attained when close matching within pairs is not 
possible. Rosenbaum and Rubin (1983) showed that balancing two samples on the propensity 
score is sufficient to equalise covariate distributions. On the other hand, if a large number of 
poorly matched pairs were left out, the size of the control sample shrinks which means that for 
certain observations in the treatment sample there is no adequate comparison in the control 
sample. As a result, they are dropped from the analysis. This would help with the balance but 
at the cost of efficiency, because some information is not used. The evaluator has to choose 
between the bias due to inexact matching and bias and variance due to incomplete matching. 

One-to-one or one-to-many matching is characterised by the risk of having poorly 
matched pairs, that is, pairs distant in terms of the chosen similarity measure. The caliper 
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matching (Cochran and Rubin, 1973) is a variation of the nearest neighbour matching that 
attempts to avoid poor quality matches by imposing a tolerance of the maximum distance ||pi-
pj|| allowed. The impact of the caliper may be compared to the focus in a camera. When 
attention is paid to a specific point, other distant points are not visible. The procedure simply 
drops objects without a close match in the control group  

   { }{ }d<-Î= jii ppnjjA min:1| K              (4) 

The set Ai is made of such objects j, that their distance from the nearest match is not 
greater than δ. That is, a match for person i is selected only if ||pi-pj||< δ, where δ is the pre-
specified tolerance. Treated persons for whom no matches can be found within caliper are 
excluded from the analysis, which is one way of imposing a common support condition. 
Implementation of caliper matching may lead to a smaller bias in regions where similar 
controls are sparse. An unresolved problem is choosing an a-priori reasonable value for 
tolerance level. 

Rosenbaum and Rubin (1985b) discuss the choice of the caliper size, generalizing the 
results from Table 2.3.1 of Cochran and Rubin (1973). When variance of the linear propensity 
score in the treatment group is twice as large as that in the control group, a caliper of 0.2 
standard deviation removes 98% of the bias in a normally distributed covariate. Rosenbaum 
and Rubin generally suggest a caliper of 0.25 standard deviation of the linear propensity 
score. However, in the analysis they considered matching on the Mahalanobis distance not on 
the propensity score. 

Unfortunately, there is no single optimal value for the caliper. The literature suggests 
small numbers such as 0.005 or 0.001 (see Austin, 2009). The caliper reduces the bias of the 
average treatment effect estimator at the cost of an increased variance (Heckman et al, 1997). 
In a special case, when the propensity score distribution is the same in the treatment and the 
control group, the caliper cuts off the worst matched pairs and lowers the bias without a 
significant increase in the estimator variance. The caliper also lowers the value of matching 
quality measures. The cost is a lower number of successfully matched pairs. As a 
consequence the variance of the average treatment effect may increase. However, this is not a 
major concern as long as one is interested in a precise estimation of the ATT (Smith and 
Todd, 2005). On the other hand, Smith and Todd (2005) point out that the potential problem 
with a caliper is the lack of a-priori knowledge about its optimal value. It is common practice 
to set the value by trial and error. 

 
3. Monte Carlo Study Design 
 
In this section we describe a Monte Carlo simulation conducted to examine the 

properties of the propensity score matching with caliper and compare with one-to-one 
matching on the propensity score. Since the propensity score is unknown in general, it is 
assumed, that is, estimated in a semi-parametric way. In practice, a probit or a linear 
probability model is used.  

In the Monte Carlo experiment several characteristic of matching can be examined. 
For instance, different variants of matching procedure, different functional forms of the 
outcome variable, (in)dependency of the outcome from the propensity score, different 
distributions of covariates, different sample sizes and different proportion of treated 
observations to non-treated ones. This complexity makes a general experiment cumbersome. 
We decided to design the Monte Carlo experiment in such a way that is as simple as possible 
on one hand, and as comprehensive as possible on the other. Therefore, we concentrate our 
attention on the most important features of the matching procedure. We decided not to 
estimate the propensity score; we instead assume that the propensity score values are drawn 
from known distributions. 
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The second pre-set element is the sample size and the proportion of treated to non-
treated observations. We decided to work with moderate sample sizes of 500 observations. A 
number of that range is very common in literature and enables analysis of small sample 
properties. As shown by Frölich (2004), different proportions of treated and controls may 
result in different conclusions. We decided to hold this parameter constant and set its value to 
1/3. This means that we have twice as many control observations as the treated ones. These 
proportions are usually found in empirical studies.  Usually the control group is larger than 
the treated group but the difference is not large (see Frölich 2004). 

We considered three different distributions: uniform, normal and Johnson SB. In the 
case of two latter distributions, the distribution in the treatment sample is concentrated at the 
right tail, while in the control sample it is concentrated at the left tail. This setup is used to 
mimic real differences between the treatment and the control sample. The distributions are 
parameterised and rescaled in such a way that the support is always on the (0,1) interval. They 
are presented in Figure 1.  

 
Figure 1. Propensity score distributions 
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Legend: Solid line represent distribution in treated samples, dashed in controls ones. 
Source: Own computations. 

 
Different distributions are used to replicate the behaviour of real data. The uniform 

distribution of the propensity score vector, presented on the left panel of graph 1, is just used 
as a benchmark. The normal distribution, presented on the middle panel of graph 1, is a 
picture of a rather ideal case in which linear combinations of object characteristics follow a 
normal distribution. In practice, normal distribution is only an approximation and true 
distribution may possess heavy tails or outliers. Nevertheless, the normal distribution of 
several characteristics is a common assumption in social sciences. On the right panel the 
propensity scores follow a Johnson SB distribution. This is a very flexible distribution, 
described by four parameters, with a closed analytical form. Depending on the specific 
parameterisation, Johnson SB distribution can be similar to normal distribution, to asymmetric 
distribution, to distribution with heavy tails, to distribution with probability mass concentrated 
at the edge of support and to many others. Due to those properties it is frequently used in 
simulation based studies.  

The next element in our numerical experiment is the functional form of the outcome 
equation. We depart from uniform curve and end up with a highly non-linear outcome. The 
outcome equations are summarized in Table 1 and presented on Figure 2. The uniform 
distribution mirrors the ideal case, when the value of treatment is the same for all objects. 
This distribution will also be used as a benchmark. The linear distribution reflects the 
situation in which objects that are more likely to take part in a program will benefit more. For 
instance, this is very common in social support programs. Two other non-linear curves are 
adapted from Frölich (2004). The m2 curve might represent a situation where the outcome 
depends discontinuously on an object characteristic strongly related to the propensity score. 
The m4 curve could be thought of as a reversal of the linear curve. The program pays outmost 
for those participants that are less likely to participate. Consider, for example, a job training 
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program and education as a key determinant of the propensity score. Usually, well educated 
persons do not need such programs and are able to find a job without external help. The 
outcome for the non-treated population is set to be 0 for the reasons of simplicity. 

 
Figure 2. Distribution of the treatment effect  
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Source: Own computations. 
 
Table 1. Outcome equations for the treated sample 

Distribution Outcome equation for the treated group 
Constant y = 5+e,e~U(0,.01) 
Linear y = 4+2*p+e,e~U(0,.01) 
Non-linear m2 y = 0.1+0.5*p+1/2*(exp(-200*(p-0.7)2))+e,e~U(0,.01) 
Non-linear m4 y = 0.2+(1-p)0.5-0.6*(0.9 - p)2+e,e~U(0,.01) 

Please note that the non-linear curves are adjusted by a linear transformation to have a mean value of 5. 
 
In the simulations we use one-to-one procedure and concentrate on caliper size and 

comparison of matching with and without caliper. The literature suggest rather narrow caliper, 
but then results are prone to be biased because many potential pairs would be discarded from 
analysis. The wider caliper allows for greater imbalance at the individual level, however it is 
easier to achieve balance in the propensity score distribution between the treated and the 
control group. Therefore, we considered wide range of caliper sizes from 0.001 to 0.05. Our 
aim is to check the influence of a particular value of the caliper size on the estimate of ATT. 
 Having assigned specific values to all experiment parameters we are ready to compare 
the results of the simulation. In each numerical experiment we apply standard one-to-one 
matching and one-to-one matching with caliper to the same data set. The numerical 
experiments are designed in such a way that the “true” value of the ATT should be equal to 5 
regardless of the distribution of the propensity score, functional form of outcome equation and 
the estimation technique. The small error term added to the outcome equation is purely 
random, and hence deviations from 5 no grater than 0.01 are meaningless. As the robustness 
check we ran simulations with larger random errors of 0.05 and 0.5, but the size of error 
turned out to have no impact on the final results. 
   

4. Empirical Results 
 
The main results of our numerical experiment are presented in three separate tables. 

Each table consist of outcomes for only one distribution of the propensity score and all 
possible combinations of other parameters. The “1:1” column presents simple one-to-one 
nearest neighbour matching estimates and the “1:1 caliper” contains the result for matching 
with caliper. For each caliper size the number in the top row is an estimate of the ATT, while 
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the number in the bottom row is the standard error of that ATT estimate. The results presented 
in Table 2 serve as kind of a benchmark for further results. They are obtained under the 
assumption of identical distribution of the propensity score in the treatment and the control 
group. 
 
Table 2. The ATT estimated with uniform distribution of propensity score 

Treatment constant linear m2 m4 
Caliper 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 
size   caliper   caliper   caliper   caliper 

0.001 5.000 5.000 5.000 5.000 5.010 5.010 4.997 4.997 
  0.000 0.000 0.045 0.064 0.215 0.307 0.069 0.099 

0.005 5.000 5.000 5.000 5.000 5.010 5.011 4.997 4.998 
  0.000 0.000 0.045 0.046 0.215 0.219 0.069 0.071 

0.010 5.000 5.000 5.000 5.000 5.010 5.010 4.997 4.997 
  0.000 0.000 0.045 0.045 0.215 0.215 0.069 0.069 

0.020 5.000 5.000 5.000 5.000 5.010 5.010 4.997 4.997 
  0.000 0.000 0.045 0.045 0.215 0.215 0.069 0.069 

0.025 5.000 5.000 5.000 5.000 5.010 5.010 4.997 4.997 
  0.000 0.000 0.045 0.045 0.215 0.215 0.069 0.069 

0.050 5.000 5.000 5.000 5.000 5.010 5.010 4.997 4.997 
  0.000 0.000 0.045 0.045 0.215 0.215 0.069 0.069 

Please note that for each caliper size the number in the top row is an estimate of ATT and the one in the bottom 
row is its standard error. 
Source: Own computations. 
 

When estimated propensity scores have a uniform distribution, identical in the 
treatment and the control group, neither the shape of the outcome equation nor the size of the 
caliper have influence on estimates. Both methods, with and without caliper, provide identical 
results. It is worth emphasising that different caliper values cause a different number of 
matched pairs (see Table 5). 
 
Table 3. The ATT estimated with normal distribution of propensity score 

Treatment constant linear m2 m4 
Caliper 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 
size   caliper   caliper   caliper   caliper 

0.001 5.000 5.000 5.000 4.846 4.997 3.462 4.999 5.211 
  0.001 0.001 0.013 0.016 0.148 0.098 0.021 0.015 

0.005 5.000 5.000 5.000 4.897 4.997 3.796 4.999 5.159 
  0.001 0.001 0.013 0.012 0.148 0.097 0.021 0.013 

0.010 5.000 5.000 5.000 4.917 4.997 3.996 4.999 5.135 
  0.001 0.001 0.013 0.012 0.148 0.104 0.021 0.013 

0.020 5.000 5.000 5.000 4.934 4.997 4.224 4.999 5.112 
  0.001 0.001 0.013 0.011 0.148 0.113 0.021 0.013 

0.025 5.000 5.000 5.000 4.940 4.997 4.307 4.999 5.104 
  0.001 0.001 0.013 0.011 0.148 0.118 0.021 0.013 

0.050 5.000 5.000 5.000 4.959 4.997 4.611 4.999 5.074 
  0.001 0.001 0.013 0.012 0.148 0.137 0.021 0.014 

Please note that for each caliper size the number in the top row is an estimate of ATT and the one in the bottom 
row is its standard error. 
Source: Own computations. 
 

In case of a normal distribution of the propensity score the results for one-to-one 
matching are similar to those in Table 2, despite the fact that the propensity score distribution 
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in the treatment and the control group is different. Unfortunately, the caliper mechanism 
seems to cause bias to the results. The caliper estimates are unbiased for constant treatment. 
The effect of bias is moderate in case of linear treatment and non-linear m4 treatment. For 
non-linear m2 treatment equation the bias is heavy. In all cases the bias becomes smaller as 
the caliper size rises.  

Those results indicate that the caliper mechanism can potentially distort the estimation 
results. 

The last set of estimates present the result for a Johnson SB distribution of the 
propensity score (Table 4.). In this simulation the pre-matching differences between the 
treated and the control group are the greatest. Despite that, one-to-one matching is able to 
provide unbiased estimates for all but one distribution of outcome. The estimates for non-
linear m2 curve are biased and the bias significantly exceeds randomness of simulation. The 
results seem to indicate that matching with caliper is a much worse choice. Estimates are 
biased for all non-constant outcomes. For linear and non-linear m4 specification the bias of 
caliper matching is relatively large. In case of non-linear m2 outcome the bias is larger than 
that of one-to-one matching. 
 
Table 4. ATT estimated with Johnson SB distribution of propensity score 

Treatment constant linear m2 m4 
Caliper 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 
size   caliper   caliper   caliper   caliper 

0.001 5.000 5.000 5.001 4.694 5.089 4.197 5.003 5.686 
  0.000 0.000 0.026 0.052 0.135 0.322 0.068 0.073 

0.005 5.000 5.000 5.001 4.809 5.089 4.796 5.003 5.523 
  0.001 0.001 0.026 0.032 0.135 0.213 0.068 0.055 

0.010 5.000 5.000 5.001 4.863 5.089 5.018 5.003 5.418 
  0.001 0.001 0.026 0.029 0.135 0.189 0.068 0.054 

0.020 5.000 5.000 5.001 4.906 5.089 5.099 5.003 5.314 
  0.001 0.001 0.026 0.027 0.135 0.170 0.068 0.054 

0.025 5.000 5.000 5.001 4.918 5.089 5.103 5.003 5.281 
  0.001 0.001 0.026 0.027 0.135 0.165 0.068 0.055 

0.050 5.000 5.000 5.001 4.952 5.089 5.094 5.003 5.180 
  0.001 0.001 0.026 0.026 0.135 0.151 0.068 0.058 

Please note that for each caliper size the number in the top row is an estimate of ATT and the one in the bottom 
row is its standard error. 
Source: Own computations. 
 
 Those results indicate that controlling for strict similarity of the estimated propensity 
score is not sufficient to obtain unbiased estimates of the ATT. This in turn implies that, in 
small samples, bias arising from inexact matching is relatively low in comparison with the 
one caused by incomplete matching, This is not an extraordinary finding, since in small 
samples the number of successfully matched pairs is low and each matched pair 
approximately accounts for 1% of total pairs. If one removes 20% or even 50% of total initial 
pairs this may cause a spectacular bias. 

Table 5 illustrates the problem of diminishing matched pairs. As the caliper size 
shrinks, the number of successfully matched pairs decreases dramatically if the propensity 
scores are differently distributed in the treatment and in the control group. With the caliper 
value of 0.005, which is the one most frequently suggested in the literature, one would lose 
over 40% of matched pairs in case of normal distribution of the propensity score, and nearly 
45% in case of a Johnson SB specification. The bias of the estimate is the result of a non-
symmetric distribution of the outcome. 
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Table 5. Number of successfully matched pairs 
    Propensity score distribution     
 uniform normal Johnson SB 
Caliper 1 to 1 caliper 1 to 1 caliper 1 to 1 caliper 
size matching matching matching matching matching matching 

0.001 165 81 165 52 165 83 
0.005 165 159 165 96 165 93 
0.010 165 165 165 112 165 115 
0.020 165 165 165 126 165 132 
0.025 165 165 165 130 165 136 
0.050 165 165 165 140 165 149 

Source: Own computations. 
 
 To compare efficiency of both methods we decided to compute the RMSE statistics, 
presented in Table 6. With uniform distribution of the propensity score the RMSE for caliper 
matching is larger than for no caliper for all considered outcome equations. Results of 
simulations are similar for normal and Johnson SB distribution of the propensity score. The 
caliper mechanism provides better results than matching without caliper for constant 
treatment. For all other functional forms of treatment equation the results showed that simple 
matching provides more precise estimates. 
 
Table 6. Root Mean Squared Error 
Treatment constant linear m2 m4 
Distribution no standard no standard no standard no standard 
  caliper caliper caliper caliper caliper caliper caliper caliper 
uniform 0.000376 0.000378 0.045101 0.046571 0.216150 0.223129 0.070145 0.072525 
normal 0.001139 0.000659 0.013216 0.155195 0.146735 1.223241 0.020911 0.160712 
johnson 0.000906 0.000571 0.026516 0.311774 0.163154 0.334864 0.068231 0.531482 

RMSE computed for caliper size of 0.005 
Source: Own computations. 
 
 We derive two important implications from the above results. First, we confirm the 
theoretical results which implicitly assume constant character of treatment. Secondly, and 
more importantly, caliper mechanism induces significant rise in the bias and the variance of 
the estimates in case of a non-uniform treatment. In empirical practice it is very unlikely that 
the impact of treatment can be treated as uniform. Therefore, the usage of caliper introduces 
variance and this variance is larger than the reduction of variance due to lowering the bias. 
 
5. Conclusions 
 

In this article we studied properties of matching and matching with caliper in small 
samples. Despite that not much is known, both methods are widely used in applied evaluation 
research and it is important to understand their properties. We focused our attention on the 
properties of the ATT estimator. There are relatively few studies on the small-sample 
properties of different matching estimators. We tried to bridge the gap and shed some light on 
the problem. 

To achieve that, we have used distributions that are either assumed in theoretical 
papers or employed in similar simulations. We confirmed the theoretical results and showed 
that simple one-to-one matching estimators are unbiased in most cases. At the same time the 
caliper method which is theoretically designed to control for the differences in distributions of 
the propensity score may introduce a substantial bias to the ATT estimator in small samples. 
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 It turned out that in small samples the bias due to inexact matching is relatively small 
in comparison with that of incomplete matching. There are several reasons for this. First of 
all, there are only few unmatched observations. Secondly, if the covariates have the same 
distribution among matched and unmatched units the bias is limited. The third possibility is a 
constant value of treatment. Our empirical results suggest that even if the treatment is not 
constant, the value of bias is not large. On the other hand, the bias due to incomplete matching 
turned out to be substantial in our simulations, up to 15% for very conservative caliper size, 
and about 10% in case of the most popular 0.005 caliper.  

Another practical problem with using a caliper is the loss of a significant number of 
possible matched pairs. This is of particularly great importance when the pool of possible 
matched pairs is limited. A decrease in the number of matches caused by caliper is the 
primary reason why the caliper matching becomes incomplete. Moreover, the results show 
that this lack of completness causes a significant bias to the ATT estimates. 

There are several limitations to our simulations. First of all, we assumed that we work 
on propensity scores, not covariates. Our results are valid as long as distributions used in a 
simulation to mimic behaviour of the real data are close to empirical realisations. To achieve 
that, we have used distributions that are either assumed in empirical works or used in similar 
studies. To provide robustness of our results we alter the parametrisation of the distributions, 
and the results seem to be robust. Secondly, we concentrate on small sample behaviour of the 
ATT estimator. It is worth noting that 500 observations used in simulations give a maximum 
of 165 matched pairs. This number is rather low. Therefore, we replicate the part of the 
experiment for Johnson SB distribution and a sample size of 1500 (about 500 matched pairs) 
and the general picture does not change, however biases are much lower, about a half of those 
presented in Table 4. The replication of full experiment is hardly possible due to 
computational complexity. Nevertheless, the robustness is in our opinion confirmed with 
these results. 
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