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Introduction 

One common challenge faced by banks is the presence of data gaps, particularly concerning 

cash-flow data, which hinder the robust calculation of realized LGD. Although modeling LGD has 

become a topic that researchers are focusing on recently, there is a substantial gap in the scientific 

literature for insufficient financial data from the perspective of realized LGD calculation. Analysts 

often face the challenge of missing cash-flow data, that might be a consequence of scope-jumpers, 

the customers who changed the portfolio scope. It means that most of their data was not available 

for some period of their credit history. One says that the data could be accessed eventually, 

however, some of the processes shouldn’t be delayed, such as periodical internal model 

performance evaluation. Secondly, the precise identification and calculation of the recovery 

amounts (that are contained in the cash-flows) is considered rather problematic (Ptak-

Chmielewska et al. (2023), Khieu et al. (2012)). To address this issue, banks often refer to the delta 

outstanding method (also called outstanding movement approach), which involves discounting the 

differences in outstanding balances between reporting periods (ECB, 2024). Delta outstanding 

approach can be also a solution for researchers, who do not have the access to detailed cash-flow 

data, due to their high sensitivity and confidentiality. Nevertheless, while this method provides an 

approximation of realized LGD, it has inherent weaknesses, primarily due to its omission of 

detailed cash flows. 

This problem can be addressed by finding more complex dependencies and patterns between 

available data and customers’ LGD. We propose to utilize the eXtreme Gradient Boosting 

(XGBoost) model to improve the performance of delta outstanding approach approximation for 

the realized LGD. Our aim is to show which variables can be included in the model and, through 

the analysis of performance metrics such as Mean Absolute Error (MAE) and Mean Squared Error 

(MSE), show to which extent one can benefit from usage of ML techniques.  

The main contribution of this research to the existing literature and the novel aspects of 

approaching the results of delta outstanding method are: (1) quantifying and incorporating of non-

cash-flow related variables, and (2) introducing the ML model to uncover hidden patterns among 

variables, which is an opposite to delta outstanding approach that concerns only the discounted 
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arbitral change of outstanding (3) addressing the conditions of limited access to the data (especially 

cash-flow related data). 

Our dataset, obtained from one of financial institutions, contains the information about retail 

mortgage portfolio of one of the European countries. It spans from 2008 to 2019, with monthly 

frequency, providing a rich and comprehensive basis for our analysis. Apart from borrower-

specific data and credit information, the dataset is also enriched with macroeconomic variables, 

which are reported in quarterly frequency. The data include only defaulted customers, which 

according to the literature may lead to imbalanced sample (K. Li et al. (2021), Fan et al. (2023), 

Gürtler and Zöllner (2022)). Further discussion on not-perfectly balanced data is going to be 

described wider in the Literature review section in Prediction models subsection. 

In the context of write-offs, it's important to note that the delta outstanding method fails to 

recognize the underlying cause of changes in outstanding balances due to accounting write-offs. 

Consequently, there's no evidence available to determine whether the decrease in amounts is 

attributable to repayments or to the write-off process (the accounting process of writing off some 

amount because it has been given up by the bank in due to the poor solvency of the client). 

Therefore, the important feature of the mortgage data, as well as this specific portfolio, are rare 

cases with accounting write-offs, but also additional drawings, undrawn amounts and 

prepayments. These factors contribute to the suitability of our sample for delta outstanding 

approach, ensuring the reliability of obtained results. 

Accurately approximated realized LGD for the model monitoring purposes is the substantial factor, 

that contributes to the model (predicted LGD) performance and its conservativeness assessment 

(Prorokowski, 2022). Inaccurate predicted LGD can lead to misallocation of capital reserves, 

potentially resulting in insufficient provisions for credit losses (Spuchľáková and Cúg (2015b), 

Hurlin et al. (2018)). This can undermine a bank's ability to absorb unexpected losses and meet 

regulatory capital requirements, posing systemic risks to the financial system. Given the 

significance of LGD calculations, our study aims to contribute to the advancement of credit risk 

analytics by proposing a refined approach. By leveraging ML techniques, we seek to develop a 

model that enhances the accuracy of realized LGD estimation, particularly in cases where 

traditional methods fall short. In this research we attempt to answer the following research 

questions:  
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(RQ.1) If approximation of realized LGD, using method relied on differences in outstanding 

balances between reporting periods, can perfectly reflect the reality (assuming the true realized 

LGD is the result of cash-flow approach)? 

(RQ.2) Does inclusion of non-cash-flow related variables, such as macroeconomic data, 

customer’s final status, or predictors built on fundamental variables (default date, reporting date, 

outstanding balance), lead to improved accuracy in approximating the realized LGD? 

(RQ.3) Is there any subsampling method that improves the performance measures (MSE and MAE) 

for XGBoost model? 

The structure of the rest of paper follows the below sequence. (1) In section Literature Review we 

introduce the substantial assumptions and definitions, also going through academic and business 

publications on LGD modeling topic. (2) Section Methodology represents insights of calculation 

of the LGD based on three different approaches: cash-flow approach, delta outstanding approach 

and delta outstanding enhanced with ML model. (3) Section Results includes the performance 

comparison of different approaches. (4) In the last section, Conclusions, we highlight our findings 

and summarize our paper. 

1. Literature review 

In this section, we propose a broad overview of academic papers on default status and 

mortgage loans, while both are the object used for this analysis. Then, we summarize existing 

literature on topic of the importance of Loss Given Default (LGD) calculation, and conclude on 

potential challenges regarding this parameter. Finally, we present different approaches, both on 

model and variables selection, which enhance the calculations performance. 

1.1 Default definition  

The precise definition of the default event, here and after referred to as the Definition of 

Default (DoD), reveals a lack of uniformity and comprehensive standardization across the different 

institutional frameworks (Spuchľáková and Cúg, 2015). According to Moody’s (2011), “Default 

is defined as failure to make scheduled principal or interest payments”. Followingly, in 2016 the 

European Banking Authority (EBA) published the guidelines on defining a default (with a 

reinforcement in 2021), called new definition of default (NDD) (Prorokowski, 2022). From the 
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perspective of this research, the portfolio’s realized LGD may vary whenever the default definition 

changes, as the default period per customer can potentially be different. Thus, as Barisitz (2019) 

notes, it is important to hold the crucial aspect (also called “primary elements”) standardized across 

different jurisdictions:  

- count of past due days: non-performing exposure is identified after 90 days past due, 

- materiality: only material exposures are considered for above condition, 

- unlikeliness to pay: the debtor, who is assessed as unlikely to pay without the full 

realization of collateral is classified as non-performing. 

The above conditions provided in the Capital Requirements Regulation (CRR) and interpreted by 

the European Banking Authority (EBA) are consistent with the Basel Committee on Banking 

Supervision’s (BCBS) definition of default and with the Institute for International Finance’s credit 

quality classification. Nevertheless, Nehrebecka (2018) raises, that primary elements are still 

leaving a considerable margin for unconfined interpretation. 

While the determination of default status is one matter, one can also focus on the default reasons, 

which apart from their delays in payments, might also refer to the legal or solvency matters (Kao, 

2000). Even though the default reason is rather understood as a risk driver than the loss predictor, 

we should mind that based on this information we might reveal insightful patterns related to the 

chances, that the customer will be able to cover their outstanding amount with the collateral. For 

example, according to Witzany (2017), the bankrupt clients are rather going to expose the bank on 

the loss of most of their outstanding amount. Khieu et al. (2012) provides with example of default 

reason significance by highlighting the fact that bankruptcy of the borrower is a common reason 

to revise the terms of the loan contract.  

1.2 Mortgage Loans 

Although the majority of researchers are focusing on precise estimation of LGD rather than 

handling the data availability for realized LGD, their conclusions supply us with multiple 

insightful, field-specific characteristics for mortgage loans. The practice of selecting mortgage 

loans for analysis is widely employed by researchers due to its profound impact on financial 

stability, as highlighted by Park and Bang (2014). An important part of the mortgages loans are 

commonly applied collateralizations, that contributes to the stability of financial systems by 
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providing lenders with a form of security against borrower defaults. According to Tong et al. 

(2013), after a mortgage loan defaults, one potential outcome is that the property undergoes 

repossession by the bank. This practice allows banks to mitigate the risks associated with lending, 

making them more willing to extend credit to borrowers.  

Another advantage of choosing the mortgage data for the LGD modeling has been outlined by 

Ptak-Chmielewska et al. (2023). The long workout period observed in mortgage loans supplies our 

dataset with a comprehensive default history and helps to uncover not only point in time patterns 

but also historical trends that might be beneficial for the ML model.  

Leow and Mues (2012) or Hurlin et al. (2018) papers provide evidence supporting the 

interchangeability of "outstanding" and "exposure" terms, particularly in the context of mortgage 

loans. This equivalence stems from the common occurrence in mortgage loan scenarios where 

minor additional drawings lead to both parameters being practically equivalent. 

1.3 Loss Given Default 

When assessing credit risk, critical metrics such as Exposure at Default (EAD), Probability 

of Default (PD), and Loss Given Default (LGD) are derived through both empirical observation 

and predictive modeling. These parameters serve as inputs in the calculation of regulatory capital 

requirements (European Central Bank, 2021). It refers to the Advanced Internal Rating Based 

modeling standards (AIRB), that allows banks to use their own resources to model the risk 

parameters (Ptak-Chmielewska et al., 2023). Predicted values are utilized in computing capital 

reserves, ensuring banks hold reserves corresponding with their risk exposures (Hurlin et al., 

2018). Regulatory Capital prescribed in the Basel Framework, ensures banks maintain sufficient 

capitalization to absorb potential or unexpected credit losses, in other words counterbalance 

potential liquidity issues resulting from defaulted customers within the portfolio (Chiodo and 

Hasan (2013), European Central Bank (2021)). Conversely, realized values of different risk 

parameters, (including realized LGD) derived from historical data play an important role in 

calculating the Risk Weighted Assets (RWA) (Liu (2017), Akkizidis and Kalyvas (2018)). The 

accurately calculated realized values of risk parameters are also substantial for validating and 

recalibrating predictive models, and thereby enhancing their accuracy and reliability (Park and 

Bang, 2014). 
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According to Hurlin et al. (2018), the LGD estimates enter the capital requirement formula in a 

linear way and, as a consequence, the estimation errors have a strong impact on required 

capital. The determination of the LGD is primarily contingent upon the ratio of the actual loss to 

the total exposure as of the borrower’s default reporting date. Tong et al., (2013) defined the LGD 

formula as proportion of the outstanding loan that will be lost in the event of a default. Since the 

value is non-zero only given default, one can write down the formula for computed LGD in the 

Equation 1 as follows:  

𝐿𝐺𝐷𝑐𝑜𝑚𝑝 =  
𝐸𝐿

𝐸𝐴𝐷
∗ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑖𝑛𝑑        (1) 

where: EL is an Economic Loss, EAD stands for Exposure at Default, default_ind is the binary 

default indicator, which is equal to 0 when the borrower is not in the default and equal to 1 when 

the borrower is in default (EBA (2018), Hurlin et al. (2018), Xuan et al. (2018)). In other words, 

the aim of the LGD modeling is to accurately estimate the lender’s loss in relation to the total 

outstanding in conditions of the defaulted loan (Leow and Mues, 2012, Spuchľáková and Cúg 

(2015a), Sproates (2017)). In cash-flow approach we calculate EL, i.e. discount the cash-flows 

which include both recoveries and costs. Recoveries, that lower the bank’s loss consists both of 

cash - actual cash flows collected from defaulters during the workout period and non-cash – 

repossessions of collaterals.  

1.4 Delta outstanding approach 

The most dependable, frequent and preferred by the regulators method for calculating the 

economic loss for realized LGD is rooted in discounted value of realized cash flow analysis, called 

workout approach (Ptak-Chmielewska et al. (2023), Hurlin et al. (2018), EBA (2018)). Even 

though the discounting cashflows reflects the reality precisely, banking industry has developed 

different methods of approximation the LGD:  discounting change in balances (delta outstanding 

approach), or discounting write-offs (Australian Prudential Regulation Authority (2024), ECB 

(2024)). Importantly for this research, we outline that European Central Bank (ECB) permits the 

utilization of an alternative approximation based on the outstanding deltas in certain applications, 

such as model monitoring.  

The delta outstanding approach is being frequently utilized in banking industry in conditions of 

limited access to the borrower’s cash-flows, or according to ECB (2024) when recoveries are not 
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directly observed. This can be a case especially when the borrower is a scope-jumper, which in 

other words stands for the borrower who for certain period has been out of the analyzed portfolio 

scope. This behavior might cause significant gaps in the data and might result in insufficient 

information for calculation of realized LGD through the cash-flows method, and consequently, 

impossible assessment of the estimated LGD model.  

Nevertheless, the weakness of the delta outstanding approach is that it arbitrarily relies on the 

changes in outstanding amount. Gürtler and Hibbeln (2013) highlights that neglecting workout 

costs leads to misestimation of LGD. Moreover, according to Hurlin et al. (2018), workout costs 

are rarely included in empirical researches due to problematic nature of capturing them. On the 

other hand, EBA (2024) emphasizes that institutions should put their best effort to adequately 

replicate the cash-flows and document the substitutional approach in a way that leads to a clear 

and consistent justification of the treatment. This supports the potential value of our novel 

approach that enhance LGD estimation without relying on cash-flow data, offering inclusion of 

the hidden patterns in data as a predictive factor, inclusion of highly available variables and 

promising avenues for advancing research in this domain. 

1.5 Selecting variables in Estimated Loss Given Default models for mortgage loans 

Although the approach and formula for the realized LGD can be similar among different 

portfolios and industries, the estimated LGD calculation should take into account the field-specific 

factors. Given that we estimate the realized LGD using a supervised model and thus utilize 

predictive methods, our variable selection can be guided by the existing models used to estimate 

LGD. 

Leow et al. (2014) suggest that LGD is correlated to the economy and they conclude, that 

macroeconomic variables are able to improve the model both for private and corporate mortgage 

loans. According to multiple publications (Leow et al. (2014), Park and Bang (2014), Xuan et al. 

(2018), Hurlin et al. (2018)) it will be relevant to search for the loss severity patterns through the 

macroeconomic indicators such as the House Price Index (HPI), change in unemployment rate, 

economic growth measured with the Gross Domestic Product (GDP). Tong et al. (2013) in their 

analysis considers discounting factors, because it aims to assess precisely more complex patterns 

and correlations hidden under the customer's history. EBA (2018) also identify discounting factors 
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with the interest rates, which for European countries can be derived from Euro Interbank Offered 

Rate (EURIBOR) and a 5% add-on. They propose this approach explaining it as simple and 

contributing to increased comparability of LGD estimates. Importantly, the discounting factor used 

for LGD calculation is focused on the uncertainty in the recovery process and the time value of 

money. 

Apart from highly accessible macroeconomic variables, our model should dive into more loan 

specific variables. Ross and Shibut (2015) concludes, that workout period is an important indicator 

of the loan servicing (for effective servicing of the loan, the assets cover properly the loss and 

prompt to the cure status) and origination quality (weaker credits tend to prolong the workout 

period and are indicative of lower origination quality). Referring to Kaposty et al. (2020) results 

of the research, duration of the workout period may have a significant impact on the LGD estimate. 

Based on the Tong et al. (2013) research, we can also conclude that customers, who already 

defaulted in their past should be identified in the model. According to Hurlin et al. (2018) research, 

also the EAD, even if not directly correlated with LGD, may bring a predicting power to the model. 

However, they also warn about the large differences in EAD between borrowers, that may impact 

final regulatory capital forecast error. 

Behavioral variables, that are more commonly used for the PD modelling, are also included in 

scientific research as a meaningful indicators of loss severity (Ross and Shibut (2015), Li et al. 

(2023)). In most cases, selected behavioral variables (e.g. borrower occupancy, property types), 

are not used to be incorporated alone, without both the macroeconomic indicators and loan 

characteristics. Although, our dataset limitations include lack of behavioral variables. 

In summary, in the domain of mortgage LGDs, current practice and literature revealed three 

distinct categories of relevant predictor variables: loan attributes, behavioral elements, and 

macroeconomic indicators (Xuan et al., 2018). Nevertheless, the limitation of our dataset includes 

omission of behavioral data. We will attempt to compensate absence of behavioral data with access 

to whole default history, that gives us a wide field for extraction of the hidden patterns and trends 

in customer tendency to repay the loan. 
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1.6 Prediction models 

Hurlin et al. (2018) highlights the high heterogeneity among banks and academics using 

the AIRB approach. They observe that the researchers utilize the parametric regression models 

(linear regression, survival analysis, fractional response regression, inflated beta regression, or 

Tobit models) or non-parametric (regression tree, random forest, gradient boosting, artificial 

neural network, support vector regression, etc.) for LGD. They also noticed that parametric models 

dominate over the non-parametric models in terms of interpretability. On the other hand, non-

parametric models are in favor of predictive power, which is the main goal for our research. 

Simultaneously, the non-parametric models are also commonly recommended in other academic 

papers (Qi and Zhao (2011), Bastos (2010), Loterman et al. (2012)). Finally, Leow et al. (2014) 

summarize that among different academic models, the OLS has the biggest prevalence. 

Tong et al. (2013) noticed that the simple regression approach will bias the prediction whenever 

the sample is strongly imbalanced towards LGD equal to 0. They propose a zero adjusted gamma 

model, which incorporates probability of a zero loss and the loss amount given that a loss occurs 

simultaneously. Xuan et al. (2018) noticed, that there is not only a dilemma, if the borrower will 

cure or expose on further losses, but also if the collateral value will cover the outstanding loan 

amount. They propose a three-step selection approach with a joint probability framework for 

default, cure and non-zero loss severity information. Leow and Mues (2012) focus on distinction 

for selecting the model, depending on its nature, stressing that inclusion of two stage model is 

beneficial for the mortgage loan, while OLS regression is appropriate selection for the personal 

loans. They are providing with the evidence that accuracy of LGD estimation can benefit from the 

Haircut Model, where the haircut represents the discount factor to be applied to the estimated sale 

price of the property. Indeed, the model incorporates the probability of the repossession, and the 

sale price of a repossessed property may undergo. Those two combined results in the estimation 

of the LGD. Nevertheless, this approach might enlarge the issues related to the data availability, 

since even 93 variables have been used for the modeling part. Ptak-Chmielewska et al. (2023) 

address another problem, which is precise identification and calculation of the recovery amounts, 

especially for the not-resolved cases. As a solution, they apply the kNN model, trained on resolved 

cases with a possibility to be applied on not-resolved cases. Aforementioned method offers a 

promising alternative to our approach, but it relies on incomplete recovery data, unlike our case, 

which assumes a lack of access to cash-flows (both recoveries and further costs). 
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Finally, the imbalance of the target variable in LGD modeling is rather associated with the 

classification problems (Baesens and Smedts (2023), Coşer et al. (2019), Merćep et al. (2020)). 

Moreover, as noted by Xia et al. (2021), LGD modeling is commonly converted to the regression 

problem, as is the case in this study. Therefore, our focus is rather on identifying the most effective 

model for regression problems similar to one represented by our case, than seeking solutions 

specifically for imbalanced target variables. G. Li et al. (2022) noticed that in regression problem 

XGBoost outperformed other models (Random Forest, Ada-Boost and GBRT) when applied on 

mixed-type input data and skewed distribution of the output variable. Fan et al. (2023) emphasize 

several advantages of XGBoost models in context of LGD: preventing overfitting, comparable 

results to other models within a shortest time with fewer computing resources, or finally, in case 

of decomposing the LGD prediction into two classification problems and one regression problem, 

better predictive ability. 

1.7 Summary of literature 

Definition of default is not problematic from our perspective, because we work only on 

defaulted cases, and its role is rather for the context. Also, the definition of realized LGD is 

consistent among different sources with respect to the cash-flow approach. The challenging aspect 

is the definition of the delta outstanding procedure, which we find mostly general and limited in 

terms of scientific literature. If it comes to the modeling of LGD, we observed a tendency of 

application the two-stage models, while most frequently first stage referred to the question if the 

economic loss occurred or not as a classification problem. Secondly, the LGD value estimation 

could be both put into classification problem or converted to regression problem. LGD estimation 

as a regression problem wasn’t the most popular approach in the literature, but while it was present, 

the conclusions led to recommendation of usage of XGBoost model. 

2. Methodology and data 

In this section we focus on providing substantial information about the dataset. Then, we 

present the procedures on calculating of LGD with cash-flow approach and delta outstanding 

approach. Lastly, we describe the novel approach of managing the low accessibility to detailed 

cash-flow data in calculating realized LGD, utilizing the ML techniques. 
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2.1 Dataset description 

The data are reported in monthly frequency and spans from the year 2008, including more 

than 10 years of observation for total of 1891 borrowers. Since only in-default observations are 

included in the dataset for analysis, their LGD (excluding last observation per single default) is 

non-zero. In several cases, particularly for borrowers with final status ‘cure’ (explained further in 

subsection Delta outstanding approach combined with the XGBoost model), the LGD in-default is 

small or close to zero. The distribution of realized LGD values is represented in Figure 1. 

Figure 1. Distribution of realized LGD with U-shaped pattern. 

 

Note: The plot is created based on the sample with capped observations LGD < 0 (see, Equation 3) and excluded observations with 

LGD > 1. Based on own work. 

The dataset employed in this study is aggregated at the level of customer ID, default date, and 

reporting date. We recognized in our data 104 borrowers who experienced multiple defaults (with 

the time period between the distinct default above 3 months). In cases where customers exited 

default within a probation period of less than 3 months, the consecutive default periods are 

consolidated into a single entry.  

The duration of default varies among customers, ranging from less than a month (considered as 0 

since each period equals one month) to a maximum of 130 periods. This results in 56k observations 
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in total.  Figure 2 illustrates the distribution of default duration, with multiple-default occurrences 

treated as distinct instances: 

Figure 2. Distribution of distinct defaults duration. 

 

Note: For borrowers who defaulted multiple times (with period between defaults >3 months), their defaults are treated as separate 

inputs for the plot. Duration is denoted in months. Based on own work. 

As already mentioned in the introduction, accounting write-offs do not contribute significantly to 

our data (53 borrowers with non-zero write-offs during the whole default history), similarly as 

additional drawings. While the assumption regarding additional drawings remains a theoretical 

statement referred from literature of mortgage data, it's important to note that our dataset is limited 

in this context, as it does not contain such a variable. Nevertheless, we have information about the 

write-offs, which distribution illustrated in Figure 3. 
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Figure 3. Distribution of write-off amounts in the sample. 

 

Note: Ratio means the sum write-off amount of a single default during its whole period divided by EAD amount. Ratio equal to 1 

means that the whole outstanding at default amount has been written off (either once or gradually) and it concerns only one borrower 

in our dataset. Based on own work. 

We observe that the majority of write-offs are below 20% of the total borrower’s EAD. In one case 

the write-off was equal to the total loan value. The cases where the write off has been non-zero are 

present among less than 3% borrowers. 

2.2 Cash-flow approach 

 The cash-flow approach follows the Equation 1 introduced in the literature review. Referring 

to that, we can precise the definition of economic loss (EL) using below Equation 2: 

𝐸𝐿 =  𝐸𝐴𝐷 – ∑
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑡

(1+𝑟𝑡)𝑡
𝑇
𝑡=1  + ∑

𝑐𝑜𝑠𝑡𝑡

(1+𝑟)𝑡
𝑇
𝑡=1       (2) 

As observed by Hurlin et al. (2018), the theoretical LGD ranges between 0% and 100%. 

Nevertheless, Miller and Töws (2018) shows, that incorporating the impact of discounting factors 

during the workout period, may result in LGD higher than 100%. We refrain from implementing 

any adjustments to these factors, as their impact is minimal and they are relatively easy to interpret 

(due to factors such as legal fees, recovery delays, and economic fluctuations affecting asset 

valuations). Moreover, Leow et al. (2014) observed that after discounting the cash-flows, some 
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values might be also negative. In our dataset, we faced a small number of observations with 

negative LGD. We implemented the approach recommended by EBA (2018), which is capping the 

negative LGD to 0 (less than 2% of the observations required the application). The approach is 

supported by better interpretability and lower bias for the model. Equation 3 below represents the 

mathematic interpretation of the transformation we have applied: 

𝐿𝐺𝐷𝑚𝑜𝑑𝑒𝑙  = max(0, 𝐿𝐺𝐷𝑐𝑜𝑚𝑝)                                                    (3) 

2.3 Delta outstanding approach 

 The delta outstanding approach is an alternative for calculation of the LGD honored by ECB. 

The procedure is referred to as differences in outstanding balances between reporting periods 

(EBA, 2024). Methodology described by EBA (2024) highlights the importance of adequate 

replication of recovery cash-flows, including the correctness of used interest rates and fees even 

from the period before the default. Since we omit the impact of additional drawings, which is also 

part of the broader applicability of the research, there is no further methodology description for 

the approach in the ECB guide to internal models. We can use recommendations proposed for the 

calculation of LGD (definition of outstanding, definition of discounting factor, treatment of cured 

cases) to align with the most dependable methodology.   

In this research, delta outstanding approach utilizes the EURIBOR interest rate for discounting. 

The discounting factor is defined as in Equation 4 below: 

𝑑𝑖𝑠𝑐𝑓𝑎𝑐𝑡𝑜𝑟 = (1 +
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒

12
)

𝑡

                                                    (4) 

where t is the number of months between the reference date (to which we discount) and reporting 

date (from which we source the outstanding amount for the discounting). Moreover, we follow the 

naming convention, where the reporting date is the date of the observation, and it is to reference 

date or later. The data per customer is limited from their default date until the out-default date. 

Each observation is factorized as follows:   

1.  Define outstanding balance, which referring to EBA (2024) is the accounting value gross of 

the credit risk adjustment. Initialize the variable os_prev to represent the outstanding 

balance on the previous reporting date. If the reporting date is equal to the default date, set 

os_prev to 0. 
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2.  Expand the dataset to include in-default reference dates. Each reporting date is considered 

as a reference date, and for each reference date, all available reporting dates are separately 

analyzed. This expansion results in multiple rows for each reference date, ensuring 

thorough examination of the data, that means if we have n periods (months, reporting dates) 

for a customer, they will be extended to n! rows. The procedure is presented in Algorithm 

1 below.  

Algorithm 1. Expanding the data for delta outstanding approach. 

1: CREATE TABLE expanded_table AS 

2:     SELECT a.*, b.reference_date AS reporting_date 

3:      FROM initial_table AS a 

4:     LEFT JOIN initial_table AS b 

5:      ON a.id = b.id 

6:      AND a.reference_date <= b. reporting_date; 

7:     ORDER BY a.id, a.reference_date, b.reporting_date 

3.  Calculate delta outstanding values using os_prev, where delta_os for 

reference_date=reporting_date is always equal to 0. Discount the delta_os values from 

reporting date to reference date using the discounting factor. 

4.  Calculate cumulative sums of discounted delta outstanding values. Each cumulative sum 

initializes per new reference_date. 

5.  Calculate the Expected Loss (EL) by subtracting the cumulative sum from outstanding 

amount of corresponding reference date (os_ref). 

6.  Determine the Realized Loss Given Default (RLGD) by dividing EL by os_ref. 

7.  Filter the dataset to retain only the rows where, for each reference date, the corresponding 

reporting date is the maximum value. The last record per reference date contains the net 

recoveries from the reference date to the out-default date.  
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2.4 eXtreme Gradient Boosting models  

The XGBoost algorithm, proposed by Chen and Guestrin (2016), is a member of the gradient 

boosting family models. Apart from XGBoost, the most popular implementations within this 

family of models are: Gradient Boosting Machines (original form of gradient boosting), 

LightGBM or CatBoost. Gradient boosting is a powerful ensemble learning technique that 

combines the predictions of multiple individual models (typically decision trees) to create a 

stronger joint model (Binder et al., 2014). In more detailed words, the idea is to sequentially train 

a series of weak learners, each one focusing on the mistakes made by its predecessors. When the 

weak learner is characterized by a poor performance, the algorithm assigns higher weights to the 

misclassified or poorly predicted instances, thereby prioritizing them in subsequent iterations. By 

focusing on the most challenging cases, boosting aims to gradually improve the overall predictive 

accuracy of the model. The final prediction is obtained by combining the predictions of all weak 

learners, with each one contributing more weight to the final prediction based on its performance 

(Dong et al., 2022). According to Guo et al. (2020), the formula for XGBoost can be represented 

as:  

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)
𝐾

𝑘=1
, 𝑓𝑘 ∈ F       (5) 

where �̂�𝑖 stands for the predicted value, K is the number of trees, 𝑓𝑘(𝑥𝑖) is the function of input in 

the k-th tree, and F is the set of all possible regression trees. They state that as the XGBoost 

algorithm uses the gradient boosting strategy, it adds one new tree at a time and continuously 

improves the previous results by fitting the residuals of the last prediction. This process can be 

represented by modifying the function of input from Equation (5) as the new function 𝑓𝑘(𝑋, 𝑘), 

where θ stands for the residuals. Once K trees have been trained, each feature of the prediction 

samples will correspond to a leaf node in each tree, with each leaf node associated with a specific 

score. The final prediction value for the sample is obtained by summing the corresponding scores 

from all the trees. The flowchart of the XGBoost process is showed in Figure 4. 
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Figure 4. XGBoost algorithm structure 

 

Note: Presented XGBoost algorithm flowchart refers to the process performed on the training sample.  

XGBoost has been proposed as a highly optimized, scalable machine learning method. It means 

that it was designed to increase the ability to effectively handle increasing amounts of data without 

a significant increase in computational resources or time. The algorithm differs from traditional 

gradient boosting methods in its optimization techniques, including a more efficient handling of 

sparse data and a regularization term in the objective function, which helps prevent overfitting 

(Chen and Guestrin, 2016). Followingly, the loss function consists of two parts, where one is the 

fitting error (e.g. MAE, MSE) and second is the regularization term, that penalizes the model 

complexity.  

According to authors of the XGBoost, algorithm performs outstandingly for the real-world data 

that includes frequent zero entries or artifacts of feature engineering such as one-hot encoding, that 

are also part of dataset of our research.  
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2.5 Variables selection for XGBoost model 

 In our modeling approach we refer to the benchmarking methods that, as Hurlin et al. (2018) 

noticed, are utilized by banks and academics. Main objective of the procedure is to compare several 

approaches and select the most accurate based on the selected and interpretable performance 

metrics, such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), also used in 

research by i.a. Kaposty et al. (2020). Benchmarking in this study involves evaluating the 

performance of three approaches: the delta outstanding approach, along with two variations of 

XGBoost models. The first XGBoost model is applied to the entire training sample, while the 

second approach involves training two separate XGBoost regressors on subsets of the sample 

created based on the final status of the borrower. 

It is important to understand the different status of customers, since based on them the data might 

benefit from dividing into two different samples with separate regressors (Xuan et al. (2018), Tong 

et al. (2013), Ptak-Chmielewska et al. (2023)). Apart from estimating the XGBoost model on the 

whole sample, independently on the final status of the customer, we will estimate the XGBoost on 

grouped data. First sample of grouped data approach, ‘noloss’, includes (1) customers who are 

cured and (2) those who exit without loss. (1) Cured customer was defaulted but he went out of 

default (is now performing again) (Wood and Powell, 2017). (2) Exit without loss on the other 

hand means that one has been written-off, and the bank recovered 100% of the outstanding amount. 

In this context, write-off refers to the accounting treatment of the loan, indicating that the bank 

does not expect to recover any further payments from the borrower. It's essential to note that the 

term "exit without loss" implies that the bank has managed to recover the outstanding amount 

through other possible channels, such as selling the collateral, negotiating a settlement with the 

borrower, or using other recovery mechanisms. In the second sample, ‘loss’, we concern two more 

final status of the borrower: (3) "not resolved" and (4) "exit with loss”. (3) Not resolved status does 

not mean that the bank incur losses yet, but since the best practice in safe credit risk management 

is heading towards conservative approach and for that reason, we classified this group to a riskier 

group. It can also be called the dragging case. (4) Exit with loss, as the name suggests, is the 

situation where the debt has been written-off and the bank did not recover 100% of the outstanding 

amount. 
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The model utilizes 19 candidate predictors listed in Table 1. Several variables contain the 

information about the customer out of the observation point in time (e.g. during the borrower’s 

default the final status is already known). It is because our model is built for the realized LGD 

approximation, that is approached similarly as the backtests. Such cases concern that the analyst 

already have the general data about the customer, reaching from the historical period, until the end 

of the observation period. This approach brings additional information to the model and referring 

to Tong et al. (2013) Basel II Accord interpretation, is also recommended.  

Table 1. List of financial and macroeconomic variables for modeling the loss amount with LGD 

Variable/ Level Noloss Loss Total sample 

Unsecured_recovery_interest -0.078 -0.061 -0.159 

Secured_recovery_interest . 0.005 0.004 

Cover_value_index 0.119 -0.075 -0.027 

EAO 0.205 -0.026 0.123 

Discount_rate 0.239 -0.039 0.073 

Os_delta -0.051 -0.033 -0.056 

RLGD_os -0.159 0.889 0.546 

Default_duration 0.595 0.007 0.511 

Default_start_reason_90DAYS 0.050 -0.033 0.042 

Default_start_reason_BANKRUPT . 0.006 0.009 

Default_start_reason_FORBPERIOD -0.039 0.003 -0.112 

Default_start_reason_FRAUD . 0.115 0.161 

Default_start_reason_RESTR 0.031 0.010 -0.033 

Default_start_reason_UNLIKEPAY -0.043 -0.072 -0.064 

GDP -0.125 0.087 0.067 

Employment -0.188 0.204 0.202 

HPI 0.181 -0.200 -0.175 

Repayment -0.003 0.011 0.001 

Redefault 0.112 -0.107 -0.235 
Note: Unsecured_recovery interest – interest rate for discounting of unsecured recovery; Secured_recovery interest – interest rate 

for discounting of secured recovery; Cover_value_index – security value; EAO – Exposure at reporting date; Discount_rate – 

discount rate calculated as EURIBOR + 5%; Os_delta – difference in outstanding between two consecutive periods; RLGD_os – 

realized LGD calculated with delta outstanding approach; Default_duration – duration of the default; Default_start_reason_X – 

reason of the default where X is the reason listed above and correspondingly means: 90 days past due, bankruptcy, failed probation 

period, fraud, restructurization, unlikeliness to pay, GDP – quarterly Gross Domestic Product, Employment – quarterly employment 

rate, HPI – quarterly House Price Index, Repayment – relative change in outstanding balance for reporting datet / reporting datet-1; 

redefault – dummy variable where 1 means that it is not first default of this borrower.  

Following Tong’s et al. (2013) logic that we may benefit from previous loan balances, we included 

two variables particularly associated with the repayment dynamics. The first one is arbitral, that is 

delta outstanding amount (Os_delta). The second one is relative, that is relative change in 

outstanding balance between two neighboring periods – repayment. They also proposed utilization 

of information if the borrower has already defaulted in the past, which we included as redefault 
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variable. Based on Ross and Shibut (2015) narration, we included the Default_duration variable, 

that is constant over the whole observation period per borrower. In the case of the multiple 

defaulters, we divided the default duration value for different defaults – the value will represent 

the exact duration of single default. In the case of draggings, we included the already known default 

duration, since complex models like XGBoost should be able to condition the weight of the 

variable with respect to the final status. Importantly for this research, which as a primary incentive 

deals with low data accessibility, all of mentioned variables: Os_delta, repayment, 

default_duration and redefault, are calculated based on the fundamental data about the credit: 

outstanding, interest rate, default date and reporting date. Final status has been included in the 

model as a sample splitting factor already described in this section. This approach, i.e. using final 

status as a splitting factor instead of binary variable, will exclude the risk of bias originated from 

the fact that all exit no loss and cure cases have realized LGD = 0 at their last reporting date of the 

default. Moreover, variable correlations after the data split already reveal the contrast between 

correlation of RLGD_os with loss sample (0.889) RLGD and noloss sample (-0.159) RLGD. This 

may suggest unreliable results of delta outstanding approach for customers with final status 

“cured” or “not resolved”. We analyze this issue further in the Section 4.1. Finally, it is worth to 

point out that some portfolios, due to the country of origin, have legal requirements to incorporate 

specific risk-drivers. Note that we excluded country-specific variables, since they would limit our 

research in terms of versatility of portfolios it can be applied to. 

Our dataset contained also recovery and costs data, that are part of the cash-flow approach. For 

appropriate simulation of missing cash-flow data we have not included them in the model. It also 

includes exit_balance variable, which might have potentially introduced bias to the model. Given 

that each reporting date is treated independently, and the exit_balance remains constant throughout 

the entire period for a single default event, but target variable (realized LGD) fluctuates, inclusion 

of this variable would bring inconsistent information. To boot, we have not found any literature 

on including the information about the exit balance importance. 

To summarize the variables selection, we have introduced loan-characteristic variables that are 

also common to use in literature for the LGD estimation and put our effort to obtain additional 

variables also supported by the literature using our fundamental data. On the other hand, we were 

limited with our dataset concerning the behavioral data, which are not included in the model. 
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Finally, we excluded the cash-flow data, which according to our assumptions, are unavailable, and 

the data that may have potentially biased the model and have not been supported with the literature. 

2.6 Training and evaluating the XGBoost model 

To ensure the objectivity of our model's results, we first trained it on a dedicated training 

sample. Subsequently, we evaluated the model's performance using test samples, following a 

standard approach widely employed in the credit risk industry. This approach involves dividing 

the dataset into training, out-of-sample testing, and out-of-date testing subsets (Table 2). This 

method, as described by Tong et al. (2013), helps to validate the model's robustness over time and 

credit cycles, as well as prevent overfitting and improve its general reliability. 

Table 2. Split for training and testing sample. 

Development period Out of date period 

Training sample Out of sample (test) Out of date (test) 

ca. 75% ca. 20% ca. 5% 
Note: Firstly, we excluded the last 6 months of observation period for the out of date sample, next, we performed traditional train-

test split to obtain the 75% of data for training. 

To appropriately compare the XGBoost model with delta outstanding approach we will extract 

only the observations within the test sample for the performance evolution of the delta outstanding 

approach. 

To ensure the reliability and accuracy of our predictive model, we employed validation procedures 

(leaving the testing set untouched). Initially, we utilized a Grid Search Cross-Validation 

(GridSearchCV) approach on training sample to fine-tune the hyperparameters of our XGBoost 

Regressor model. GridSearchCV systematically explores a specified grid of hyperparameters and 

selects the combination that yields the best performance according to the chosen evaluation metric 

(loss function). In our case, the Mean Squared Error (MSE) was selected as the evaluation metric 

to optimize the model's predictive accuracy. However, due to the long computing time, we 

attempted to fine-tune the parameters using the RandomizedSearchCV algorithm. The procedure 

is similar and incorporates the same loss function, however it doesn’t estimate the model for each 

set of hyperparameters grid, rather the random sets. Nevertheless, the crucial advantage of the 

RandomizedSearchCV was searching through the wider space of candidate hyperparameters in 

shorter time. In other words, adding the parameters to the grid will not decrease the efficiency of 

the algorithm, but widen the space of searching. The number of candidate parameters sets was 
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controlled by n_iter parameters and in our case was set to 25, together with 5-fold cross-validation 

resulted in totaling 125 fits. After the estimation of the best performing XGBoost Regressor model 

using both algorithms, we could decide that we will utilize the parameters from 

RandomizedSearchCV, that have been on average performing better (Table 3). Note that the 

models for loss and noloss sample have been estimated separately and comparison in Table 3 is 

aimed to select the best fine-tuning approach, rather the model. For this reason, the loss and noloss 

cross-validation models are presented separately.  

Table 3. Cross-validation results of all XGBoost models 

Level Model MAE Sd. error MSE 

GridSearchCV 

Noloss  XGBoost 0.004413 0.000410 0.000324 

Loss XGBoost 0.007125 0.000486 0.001015 

Total level XGBoost 0.014254 0.000551 0.002033 

RandomizedSearchCV 

Noloss XGBoost 0.004528 0.000399 0.000316 

Loss XGBoost 0.006196 0.000413 0.000975 

Total level XGBoost 0.011505 0.000551 0.001835 
Note: Validation algorithm included in GridSearchCV and RandomizedSearchCV with 5 folds. Both procedures perform cross-

validation, splitting the train data further into the validation and train subsamples. Each iteration has one partition for testing 

(validating) and 4 partitions for training the model. 

The hyperparameters grid we used in RandomizedSearchCV is presented in Table 4. 

Table 4. Hyperparameters grid 

hyperparameter Value 

learning_rate [0.01, 0.05, 0.075, 0.1, 0.2] 

max_depth [7, 8, 9, 10, 11, 12, 13, 14, 15] 

n_estimators [700, 800, 900, 1000, 1100, 1150, 1200, 1250, 1300] 

subsample [0.6, 0.7, 0.75, 0.8, 0.85] 

min_child_weight [2, 3, 4, 5, 6] 

colsample_bytree [0.7, 0.8, 0.85, 0.9, 0.91, 0.92, 0.95] 
Note: learning_rate – parameter controlling the contribution of each tree to the ensemble; max_depth – max depth of each tree; 

n_estimators – number of trees in the model; subsample – fraction of samples used to train each tree; min_child_weight – minimum 

of samples required in each leaf node; colsample_bytree – controls fraction of features used to build each tree.  

Hyperparameters levels after tuning are presented in Table 5. 

Table 5. Hyperparameters after fine tuning. 

Hyperparameter/Sample Noloss Loss All 

learning_rate 0.05 0.1 0.05 

max_depth 12 7 8 

n_estimators 1200 1200 1300 

subsample 0.80 0.85 0.80 
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min_child_weight 2 2 5 

colsample_bytree 0.95 0.95 0.91 
Note: Hyperparameters tuned with RandomizedSearchCV with following parameters: cross-validation folds: 5, number of 

interations: 25, n_jobs=-1 (use all available CPU cores for parallel processing), cost function: mean squared error, and parameters 

grid as presented in Table 4. 

3. Results 

In this section we present the results of estimated models and compare their performance 

with the results from the cash-flow approach. We employ performance metrics mentioned in the 

methodology section to analyze which model performed the best and to differentiate the 

performance depending on the sample used for the evaluation. 

3.1 Delta outstanding approach vs. cash-flow approach 

Since we fed the XGBoost model with the delta outstanding approach results, its accuracy 

is also an important factor, that might have either bias or boost the ML model’s prediction power. 

Figure 5 represents the scatterplot of correlation between actual realized LGD value (based on 

cash-flows approach) with the delta outstanding approach results. Since the dataset on total level 

contains more than 50k observations, for better readability, the plot has been created based on 

random sample of 10k from the whole dataset.  
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Figure 5. Scatterplot of realized LGD estimated with delta outstanding approach vs cash-flow 

approach. 

 

Note: We used random sampling with n=10 000 of observations out of total sample, where both cash-flow and delta os negative 

LGD’s are capped to 0 (see, Equation 3) and LGD’s exceeding 1 capped to 1. We did not control for the balance of final status in 

the random sample used for this plot. Based on own work. 

Data points represented in Figure 5 reveal that the delta outstanding approach tendency of correctly 

approximated LGD is noticeable among prominent number of observations. For better 

comparability, relevant performance metrices presented in Table 6 were calculated for the subsets, 

representing the observations corresponding to the out of date and out of sample subsets of 

supervised models. However, MAE (0.227113) and MSE (0.187459) calculated on the total level 

are also introducing information for the research. Based on those statistics we can conclude, that 

the delta outstanding approach leaves a field for the improvement in estimating the realized LGD. 

We also discovered that the bias observable on the scatterplot (overestimated LGD by the delta 

outstanding approach with relation to cash-flow approach) has been caused mainly by the cured 

borrowers. Transition from the defaulted to performing status (cure), depending on the bank’s 

definition, generally requires completion of a probationary period associated with specified regular 
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loan repayments (Wood and Powell, 2017). The delta outstanding approach based on the formula 

we applied is unable to capture the fact that the classification to the cure status is associated with 

final LGD equal to 0. From the perspective of delta outstanding approach, we observe the gradually 

decreasing outstanding amount (characteristic for curing cases) with no additional information of 

fulfillment for abovementioned condition, which results in resolved, cure case but with significant 

loss for the bank. Small, negative changes in outstanding, according to formula for Economic Loss 

noted in delta outstanding procedure (point 5), EL = os_ref – cumulative sum of delta os, will 

result in relatively high computer economic loss and in consequence, high RLGD, which is not 

reflected in the reality (RLGD calculated with cash-flow approach). For this reason, the 

methodology for delta outstanding procedure for cured cases is a potential further extension of this 

research. 

3.2 Benchmarking 

The training process, optimized with Randomized Search Cross-Validation, resulted with 

3 best regressors for each set of data: noloss, loss and total sample. In Table 3, we presented the 

performance of loss and noloss sample separately to improve the interpretability and comparability 

of the model performance metrices in training and validation process. We used MSE and MAE 

metrices to compare the model’s performance and they occurred to be consistent, even though only 

MSE was used as a cost function in the cross-validation. The best performance of the XGBoost 

regressor, measured with RandomizedSearchCV, is observed for noloss sample (MAE = 0.004528; 

sd. error = 0.000399; MSE = 0.000316). Subsequently, we observe less accurate regressor for loss 

sample (MAE = 0.006196; sd. error = 0.000413; MSE = 0.000975), and least accurate regressor 

for total sample (MAE = 0.011505; sd. error = 0.000551; MSE = 0.001835). Although the MAE 

and MSE metrices were used to compare the performance of the regressors, we also benefited from 

providing the standard deviation of errors. They reveal insights that Boost regressor for noloss 

sample was not only the most accurate, but also more stable in terms of predictions accuracy. The 

sd. errors values exabits similar increasing tendency as MSE and MAE, which mean that loss 

sample and total sample might have been more affected with the random fluctuations. However, 

the standard deviation of errors across various regressors shows minimal variation, providing little 

incentive to explore the underlying causes of prediction accuracy variability. 
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Table 6 contains the results of XGBoost performed on (1) the sample divided on loss and noloss 

customers, (2) the whole sample and results of delta outstanding approach. The metrics are 

calculated based on corresponding values of realized LGD calculated with cash-flow approach. 

The evaluation metrics contain mean absolute error, standard deviation of errors and mean squared 

error. The metrices are calculated for both test sample and out of date sample. Please note that the 

performance of models for No loss and Loss sample are presented jointly. This representation is 

motivated by the fact that the performance metrices in the below results are aimed to compare the 

models.  

Table 6. Performance metrices for XGBoost models and delta outstanding approach. 

Level of application Model MAE sd. error MSE 

Out of sample 

No loss + loss XGBloss + XGBnoloss 0.005756 0.005756 0.000869 

Total level XGBtotal 0.010743 0.029428 0.000981 

Total level Delta outstanding 0.285511 0.355614 0.207978 

Out of date 

No loss + loss XGBloss + XGBnoloss 0.021504 0.021504 0.002577 

Total level XGBtotal 0.090786 0.166008 0.035801 

Total level Delta outstanding 0.056838 0.213963 0.049011 
Note: In ‘Noloss + loss’ level of application total number of predicted LGD’s are the exactly the same as for Total level, but the 

XGBoost regressors are estimated separately on two subsamples, which is referred as ‘XGBloss + XGBnoloss’. XGBtotal stands for 

XGBoost regressor estimated on the total training sample. The bolded values indicate the best results in each subperiods. 

We observe that the performance is being improved when applying the XGBoost model onto the 

approximated LGD from delta outstanding approach. The performance of XGBoost trained on 

total level of data is particularly noticeable for the out of sample part. The main reason for weaker 

performance of XGBoost trained on total level of data and tested on out of date sample is that it 

consists mainly of unresolved cases (that limit the accessibility to whole customer’s default 

history) (93.35%) and has minor participation of cured cases (4.98%), that were increasing the 

error of delta outstanding approach. Nevertheless, the MSE metric for XGBoost regressor on total 

level for out of date testing sample is lower than the metric for the delta outstanding approach on 

the out of date testing sample (0.035801 and 0.049011 correspondingly), which may indicate lower 

tendency of XGBoost regressor to return strongly outlying values. 

Another improvement is observable after distinguishing the models for loss and noloss borrowers. 

Since both types of borrowers are expected to follow different patterns, we were able to calibrate 

the model more precisely. After this data transformation, two models trained separately on ‘loss’ 
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and ‘noloss’ sample were jointly more accurate both for out of sample and out of date testing set. 

The higher consistency and confidence of the model predictions is also reflected in lower standard 

deviation of the errors for split model approach. 

4. Sensitivity analysis 

In this section we verify how robust are our results by varying the hyperparameters within 

a predefined range. The hyperparameters considered for the analysis include learning_rate, 

max_depth, n_estimators, subsample, min_child_weight, and colsample_bytree (presented in 

Table 4). To check the sensitivity of our results, we created a new set of hyperparameters for the 

wider range than in the grid used in model, increase the number of candidates sets and apply them 

into the RandomizedSearchCV. We also analyzed the sensitivity under two variable-related 

aspects: (1) if XGBoost regressor estimated on arbitral variables associated with delta outstanding 

approach (RLGD_os, outstanding, discount_factor) is worse than for the full set of variables (listed 

in Table 1) and (2) if XGBoost regressor estimated without information about result of the delta 

outstanding procedure (RLGD_os) is worse than for the full set of variables. For the better 

interpretability, we will use XGBoost on total sample. 

4.1 Hyperparameters sensitivity 

After a few iterations of assigning the grid, we found out that when selecting the random 

numbers from uniform distribution on the assumed interval, we benefit from limiting the interval 

to as close values as possible. Our new parameters grid is being created as follows: n_estimators 

– random 15 numbers from discrete uniform or uniform distribution on interval (900, 1400); 

max_depth – integers from 6 to 16; learning_rate - random 15 numbers from uniform distribution 

on interval (0.01, 0.2); subsample – random 15 numbers from uniform distribution on interval (0.6, 

0.9); colsample_bytree – random 15 numbers from uniform distribution on interval (0.7, 0.95); 

min_child_weight – integers from 3 to 7. New and old parameters grid is summarized in Table 7. 

Table 7. Hyperparameters after tuning for sensitivity analysis. 

Hyperparameter N_ 

estimators 

Max_ 

depth 

Learning_ 

rate 

Subsample Colsample_ 

bytree 

Min_child_ 

weight 

Value 1337 9 0.081 0.868 0.861 7 
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Note: Hyperparameters tuned with RandomizedSearchCV with following parameters: cross-validation folds: 5, number of 

interations: 60, n_jobs=-1 (use all available CPU cores for parallel processing), cost function: mean squared error, and parameters 

grid as described in section 5.1 New hyperparameters and results. 

We performed RandomizedSearchCV gradually increasing the number of iterations by 5, up to the 

point, when algorithm will find the best set of hyperparameters. We succeeded to achieve better 

performance with 60 number of iterations, which together with 5-fold cross-validation resulted in 

totaling 300 fits. Comparison of performance is presented in Table 8. 

Table 8. Performance metrices for first best XGBoost model and XGBoost model after sensitivity 

analysis for hyperparameters 

Level of application Model MAE sd. error MSE 

Cross-validation 

Total level XGBtotal 0.011505 0.000551 0.001835 

Total level XGBSA_hyp 0.012387 0.000622 0.002007 

Out of sample 

Total level XGBtotal 0.010743 0.029428 0.000981 

Total level XGBSA_hyp 0.009882 0.028687 0.000921 

Out of date 

Total level XGBtotal 0.090786 0.166008 0.035801 

Total level XGBSA_hyp 0.092367 0.172867 0.038471 
Note: XGBtotal is the model estimated based on the hyperparameters from Table 5 and it is compared to XGBSA_hyp, model estimated 

on the hyperparameters from Table 7. 

Our success in optimizing the hyperparameters can be attributed to two key factors: 

1. Iterative Optimization: We employed an iterative approach, gradually increasing the 

number of candidates sets and iterations in the RandomizedSearchCV process. This 

systematic exploration allowed us to identify that the increasing number of iterations is 

beneficial for finding the best set of hyperparameters, but with a cost of computing power 

and time-consumption. 

2. Tailored Parameter Ranges: Each hyperparameter was assigned specific ranges tailored 

based on the already estimated models.  

In conclusion, our study demonstrates the effectiveness of systematic hyperparameter tuning 

in optimizing the performance of XGBoost models. By iteratively exploring the hyperparameter 

space and employing tailored parameter ranges, we successfully identified optimal configurations 

that significantly improved model performance. Our findings emphasize the importance of careful 

optimization process in machine learning model development and underscore the potential for 

further advancements through systematic parameter tuning. 
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4.2 Variables sensitivity 

Although our primary focus is on exploring the challenges posed by limited access to cash-

flow data, we extend our investigation to include an exploration of the implications of restricted 

access to other variables in the sensitivity analysis. This expanded scope allows us to dive deeper 

into the impact of data limitations on the performance of our model, offering valuable insights into 

its robustness and applicability in real-world scenarios.  

4.2.1 XGBoost for fundamental delta outstanding approach variables 

By restricting our model to input variables of delta outstanding approach (EAO, 

discount_rate) and its results (RLGD_os) we are able to assess sole impact of introduction of ML 

technique to our analysis. Holding the accessibility to the initial data unchanged, we can reflect 

the most restricted the conditions of the model developer. 

For the possibly best interpretability, we maintained the parameters grid used in modeling part 

presented in Table 4. Comparison of cross-validation results for modeling part and sensitivity 

analysis part (regressor indexed with suffix SA_var1) are presented in Table 9. 

4.2.2 XGBoost for full variables set without the result of delta outstanding approach 

The foundational stage of our research lies in the calculation of the realized LGD using the 

delta outstanding approach, serving as the pivotal offset for subsequent analyses. One may say that 

our ML model was built to improve the approximation of the LGD approximation. To evaluate the 

importance of the delta outstanding step role in our model, we decided to compare the performance 

of two estimators. The first model utilizes the full set of variables, while the second model is 

constrained by the result of the delta outstanding approach.  

For the possibly best interpretability, we maintained the parameters grid used in modeling part 

presented in Table 4. Comparison of the cross-validation results for modeling part and described 

sensitivity analysis part (regressor indexed with suffix SA_var2) are included in Table 9. 

 

Table 9. Performance metrices for first best XGBoost model and XGBoost model after sensitivity 

analysis for variables 

Level of application Model MAE sd. error MSE 

Cross-validation 
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Total level XGBtotal 0.011505 0.000551 0.001835 

Total level XGBSA_var1 0.081478 0.002172 0.023343 

Total level XGBSA_var2 0.017621 0.000685 0.002661 

Out of sample 

Total level Delta outstanding 0.285511 0.355614 0.207978 

Total level XGBtotal 0.010743 0.029428 0.000981 

Total level XGBSA_var1 0.080769 0.125434 0.022257 

Total level XGBSA_var2 0.016674 0.036007 0.001574 

Out of date 

Total level Delta outstanding 0.056838 0.213963 0.049011 

Total level XGBtotal 0.090786 0.166008 0.035801 

Total level XGBSA_var1 0.322501 0.030897 0.199472 

Total level XGBSA_var2 0.118895 0.068390 0.232925 
Note: XGBtotal is the model estimated based on the hyperparameters from Table 5 and it is compared to (1) XGBSA_var1 - model 

estimated on fundamental variables for delta outstanding approach (RLGD_os, EAO, discount_rate), (2) XGBSA_var2 - model 

estimated on full set of variables excluding RLGD_os. 

4.2.3 Variables sensitivity conclusion 

 Considering the inherent characteristics of XGBoost models, applying strict constraints on 

variables may lead to suboptimal outcomes. This relation is observable in our findings, as the 

decrease in performance was stronger when applied on narrower set of variables. Notably, 

XGBSA_var1 consistently exhibits poorer performance compared to XGBSA_var2 across all sample 

sets (cross-validation, out of sample and out of date). Of particular significance is the observation 

that XGBSA_var1 outperformed the delta outstanding approach on the out-of-sample set. Despite the 

strongly restricted number of variables, there was a field for improvement for ‘cured’ cases that 

biased delta outstanding performance. 

Conversely, XGBSA_var2 exhibited worse scores than XGBtotal across all sample sets. This finding 

suggests that excluding the delta outstanding procedure step, and consequently not incorporating 

its result into the model, could diminish the predictive power of the model. 

5. Conclusions and discussion  

Limited access to the data is a commonly encountered obstacle by the researchers, 

particularly in the domain of Credit Risk Modelling, where data availability significantly 

influences the precision of risk parameter estimation. This limitation primarily stems from the 

confidentiality and sensitivity of the data, as well as its magnitude or specificity. Even within the 

banking sector, cash-flow data faces various constraints, including portfolio-specific scenarios 
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such as scope jumpers, time constraints forcing the analyst to perform collecting data process more 

general, or technical issues leading to missing data. To address the issue of missing cash-flow data, 

temporary mitigation measures can be implemented, particularly in processes like model 

monitoring, through the adoption of approaches such as the delta outstanding procedure. 

In this research we used the dataset of retail mortgages from one of the European banks, that is 

characterized by completeness and access to the cash-flow data, on which we simulated the limited 

access to the cash-flow data. The dataset consists of 1891 borrowers, which were in default 

between the 2008 and 2019 and excludes the performing periods. Given that the data were reported 

monthly, it resulted with more than 56 thousand of single observations. Methodology implemented 

in this research uses the cash-flow approach of calculation realized LGD as the most robust way 

to determine its true value. We reflect the conditions of limited access to the cash-flow data and 

apply the delta outstanding approach to approximate the realized LGD. Furthermore, we assess the 

performance of the delta outstanding approach, applied with our best understanding of the 

description in the Guide to Internal Models published by the ECB. The supervised learning part 

adopts the methodology of splitting the data for training and testing samples. The training sample 

is cross-validated using the RandomizedSearchCV, which ensures the reliability of the results. The 

testing part is divided for the out of sample stage, where randomly selected testing data are used, 

and out of date stage, where we extract separate period in time, to provide a realistic assessment 

for the stability of the predictions across different time periods or on the future data. We primarily 

refer to the MAE and MSE performance metrics, commonly utilized in this type of models in the 

scientific literature. We also interpret the values of standard error, that explains the consistency of 

the predictions.  

The assessment described in section 4.1 reveals that the method does not fully reflect the reality, 

when compared to the cash-flow approach (RQ1). Arguments against treatment the delta 

outstanding method as a perfect approximation of LGD are also presented in Table 6, where the 

performance of delta outstanding and supervised model is compared on the same subset of the 

data. Moreover, based on the relevant literature, we select variables commonly used to LGD 

models of mortgage loans and use the machine learning techniques to include them as the 

predictors for the realized LGD estimation. Our machine learning model has been trained using 

the best hyperparameters selected based on Randomized Search Cross-Validation. We discovered 

that inclusion of non-cash-flow related variables can lead to the improvement in performance of 
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estimating the LGD (RQ2), as observed in Table 6 and Table 9. Finally, referring to methodologies 

described in the literature, we divided our dataset using the final status variable for loss and noloss 

subsamples to estimate two independent regressors. This modification resulted in better results of 

XGBoost model, according to employed performance metrices: MSE and MAE (RQ3), that are 

presented in Table 6.  

Although the topic of limited access to exhaustive data for credit risk modeling is common in the 

literature, the amount of publications related to application of alternative ways of calculating 

realized LGD is not very representative. Elaboration on the delta outstanding approach contributes 

to the novel character of this research. Our study reveals that although the approach widely adopted 

in banks and endorsed by the ECB, exhibits inherent weaknesses. Its general methodology 

formulation leaves the space for the multiple interpretations and implementations among different 

institutions, and may yield imprecise or inconsistent results. We showed that generalized 

application of delta outstanding approach on all types of borrowers create a bias, misestimating 

the LGD of cured borrowers. Then, we presented that its efficiency can be enhanced through the 

application of machine learning techniques, resulting in significant improvements. Our approach 

represents a novel advancement in the field, demonstrating the efficacy of machine learning 

techniques in refining LGD approximation. By leveraging the XGBoost model's ability to 

incorporate a wider range of variables beyond traditional inputs like outstanding balance and 

interest rate, we achieved significant improvements in accuracy. This novel methodology allowed 

us to uncover more complex patterns within borrower behavior, enhancing our understanding of 

LGD dynamics. 

We noted the XGBoost model estimated on total level sample improves the estimations in 

comparison to delta outstanding approach, when we evaluated the results on the testing set (out of 

sample). Nevertheless, the model was not sufficient for out of date testing sample, that contained 

the majority of unresolved cases. Our approach deviates from previous literature, which typically 

supports data segmentation based on customer current status (defaulted and performing). 

Nevertheless, our dataset contains only defaulted cases, that were subsampled based on their final 

status: (1) cured and exited without any loss for the bank and (2) not resolved and excited with 

loss. After such transformation of the data and estimation of two independent XGBoost regressors, 

joint performance of the models has been the best for both out of sample and out of date testing 

sets. This novel methodology underscores the significance of tailoring data segmentation strategies 
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to suit specific dataset characteristics and contributes to advancing the understanding of effective 

modeling techniques in credit risk analysis. 

Even though machine learning models are not yet commonplace in banking practices due to the 

challenges associated with interpretation, their theoretical potential suggests that certain banking 

procedures could benefit from their utilization. Further exploration within this domain may prompt 

questions regarding the efficiency of alternative data segmentation methods, or whether optimizing 

the delta outstanding model for cure cases poses a greater challenge in finding a more precise 

machine learning model. A primary area for further exploration involves improving the 

interpretation and application of the delta outstanding methodology for cured cases. Additionally, 

exploring the introduction of other models could offer valuable insights into modeling approaches 

tailored for conditions of limited data access. 
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