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information ratio**. The results showed that using forecasted returns we can enhance our portfolio 
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all the parameters and hyperparameters of selected models. 
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INTRODUCTION

Information is a crucial factor in trading. In order to ensure successful investment out-
comes, investors need to have good knowledge of interdependencies in financial markets and
the main factors affecting the prices of securities. But not only the quantity and the quality of
information is important but also how one uses it. In this study, we limit the information we
use to create investment strategies solely to historical stock prices. At the same time, we check
if using this data as an input for both classic time-series models and modern machine learning
models yields better investment outcomes.

The main framework in the study is the mean-variance portfolio framework first introduced
by Henry Markowitz (1952). We verify the efficiency of the enhanced Markowitz’s framework
by testing three groups of strategies against simple benchmarks – an equally weighted portfolio
and buy and hold on the DJIA index. These groups are strategies using ’raw’ historical returns,
strategies using the ARIMA-GARCH forecasts, and strategies using the XGBoost forecasts.
Comparing these three groups with one another and with the benchmarks, we get some insights
about, whether it is beneficial to further transform the return series (in this case, to forecast
future returns).

The main aim of this study is synthesised in two hypotheses:
H1: The strategies based on forecasted stock returns outperform (having higher values of in-
formation ratio**) the strategies based on historical stock returns.
H2: The strategies based on forecasted stock returns outperform (having higher values of in-
formation ratio**) an equally weighted portfolio and buy and hold on the equity index.
Moreover, we ask the following research questions:
RQ1: Which portfolio optimization method will perform better in terms of information ratio**?
RQ2: Which forecasting model performs better in the framework in terms of information ra-
tio**?
RQ3: Are the results sensitive to the number of assets, the estimation and the rebalancing win-
dows’ lengths, the transaction costs, and the forecasting models’ parameters?

To verify hypotheses and answer research questions, we conducted an empirical study sim-
ulating the results of many different strategies in the period from January 1, 2007, to December
31, 2022. We used nearly all stocks that have been components of the Dow Jones Industrial
Average during the discussed period. All of the calculations were performed using R and
Python. The time needed to perform all the computations is estimated to be about 32 hours
and over 200 000 models were fitted. The ARIMA-GARCH forecasts were performed using
the rugarch R package (Ghalanos, 2022), and the XGBoost forecasts were performed using
XGBoost R package (Chen and Guestrin, 2016). Portfolios’ objective functions were opti-
mized in Python using scipy package.

Nowadays huge amount of data is available. It is easy to fall into the trap of using much in-
formation without maximizing the utility of it. In our study, we limit the amount of information
we use and create investment strategies attempting to use the restricted dataset most efficiently.
Our main contribution to the portfolio optimization topic consists of presenting an approach that
does not require expensive or difficult to obtain data and makes the most use only of historical
stock returns. Moreover, we check whether utilizing the proposed approach can be beneficial
compared to classical mean-variance portfolio, equally weighted portfolio and buy and hold on
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an equity index.

The structure of the thesis is as follows. In the first chapter, we present the theoretical back-
ground and describe recent studies concerning the discussed topics. The first chapter is divided
into three parts: a part explaining the mean-variance framework with its modern applications, a
part concerning the ARIMA-GARCH model, and a part describing the XGBoost model. In the
second chapter, we describe the methodology, utilized strategies and data. In the third chapter,
we show and describe the results of the base case scenario. In the last chapter, we perform an
extensive sensitivity analysis of the results we obtained. In the end, we derive conclusions and
discuss the results.

I. THEORETICAL BACKGROUND AND LITERATURE REVIEW

1.1. Markowitz model

In 1952 Markowitz laid the grounds for the Modern Portfolio Theory presenting an ap-
proach to construct a portfolio of different assets. Over 70 years later, his ideas are still alive
in portfolio management. Many researchers have extended the theory, but its conceptual basics
remained unchanged. Regardless, the most important problem with the classic mean-variance
framework is that it relies on historical stock prices. They may be a good indicator of stock
performance only when the stock is proven to perform consistently under various political and
economic circumstances (Fabozzi et al., 2002), which is hardly the case. That is why researchers
tried different approaches relying on stock price forecasting.

For example, Chen et al. (2021) proposed a strategy consisting of two components: stock
prediction using XGBoost with IFA (Improved Firefly Algorithm) and portfolio optimization
using the mean-variance framework. First, the authors forecast stock returns using XGBoost
and optimize its hyperparameters using IFA, then they choose best-performing stocks and apply
a mean-variance framework to allocate weights for the assets. The authors compared the pro-
posed approach to a number of benchmarks, including the traditional mean-variance portfolio
(based on historical returns), other machine learning models combined with a mean-variance
portfolio or a number of equally weighted portfolios. Chen et al. tested this approach on 24
randomly selected Shanghai Stock Exchange 50 (SSE50) stocks, and their proposed strategy
outperformed the others between Q4 2017 and Q4 2019. It is worth noting that the forecasts
have been performed only for the one period ahead.

Ma et al. (2021) forecasted one day ahead stock returns using machine learning and tra-
ditional forecasting models and then used forecasts to form mean-variance and omega ratio
portfolios. Used models include DMLP (deep multilayer perceptron), LSTM (long short term
memory) neural network, CNN (convolutional neural network), random forest, SVR (support
vector regression) and traditional ARIMA. Each forecasting model was combined with both
mean-variance and omega ratio portfolio approaches. The strategies were tested on 49 China
Securities 100 index components. The results showed that between January 2012 and Decem-
ber 2015, both approaches utilizing random forests outperformed other strategies. Due to daily
rebalancing and high turnover rates, the best strategies’ returns were decreased by half by trans-
action fees. Despite that, the authors recommended using the proposed approach with random
forests for portfolio creation.
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It should not be shocking that even in recent years, an over-70-year-old approach was used
to optimize the portfolio. High returns and low risk are one of the most crucial factors for
investors. The approach proposed by Markowitz (1952) combined with different optimization
problems can create a portfolio with a high chance of fulfilling investors’ expectations. It is
worth noting that higher moments of return distributions also can play a significant role in the
portfolio selection. Harvey et al. (2010) and Chen and Zhou (2018) showed that incorporating
skewness and kurtosis in portfolio optimization can improve the results.

1.2. ARIMA-GARCH

Box and Jenkins (1976) introduced their model for time-series data called ARIMA –
Auto-Regressive Integrated Moving Average. In this model variable X in period t depends on
previous values of X and previous values of residuals ε. The main problem of such a model
is the assumption of homoscedasticity. Unfortunately, for financial time series, it is not often
the case. They tend to be heteroskedastic, and periods of higher variance tend to cluster. This
problem were addressed by Engle (1982). In his study, he presented the ARCH model – Auto-
Regressive Conditional Heteroskedasticity. Moreover, he proposed a test, to check whether
time series show ARCH effects. Due to the fact, that the ARCH model tends to have rela-
tively high orders which require estimating multiple parameters, Bollerslev (1986) proposed
the GARCH model – Generalized Auto-Regressive Conditional Heteroskedasticity. It builds
on the classic ARCH model adding lagged variances. GARCH models tend to be more par-
simonious. When we use the ARIMA model as the mean equation with a GARCH model we
obtain the ensemble ARIMA-GARCH model with the final equational form of:

(1−
p∑

i=1

φiL
i)(1− L)dXt = µ+ (1 +

q∑
i=1

θiL
i)ut, ut ∼ N(0, σ2

t ) (1)

(1−
b∑

j=1

βiL
i)σ2

t = α0 + (
a∑

i=1

αiL
i)u2

t (2)

The ARIMA-GARCH model was widely applied in forecasting realizations of different time
series. Mohammadi and Su (2010) analysed the performance of several variants of ARIMA-
GARCH models to forecast crude oil prices. Four volatility models were tested – GARCH,
EGARCH, APARCH, and FIGARCH. The results were not conclusive, but the APARCH model
tended to perform better than the others in most cases. Yaziz et al. (2013) utilized the model
to forecast gold prices on a 40-day window and compared it to other forecasting approaches.
The result showed that ARIMA(1,1,1)-GARCH(0,2) forecasts outperformed other compared
methods (including standard ARIMA) in terms of MAE (mean absolute error) and MSE (mean
squared error).

When it comes to forecasting stock prices, several pieces of research were conducted. For
example, Mustapa and Ismail (2019) used the ARIMA-GARCH model to forecast the monthly
prices of S&P500 index stocks in the period from January 2001 to December 2018. The au-
thors did not fit the model simultaneously but rather fitted the ARIMA model and then applied
GARCH on the mean model residuals. The results of the study showed that ARIMA(2,1,2)-
GARCH(1,1) model performed the best in forecasting the S&P500 index stock prices. What
is interesting, most other ARIMA orders tested by the authors turned out to be insignificant at
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the 5% level. Vo and Ślepaczuk (2022) constructed an algorithmic investment strategy apply-
ing the ARIMA-(S)GARCH on S&P500 stocks. The authors found that adding the GARCH
component to the ARIMA model increases the precision of the forecasts and causes underlying
investment strategies to outperform benchmarks. Moreover, their findings seemed not to be sen-
sitive to a variety of parameters, including error distribution or GARCH model type (SGARCH,
EGARCH). Based on the literature, we can conclude that the addition of GARCH components
can potentially increase the precision of the forecasts.

1.3. XGBoost

XGBoost is a modern machine-learning model ensembling many decision trees using the
technique called gradient boosting. It is a versatile approach that has many applications (Chen
and Guestrin, 2016). The model is trained on a set of observations including features and re-
sponse variable and then it can be used on out-of-sample data to predict values of response
variable based on the values of feature variables. The response variable can be either numerical
or categorical. Many studies were conducted utilizing the model in financial applications, the
most recent ones are going to be described in the following section.

Nobre and Neves (2019) applied the XGBoost binary classifier to predict the direction of
stock price movement to make trading decisions. The authors used processed financial data and
technical indicators as features. The data processing included normalization, PCA (Principal
Component Analysis), and wavelet transform. Then the XGBoost model hyperparameters were
optimized using multi-objective optimization, and a trading signal was received from the op-
timized model. The authors tested the strategy on different financial markets including future
contracts, stocks, and the SP500 index. The results showed that the proposed strategy was able
to outperform buy and hold in a tested period (2014-2017) in three out of five tested markets.

In their study, Nabipour et al. (2020) compared machine-learning and deep-learning mod-
els’ performance when predicting the Iranian stock market groups’ performance. The authors
investigated both tree-based and artificial neural network (ANN) models. As the model fea-
tures, the authors used different technical indicators, including moving averages and oscillators.
The predictions were performed up to 30 days in advance. The results showed that XGBoost
performed the best out of all tree-based models for one-day ahead predictions in diversified
stock groups but still worse than most ANN models. As the forecast period extended, the per-
formance of XGBoost was no longer the best among tree-based models. On the other hand, the
average performance of XGBoost was still competitive among tree-based models concerning
stocks divided in groups by industry.

Jabeur et al. (2021) attempted to predict gold prices using other financial time series as fea-
tures. They include other metals’ prices (silver, iron ore), currency exchange rates (USD/EUR,
USD/CHY), oil prices, S&P500 index and inflation rate in the US. The authors benchmarked
XGBoost against other models, including classical linear regression and machine-learning mod-
els like neural networks, random forests, light gradient boosting (LightGBM) or the CatBoost
algorithm. Moreover, the authors used SHAP (Shapley additive explanations) to help interpret
models’ predictions. The results of the empirical study showed that XGBoost performs the best
out of tested models (in terms of RMSE, MSE and MAE) and, used with SHAP, can be a suc-
cessful tool to predict gold prices. Jabeur et al. concludes that policymakers could benefit from
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using the proposed approach.

To assess the importance of feature selection, Yun et al. (2021) proposed a novel approach
to stock performance forecasting with XGBoost using three stage process. The first stage con-
sisted of generating technical indicators of historical stock prices and volume and normalizing
the data. Next, the authors utilized GA (genetic algorithm) to reduce the dimensionality and pre-
vent overfitting by choosing features with the highest chance of positively contributing to model
performance. Finally, they performed forecasts to predict up or down stock price movement,
thus reducing the prediction problem to binary classification. Yun et al. assessed the model
using accuracy metric, F1 or AUROC (area under the ROC) among others. The empirical study
based on the Korea composite stock price index 200 (KOSPI) showed that the proposed feature
engineering approach influences the results greatly. The authors also showed that it is possible
to reduce dimensionality without affecting performance.

Recent literature findings show that XGBoost is a powerful tool in financial time series
performance prediction. Studies put much emphasis on the feature selection stage of the fore-
casting project and show that despite its flexibility and adaptability XGBoost is not a panacea
for forecasting problems.

II. METHODOLOGY AND DATA

A total of 152 strategies were tested in the base case scenario and the sensitivity analysis.
The strategies may be divided into three groups:

• MV – mean-variance portfolio based on historical returns,

• FMV-AG – mean-variance portfolio based on returns forecasted using the ARIMA-GARCH
model,

• FMV-XGB – mean-variance portfolio based on returns forecasted using the XGBoost
model.

Each strategy can be described by a set of parameters that are presented in Table 1 (values
for the base case scenario are marked in bold). All of the strategies groups are going to be
described later in this chapter.

As benchmarks, we decided to use:

• EW – the equally weighted portfolio,

• DJIA – the ”buy and hold” the Dow Jones Industrial Average index.
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Table 1. Strategies’ parameters.

Parameter Values Applies to
Estimation window (in months) tew ∈ {6; 12; 24} MV, FMV-AG, FMV-XGB
Portfolio rebalancing period (in months) f ∈ {0,5; 1; 3} MV, FMV-AG, FMV-XGB
Number of stocks n ∈ {5; 10; 30} MV, FMV-AG, FMV-XGB
Transaction cost level (in %) c ∈ {0,05;0,1; 0,2; 0,5} MV, FMV-AG, FMV-XGB

ARIMA order
(p, d, q) ∈ {(1, 0, 0); (0, 0, 1); (1, 0, 1);

(2, 0, 1); (1, 0, 2); (2, 0, 2)} FMV-AG

GARCH error distribution
normal, skew-normal, student-t, skew-student,

GED, skew-GED
FMV-AG

XGBoost feature lag l ∈ {6; 11; 21} FMV-XGB
XGBoost hyperparameters

Numer of rounds nrounds ∈ {50; 100; 200} FMV-XGB
Learning rate eta ∈ {0,05; 0,1; 0.3; 0,4} FMV-XGB
Lambda lambda ∈ {0,5; 1; 5; 10} FMV-XGB
Max depth max depth ∈ {3; 6; 9; 12} FMV-XGB
Subsample subsample ∈ {0,5; 0,75; 1} FMV-XGB

Note: Values for the base case scenario are marked in bold, other parameters are tested in the sensitivity analysis. MV – mean-variance

portfolio based on historical returns, FMV-AG – mean-variance portfolio based on returns forecasted using the ARIMA-GARCH model,

FMV-XGB – mean-variance portfolio based on returns forecasted using the XGBoost model.

2.1. Data description

The strategies were tested on the Dow Jones Industrial Average stocks. We have decided
to use DJIA stocks because their number is relatively small, allowing us to track changes in the
index constituents over our testing period. Moreover, data about their historical returns is easily
available. This equity index can also be assumed to be representative of the market. In the base
case scenario and most of the sensitivity analysis, we used all DJIA components. It is worth not-
ing that because of the financial problems of the ”old” General Motors in 2009, a new company
– ”new” General Motors was established and emitted stock under the same ticker. Because of
that, we found it impossible to obtain stock price data preceding the company reorganization.
That is why we have decided to omit GM stock in the analysis, and we are aware of the fact that
it may lead to a slight survivorship bias before June 2009.

There were some changes to the Dow Jones Industrial Average composition during the re-
search period. All of them are presented in Figure 1. For each rebalancing period we chose the
stocks that had been the components of the DJIA on the day before the first day of the rebalanc-
ing period. If any stock ceased to be a part of DJIA during the rebalancing period, it would not
be excluded until the beginning of the new rebalancing period.

The testing period begins 2007-01-01 and ends 2022-12-31, which gives 16 years. The ear-
liest data used in the study comes from the 2005-01-01. It is used in sensitivity analysis for a
2-year estimation window. All of the financial data used in the study comes from Yahoo! Fi-
nance. To better understand how the estimation window, rebalancing period, and testing period
are related, it is beneficial to look at their graphical representation on Figure 2.
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Figure 1. Components of Dow Jones Industrial Average from 2005-01-01 to 2022-12-31.

Note: Own preparation based on the list of changes in the DJIA from https://en.wikipedia.org/

Figure 2. Graphic representation of estimation window, rebalancing period and testing period.

Note: For the base case scenario first estimation windows started on 01/01/2006 and ended on 31/12/2006 (estimation window Tew = 12
months), and the first rebalancing period started on 01/01/2007 and ended on 31/02/2007 (rebalancing window f = 1). Then both periods
were recursively shifted by one month (f = 1). Summing all estimation windows gives us the testing period starting on 2007-01-01 and ending
on 2022-12-31.
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2.2. Mean-variance portfolio framework

Let r∗ be a matrix of T historical daily log returns of n stocks:

r =

rt−1,1 · · · rt−1,n

... . . . ...
rt−T,1 · · · rt−T,n

 (3)

where:
T ≈ 21 · tew,
tew is the length of estimation window in months,
n is the number of stocks,
rt−i,n is the historical log return for n-th stock for day t− i for i ∈ {1, . . . , T}.

Then µ∗ will be a vector of means of historical log returns:

µ̂ =

µ̂1

...
µ̂n

 =


1
T

∑T
i=1 rt−i,1

...
1
T

∑T
i=1 rt−i,n

 (4)

and Σ̂ a variance-covariance matrix of historical log returns:

Σ̂ =

 σ̂2
1 · · · σ̂1,n

... . . . ...
σ̂1,n · · · σ̂2

n

 (5)

where σ̂2
i is an empirical variance of historical log returns of i-th stock and σ̂i,j is an empirical

covariance between historical log returns of i-th and j-th stock.

The goal is to find a vector of weights w which optimizes the objective function. Two port-
folio optimization problems are considered, a global maximum information ratio portfolio and
a global minimum variance portfolio.

Global maximum information ratio portfolio (GMIR)

The information ratio is a measure of trade-off between returns and risk. A GMIR portfolio
is equivalent to the global maximum Sharpe ratio portfolio with the risk-free rate equal to 0.
The optimization problem is:

max
w

w′µ̂

w′Σ̂w
s.t.

30∑
i=1

wi = 1 ∧ ∀i : wi ∈ [0, 1] (6)

Global minimum variance portfolio (GMV)

A GMV portfolio should minimize risk. The objective function does not take the returns
into account. The optimization problem is:

min
w

w′Σ̂w s.t.
30∑
i=1

wi = 1 ∧ ∀i : wi ∈ [0, 1] (7)
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Please note that we do not allow for short selling as all weights must be positive. In this case
(as well as in the mean-variance framework with forecasted stock returns) in period t resulting
portfolios have gross returns of:

rgrosst = w′rgross =
[
wt,1 · · · wt,n

]
·

r
gross
t,1

...
rgrosst,n

 =
n∑

i=1

wt,n · rgrosst,n (8)

where rgrosst,n is the gross return on n-th asset on day t.

2.3. Stock return forecasting methods

ARIMA-GARCH

In the base case scenario, the ARIMA-GARCH model had a fixed order. This decision was
made to decrease the computation time. ARIMA part had an order of (p, d, q) = (2, 0, 1) which
was determined based on the results from financial literature. On the other hand, the GARCH
order of (a, b) = (1, 1) was chosen because Engle (2001) claimed that it performed the best. In
sensitivity analysis, other ARIMA orders were tested. We have not decided to difference the
log returns (thus d = 0 for each case), as they are usually already stationary (contrary to stock
prices). The algorithm for forecasting single returns for a single stock is presented in Figure 3.

Figure 3. Algorithm for forecasting stock returns.

Note: The algorithm is applied to all stocks in all periods.

For each stock in a given rebalancing period, the model was fitted on historical returns from
1 up to T = 21 · tew days before the first day of the rebalancing period (where tew is the length
of estimation window in months). The forecasts were made for Tf = max(21 ·f, n) days ahead,
where f is the length of the rebalancing period in months and n is the number of stocks. Both
the mean and the variance equation were fitted simultaneously.
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Forecasts are made using the bootstrapping method described by Pascual et al. (2006).
It allows to fully benefit from GARCH component when forecasting next series realizations.
The method involves drawing (with replacement) values from the empirical distribution of
residuals and applying them to forecasted values. Then, the set of B bootstrap replications
(y∗(1)T+k, . . . , y

∗(B)
T+k ), for the predicted value yT+k is obtained, giving approximation of yT+k den-

sity function. A similar approach is used for volatilities. The empirical density functions enable
the construction of prediction intervals. Their means can be used as forecasts for future series
realizations. It is worth noting that the series forecasts quite quickly approach the mean.

XGBoost

Since XGBoost is a non-parametric method for time series forecasting it is crucial to en-
gineer features that will maximize the chances for accurate forecasts. In this case, the only
features were the lagged returns. The number of lags l was equal to 11 (about half the num-
ber of trading days in a month) in the base case scenario. So if label were rt then features
were rt−1, . . . , rt−11. In the sensitivity analysis, other numbers of lags (6 and 21) were tested.
Various types of feature combinations were tried. What is interesting, including basic technical
indicators or variables describing days of week or days of month actually made the performance
of the strategy worse. That is why we have decided to use only lagged returns.

Forecasts for Tf days ahead were performed recursively. That means that the forecast for
rt+1 was based only on historical values but for rt+2 on one forecasted return r∗t+1, for rt+3 on
two forecasted returns, and so on. A consequence of that is the fact that the forecast of rt+12

and further forecasts were performed exclusively using priorly forecasted data.

Similarly to ARIMA-GARCH, XGBoost hyperparameters were fixed. The best approach
would be to grid search or random search optimal hyperparameter combination, but due to the
big number of fitted models (5730 only in FMV-XGB base case scenario), significant computing
power would be needed in order to finish tuning in a reasonable time.

2.4. Mean-variance portfolio framework with forecasted stock prices

Let r∗ be a matrix of n forecasted stock log returns for Tf days ahead which is a result of
forecasts described above:

r∗ =

 r∗t+1,1 · · · r∗t+1,n
... . . . ...

r∗t+Tf ,1
· · · r∗t+Tf ,n

 (9)

where:
Tf = max(21 · f, n),
f is the length of rebalancing period in months,
n is the number of stocks,
r∗t+i,n is the forecasted log return for n-th stock for day t+ i for i ∈ {1, . . . , Tf}.

Then µ∗ will be a vector of means of forecasted log returns:
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µ∗ =

µ
∗
1
...
µ∗
n

 =


1
Tf

∑Tf

i=1 r
∗
t+i,1

...
1
Tf

∑Tf

i=1 r
∗
t+i,n

 (10)

and Σ∗ a variance-covariance matrix of forecasted log returns:

Σ∗ =

σ2∗
1 · · · σ∗

1,n
... . . . ...

σ∗
1,n · · · σ2∗

n

 (11)

where σ2∗
i is the variance of forecasted log returns of i-th stock and σ∗

i,j is the covariance be-
tween log returns of i-th and j-th stock.

Similarly as in basic mean-variance portfolio framework based on historical log returns, the
goal is to find a vector w to optimize the objective function.

Global maximum information ratio portfolio

The optimization problem is:

max
w

w′µ∗

w′Σ∗w
s.t.

30∑
i=1

wi = 1 ∧ ∀i : wi ∈ [0, 1] (12)

Global minimum variance portfolio

The optimization problem is:

min
w

w′Σ∗w s.t.
30∑
i=1

wi = 1 ∧ ∀i : wi ∈ [0, 1] (13)

2.5. Performance and diversification metrics

All metrics were calculated using either simple net returns (after transaction costs) or the
equity line calculated using the given formula:

X(t) = K ·
T∏
t=1

(1 + rgrosst −
N∑

n=1

|wt,n − wt−1,n| · c) = K ·
T∏
t=1

(1 + rt) (14)

where:
X(t) – the portfolio value at moment t,
K – the invested capital (here K = 1),
T – the number of trading days in the testing period,
rgrosst – the portfolio’s gross returns on day t,
N – the number of stock in the optimized portfolio,
wt,n – the weight of n-th asset on day t (∀ n : w0,n = 0),
c – the percentage level of transaction costs,
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rt – the portfolio’s net returns on period t.

Please note that we used log returns for forecasting, estimation and optimization due to their
better statistical properties, but to measure performance, we chose regular returns for proper
interpretation of real changes in the value of our portfolio. Performance and diversification
metrics were based on Tsay (2005), Vo and Ślepaczuk (2022) and are described below.

Absolute rate of return

ARR% = (
T∏
t=1

(1 + rt)− 1) · 100% (15)

where:
T – the number of trading days in the testing period,
rt – the portfolio’s net returns on day t.

Annualized rate of return

ARC% = ((
T∏
t=1

(1 + rt))
1
Y − 1) · 100% (16)

where:
T – the number of trading days in the testing period,
rt – the portfolio’s net returns on day t,
Y – the length of testing period in years.

Annualized standard deviation

ASD% =

√√√√252

T

T∑
t=1

(rt − r̄)2 · 100% (17)

where:
r̄ = 1

T
·
∑T

t=1 rt,
T – the number of trading days in the testing period,
rt – the portfolio’s net returns on day t.

Maximum drawdown

MDD% = max
τ∈(0,T )

[ max
t∈(τ,T )

X(τ)−X(t)

X(τ)
] · 100% (18)

where:
X(t) – portfolio value on day t,
T – the number of trading days in the testing period.
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Information ratio*

A simplified version of the Sharpe Ratio not including a risk-free rate. The measure of
pay-off between returns and volatility.

IR∗ =
ARC%

ASD%
(19)

where ARC% and ASD% defined as above.

Information ratio**

A modified version of information ratio* including the maximum drawdown.

IR∗∗ =
ARC% · |ARC%|
ASD% ·MDD%

(20)

where ARC%, ASD%, and MDD% defined as above.

While we used information ratio* as an auxiliary metric, information ratio** was the main
performance metric in this study used for results interpretation, as it synthesises information
obtained from all other previously mentioned metrics.

Mean number of stocks constituting at least 75% of the portfolio

A measure of the diversification of the portfolio. MN75% ∈ [1; 23]. Lower values suggest
that the portfolio is concentrated only on a few assets, while greater values imply more diversi-
fication. For the equally weighted portfolio with 30 assets, its value is equal to 23.

Let wt,1, ..., wt,30 be portfolio weights of stocks on period t so that wt,1 ≥ ... ≥ wt,30. A
number of stocks constituting at least 75% of the portfolio on period t (N75%

t ) can be calculated
using following algorithm:

if wt,1 ≥ 0.75 then N75%
t = 1

else if wt,1 + wt,2 ≥ 0.75 then N75%
t = 2

else if wt,1 + wt,2 + wt,3 ≥ 0.75 then N75%
t = 3

and so on ...

Then, the mean number of stocks constituting at least 75% of the portfolio is defined as:

MN75% =
1

Tp

·
Tp∑
i=1

N75%
t (21)

where:
Tp – the number of portfolio rebalancing periods.

Mean number of stocks constituting at least 90% of the portfolio

MN90% is defined analogically to MN75%, but with the 90% threshold. MN90% ∈ [1; 27].
For the equally weighted portfolio with 30 assets, its value is equal to 27.
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III. RESULTS

3.1. Global maximum information ratio portfolio

Analysing Table 3 and Figure 4, we can see that for GMIR portfolio both FMV strategies
performed better than MV and benchmarks in terms of information ratio**. They had similar
returns, but FMV-XGB performed better in terms of standard deviation, while FMV-AG had
a lower maximum drawdown. MV also outperformed benchmarks in terms of information ra-
tio**, but less than strategies with forecasted returns. We can see that all strategies promoted
portfolios with a relatively low level of diversification, mostly focusing on less than 6 stocks.

Table 3. Performance statistics of the base GMIR strategies.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV GMIR 225,75% 7,66% 24,96% 36,72% 0,307 0,064 3,95 5,19
FMV-AG GMIR 261,62% 8,37% 22,56% 40,02% 0,371 0,077 3,66 6,35
FMV-XGB GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio. MV GMIR – mean-variance global maximum information ratio portfolio based on historical
returns, FMV-AG GMIR – mean-variance global maximum information ratio portfolio based on returns forecasted using the ARIMA-GARCH
model, FMV-XGB GMIR – mean-variance global maximum information ratio portfolio based on returns forecasted using the XGBoost model.

Figure 4. Equity lines of the base GMIR strategies.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number
of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. MV GMIR – mean-variance
global maximum information ratio portfolio based on historical returns, FMV-AG GMIR – mean-variance global maximum information ratio
portfolio based on returns forecasted using the ARIMA-GARCH model, FMV-XGB GMIR – mean-variance global maximum information
ratio portfolio based on returns forecasted using the XGBoost model.
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Although FMV-AG, FMV-XGB and MV strategies outperformed benchmarks regarding in-
formation ratio**, we cannot infer that these strategies’ returns distribution expected values are
higher than the benchmarks’ expected values. That is why we decided to test it using statistical
inference. We performed two types of tests. The first test is t-test for paired samples (Devore et
al., 2012) with the following hypotheses:
H0 : µD = µstrategy − µbenchmark = 0
H1 : µD > 0
Where µD is the difference between the expected values of strategy returns and benchmark
returns. The p-values of the paired t-tests are presented in Table 4.

Table 4. P-values for the paired t-test for the base GMIR strategies.

µbenchmark

EW DJIA MV GMIR
FMV-AG GMIR 0,220 0,179 0,491

µstrategy FMV-XGB GMIR 0,222 0,160 0,563
MV GMIR 0,255 0,238 -

Note: P-values lower than 0.1 are marked in bold.

We can notice that the differences between strategies’ expected values were not significant
at the 0.1 significance level for any strategy pair. We also performed simple linear regression in
the form of:

rstrategy,t = α + β · rbenchmark,t + εt (22)

and performed a right-sided t-test for the significance of the intercept (Wooldridge, 2015) with
the following hypotheses:
H0 : α = 0
H1 : α > 0
The p-values of the t-tests are presented in Table 5.

Table 5. P-values for the t-test for the intercept significance for the base GMIR strategies.

rbenchmark

EW DJIA MV GMIR
FMV-AG GMIR 0,157 0,183 0,169

rstrategy FMV-XGB GMIR 0,061 0,071 0,111
MV GMIR 0,259 0,289 -

Note: P-values lower than 0.1 are marked in bold.

The results of the t-test showed that FMV-XGB strategy returns had intercepts significantly
higher than 0 when regressed on returns from equally weighted and buy-and-hold portfolios at
a 0.1 significance level. For other pairs, there were no reasons to reject the null hypothesis.

3.2. Global minimum variance portfolio

In the case of GMV strategies (which results are shown in Table 6 and Figure 5), we can
see that the differences between them and benchmarks were much smaller. The FMV-XGB
strategy and the MV strategy performed better than both the benchmarks and the FMV-AG. The
MV strategy was the best one in terms of information ratio**. The results of the FMV-AG may
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be relatively poor because this portfolio was very similar to the equally weighted portfolio. We
can see that when we compare MN75% and MN90% metrics. In this scenario, it is questionable
if it is beneficial to forecast stock returns.

Table 6. Performance statistics of the base GMV strategies.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV GMV 197,28% 7,05% 20,12% 39,71% 0,350 0,062 5,79 8,19
FMV-AG GMV 158,31% 6,11% 21,02% 61,32% 0,291 0,029 22,40 26,44
FMV-XGB GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio

Figure 5. Equity lines of the base GMV strategies.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number
of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. MV GMV – mean-variance
global minimum variance portfolio based on historical returns, FMV-AG GMV – mean-variance global minimum variance portfolio based on
returns forecasted using the ARIMA-GARCH model, FMV-XGB GMV – mean-variance global minimum variance portfolio based on returns
forecasted using the XGBoost model.

Statistical tests analogical to the GMIR case were performed for the GMV portfolios. Its
results are presented in Tables 7 and 8.
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Table 7. P-values for the paired t-test for the base GMV strategies.

µbenchmark

EW DJIA MV GMV
FMV-AG GMV 0,592 0,458 0,609

µstrategy FMV-XGB GMV 0,442 0,358 0,568
MV GMV 0,468 0,454 -

Note: P-values lower than 0.1 are marked in bold.

Also in the GMV case, the differences between strategies’ expected values were not signif-
icant at the 0.1 significance level for any strategy pair.

Table 8. P-values for the t-test for the intercept significance for the base GMV strategies.

rbenchmark

EW DJIA MV GMV
FMV-AG GMV 0,628 0,619 0,398

rstrategy FMV-XGB GMV 0,137 0,191 0,301
MV GMV 0,223 0,262 -

Note: P-values lower than 0.1 are marked in bold.

In the GMV case, no intercepts were significantly higher than 0 at the 0.1 significance level.
Please note that in both tests we assumed that both series values were independent of their pre-
vious values. This assumption may not hold for the financial time series, which is why the test
results are inconclusive.

IV. SENSITIVITY ANALYSIS

All of the strategies depend on many parameters and even a slight change in them can
have substantial consequences. In this chapter, we inspect strategies’ performance with different
parameter combinations. An extensive sensitivity analysis is crucial to answering the research
questions and testing the robustness of the base case strategies.

4.1. Estimation window length

In the base case, we estimated both models’ parameters on a 12-month estimation window.
In this section, we show how the portfolio performance was affected by both the increase and
decrease of estimation window length.

Global maximum information ratio portfolio

Table 9 and Figure 6 show that for GMIR portfolios, the best estimation window length
was 12 months. For every strategy, it overperformed other tested estimation window lengths
in terms of information ratios. That means all the strategies were sensitive to estimation win-
dow length. The FMV-XGB strategy with a 6-month estimation window performed the best in
terms of returns, but due to its relatively high standard deviation and maximum drawdown, this
strategy was worse than base case strategy (FMV-XGB 12 m GMIR).
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Table 9. Performance statistics of the base GMIR strategies with different lengths of estimation
window.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 6 months GMIR 74,96% 3,56% 28,54% 57,19% 0,125 0,008 3,42 4,53
MV 12 months (b.c.) GMIR 225,75% 7,66% 24,96% 36,72% 0,307 0,064 3,95 5,19
MV 24 months GMIR 94,62% 4,25% 21,72% 50,14% 0,196 0,017 5,32 6,79

FMV-AG 6 m GMIR 151,01% 5,92% 28,43% 68,34% 0,208 0,018 3,38 5,63
FMV-AG 12 m (b.c.) GMIR 261,62% 8,37% 22,56% 40,02% 0,371 0,077 3,66 6,35
FMV-AG 24 m GMIR 90,63% 4,11% 23,10% 51,82% 0,178 0,014 4,14 7,08

FMV-XGB 6 m GMIR 274,83% 8,61% 26,10% 61,94% 0,330 0,046 4,06 6,02
FMV-XGB 12 m (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
FMV-XGB 24 m GMIR 195,36% 7,00% 19,25% 45,81% 0,364 0,056 7,16 10,28

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 3, 12, and 24 months, rebalancing period: 1
month, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters:
number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and
diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation,
MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at
least 75% of the portfolio, MN90% – . . . 90% of the portfolio, b.c. – the base case

Figure 6. Equity lines of the base GMIR strategies with different lengths of estimation window.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 3, 12, and 24 months, rebalancing period:
1 month, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters:
number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

Global minimum variance portfolio

The situation is quite different when it comes to GMV portfolios. Looking at Table 10
and Figure 7, we can see that results were less sensitive to the estimation window length. The
MV and FMV-AG strategies seemed to be robust to this parameter. The FMV-AG portfolios
were strikingly similar to the equally weighted portfolio, independent of estimation window
length. The FMV-XGB strategy was less robust. Similarly to GMIR portfolios, the FMV-XGB
portfolios performed best for the 12-month estimation window (although the difference between
12 and 24-month portfolios was very small).
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Table 10. Performance statistics of the base GMV strategies with different lengths of estimation
window.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 6 months GMV 207,46% 7,27% 20,52% 42,91% 0,354 0,060 5,17 7,41
MV 12 months (b.c.) GMV 197,28% 7,05% 20,12% 39,71% 0,350 0,062 5,79 8,19
MV 24 months GMV 190,53% 6,89% 20,22% 38,63% 0,341 0,061 7,10 9,69

FMV-AG 6 m GMV 156,76% 6,07% 21,11% 61,03% 0,288 0,029 21,90 25,92
FMV-AG 12 m (b.c.) GMV 158,31% 6,11% 21,02% 61,32% 0,291 0,029 22,40 26,44
FMV-AG 24 m GMV 156,16% 6,06% 20,80% 59,84% 0,291 0,029 22,74 26,74

FMV-XGB 6 m GMV 106,35% 4,63% 19,06% 54,22% 0,243 0,021 11,18 15,48
FMV-XGB 12 m (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
FMV-XGB 24 m GMV 184,16% 6,75% 19,40% 46,72% 0,348 0,050 13,95 18,74

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 3, 12, and 24 months, rebalancing period: 1
month, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters:
number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and
diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation,
MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at
least 75% of the portfolio, MN90% – . . . 90% of the portfolio, b.c. – the base case

Figure 7. Equity lines of the GMV strategies with different lengths of estimation window.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 3, 12, and 24 months, rebalancing period:
1 month, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters:
number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

4.2. Rebalancing period length

Rebalancing period length is a very important parameter. It may be tricky to find the
best value, as a too short rebalancing period may result in high transactional costs, and a too
long rebalancing period may make it harder to react to changes in the market. In the base case,
portfolio weights are changed every month. Below, we show how the portfolios with a 2-week
and a 3-month estimation window performed.



Ślusarczyk, D. and Ślepaczuk, R./WORKING PAPERS 17/2023 (424) 20

Global maximum information ratio portfolio

Table 11 and Figure 8 show that in the GMIR case, the MV and the FMV-AG strategies
performed better when the rebalancing period was longer. FMV-AG strategy with a 3-month
rebalancing period had an exceptionally good performance. On the other hand, for the FMV-
XGB strategy, the best rebalancing period was a month. Both longer and shorter rebalancing
periods performed worse in the case of FMV-XGB.

Table 11. Performance statistics of the base GMIR strategies with different lengths of rebalanc-
ing period.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 2 weeks GMIR 202,39% 7,16% 26,07% 37,78% 0,275 0,052 4,05 5,28
MV 1 month (b.c.) GMIR 225,75% 7,66% 24,96% 36,72% 0,307 0,064 3,95 5,19
MV 3 months GMIR 266,75% 8,46% 24,14% 35,13% 0,351 0,084 3,88 5,11

FMV-AG 2 w GMIR 70,18% 3,38% 21,37% 50,77% 0,158 0,011 3,91 6,53
FMV-AG 1 m (b.c.) GMIR 261,62% 8,37% 22,56% 40,02% 0,371 0,077 3,66 6,35
FMV-AG 3 m GMIR 354,89% 9,93% 21,81% 36,28% 0,455 0,125 3,23 5,55

FMV-XGB 2 w GMIR 121,71% 5,10% 19,87% 42,35% 0,257 0,031 6,64 9,26
FMV-XGB 1 m (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
FMV-XGB 3 m GMIR 172,48% 6,47% 19,98% 51,73% 0,324 0,040 5,88 8,77

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 2 weeks,
1 month, 3 months, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB
parameters: number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, b.c. – the base case

Figure 8. Equity lines of the GMIR strategies with different lengths of rebalancing period.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 2 weeks,
1 month, 3 months, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB
parameters: number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
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Global minimum variance portfolio

Table 12 and Figure 9 show that in the GMV case, the MV strategy performed better when
the rebalancing period was longer. For the FMV-XGB strategy, the best rebalancing period was
again a month (although the 3-month rebalancing period performed not much worse). What is
interesting about the FMV-AG strategy, the 1-month estimation window performed the worst.
Still, all the FMV-AG strategies were very similar to an equally weighted portfolio.

Table 12. Performance statistics of the base GMV strategies with different lengths of rebalanc-
ing period.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 2 weeks GMV 177,01% 6,58% 20,06% 39,62% 0,328 0,054 5,86 8,19
MV 1 month (b.c.) GMV 197,28% 7,05% 20,12% 39,71% 0,350 0,062 5,79 8,19
MV 3 months GMV 219,59% 7,53% 20,17% 41,30% 0,373 0,068 5,63 8,05

FMV-AG 2 w GMV 189,88% 6,88% 20,48% 58,71% 0,336 0,039 22,48 26,51
FMV-AG 1 m (b.c.) GMV 158,31% 6,11% 21,02% 61,32% 0,291 0,029 22,40 26,44
FMV-AG 3 m GMV 170,10% 6,41% 20,66% 60,23% 0,310 0,033 22,70 26,75

FMV-XGB 2 w GMV 46,97% 2,44% 18,49% 62,44% 0,132 0,005 12,07 16,33
FMV-XGB 1 m (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
FMV-XGB 3 m GMV 169,41% 6,39% 18,41% 51,69% 0,347 0,043 14,59 19,50

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 2 weeks,
1 month, 3 months, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB
parameters: number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, b.c. – the base case

Figure 9. Equity lines of the GMV strategies with different lengths of rebalancing period.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 2 weeks,
1 month, 3 months, number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB
parameters: number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
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4.3. Number of stocks

4.3.1. 10 stocks (in 3 groups)

Portfolios consisting of all DJIA stocks were optimized in the base case scenario. In
this section, we divided stocks into groups by their estimated market capitalization. On the day
before the first day of every rebalancing period, we ordered stocks by their decreasing estimated
market capitalization and assigned them to the ”1-10” (ten highest), ”11-20” (ten middle), and
”21-30” (ten lowest1) groups in the case of portfolios consisting of 10 stocks and analogically
”1-5”, ”6-10”, ”11-15”, ”16-20”, ”21-25” and ”26-30” 2 groups in the case of 5 stock portfolios.
Due to the fact that the data for market capitalization were not available for free, we had to
assess it by the average value of the price of given stock multiplied by its traded volume over
the period of last year. The exact formula used when estimating market capitalization is shown
below;

ˆCap =
1

252

252∑
i=1

Pt−i · V olt−i (23)

where:
ˆCap – the estimated market capitalization of a company,

Pt – the closing price of a stock on day t,
V olt – the volume of a stock on day t.

Global maximum information ratio portfolio

In Table 13 and Figure 10, we can see that there is one group of stock that tended to out-
perform the others - the group of lowest capitalization stocks. This group performed especially
well when paired with the MV strategy. Other strategies still performed slightly better than
benchmarks in this stock group. What is interesting, the other two groups performed worse
than the benchmarks, no matter which strategy was utilized. We can see from the comparison
of equally weighted portfolios that the ”21-30” group performs better than ”1-10” and ”11-20”
groups, and the difference was the biggest when using the MV strategy.

1nine lowest in the period when GM was a part of the DJIA
2this group consisted of four stocks in the period when GM was a part of the DJIA
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Table 13. Performance statistics of the GMIR strategies in 3 groups of stocks by estimated
market capitalization.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

EW 1-10 72,37% 3,46% 25,84% 72,00% 0,134 0,006 8,00 9,00
EW 11-20 123,29% 5,15% 18,86% 55,81% 0,273 0,025 8,00 9,00
EW 21-30 330,38% 9,55% 20,94% 54,73% 0,456 0,080 7,84 9,00

DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 1-10 GMIR -42,26% -3,37% 28,77% 80,80% -0,117 -0,005 2,98 4,23
MV 11-20 GMIR 97,18% 4,33% 21,98% 66,31% 0,197 0,013 3,54 5,02
MV 21-30 GMIR 480,00% 11,61% 22,57% 42,25% 0,515 0,141 3,38 4,64

FMV-AG 1-10 GMIR 57,84% 2,89% 25,48% 70,84% 0,114 0,005 7,82 8,88
FMV-AG 11-20 GMIR 113,85% 4,87% 18,65% 54,02% 0,261 0,023 7,85 8,88
FMV-AG 21-30 GMIR 338,59% 9,68% 20,79% 53,28% 0,466 0,085 7,74 8,86

FMV-XGB 1-10 GMIR 47,57% 2,46% 22,22% 62,19% 0,111 0,004 4,65 6,27
FMV-XGB 11-20 GMIR 82,92% 3,85% 17,35% 50,08% 0,222 0,017 4,95 6,64
FMV-XGB 21-30 GMIR 304,53% 9,13% 19,78% 48,57% 0,462 0,087 4,67 6,31

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 10. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 10. Equity lines of the GMIR strategies in 3 groups of stocks by estimated market capi-
talization.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 10. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

Global minimum variance portfolio

Table 14 and Figure 11 show that difference between MV for the lowest capitalization
stocks and other portfolios was even bigger in the case of GMV portfolios. This strategy out-
performed others significantly. In the case of the GMV portfolio, FMV strategies in the ”21-
30” group no longer outperformed the benchmarks. An interesting observation is that FMV-AG
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portfolios did not tend to resemble equally weighted portfolios, as was the case with all 30
stocks.

Table 14. Performance statistics of the GMIR strategies in 3 groups of stocks by estimated
market capitalization.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

EW 1-10 72,37% 3,46% 25,84% 72,00% 0,134 0,006 8,00 9,00
EW 11-20 123,29% 5,15% 18,86% 55,81% 0,273 0,025 8,00 9,00
EW 21-30 330,38% 9,55% 20,94% 54,73% 0,456 0,080 7,84 9,00

DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 1-10 GMV -85,13% -11,23% 40,19% 95,56% -0,279 -0,033 2,03 2,58
MV 11-20 GMV 195,49% 7,01% 25,13% 64,30% 0,279 0,030 2,07 2,62
MV 21-30 GMV 505,97% 11,92% 23,36% 40,70% 0,510 0,149 2,40 2,99

FMV-AG 1-10 GMV 13,49% 0,79% 26,56% 58,34% 0,030 0,000 2,11 2,95
FMV-AG 11-20 GMV 8,54% 0,51% 19,52% 52,71% 0,026 0,000 2,07 2,93
FMV-AG 21-30 GMV 263,76% 8,41% 23,69% 49,35% 0,355 0,060 2,02 2,91

FMV-XGB 1-10 GMV 30,36% 1,67% 23,90% 54,63% 0,070 0,002 2,62 3,56
FMV-XGB 11-20 GMV 64,67% 3,17% 20,24% 58,94% 0,156 0,008 2,72 3,66
FMV-XGB 21-30 GMV 209,00% 7,31% 23,90% 54,26% 0,306 0,041 2,60 3,46

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 10. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 11. Equity lines of the GMV strategies in 3 groups of stocks by estimated market capi-
talization.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 10. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
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Tables 13 and 14 show that the relation between information ratios and market capitalisation
was strictly monotonic in both cases. Because of that, we decided to split them into 5 stock
groups and check whether the monotonic relation still holds.

4.3.2. 5 stocks (in 6 groups)

Global maximum information ratio portfolio

Figure 12 and Table 15 show that the relation between information ratios** and market
capitalization was no longer monotonous. The ”21-25” group outperformed other groups not
only in the case of FMV and MV portfolios but also in equally weighted portfolios. It suggests
that the ”21-25” group contained stocks that performed exceptionally well in the tested period.
The FMV-AG strategy in this group performed particularly well, yielding relatively high returns
and information ratio**. This strategy utilized the well-performing stocks the most. We can also
see that the performance of some stock groups differs between strategies which suggests that
some strategies may perform better for different sets of stocks. For example, the ”1-5” group
generated losses in the case of MV and FMV-AG strategies but generated profits in the case of
EW and FMV-XGB portfolios. It is worth noting that for every FMV and MV strategy, there
were stock groups that generated losses.

Figure 12. Examples of equity lines of the GMIR strategies in 6 groups of stocks by estimated
market capitalization.

Note: For transparency, only the ”6-10” and ”21-25” (best performing for FMV strategies) groups’ equity lines are shown. Testing period: 2007-
01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number of stocks: 10. FMV-AG
parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of lags: 11, hyperparameters:
nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.



Ślusarczyk, D. and Ślepaczuk, R./WORKING PAPERS 17/2023 (424) 26

Table 15. Performance statistics of the GMV strategies in 6 groups of stocks by estimated mar-
ket capitalization.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

EW 1-5 42,31% 2,23% 30,64% 81,65% 0,073 0,002 5,00 6,00
EW 6-10 82,70% 3,84% 23,74% 60,63% 0,162 0,010 5,00 6,00
EW 11-15 114,26% 4,88% 18,28% 43,79% 0,267 0,030 5,00 6,00
EW 16-20 118,21% 5,00% 21,40% 66,61% 0,234 0,018 5,00 6,00
EW 21-25 429,95% 10,99% 21,10% 50,36% 0,521 0,114 5,00 6,00
EW 26-30 220,19% 7,54% 22,49% 60,41% 0,335 0,042 5,00 6,00

DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 1-5 GMIR -45,66% -3,74% 37,42% 90,24% -0,100 -0,004 1,60 1,88
MV 6-10 GMIR -37,96% -2,94% 25,76% 70,96% -0,114 -0,005 1,61 1,97
MV 11-15 GMIR -18,11% -1,24% 22,92% 58,75% -0,054 -0,001 1,59 1,91
MV 16-20 GMIR 113,35% 4,85% 26,37% 78,49% 0,184 0,011 1,58 1,95
MV 21-25 GMIR 310,81% 9,23% 24,17% 61,94% 0,382 0,057 1,64 1,99
MV 26-30 GMIR 108,77% 4,71% 25,57% 46,83% 0,184 0,019 1,75 2,13

FMV-AG 1-5 GMIR -58,87% -5,40% 38,06% 88,85% -0,142 -0,009 1,63 2,06
FMV-AG 6-10 GMIR 311,43% 9,24% 23,71% 38,27% 0,390 0,094 1,57 2,05
FMV-AG 11-15 GMIR 102,44% 4,51% 19,79% 44,25% 0,228 0,023 1,63 2,14
FMV-AG 16-20 GMIR -32,91% -2,46% 23,27% 69,73% -0,106 -0,004 1,65 2,15
FMV-AG 21-25 GMIR 1403,24% 18,46% 24,64% 44,74% 0,749 0,309 1,59 2,07
FMV-AG 26-30 GMIR 56,92% 2,86% 25,23% 57,97% 0,113 0,006 1,54 1,93

FMV-XGB 1-5 GMIR 141,31% 5,66% 28,96% 78,08% 0,195 0,014 1,64 2,03
FMV-XGB 6-10 GMIR 220,76% 7,56% 24,08% 38,06% 0,314 0,062 1,67 2,16
FMV-XGB 11-15 GMIR 140,42% 5,64% 20,95% 43,69% 0,269 0,035 1,63 2,05
FMV-XGB 16-20 GMIR 108,29% 4,69% 22,72% 60,67% 0,207 0,016 1,75 2,15
FMV-XGB 21-25 GMIR 442,74% 11,15% 23,36% 44,83% 0,477 0,119 1,69 2,05
FMV-XGB 26-30 GMIR -12,69% -0,84% 26,43% 63,92% -0,032 0,000 1,55 1,86

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 5. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Global minimum variance portfolio

Table 16 and Figure 13 show that the relation between information ratios** and market
capitalization was also no longer monotonous in the GMV case. The ”21-25” group was still
the best in the MV and FMV-AG strategies, but for the FMV-XGB strategy, the ”26-30” group
performed the best. It is worth noting that in the GMV case, there were no portfolios with
losses. FMV-AG portfolios also did not tend to resemble equally weighted portfolios, as was
the case with all 30 stocks.
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Table 16. Performance statistics of the GMV strategies in 6 groups of stocks by estimated mar-
ket capitalization.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

EW 1-5 42,31% 2,23% 30,64% 81,65% 0,073 0,002 5,00 6,00
EW 6-10 82,70% 3,84% 23,74% 60,63% 0,162 0,010 5,00 6,00
EW 11-15 114,26% 4,88% 18,28% 43,79% 0,267 0,030 5,00 6,00
EW 16-20 118,21% 5,00% 21,40% 66,61% 0,234 0,018 5,00 6,00
EW 21-25 429,95% 10,99% 21,10% 50,36% 0,521 0,114 5,00 6,00
EW 26-30 220,19% 7,54% 22,49% 60,41% 0,335 0,042 5,00 6,00

DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 1-5 GMV 25,48% 1,43% 28,88% 76,82% 0,049 0,001 2,33 3,14
MV 6-10 GMV 19,57% 1,12% 23,23% 54,85% 0,048 0,001 2,32 2,97
MV 11-15 GMV 207,42% 7,27% 20,36% 48,29% 0,357 0,054 2,55 3,36
MV 16-20 GMV 46,14% 2,40% 23,91% 69,97% 0,100 0,003 2,51 3,37
MV 21-25 GMV 488,12% 11,71% 22,36% 53,64% 0,524 0,114 2,43 3,38
MV 26-30 GMV 108,54% 4,70% 24,25% 67,73% 0,194 0,013 2,39 3,16

FMV-AG 1-5 GMV 30,93% 1,70% 30,12% 80,60% 0,056 0,001 3,90 4,87
FMV-AG 6-10 GMV 74,85% 3,55% 23,92% 61,37% 0,149 0,009 3,98 4,96
FMV-AG 11-15 GMV 128,21% 5,29% 18,02% 40,65% 0,294 0,038 3,97 4,97
FMV-AG 16-20 GMV 79,00% 3,71% 21,37% 65,54% 0,173 0,010 3,96 4,95
FMV-AG 21-25 GMV 410,93% 10,73% 21,08% 49,83% 0,509 0,110 3,98 4,98
FMV-AG 26-30 GMV 235,45% 7,86% 22,33% 58,71% 0,352 0,047 3,82 4,81

FMV-XGB 1-5 GMV 28,87% 1,60% 25,65% 71,15% 0,062 0,001 2,91 3,83
FMV-XGB 6-10 GMV 99,48% 4,41% 20,60% 47,30% 0,214 0,020 2,96 3,86
FMV-XGB 11-15 GMV 152,99% 5,97% 17,07% 40,21% 0,350 0,052 3,04 3,88
FMV-XGB 16-20 GMV 154,59% 6,01% 18,70% 53,62% 0,322 0,036 2,95 3,88
FMV-XGB 21-25 GMV 268,55% 8,49% 20,41% 48,54% 0,416 0,073 3,02 3,94
FMV-XGB 26-30 GMV 276,86% 8,65% 21,18% 51,16% 0,408 0,069 2,90 3,78

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 5. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted
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Figure 13. Examples of equity lines of the GMIR strategies in 6 groups of stocks by estimated
market capitalization.

Note: For transparency, only the ”21-25” and ”26-30” (best performing for FMV strategies) groups’ equity lines are shown. Testing period:
2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number of stocks: 10.
FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of lags: 11, hyperparam-
eters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

4.4. Transaction costs level

In the base case, we assumed that transaction costs are at the level of 0.1% of the trans-
action value. We made this assumption after analysing transaction fees at the biggest brokers in
the United States (Charles Schwab, Fidelity Investments, TD Ameritrade)3. Transaction costs
may vary over time due to macroeconomic circumstances, which is why in this section, we
check how the results change when transaction costs fall to 0.05% or rise to 0.2% and 0.5%.

Global maximum information ratio portfolio

By analysing Table 17 and Figure 14, we can see that higher transaction costs influenced
the performance of all strategies in a significant way. It is not surprising that higher costs
decreased the information ratios of all portfolios. The effect was the smallest for the FMV-XGB
strategy. With 0.2% transaction costs, this strategy still performed better than the benchmarks.
For the MV and FMV-AG strategies with the same transaction costs, the information ratio**
was also higher than the benchmarks. When costs rose to 0.5%, no strategy performed better
than the benchmarks. When costs fell to 0.05%, all strategies performed better in terms of
information ratio**. The increase of IR** was higher for FMV strategies.

3https://www.investopedia.com/articles/professionals/110415/biggest-stock-brokerage-firms-us.asp
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Table 17. Performance statistics of the GMIR strategies with different levels of transaction
costs.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 0.05% GMIR 247,43% 8,09% 24,95% 36,36% 0,324 0,072 3,95 5,19
MV 0.1% (b.c.) GMIR 225,75% 7,66% 24,96% 36,72% 0,307 0,064 3,95 5,19
MV 0.2% GMIR 186,33% 6,80% 24,97% 37,43% 0,272 0,049 3,95 5,19
MV 0.5% GMIR 94,32% 4,24% 25,01% 39,51% 0,170 0,018 3,95 5,19

FMV-AG 0.05% GMIR 319,38% 9,37% 22,56% 39,24% 0,415 0,099 3,66 6,35
FMV-AG 0.1% (b.c.) GMIR 261,62% 8,37% 22,56% 40,02% 0,371 0,077 3,66 6,35
FMV-AG 0.2% GMIR 168,77% 6,37% 22,57% 41,65% 0,282 0,043 3,66 6,35
FMV-AG 0.5% GMIR 10,04% 0,60% 22,67% 48,29% 0,026 0,000 3,66 6,35

FMV-XGB 0.05% GMIR 311,35% 9,24% 19,02% 46,40% 0,486 0,097 5,97 8,68
FMV-XGB 0.1% (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
FMV-XGB 0.2% GMIR 181,76% 6,69% 19,03% 48,36% 0,352 0,049 5,97 8,68
FMV-XGB 0.5% GMIR 31,89% 1,74% 19,11% 52,34% 0,091 0,003 5,97 8,68

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio.

Figure 14. Equity lines of the GMIR strategies with different levels of transaction costs.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

Global minimum variance portfolio

Looking at Table 18 and Figure 15, it is easy to notice that the FMV-AG strategy is very
insensitive to change in transaction costs. The explanation is straightforward. As before, the
FMV-AG GMV portfolio was similar to the equally weighted portfolio. The FMV-XGB strategy
with higher transaction costs than in the base case scenario did not perform better than bench-
marks. The FMV-XGB strategy with 0.2% transaction costs outperformed the benchmarks in
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terms of both information ratios. When the costs rose to 0.5%, the advantage disappeared.
When the costs fell to 0.05% both MV and FMV-XGB strategies had higher information ra-
tios**, but the change was smaller than in the GMIR case.

Table 18. Performance statistics of the GMV strategies with different levels of transaction costs.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

MV 0.05% GMV 205,44% 7,23% 20,11% 39,55% 0,359 0,066 5,79 8,19
MV 0.1% (b.c.) GMV 197,28% 7,05% 20,12% 39,71% 0,350 0,062 5,79 8,19
MV 0.2% GMV 181,60% 6,68% 20,12% 40,03% 0,332 0,055 5,79 8,19
MV 0.5% GMV 139,30% 5,60% 20,14% 40,98% 0,278 0,038 5,79 8,19

FMV-AG 0.05% GMV 159,66% 6,15% 21,02% 61,24% 0,292 0,029 22,40 26,44
FMV-AG 0.1% (b.c.) GMV 158,31% 6,11% 21,02% 61,32% 0,291 0,029 22,40 26,44
FMV-AG 0.2% GMV 155,62% 6,04% 21,02% 61,47% 0,287 0,028 22,40 26,44
FMV-AG 0.5% GMV 147,70% 5,83% 21,03% 61,92% 0,277 0,026 22,40 26,44

FMV-XGB 0.05% GMV 216,15% 7,46% 18,76% 47,02% 0,398 0,063 12,81 17,44
FMV-XGB 0.1% (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
FMV-XGB 0.2% GMV 146,47% 5,80% 18,76% 48,45% 0,309 0,037 12,81 17,44
FMV-XGB 0.5% GMV 49,64% 2,55% 18,80% 51,19% 0,136 0,007 12,81 17,44

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1. Performance and diversification
metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard deviation, MDD% – maximum
drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks constituting at least 75% of the
portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 15. Equity lines of the GMV strategies with different levels of transaction costs.

Note: Testing period: 2007-01-01 - 2022-12-31. All strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30. FMV-AG parameters: ARIMA order: (2, 0, 1), GARCH error distribution: normal. FMV-XGB parameters: number of
lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

4.5. ARIMA order

It is not easy, if not impossible, to find one ARIMA order that will suit all the data. Only
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for the base case ARIMA-GARCH strategy, 5730 forecasts needed to be performed. As we
stated before, the best approach would be to perform a grid search for order that minimises
chosen information criterion, but it would require significant computation power. Because of
that, in the base case scenario, we selected an order of (2, 0, 1). In this section, other orders are
checked.

Global maximum information ratio portfolio

Table 19 and Figure 16 show that the FMV-AG strategy was sensitive to the ARIMA
order. We can see that as the order increased the strategy performed better except for order
(2, 0, 2). All orders other than the base case order of (2, 0, 1) performed worse than the DJIA
buy and hold portfolio regarding the information ratio**. (1, 0, 1) and (1, 0, 2) orders performed
better than equally weighted portfolio. In further research, checking how higher orders perform
would be interesting.

Table 19. Performance statistics of the FMV-AG GMIR strategies with different ARIMA or-
ders.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

(1, 0, 0) GMIR 163,71% 6,25% 24,86% 63,67% 0,251 0,025 4,34 5,76
(0, 0, 1) GMIR 95,59% 4,28% 24,89% 55,98% 0,172 0,013 6,74 8,83
(1, 0, 1) GMIR 149,18% 5,87% 22,99% 43,24% 0,255 0,035 2,61 4,41
(1, 0, 2) GMIR 148,52% 5,85% 24,14% 41,55% 0,243 0,034 3,38 5,71
(2, 0, 1) (b.c.) GMIR 261,62% 8,37% 22,56% 40,02% 0,371 0,077 3,66 6,35
(2, 0, 2) GMIR 12,80% 0,76% 21,78% 54,24% 0,035 0,000 3,08 5,38

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30, ARIMA order: (1, 0, 0), (0, 0, 1), (1, 0, 1), (2, 0, 1), (1, 0, 2), (2, 0, 1), (2, 0, 2), GARCH error distribution: normal.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 16. Equity lines of the FMV-AG GMIR strategies with different ARIMA orders.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, ARIMA order: (1, 0, 0), (0, 0, 1), (1, 0, 1), (2, 0, 1), (1, 0, 2), (2, 0, 1), (2, 0, 2), GARCH error distribution: normal.
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Global minimum variance portfolio

Table 20 and Figure 17 show that changing the ARIMA order did not prevent portfolios
from resembling the equally weighted portfolio what can be noticed by looking at the MN75%

and MN90% metrics. It suggests that the variance-covariance matrix estimated based on fore-
casted returns promoted diversification independent of ARIMA order. No FMV-AG GMV port-
folio outperformed the benchmarks and all of them were characterized by very similar results.

Table 20. Performance statistics of the FMV-AG GMV strategies with different ARIMA orders.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

(1, 0, 0) GMV 152,49% 5,96% 20,71% 60,52% 0,288 0,028 22,80 26,81
(0, 0, 1) GMV 152,66% 5,96% 20,74% 60,57% 0,288 0,028 22,79 26,80
(1, 0, 1) GMV 163,79% 6,25% 20,59% 59,13% 0,304 0,032 22,55 26,59
(1, 0, 2) GMV 161,59% 6,19% 21,19% 60,21% 0,292 0,030 22,19 26,29
(2, 0, 1) (b.c.) GMV 158,31% 6,11% 21,02% 61,32% 0,291 0,029 22,40 26,44
(2, 0, 2) GMV 145,32% 5,77% 20,26% 57,60% 0,285 0,029 21,37 25,52

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30, ARIMA order: (1, 0, 0), (0, 0, 1), (1, 0, 1), (2, 0, 1), (1, 0, 2), (2, 0, 1), (2, 0, 2), GARCH error distribution: normal.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted.

Figure 17. Equity lines of the FMV-AG GMV strategies with different ARIMA orders.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, ARIMA order: (1, 0, 0), (0, 0, 1), (1, 0, 1), (2, 0, 1), (1, 0, 2), (2, 0, 1), (2, 0, 2), GARCH error distribution: normal.

4.6. GARCH error distribution

In the base case scenario, we assumed that errors follow a normal distribution. In fact, it
does not always hold and other distributions may be applied to errors. In this section, we check
some of them and their influence on the FMV-AG strategies results.
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Global maximum information ratio portfolio

The results are very sensitive to GARCH error distribution. By looking at Table 21 and
Figure 18, we can tell that assuming skewed Generalized Error Distribution significantly in-
creased the performance of the portfolio and results in relatively high values of information
ratios. The skew-GED distribution was then followed by skewed student-t and normal distribu-
tion, but their performance was much worse. These distributions outperformed the benchmarks.
Student-t distribution was comparable to benchmarks. It had the information ratio* smaller than
one of the benchmarks, but its information ratio** was higher than both. Other distributions
(skewed normal and Generalized Error Distribution) performed worse than benchmarks.

Table 21. Performance statistics of the FMV-AG GMIR strategies with different GARCH error
distributions.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

Normal (b.c.) GMIR 261,62% 8,37% 22,56% 40,02% 0,371 0,077 3,66 6,35
Skew-normal GMIR 113,28% 4,85% 21,67% 37,65% 0,224 0,029 3,63 6,14
Student-t GMIR 196,65% 7,03% 22,06% 40,41% 0,319 0,055 3,89 6,59
Skew-student GMIR 273,91% 8,59% 21,91% 37,84% 0,392 0,089 3,74 6,43
GED GMIR 106,99% 4,65% 22,11% 55,52% 0,210 0,018 3,68 6,21
Skew-GED GMIR 411,69% 10,74% 22,31% 40,78% 0,482 0,127 3,82 6,27

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30, ARIMA order: (2, 0, 1), GARCH error distribution: normal, skew-normal, student-t, skew-student, GED, skew-GED.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio.

Figure 18. Equity lines of the FMV-AG GMIR strategies with different GARCH error distribu-
tions.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, ARIMA order: (2, 0, 1), GARCH error distribution: normal, skew-normal, student-t, skew-student, GED, skew-GED.



Ślusarczyk, D. and Ślepaczuk, R./WORKING PAPERS 17/2023 (424) 34

Global minimum variance portfolio

Table 22 and Figure 19 suggest that regardless of the GARCH error distribution all FMV-
AG strategies converged to equally weighted portfolio. All of them performed worse than
DJIA buy and hold and only skew-student distribution performed better than equally weighted
portfolio (although the difference in information ratios** is very small).

Table 22. Performance statistics of the FMV-AG GMV strategies with different GARCH error
distributions.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 264,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 265,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

Normal (b.c.) GMV 158,31% 6,11% 21,02% 61,32% 0,291 0,029 22,40 26,44
Skew-normal GMV 150,17% 5,90% 20,99% 61,00% 0,281 0,027 22,35 26,41
Student-t GMV 162,19% 6,21% 20,89% 60,54% 0,297 0,030 22,44 26,48
Skew-student GMV 165,96% 6,30% 20,87% 60,05% 0,302 0,032 22,40 26,45
GED GMV 150,30% 5,90% 20,88% 62,83% 0,283 0,027 22,49 26,53
Skew-GED GMV 164,09% 6,26% 20,69% 60,43% 0,302 0,031 22,45 26,47

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month,
number of stocks: 30, ARIMA order: (2, 0, 1), GARCH error distribution: normal, skew-normal, student-t, skew-student, GED, skew-GED.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 19. Equity lines of the FMV-AG GMV strategies with different GARCH error distribu-
tions.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, ARIMA order: (2, 0, 1), GARCH error distribution: normal, skew-normal, student-t, skew-student, GED, skew-GED.

4.7. XGBoost feature lag

As we stated in the methodology section, the only features for the XGBoost model were
the lagged returns from the last 11 days. Below, we show how the performance of the strategy
changes when we change the number of lags to 6 and 21.
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Global maximum information ratio portfolio

Table 23 and Figure 20 show that number of feature lags used to train the XGBoost model
affected the results of underlying strategies. The best value was 11 lags. This strategy outper-
formed both of the benchmarks. For other numbers of lags (6 and 21), results were worse than
benchmarks.

Table 23. Performance statistics of the FMV-XGB GMIR strategies with different feature lags.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

6 lags GMIR 121,05% 5,08% 19,26% 45,66% 0,264 0,029 6,80 9,84
11 lags (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
21 lags GMIR 74,28% 3,53% 19,89% 51,22% 0,178 0,012 5,63 8,20

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 6, 11, 21, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 20. Equity lines of the GMIR strategies with different feature lags.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 6, 11, 21, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

Global minimum variance portfolio

A similar pattern as in GMIR portfolios applies to the GMV portfolio, which can be seen
by analysing Table 23 and Figure 20. The best value was still 11 lags, and such a strategy still
outperformed both benchmarks (but by less than in the case of the GMIR portfolio). For 6 and
21 lags, information ratios were at a similar level to benchmarks.
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Table 24. Performance statistics of the FMV-XGB GMV strategies with different feature lags.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -

6 lags GMV 157,57% 6,09% 18,97% 54,47% 0,321 0,036 12,88 17,55
11 lags (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
21 lags GMV 153,78% 5,99% 18,34% 50,61% 0,327 0,039 12,20 16,70

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 6, 11, 21, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate of return, ASD% – annualized standard
deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**, MN75% – mean number of stocks
constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio.

Figure 21. Equity lines of the GMV strategies with different feature lags.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 6, 11, 21, hyperparameters: nrounds = 100, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

4.8. XGBoost hiperparameters

XGBoost is a model that can be tuned with many parameters. In this section, we show
how changes to the different parameters affected strategy performance.

Global maximum information ratio portfolio

Analysing Table 25 and Figures 22-26, we can conclude that the selection of XGBoost
hyperparameters did indeed significantly affect the results. In this section, we will only com-
pare information ratios**. When it comes to nrounds hyperparameter, we can see that results
did not differ that much for different values. All strategies outperformed the benchmarks. The
model probably converged around the 50th round, and additional iterations were not needed
(in fact, they slightly decreased the information ratio**). For the learning rate (eta) hyperpa-
rameter, the information ratio approached its maximum for the 0,3 value. Lower values (0,05
and 0,1) minimally outperformed the benchmarks, and the higher value (0,4) was comparable
to them. When it comes to the lambda hyperparameter, the results were best for the value of
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1. The strategies with lambda of 0,5 and 10 had a lower information ratio** than the bench-
marks, and the strategy with lambda 5 had a comparable information ratio to benchmarks.
The best max-depth hyperparameters in our dataset were 6 and 12. The values of 3 and 9
underperformed. For the subsample hyperparameter, the higher its value was, the better the
strategies performed.

Table 25. Performance statistics of the FMV-XGB GMV strategies with different values of XG-
Boost parameters.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -
nrounds
50 GMIR 267,96% 8,48% 19,02% 46,87% 0,446 0,081 5,99 8,69
100 (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
200 GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
eta
0,05 GMIR 134,08% 5,46% 18,09% 38,84% 0,302 0,042 6,00 9,44
0,1 GMIR 165,58% 6,29% 19,51% 50,35% 0,323 0,040 5,83 8,63
0,3 (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
0,4 GMIR 155,86% 6,05% 19,57% 55,71% 0,309 0,034 6,24 8,96
lambda
0,5 GMIR 125,52% 5,21% 19,13% 55,19% 0,273 0,026 6,01 8,80
1 (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
5 GMIR 128,07% 5,29% 19,44% 43,07% 0,272 0,033 5,82 8,31
10 GMIR 66,70% 3,25% 19,89% 42,16% 0,163 0,013 5,63 8,10
max-depth
3 GMIR 115,50% 4,92% 18,86% 43,84% 0,261 0,029 6,71 9,64
6 (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68
9 GMIR 42,55% 2,24% 19,88% 50,57% 0,113 0,005 4,64 6,64
12 GMIR 253,62% 8,21% 22,30% 46,06% 0,368 0,066 3,53 5,01
subsample
0,5 GMIR 80,58% 3,76% 19,82% 51,83% 0,190 0,014 5,73 8,18
0,75 GMIR 170,84% 6,43% 19,66% 55,11% 0,327 0,038 5,91 8,59
1 (b.c.) GMIR 262,63% 8,38% 19,02% 46,97% 0,441 0,079 5,97 8,68

Note: If one hyperparameter was the subject of the sensitivity analysis, then other parameters were at the default level (in bold). Testing
period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number of stocks:
30, number of lags: 11, hyperparameters: nrounds = 50,100, 200, eta = 0,05; 0,1;0.3; 0,4, lambda = 0,5;1; 5; 10, max-depth =
3,6, 9, 12, subsample = 0,5; 0,75;1. Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate
of return, ASD% – annualized standard deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**,
MN75% – mean number of stocks constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted
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Figure 22. Equity lines of the FMV-XGB GMIR strategies with different values of nrounds
parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 50, 100, 200, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.

Figure 23. Equity lines of the FMV-XGB GMIR strategies with different values of eta param-
eter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0,05; 0,1; 0.3; 0,4, lambda = 1, max-depth = 6, subsample
= 1.

Figure 24. Equity lines of the FMV-XGB GMIR strategies with different values of lambda
parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 0,5; 1; 5; 10, max-depth = 6, subsample =
1.
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Figure 25. Equity lines of the FMV-XGB GMIR strategies with different values of
max-depth parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0,3, lambda = 1, max-depth = 3, 6, 9, 12, subsample = 1.

Figure 26. Equity lines of the FMV-XGB GMIR strategies with different values of
subsample parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0,3, lambda = 1, max-depth = 6, subsample = 0,5; 0,75; 1.

Global minimum variance portfolio

Analysing Table 26 and Figures 27-31, we can see that our assumption of the signifi-
cance of the hyperparameter choice still holds for GMV portfolios. In this section, the same as
previously, we will only compare information ratios**. For different values of nrounds hy-
perparameter, we can see that results still did not differ that much. All strategies outperformed
the benchmarks. The model likely converged around the 100th round, and additional iterations
did not improve the performance. For the learning rate (eta) hyperparameter, the information
ratio approached its maximum for the lowest value (0,05). The values of 0,1 and 0,3 outper-
formed the benchmarks, and the higher value (0,4) was comparable to them. Concerning the
lambda hyperparameter, the results were best for the values of 1 and 5. The strategy with
lambda of 10 was similar to the better one of the benchmarks and the lambda of 0,5 had the
lowest information ratio** (much lower than benchmarks). The best max-depth hyperpa-
rameter in our dataset was 6. The values of 3 and 9 performed comparably to benchmarks. The
best subsample hyperparameter value in our case was 1. The second best value was 0,5 (sim-
ilar information ratio** to benchmarks). For the value of 0,75, the strategy performed the worst.
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Table 26. Performance statistics of the FMV-XGB GMV strategies with different values of XG-
Boost parameters.

Strategy ARR% ARC% ASD% MDD% IR∗ IR∗∗ MN75% MN90%

Equally weighted 164,21% 6,26% 20,84% 60,82% 0,300 0,031 22,84 27,00
DJIA 165,96% 6,30% 19,55% 53,78% 0,323 0,038 - -
nrounds
50 GMV 188,46% 6,85% 18,79% 47,64% 0,364 0,052 12,74 17,34
100 (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
200 GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
eta
0,05 GMV 207,13% 7,26% 18,92% 51,68% 0,384 0,054 15,96 20,41
0,1 GMV 175,03% 6,53% 18,53% 53,08% 0,352 0,043 13,93 18,65
0,3 (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
0,4 GMV 155,86% 6,05% 19,57% 55,71% 0,309 0,034 6,24 8,96
lambda
0,5 GMV 91,71% 4,15% 18,58% 56,12% 0,223 0,017 13,11 17,86
1 (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
5 GMV 180,67% 6,66% 18,45% 45,56% 0,361 0,053 12,14 16,65
10 GMV 149,43% 5,88% 18,46% 49,22% 0,319 0,038 11,94 16,43
max-depth
3 GMV 162,67% 6,22% 18,41% 54,31% 0,338 0,039 12,78 17,44
6 (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44
9 GMV 141,26% 5,66% 18,32% 50,35% 0,309 0,035 11,77 16,29
12 GMV 116,94% 4,96% 19,11% 56,40% 0,260 0,023 10,84 15,11
subsample
0,5 GMV 143,93% 5,73% 18,53% 53,43% 0,309 0,033 10,80 15,22
0,75 GMV 120,60% 5,07% 18,55% 54,28% 0,273 0,026 12,07 16,66
1 (b.c.) GMV 190,98% 6,90% 18,76% 47,50% 0,368 0,053 12,81 17,44

Note: If one hyperparameter was the subject of the sensitivity analysis, then other parameters were at the default level (in bold). Testing
period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number of stocks:
30, number of lags: 11, hyperparameters: nrounds = 50,100, 200, eta = 0,05; 0,1;0.3; 0,4, lambda = 0,5;1; 5; 10, max-depth =
3,6, 9, 12, subsample = 0,5; 0,75;1. Performance and diversification metrics: ARR% – absolute rate of return, ARC% – annualized rate
of return, ASD% – annualized standard deviation, MDD% – maximum drawdown, IR∗ – information ratio*, IR∗∗ – information ratio**,
MN75% – mean number of stocks constituting at least 75% of the portfolio, MN90% – . . . 90% of the portfolio, EW - equally weighted

Figure 27. Equity lines of the FMV-XGB GMV strategies with different values of nrounds
parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 50, 100, 200, eta = 0.3, lambda = 1, max-depth = 6, subsample = 1.
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Figure 28. Equity lines of the FMV-XGB GMV strategies with different values of eta param-
eter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0,05; 0,1; 0.3; 0,4, lambda = 1, max-depth = 6, subsample
= 1.

Figure 29. Equity lines of the FMV-XGB GMV strategies with different values of lambda
parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0.3, lambda = 0,5; 1; 5; 10, max-depth = 6, subsample =
1.

Figure 30. Equity lines of the FMV-XGB GMV strategies with different values of max-depth
parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0,3, lambda = 1, max-depth = 3, 6, 9, 12, subsample = 1.
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Figure 31. Equity lines of the FMV-XGB GMV strategies with different values of subsample
parameter.

Note: Testing period: 2007-01-01 - 2022-12-31. Strategies’ parameters: estimation window: 12 months, rebalancing period: 1 month, number
of stocks: 30, number of lags: 11, hyperparameters: nrounds = 100, eta = 0,3, lambda = 1, max-depth = 6, subsample = 0,5; 0,75; 1.

The sensitivity analysis showed that, in most cases, the results were not robust to the change
of parameters. Some of the parameters had a lower impact on the strategies information ratios**
(e.g. the nrounds parameter in the case of the FMV-XGB portfolios), and some did signif-
icantly alter the results (e.g. the estimation window length for the MV GMIR and FMV-AG
GMIR strategies). The only portfolios robust to parameter changes were the FMV-AG GMV
ones because they resembled equally weighted portfolios. It is difficult to find the optimal pa-
rameters for the FMV and MV strategies especially that it seems that we cannot choose them
independently. In our study, due to computation power constraints, we could change only one
parameter at a time relative to the base case. The better approach would be to test many combi-
nations of different parameters. Then, it is possible that on other data sets, the parameters that
yielded the best results in our study could have different performance, but it will be the subject
of another study.

CONCLUSIONS

The main objective of this thesis was to check if it is beneficial to forecast stock returns
before using them in the mean-variance portfolio optimization strategy. Two hypotheses were
formulated:
H1: The strategies based on forecasted stock returns outperform (having higher values of in-
formation ratio**) the strategies based on historical stock returns.
H2: The strategies based on forecasted stock returns outperform (having higher values of in-
formation ratio**) an equally weighted portfolio and buy and hold on the equity index.
Moreover, three research questions have been asked:
RQ1: Which portfolio optimization method will perform better in terms of information ratio**?
RQ2: Which forecasting model performs better in the framework in terms of information ra-
tio**?
RQ3: Are the results sensitive to the number of assets, the estimation and the rebalancing win-
dows’ lengths, the transaction costs, and the forecasting models’ parameters?

To test the stated hypotheses and answer the research questions, we conducted empirical
research. We created 152 strategies divided into three groups. These groups were: strategies
using ”raw” historical returns, strategies using the ARIMA-GARCH forecasts, and strategies
using the XGBoost forecasts. We tested these strategies on Dow Jones Industrial Average
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stocks between 1 January 2007 and 31 December 2022, covering two recent financial crises.
We compared these strategies to two benchmarks – an equally weighted portfolio and buy and
hold on the DJIA index.

In the GMIR base case scenario, the proposed strategies outperformed both the benchmarks
and the MV strategy in terms of information ratio**. In the GMV base case, the FMV-XGB
strategy outperformed the benchmarks but did not outperform the MV strategy. We also per-
formed two statistical tests to test whether the expected values of FMV strategies return dis-
tributions were significantly higher than benchmarks. At the 0.1 significance level, one test
showed that FMV-XGB GMIR returns were higher than equally weighted and DJIA buy-and-
hold portfolios. Other tests performed on other pairs showed a lack of statistical significance.
Moreover, analysing the sensitivity analysis results, it is fair to conclude that the choice of pa-
rameters highly impacted the results of each strategy.

We reject the first hypothesis that the FMV strategies outperform the MV strategies. There
was clear evidence of FMV strategies yielding better outcomes in certain situations, but it is
also easy to find contradictive examples. The sensitivity analysis raised further questions. There
were undoubtedly circumstances where forecasting stock returns might have resulted in better
portfolio performance, but it was not a universal solution. The second hypothesis, stating that
the FMV portfolios outperform the benchmarks, should also be rejected. On average, strategies
involving forecasting returns had similar results to the benchmarks. Again, we found situations
in which the FMV strategies outperformed benchmarks by far, but there were also circum-
stances where FMV strategies generated losses.

Answering the first research question, we cannot say whether the Global Maximum In-
formation Ratio or the Global Minimum Variance portfolios perform better. Under different
circumstances, one or the other may perform better. A clear pattern emerges when we look at
GMV Portfolios of the FMV-AG strategy. In most cases, they converged to the equally weighted
portfolio, no matter which parameters were chosen. This observation suggests that the variance-
covariance matrix derived from the ARIMA-GARCH forecasts promotes diversification. Also,
no forecasting model was clearly better than the other. Similarly, both models had evidence of
strong and weak performance, which answers the second research question.

Concerning our third research question, the sensitivity analysis showed that each strategy
is highly sensitive to the change in model parameters. Reaction to even a slight adjustment of
certain parameters can result in a significant change in strategy outcomes. The only notable ex-
ceptions were the FMV-AG GMV portfolios mentioned above. We were able to find parameter
combinations that had relatively satisfactory results, but it would not be possible to choose them
beforehand. There is also no guarantee that such combinations would perform well on the other
data.

In further research, it would be beneficial to check how grid-searching optimal parame-
ters for each strategy would affect their performance. It would be especially important for
the forecasting model parameters (eg. XGBoost hyperparameters or ARIMA-GARCH order).
Minimizing the forecasting error can result in better-optimized portfolios that yield better re-
turns. As a result of restricted computing capacity and an enormous number of fitted models,
we were unable to undertake any form of tuning. Additionally, it is worth noting that while
ARIMA-GARCH and XGBoost are popular examples, there is a broad range of both traditional
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econometric and modern machine-learning models available. More could be tested, to check
whether there is one that performs the best in this specific application.
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