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AAbbssttrraacctt:: Algorithmic trading has been a central theme in numerous research papers, combining 
knowledge from the fields of Finance and Mathematics. This thesis aimed to apply basic Technical 
Analysis indicators for predicting price movement of three noble metals: Gold, Silver, and 
Platinum in a form of multi-class classification. That task was performed using four algorithms: 
Logistic Regression, k-Nearest Neighbors, Random Forest and XGBoost. The study incorporated 
feature filtering methods such as Kendall-tau filtering and PCA, as well as five different data 
frequencies: 1, 5, 10, 15 and 20 trading days. From a total of 40 potential models for each metal, 
the best one was selected and evaluated using data from period 2018-2022. The result revealed 
that models utilizing only Technical Analysis indicators were able to predict price movements to 
a significant extent, leading to investment strategies that outperformed the market in two out of 
three cases. 
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1 Introduction 

Flight-to-quality is a process of rebalancing investors’ portfolios to less risky assets in times of 

economic uncertainty, noticed first by Bernanke et al (1994). One type of those safer assets are 

precious metals. They have been appreciated for centuries for their scarcity, beauty and 

practical applications, e.g., as a store of value, due to their limited supply. Noble metals, 

especially Gold and Silver are widely considered as safe-haven assets during times of 

uncertainty and inflation hedge because they are thought to be more stable and less susceptible 

to economic fluctuations experienced by more risky assets, such as corporate bonds or equities. 

(Baur and Lucey, 2010; Bampinas and Panagiotidis, 2015). Platinum is not a popular 

commodity among both investors and the scientific community. Few studies on Platinum metals 

show contradictory results, as Hood and Malik (2013) do not find Platinum as a safe haven, 

while a few years later McCown and Shaw (2017) showed otherwise. 

There are several factors that affect the price of noble metals. Radetzki and Wårell 

(2020) point out that the global demand for them is driven by various factors. The demand for 

Gold is driven mostly by investment demand, jewelry production and central bank purchases, 

for Silver - by industrial application and as a role as a monetary metal and for Platinum - solely 

by its industrial applications. Radetzki and Wårell (2020) indicate Platinum, along with Chrome 

and rare-earth elements as prime examples of indispensable materials with few substitutes and 

thus very low-price elasticity of demand. Since those commodities are treated as an inflation 

hedge, their price is also influenced by the monetary policy of central banks. Changes in interest 

rates, currency weakening can cause a flight-to-quality effect. 

On the other hand, the Efficient Market Hypothesis (Fama, 1970) suggests that all 

available information is already incorporated in the asset prices, making it nearly impossible to 

outperform the market consistently. More recent studies (Piasecki and Stasiak, 2020) however 

shows that financial markets are not always perfectly efficient and there exists an opportunity 

for investors to reach abnormal returns. Behavioral finance also challenges many claims of 

EMF and points at Technical Analysis as a tool to outperform the market (Dehnad, 2011). 

Machine learning algorithms have transformed the Finance world by providing new 

tools for analyzing complex financial datasets and supporting business decision making. They 

can be used not only to forecast the stock/foreign exchange (Huang et al., 2005), but also for 

detecting financial fraud (Perols, 2011) or optimizing portfolio (Ban et al., 2018). 
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Contrary to simple strategies such as Buy & Hold or trend-following, Technical Analysis in 

combination with Machine Learning allows for usage of more complex trading systems that 

can leverage complex relationships between various market indicators (Teixeira and De 

Oliveira, 2010; Aguirre et al., 2020). Models can analyze large amounts of data and 

continuously find patterns and relationships that are not immediately apparent to the human 

eye. 

The primary objective of this paper is to develop a ML-based investment strategy for 

trading gold-, silver- and platinum-dollar pairs, respectively: XAU/USD, XAG/USD, 

XPT/USDT on a daily interval. It is translated into a multi-class classification problem, with 

three classes BUY, SELL and DO-NOTHING. Classes are determined by the percentage 

change in the closing price of the subsequent 1, 5, 10, 15 or 20 trading days. The exact threshold 

varies depending on the specific pair and frequency. However, it is chosen to ensure as equal 

class distribution as possible. Suppose some threshold 𝑡𝑡: 𝑡𝑡 > 0, then observations classified as 

class SELL have values (−∞,−𝑡𝑡), as class DO-NOTHING: [−𝑡𝑡, 𝑡𝑡] and as class BUY: (𝑡𝑡,∞), 

while each of three classes contains approx. 33% of total observations. 

The scope of this paper is limited to analyzing daily OLHC data and technical analysis 

(TA) indicators for the three pairs. The study will focus on the performance of various ML 

models: Logistic Regression, k-Nearest Neighbors, Random Forest and XGBoost through two 

aspects. The first factor is evaluation through traditional metrics such as Balanced Accuracy 

and F1-score. The second factor is profitability of the investment strategies resulting from 

generated signals in comparison to traditional investment method – Buy & Hold. Additionally, 

to build possibly the least complex model, two feature selection methods are applied: Kendall 

rank correlation coefficient and Principal Component Analysis. Such choice is justified by the 

fact that some TA indicators are highly correlated with each other. By eliminating redundant 

features that provide similar information about the data or combining them into Principal 

Components, the cardinality of the data is significantly reduced. 

This paper aims to answer following research questions: 

1. How do different ML algorithms perform in predicting the price movement of pairs 

XAU/USD, XAG/USD and XPT/USD in different time horizons: from 1 day to 1 month 

(20 trading days)? 

2. Can Technical Analysis indicators alone, without creating mathematical rules, predict 

market movements in different time horizons?  
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3. Which model performs best in terms of classification evaluation metrics: Balanced 

Accuracy and weighted F1- score? 

4. Is the developed investment strategy able to outperform a simple Buy and Hold 

strategy?  

The remainder of the paper is organized as follows. The second part presents a review of the 

literature regarding ML applications in Finance, Technical Analysis and previous research on 

ML for investment strategies. The third part is devoted to data and methodology used in 

research. The fourth part describes results of the empirical research and answers research 

questions. The last part summarizes the findings, contributions and suggests future research 

directions. 
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2 Literature review 

2.1 Traditional approaches to price prediction 

2.1.1 Technical Analysis 

Technical Analysis (TA) is a popular approach in forecasting asset prices by scrutinizing 

historical price and volume data to identify patterns and trends (Murphy, 1999). Although TA 

has demonstrated success in some instances, it is based on subjective interpretations and may 

not be consistently effective across different market conditions (Park and Irwin, 2007). 

TA indicators can be used as explanatory variables in the ML model (Patel et al., 2015). 

Technical Analysis can be classified into two categories: charting and mechanical methods 

(Zarrabi et al., 2017). Charting is a classical method and uses historical price patterns to predict 

future movements. This approach is highly subjective and reliant on the analyst’s interpretation, 

making it hard to implement in ML models, contrary to mechanical methods based solely on 

mathematical rules. The number of such rules is a matter of discussion in the scientific 

community. According to Qi and Wu (2006), selecting an insufficient number of rules can lead 

to bias in statistical inference due to data mining. Too many rules will greatly increase the 

cardinality of the data. 

The foundation of TA lies in the belief that historical price movements are repetitive and 

by examining past trends future price fluctuations can be predicted (Pring, 2002). Despite its 

popularity, the effectiveness of TA is disputed by academics and practitioners. Some studies 

show that under certain market conditions, strategies relying on TA indicators can outperform 

the market and produce excess returns (Brok et al., 1992; Dehnad, 2021), while other studies 

have questioned the effectiveness of TA, portraying its success because of Data-snooping 

(Sullivan et al., 1999). Bajgrowicz and Scaillet (2012) argues that performance of Technical 

Trading, although outperforms the market, is completely offset by the introduction of even low 

transaction costs.  

2.1.2 Fundamental Analysis 

First assumptions of Fundamental Analysis have been presented by Graham and Dodd (1934). 

Contrary to TA, Fundamental Analysis does not rely on past price movements but rather 

examines various underlying factors, economic indicators, or industry trends. Studies regarding 
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FA in the context of noble metals focus mainly on Gold and highlight numerous factors that 

can be analyzed, i.e. interest rates, inflation or currency movements (Tulley and Lucey, 2007). 

Interest rates play a significant role in the valuation of Gold. As interest rates rise, during times 

of economic shocks, the opportunity cost of holding non-interest assets, i.e. noble metals, 

increases leading to lower demand and potentially lowering prices. Baur and McDermott (2010) 

confirmed this in their study but also indicated that this relationship is regional, as in Australia, 

Canada, Japan and BRIC countries (large emerging markets), Gold is not a safe haven. 

Historically, noble metals have been considered hedges against inflation due to their 

limited supply and intrinsic value (Feldstein, 1980). Inflation erodes the purchasing power of 

fiat currencies and as a result, investors turn to i.e. precious metals as a means of preserving 

wealth, driving up demand and prices (Baur and McDermott, 2010; Baur and Lucey, 2010; 

Coudert and Raymond, 2011). 

Currency movements, especially the US dollar, can also influence prices of noble 

metals. Most of them, including the aforementioned: Gold, Silver and Platinum are priced in 

US dollars, thus depending on its movements. (Capie et al., 2005; Worthington and Pahlavani, 

2007). Weaker dollar makes these assets more affordable for investors holding other currencies 

and stronger dollar - otherwise. 

Radetzki (1989) points out that Silver and Platinum are different from Gold and 

different fundamental determinants drive their prices. It is mainly the influence of the industry 

due to usage of those two metals in various industry branches. 

Effectiveness of this approach is limited by the availability and quality of relevant data. 

Inflation rate in the US is made publicly available once per month, while interest rates change 

at most once per month without any regularity. Such irregular data makes it difficult to build 

trading systems and according to Menkhoff’s (2010) research, Technical Analysis continues to 

be widely used among practitioners, with many fund managers preferring it over Fundamental 

Analysis as a tool for market decision making. 

2.2 Machine Learning in Finance 

Credit scoring is a vital aspect of the financial industry and various ML models have been 

implemented for this purpose. Logistic Regression is a commonly used model due to its 

simplicity and transparency of predictions. More sophisticated algorithms can outperform 

simple LR, but they have their own flaw: incapability to explain predictions. There is no 
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agreement on the best-performing model. Dastile et al. (2020) conducted a survey analyzing 

commonly used models in credit scoring, comparing their performance on German and 

Australian credit data. The results showed that ensemble models generally outperform single 

classifiers and Neural Networks outperform standard statistical models.  

Financial fraud is a crucial issue in corporate and finance business. One of the most 

common and potentially dangerous types of financial frauds is credit card fraud. It is also the 

type with the most literature on prevention and detection on it.  Here ML-based systems 

outperform traditional econometric models as well (Popat and Chaundhary, 2018) but the usage 

of Black-Box models is limited in some parts of the world, including European Union, due to 

regional legislation on Explainable AI (MiFID II).  

Portfolio optimization is a problem containing two stages of decision-making: selection 

of stocks/commodities and their distribution in the portfolio. Optimization models should use 

historical data to select stocks and assign portfolio proportions to them. Pareek and Thakkar 

(2015) point out that ML techniques are widely used by the researchers and accepted in the 

scientific community for analyzing stock market behavior and optimizing portfolio. 

Analyzing financial data in general is a challenging task that demands the development 

of innovative and complex models. Traditional approaches such as ARIMA have been reported 

to represent data accurately. On the other hand, traditional models have been proven to be 

unsuitable for handling sparse datasets and identifying underlying relationships between 

variables (Rundo et al., 2019), contrary to ML algorithms. 

2.3 Machine learning based Investment strategies 

The task of predicting stock market behavior can be classified based on the type of output to be 

estimated, namely, classification and regression. The former translates the problem to return 

categories describing the future behavior, usually defined as UP or DOWN, while the latter 

involves numerical predictions of the extent to which a stock may increase or decrease. 

A survey conducted by Kumbure et al. (2022) on 138 articles published between 2000 and 2019 

shows the majority (55%) of these articles use regression models to forecast financial markets, 

while classification problems make up only 44% and the remaining 1% are clustering models 

(Kumbure et al., 2022). 

Authors show that the most popular technique across the 138 articles is simple Neural 

Network, especially in early studies (Kumbure et al., 2022). Several authors have highlighted 
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difficulties with Neural Networks, i.e., time complexity (Das and Padhy, 2018) or overfitting 

and suggest using Support Vector Machine for both classification and regression problems (Yeh 

et al., 2011; Li et al., 2016). Kumbure et al. (2022) also point out the existence of Ensemble 

models in this field - accounting for 5 articles. 

Bustos and Pomares-Quimbaya (2019) conducted a similar survey among 53 articles 

from 2014 to 2018 focusing on stock market movement prediction, namely a classification 

problem. The most popular technique presented in 17 articles is Support Vector Machine, 

followed by Ensemble Classifiers (12 articles). Authors point out the increasing popularity of 

Neural Networks (10 articles) and Deep Learning (9 articles). Traditional methods such as 

Logistic Regression now serve as a benchmark for more sophisticated ML algorithms rather 

than a method itself (Huang and Li, 2017). 

Feature selection is a method to reduce computational complexity of training the model 

and decrease the risk of over-fitting by removing variables carrying little to no predictive power. 

Researchers use one of three types of feature selection methods. The first are filter methods, 

involving selecting relevant features before model training, based on some pre-defined criteria 

(Barak and Modarres, 2015). The second are wrapper methods that iteratively select a subset of 

features, train the model, and then evaluate it based on a pre-defined metric (Zhang et al., 2014). 

The third one is a hybrid of filter and wrapper methods. Lee (2009) first used a filter-based 

method to filter the least relevant features and reduce the computational complexity of model 

training and then applied a wrapper-based method to select the optimal feature subset. 

2.4 Research Gap and Contribution 

Existing research has demonstrated the potential of Machine Learning algorithms in investment 

strategy development. However, there remains a gap, as most of the studies revolve around the 

stock market and limited studies focus on noble metals, even less scientific articles examine 

multi-class classification in this context. 

The paper aims to fill this gap by developing and evaluating a ML-based investment 

strategy for XAU/USD, XAG/USD and XPT/USD pairs using Logistic Regression, k-Nearest 

Neighbors, Random Forest and XGBoost algorithms. Technical Analysis indicators will be 

utilized as solely input features for the models. Furthermore, this research will compare the 

performance of the developed models and the investment strategies built based on the best 

performing model. Research will also investigate the time horizon of the target variable: 



Chlebus, M., and Nowak, A. /WORKING PAPERS 13/2023 (420)                           8 
 

  

whether to predict the price movement in the following day, 5 days (1 trading week), 10 days 

(2 trading weeks), 15 days (3 trading weeks) and 20 days (1 trading month). 

The proposed approach also addresses the problem of an adequate feature selection 

algorithm. Some Technical Analysis indicators are correlated with each other, so two methods 

of handling multicollinearity in the dataset are introduced: Principal Component Analysis 

(Zhong and Enke, 2017; Singh and Srivastava, 2017) and removing highly correlated features.  
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3  Data and Methodology 

3.1 Dataset 

In this study, historical daily Open, High, Low and Close (OHLC) price data was acquired for 

three pairs correlated with the United States Dollar (USD) - Gold (XAU), Silver (XAG) and 

Platinum (XPT) - spanning from January 1, 2000, to December 31, 2022, as seen on Figure 1. 

Data was obtained from Stooq.pl database. Notably, contrary to the Stock Market, variable 

accounting for Volume is missing. It is attributed to the decentralized nature of the Foreign 

Exchange Market, where trading volumes are not consistently reported across various trading 

venues (Flood, 1994). 

Figure 1: Price of XAU/USD (Gold), XAG/USD (Silver) and XPT/USD (Platinum) between 
2000 and 2022 

 
Source: Own calculations 

The dataset used in this study is divided into two parts, namely a training set and a testing set. 

The training set spans from January 1, 2000, to December 31, 2017, while the testing set covers 

the period from January 1, 2018, to December 31, 2022. The division was applied not only to 

maintain an approximate 80:20 ratio between the training and the testing set but also to include 

pre- and post-pandemic periods. To evaluate and choose the best model for each noble metal, 
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a 4-fold Time Series cross-validation is employed on the training data, while preserving its 

time-dependency. Each fold, the model is trained on the past data and evaluated on the future 

data. Successive training sets are supersets of the preceding ones (Figure 2). 

Figure 2 An example of 4-fold Time Series Cross Validation 

 
Source: Own calculations 

To obtain cross-validated scores, the metrics are calculated on the CV-testing sets for each 

subset and then averaged. This approach ensures that the models are trained on a diverse range 

of data and can generalize well to new, unseen data. The use of cross-validation also helps to 

prevent overfitting, where the models perform well on the training data but poorly on new, 

unseen data. 

3.1.1 Feature Engineering 

3.1.1.1 Independent variables 

Using the Technical Analysis Library (Technical Analysis Library, 2018), a Python-based tool 

developed for financial market analysis, 73 technical indicators can be calculated from Open-

High-Low-Close (OHLC) data. This library is built on top of efficient numerical computing 

libraries, like Pandas and NumPy, and provides a range of analytical tools that help in creating 
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and implementing various trading strategies. These tools allow market participants to make 

informed decisions based on historical price and volume data. 

TAL's technical indicators are divided into four main groups: Momentum, Volume, 

Volatility, and Trend indicators. However, it's important to note that Volume indicators are not 

suitable for forex market data because of the market's decentralized nature. This 

decentralization leads to a lack of accurate volume information, making the use of 10 Volume 

indicators offered by TAL ineffective in this context. As a result, the analysis of Forex data 

mainly focuses on the other three categories of technical indicators - Momentum, Volatility, 

and Trend indicators (73 in total) - to develop effective trading strategies and investment 

models. 

TAL offers indicators as follows: 

● Momentum indicators: Awesome Oscillator, Kaufman’s Adaptive Moving Average 

(KAMA), Percentage Price Oscillator (PPO), Percentage Volume Oscillator (PVO), 

Rate of Change (ROC), Relative Strength Index (RSI), Stochastic RSI, Stochastic 

Oscillator, True Strength Index (TSI), Ultimate Oscillator, Williams %R. 

● Volatility indicators: Average True Range (ATR), Bollinger Bands, Donchian Channel, 

Keltner Channel, Ulcer Index. 

● Trend indicators: Average Directional Movement Index (ADX), Aroon Indicator, 

Commodity Channel Index (CCI), Detrended Price Oscillator (DPO), Exponential 

Moving Average (EMA), Ichimoku Indicator, KST Oscillator, Moving Average 

Convergence Divergence (MACD), Mass Index (MI), Parabolic Stop and Reverse 

(Parabolic SAR), Schaff Trend Cycle (STC), Trix (TRIX), Vortex Indicator (VI), 

Weighted Moving Average (WMA), Average Directional Movement Index (ADX). 

In contrast to the approaches found in the literature, such as those presented by Zarrabi et al. 

(2017) and Qi and Wu (2006), this study will not involve the development of specific 

mathematical rules derived from the technical indicators. The absence of such rules represents 

a deviation from the traditional methodology, which often attempts to create customized 

frameworks for market trend predictions based on the relationships between these indicators.  

Instead, the focus of this research will be on utilizing the technical indicators 

themselves, without any additional transformations or derived mathematical constructs. The 

hope is placed in black-box models, such as Random Forest or XGBoost. This approach will 

emphasize the individual capabilities of the indicators and their potential in predicting market 
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trends. By relying solely on the indicators, the study aims to determine their inherent predictive 

power and evaluate their effectiveness in the context of market trend analysis. 

3.1.1.2 Dependent variable 

In this context, the dependent variable is a three-level categorical variable that is defined based 

on the percentage difference between the closing prices of three metals - gold, silver, or 

platinum - over a period of 𝑛𝑛 consecutive days: 

y!"#$% =

⎩
⎪⎪
⎨

⎪⎪
⎧ −1 ⟺	

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶&'(

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶&
< −𝑡𝑡ℎ𝑟𝑟𝐶𝐶𝐶𝐶ℎ)*&+,:./*01*234	

0	 ⟺		−𝑡𝑡ℎ𝑟𝑟𝐶𝐶𝐶𝐶ℎ)*&+, ≤
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶&'(

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶&
≤ 𝑡𝑡ℎ𝑟𝑟𝐶𝐶𝐶𝐶ℎ)*&+,:./*01*234	

1 ⟺
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶&'(

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶&
> 𝑡𝑡ℎ𝑟𝑟𝐶𝐶𝐶𝐶ℎ)*&+,:./*01*234

(1) 

The choice of using returns was based on their stationarity property, which is not present in 

prices. Returns also allow for a separation of the forecast from the current price and the analysis 

can focus on the direction and magnitude of price changes, rather than the absolute price levels. 

Figure 3 Daily returns of XAU/USD (Gold), XAG/USD (Silver) and XPT/USD (Platinum) 
between 2000 and 2022. 

 
Source: Own calculations 
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The variable is defined based on separate thresholds for each metal, which were selected to 

achieve a similar, approximately equal class distribution across the three metals for the    

BUY:DO-NOTHING:SELL classes.  Calculated thresholds are presented on Figure 4. 

Figure 4. Independent variable class distribution across XAU/USD (Gold), XAG/USD (Silver) 
and XPT/USD (Platinum) 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day), Thresh 
– the absolute value of calculated thresholds that divides variable into one of three classes:  SELL: 
[−∞;−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ); DO-NOTHING: [−𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ; 	𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ); BUY: [𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ,∞), BUY – number of observations of the 
BUY class (percentage share), DO-NOTHING – number of observations of the DO-NOTHING class (percentage 
share), SELL – number of observations of the SELL class (percentage share). 

Source: Own calculations 

3.1.2 Feature Selection  

In the study, 73 technical indicators were computed and integrated into the dataset. These 

variables might exhibit high correlation as they are derived from the same underlying price 

data. To mitigate the effects of redundant features, two approaches were introduced: 

● Implementing Principal Component Analysis (PCA), a dimensionality reduction 

technique that transforms the set of variables into a new set of uncorrelated linear 

combinations (Jolliffe and Cadima, 2016). Before applying PCA, data is scaled to the 

range between 0 and 1, because variables have different ranges and thus would distort 

the algorithm. 

● Identifying and removing highly correlated features with Kendall’s rank correlation 

coefficient, ensuring that the remaining variables provide information without 

Metal Frequency Thresh BUY DO-NOTHING SELL

Gold 1D 0.35% 1947 (34.2%) 2015 (35.4%) 1728 (30.4%)
Gold 5D 0.91% 425 (36.9%) 398 (34.5%) 330 (28.6%)
Gold 10D 1.46% 202 (35.1%) 228 (39.6%) 146 (25.3%)
Gold 15D 1.57% 155 (40.4%) 118 (30.7%) 111 (28.9%)
Gold 20D 1.84% 101 (35.1%) 108 (37.5%) 79 (27.4%)
Silver 1D 0.57% 1921 (34.4%) 1960 (35.1%) 1705 (30.5%)
Silver 5D 1.37% 403 (35.0%) 400 (34.7%) 350 (30.4%)
Silver 10D 2.06% 200 (34.7%) 202 (35.1%) 174 (30.2%)
Silver 15D 2.89% 137 (35.7%) 147 (38.3%) 100 (26.0%)
Silver 20D 3.51% 95 (33.0%) 108 (37.5%) 85 (29.5%)

Platinum 1D 0.49% 1951 (34.5%) 1903 (33.7%) 1801 (31.8%)
Platinum 5D 1.12% 426 (36.9%) 378 (32.8%) 349 (30.3%)
Platinum 10D 1.59% 227 (39.4%) 171 (29.7%) 178 (30.9%)
Platinum 15D 2.08% 149 (38.8%) 119 (31.0%) 116 (30.2%)
Platinum 20D 2.7% 105 (36.5%) 96 (33.3%) 87 (30.2%)
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redundancy. The most common method across different fields of science is to select 

variables correlated |𝑟𝑟| < 0.7 (Dormann et al. ,2013). Although in this study, Pearson’s 

correlation coefficient is not used, that threshold will be used for filtering features, 

namely variables exhibiting |𝜏𝜏| < 0.7 with other dependent variables. 

3.1.2.1 Principal Component Analysis 

PCA is an orthogonal linear transformation widely used as a dimensionality reduction technique 

that projects the original dataset onto a lower-dimensional space while retaining most of the 

data’s variability (Jolliffe and Cadima, 2016). PCA transforms the original set of variables into 

a new set of uncorrelated linear combinations, capturing the maximum variance in the data. The 

first component is calculated to maximize the variance explained in the dataset and the 

subsequent components explain the maximum of the remaining variance. The transformed 

dataset usually consists of fewer dimensions than the original one, while retaining the essential 

information to a given extent. 

Principal Component Analysis has numerous advantages, addressing various challenges 

associated with high cardinality of the data. One of the primary benefits is its ability to mitigate 

the impact of multicollinearity on model performance. Multicollinearity is understood as the 

presence of high correlation between predictor variables, which can lead to violation of 

statistical assumptions or model instability or inflation of standard errors and additionally it 

increases the difficulty of interpreting the importance of individual variables (Dormann et al., 

2013). PCA effectively addresses that issue by transforming the original correlated variables 

into a new set of uncorrelated linear combinations, making the model more stable and reliable. 

Another advantage is its ability to improve the model performance by reducing the 

computational complexity associated with high-dimensional data. In many algorithms, usage 

of sparse datasets containing many variables lead to increased computational costs and longer 

training time. By reducing the cardinality of data, PCA allows for faster model training and 

improved performance, enabling a more efficient decision-making process. 

An additional advantage of PCA is the ability to enhance noise reduction in high-

dimensional datasets. Many datasets, especially financial data, contain a noise which makes the 

identification of underlying patterns and trends harder thus impacting negatively on the 

performance of algorithms. Noise typically contributes little to the overall variance, it tends to 

be distributed among the lower-order principal components. By retaining only, the components 

that explain the majority of the variance, PCA effectively filters out the noise, leading to 
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a cleaner representation of the data. The noise reduction improves the performance and the 

generalization ability of algorithms, allowing for more accurate predictions. 

However, PCA has several limitations. One of the main drawbacks is low 

interpretability as the resulting principal components are linear combinations of the original 

variables thus lacking an intuitive meaning. Furthermore, PCA assumes that the data follows 

a linear structure thus may not be suitable for datasets with non-linear relationships. 

3.1.2.2 Removing redundant features 

The selection of variables with Pearson correlation coefficient below a certain threshold is 

a widely used technique of feature selection in various scientific fields, although the specific 

threshold varies. The most popular one is the aforementioned |𝑟𝑟| < 0.7, but more restrictive 

(e.g., 0.4 in Suzuki et al. 2008) and less restrictive (0.85 in Elith et al. 2006) thresholds have 

been used. Dormann et al. (2013) in their analysis confirmed, that the rule-of-thumb not to use 

variables correlated at |𝑟𝑟| > 0.7 is a simple and effective method of variable selection. 

Despite those advantages, Pearson's 𝑟𝑟 is quite sensitive to non-normality (Kowalski, 1972) of 

the data. Because of that, a Kendall’s 𝜏𝜏 correlation coefficient is proposed in this study. The 

filtering threshold equal to 0.7 was preserved because both Pearson’s 𝑟𝑟 and Kendall’s 𝜏𝜏 share 

scale from −1 to 1. 

3.2 Machine Learning Algorithms 

3.2.1 Logistic Regression 

Logistic Regression is a parametric model describing the relationship between a binary outcome 

variable and predictor variables, which can be either categorical or continuous (Hosmer et al., 

2013). The outcome of the model is the estimated probability of the occurrence of an outcome 

given a set of predictor variables. 

The logistic regression equation can be expressed as: 

𝑃𝑃(𝑌𝑌 = 1	|	𝑋𝑋) =
1

1 + 𝐶𝐶567!'7"8"'7#8#'⋯'7$8$:
(2) 

where P(Y = 1|X) is the probability of outcome 𝑌𝑌 = 1 given the set of predictors 

𝑋𝑋(,  𝑋𝑋;,   … ,  𝑋𝑋<where β(, β;, … , β< are the coefficient of predictor variables. 
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Ordered Logistic Regression is an extension of Logistic Regression for ordinal dependent 

variable (McCullagh, 1980). One of assumptions of that model is the proportional odds 

assumptions, which is problematic to achieve while working with high cardinality data, so 

another extension of Logistic Regression is considered. 

In this paper’s context of multi-class classification, an extension of Logistic Regression 

- Multinomial Logistic Regression (MLR) is used. MLR generalized logistic regression to 

accommodate more than two classes and is particularly useful for cases where the outcome 

variable has three or more categories. MLR assumes that collinearity is relatively low, as it 

becomes difficult to differentiate between the impact of several variables otherwise (Goldstein, 

1993). 

The MLR equation can be expressed as: 

𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝑋𝑋) =
𝐶𝐶67%!'7%"8"'7%#8#'⋯'7%$8$:

∑ 𝐶𝐶67&!'7&"8"'7&#8#'⋯'7&$8$:=
>?(

(3) 

where 𝑃𝑃(𝑌𝑌 = 𝑘𝑘	|	𝑋𝑋) is the probability of outcome 𝑌𝑌 = 𝑘𝑘 given the predictor variables 

𝑋𝑋(,  𝑋𝑋;,   … ,  𝑋𝑋<here β@A, β@(, … , β@< are the coefficients associated with 𝑖𝑖-th explanatory 

variable and the 𝑘𝑘-th outcome. An important advantage of logistic regression and its multi-class 

extension is that the interpretable Marginal Effects can be easily calculated, which are useful 

when assessing the direction and strength of predictor variables. 

Performance of the MLR can be tuned mostly through regularization, a method to fight 

overfitting in by adding a penalty term to the loss function with associated parameter 𝜆𝜆, 

indicates regularization strength (Friedman et al., 2010). Depending on the penalty term, model 

becomes Lasso Regression (L1 penalty) (Tibshirani 1996), Ridge Regression (L2 penalty) 

(Hoerl and Kennard 1970) or Elastic Net (mix of both L1 and L2 penalties) (Zou and Hastie, 

2005).  

During the model selection phase, MLR will not be regularized. Penalty terms will be 

introduced in the hyperparameter tuning process. 

3.2.2 k-Nearest Neighbors 

The k-Nearest Neighbors algorithm is a non-parametric model developed in 1951 (Fix and 

Hodges, 1951) and later expanded to the form it is known today (Cover and Hart, 1967). k-NN 

is also a lazy algorithm, indicating that it does not make any assumptions about the underlying 

data distribution and does not perform any training during the model fitting stage. Instead, it 
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uses the entire training dataset as its model, and makes predictions based on the similarity 

between new instances and the instances from the training dataset. It can be used in both 

regression and classification problems. 

The algorithm identifies 𝑘𝑘 nearest data points for each new unobserved data point and 

assigns a class to it based on the majority vote. The choice of 𝑘𝑘 is crucial, as a value too small 

may result in overfitting because it will fit too closely to the training data and a value too large 

may result in underfitting.The proximity of instances is calculated through one of distance 

metrics. Common distance metrics include Euclidean, Manhattan or Minkowski distance. This 

paper will take into the default settings of scikit-learn’s KNeighborsClassifier, so the distance 

metric is the Minkowski distance defined as: 

𝑑𝑑<(𝑥𝑥, 𝑦𝑦) = VW|𝑥𝑥B − 𝑦𝑦B|<
2

B?(

X

(
<

(4) 

with 𝑝𝑝 = 2, so 𝑑𝑑<(𝑥𝑥, 𝑦𝑦) becomes the Euclidean distance:  

𝑑𝑑(𝑥𝑥. 𝑦𝑦) = VW|𝑥𝑥B − 𝑦𝑦B|;
2

B?(

X

(
;

= [W(𝑥𝑥B − 𝑦𝑦B);
2

B?(

(5) 

In the standard k-NN classifier, all data points are given equal weight. However, in a specific 

scenario, known as weighted k-NN, data points can be assigned weights based on their distance 

(Dudani, 1976). k-NN has several advantages, such as simplicity, flexibility, and the ability to 

handle non-linear relationships. However, it is sensitive to the choice of 𝑘𝑘 and the distance 

metric, as well as its performance may worsen in high-dimensional data spaces due to the curse 

of dimensionality (Beyer et al., 1999). 

During the model selection phase, k-NN will have default values for following four parameters: 

!

𝑘𝑘 = 5
𝑝𝑝 = 2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ′𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑚𝑚! 
𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤ℎ𝑚𝑚𝑚𝑚 = ′𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚! 

(6) 

3.2.3 Random Forest 

Random Forest is an ensemble learning algorithm for both classification and regression tasks 

that combines multiple decision trees to improve the overall performance and reduce 

overfitting, a common issue with single decision trees (Breiman, 2001). The basic idea behind 
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Random Forest is to generate a large number of decision trees, each trained on a randomly 

selected subset of the training data. The predictions of the individual trees are combined using 

a majority vote (in classification) or an average (for regression) to produce the final prediction. 

The number of trees 𝑛𝑛_𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡𝐶𝐶𝑟𝑟𝐶𝐶 is not the only factor that can influence the 

performance of the Random Forest Classifier. Other parameters considered apply to individual 

Decision Trees (Pedregosa et al., 2011). The 𝑒𝑒𝑒𝑒𝑥𝑥_𝑑𝑑𝐶𝐶𝑝𝑝𝑡𝑡ℎ controls the maximum depth of each 

tree, as deep tree can capture more patterns in the data, but also lead to overfitting. 

The next three parameters affect the split in each tree. The 𝑒𝑒𝑖𝑖𝑛𝑛_𝐶𝐶𝑒𝑒𝑒𝑒𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝑝𝑝𝐶𝐶𝑖𝑖𝑡𝑡 

parameter specifies the minimum number of samples required to split an internal node, 

𝑒𝑒𝑖𝑖𝑛𝑛_𝐶𝐶𝑒𝑒𝑒𝑒𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑒𝑒𝑙𝑙 parameter determines the minimum number of samples required at a leaf 

node and 𝑒𝑒𝑒𝑒𝑥𝑥_𝑙𝑙𝐶𝐶𝑒𝑒𝑡𝑡𝑓𝑓𝑟𝑟𝐶𝐶𝐶𝐶 parameter determines the maximum number of features considered 

when looking for the best split (Pedregosa et al., 2011). 

When determining the optimal split in each node, the 𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝐶𝐶𝑟𝑟𝑖𝑖𝐶𝐶𝑛𝑛 parameter defines the 

quality measure used to evaluate it: Gini index and Entropy (Pedregosa et al., 2011). 

Assuming 𝑁𝑁 is the total number of classes and 𝑝𝑝(𝑖𝑖) is the probability of picking an 

observation of class 𝑖𝑖	𝜖𝜖	{1, … , 𝑁𝑁} from set 𝑇𝑇, then Gini index is defined as (6) and measures the 

probability of incorrectly classifying a randomly chosen element belonging to the class from 

the set 𝑇𝑇 (Xia et al., 2008). 

𝐺𝐺(𝑇𝑇) =W𝑝𝑝(𝑖𝑖) ∗ j1 − 𝑝𝑝(𝑖𝑖)k
C

B

(7) 

Maintaining the same assumption, Entropy is defined as (7) and is a measure of impurity or 

disorder in a dataset, first formulated by Shannon (1948). 

𝐻𝐻(𝑇𝑇) = −W𝑝𝑝(𝑖𝑖) ∗ 𝑙𝑙𝑚𝑚𝑤𝑤; 𝑝𝑝(𝑖𝑖)
C

B

(8) 

Random Forest classification's non-parametric nature is one of its most important advantages. 

In contrast to parametric methods, which assume a specific form for the underlying distribution 

of the data, Random Forest classification makes no such assumptions. Instead, it relies on 

a combination of decision trees, each of which is trained on a random subset of the input 

features and data. This allows the algorithm to be more flexible and robust in handling complex 

and diverse datasets, including high-dimensional data. 
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Another advantage is RF’s ability to handle high-dimensional and noisy data. Random Forest 

classification can handle noisy data more effectively than other algorithms. When dealing with 

noisy data, decision trees in the ensemble may produce incorrect predictions due to the presence 

of outliers or other sources of noise in the input data. However, since Random Forest 

classification is based on a combination of multiple decision trees, the overall impact of noisy 

or incorrect predictions is reduced, improving the overall performance of the model. 

Despite its numerous advantages, Random Forest classification also has some 

limitations. One of the main drawbacks of Random Forest is its limited interpretability. Since 

it is an ensemble method composed of multiple decision trees, it can be challenging to 

understand how the model arrives at its final predictions. However, feature importance scores 

can provide some insights into which features are the most important in making those 

predictions. Another limitation is that the computational complexity of Random Forest can 

increase significantly when dealing with large datasets and complex models. This can lead to 

longer training and prediction times, which can be a problem in real-time or near real-time 

applications. 

During the model selection phase, RFC will have default values for following six parameters:  

⎩
⎪
⎨

⎪
⎧
𝒏𝒏_𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 = 𝟏𝟏𝟏𝟏𝟏𝟏
𝒆𝒆𝒆𝒆𝒎𝒎_𝒅𝒅𝒆𝒆𝒅𝒅𝒆𝒆𝒅𝒅 = 𝑵𝑵𝒆𝒆𝒏𝒏𝒆𝒆
𝒆𝒆𝒆𝒆𝒏𝒏_𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒔𝒔𝒆𝒆𝒆𝒆_𝒆𝒆𝒅𝒅𝒔𝒔𝒆𝒆𝒆𝒆 = 𝟐𝟐
𝒆𝒆𝒆𝒆𝒏𝒏_𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒔𝒔𝒆𝒆𝒆𝒆_𝒔𝒔𝒆𝒆𝒆𝒆𝒍𝒍 = 𝟏𝟏
𝒆𝒆𝒆𝒆𝒎𝒎_𝒍𝒍𝒆𝒆𝒆𝒆𝒆𝒆𝒇𝒇𝒆𝒆𝒆𝒆𝒆𝒆 = ′𝒆𝒆𝒔𝒔𝒆𝒆𝒆𝒆′
𝒄𝒄𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒏𝒏 = ′𝑮𝑮𝒆𝒆𝒏𝒏𝒆𝒆′

(𝟗𝟗) 

3.2.4 XGBoost 

XGBoost (eXtreme Gradient Boosting) is an advanced implementation of Gradient Boosting 

Machines, a powerful and widely used ensemble learning technique for both classification and 

regression tasks (Chen & Guestrin, 2016). 

The algorithm works by iteratively building an ensemble of weak learners (decision 

trees) that successively correct the errors of their predecessors. At each iteration, a new weak 

learner is fitted to the loss function with respect to the current learner prediction. The final 

prediction is obtained by combining the predictions of all weak learners using a vote. In the 

case of multi-class classification, raw scores are converted into class probabilities using the 

softmax function defined as: 
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𝑃𝑃(𝑦𝑦 = 𝑘𝑘| 𝑋𝑋) =
𝐶𝐶.D@(F)

∑ 𝐶𝐶.'H (F)=
>?(

(10) 

here 𝑃𝑃(𝑦𝑦 = 𝑘𝑘|𝑥𝑥) is the predicted probability of class 𝑘𝑘 for observation 𝑥𝑥 and 𝑙𝑙á𝑘𝑘(𝑥𝑥) is the raw 

score for class 𝑘𝑘 and 𝐾𝐾 is the total number of classes. 

The performance of XGBoost classification can be optimized by adjusting various 

parameters. Chen and Guestrin (2016) classified these parameters into three categories: general, 

booster, and learning task parameters. The first type relates to the type of booster, the second – 

to the booster itself and the third – to the learning task and its objective. 

By default, the booster parameter in XGBoost utilizes tree models (Chen and Guestrin, 

2016), inheriting certain parameters from decision trees as described in Section 3.2.3.: 

n_estimators and max_depth. Additional parameters are related to the boosting process. During 

each boosting round, the learning_rate parameter regulates its step size, the subsample 

parameter determines the fraction of training samples that are randomly selected and used for 

training and the gamma parameter sets the minimum loss required to initiate another split in 

a tree, thereby controlling the complexity of a tree. XGBoost introduces several improvements 

to the standard gradient boosting framework, such as regularized learning, which helps prevent 

overfitting, and efficient tree construction algorithms that enable faster and more accurate tree 

learning (Chen & Guestrin, 2016). Moreover, XGBoost supports parallel and distributed 

computing, making it highly scalable and suitable for large datasets. 

XGBoost seems similar to Random Forest, however the primary difference between 

them lies in their learning strategy. RF employs bootstrap aggregating (bagging), wherein 

multiple decision trees are built independently and in parallel, and their predictions are 

aggregated through average (in regression) or vote (in classification) to obtain the final 

prediction. XGB uses boosting, a sequential learning technique where trees are built iteratively, 

with each new tree focusing on correcting the eros made by the previous tree. 

During the model selection phase, XGB will have default values for following six parameters: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛_𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 100
𝑒𝑒𝑒𝑒𝑚𝑚_𝑑𝑑𝑏𝑏𝑑𝑑𝑏𝑏ℎ = 10
𝑙𝑙𝑏𝑏𝑒𝑒𝑏𝑏𝑛𝑛𝑒𝑒𝑛𝑛𝑔𝑔_𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏 = 0.1
𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑑𝑑𝑙𝑙𝑏𝑏 = 1
𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0

(11) 
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3.3 Model selection and evaluation 

Models are selected based on their statistical metrics and then evaluated using performance 

metrics based on Kosc et al. (2019), Bui and Ślepaczuk (2021) and Magdon-Ismail et al. (2004). 

3.3.1 Statistical metrics 

3.3.1.1 Balanced Accuracy 

Balanced Accuracy is a good metric for evaluating classification models in imbalanced 

problems because it considers the distribution of the classes. In imbalanced problems, where 

the number of instances in one class is significantly larger or smaller than the others, traditional 

accuracy metrics can be misleading. For example, a classifier that always predicts the majority 

class can have a high accuracy, even though it does not perform well on the minority class. 

Balanced Accuracy for binary problem is defined as the arithmetic average of sensitivity and 

recall: 

𝐵𝐵𝑒𝑒𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐𝐶𝐶𝑑𝑑 𝐴𝐴𝑐𝑐𝑐𝑐𝑓𝑓𝑟𝑟𝑒𝑒𝑐𝑐𝑦𝑦 =
1
2 ã

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 +

𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃ç

(12) 

here is no agreed-upon definition for extending Balanced Accuracy to multi-class classification 

problems, but this study will use the definition proposed by Mosley (2013), Guyon et al. (2015), 

and Kelleher (2015), as the Recall of each class averaged by the number of classes: 

𝐵𝐵𝑒𝑒𝐶𝐶𝑒𝑒𝑛𝑛𝑐𝑐𝐶𝐶𝑑𝑑 𝐴𝐴𝑐𝑐𝑐𝑐𝑓𝑓𝑟𝑟𝑒𝑒𝑐𝑐𝑦𝑦 =
1
𝐾𝐾W

𝑇𝑇𝑃𝑃@
𝑇𝑇𝑃𝑃@ + 𝐹𝐹𝑁𝑁@

=

@?(

(13) 

this approach provides a measure of the overall performance of a classifier that is less sensitive 

to imbalanced class distributions in multi-class classification problems. 

3.3.1.2 F1-score 

The F1 score is a metric that combines both precision and recall into a single value to evaluate 

the overall performance of a classifier. It is particularly useful in imbalanced problems where 

the distribution of classes is skewed, as it considers both false positives and false negatives. 

The F1 score is the harmonic mean of precision and recall, and is defined as: 

𝐹𝐹1 − 𝑆𝑆𝑐𝑐𝐶𝐶𝑟𝑟𝐶𝐶 = 2 ×
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 ×
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 +
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
(14) 
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In imbalanced problems, where the number of instances in one class is significantly larger or 

smaller than the others, traditional accuracy metrics can be misleading. A classifier that predicts 

the majority class may have a high accuracy but may not perform well on the minority class. 

The F1 score provides a more accurate measure of the overall performance of a classifier in 

such cases, by balancing the trade-off between precision and recall. 

In multiclass classification problems, the F1-score is calculated by finding the weighted 

average of the metrics for each label, where the weight is Support score. This approach, known 

as weighted averaging, considers the label imbalance, which can result in an F1-score that is 

not between precision and recall, unlike in binary classification problems. This approach 

provides a more accurate measure of the overall performance of a classifier in multiclass 

classification problems, particularly in cases where the class distribution is imbalanced. 

3.3.1.3 Hyperparameter tuning 

Hyperparameter tuning is a process of optimizing the hyperparameters (set before training the 

algorithm) of a Machine Learning algorithm to improve its performance. Literature (Wu et al., 

2019; Bergstra and Bengio, 2012) distinguishes traditional and advanced types of this process. 

Grid Search is a one of traditional ways of performing hyperparameter optimization and 

relies on exhaustive searching through the whole hyperparameter space of an algorithm. This 

method entails selecting a finite set of values for each hyperparameter and training the model 

using all possible combinations. Trying all possible combinations is also a limitation of this 

approach, as Grid search gets more computationally expensive with increasing parameter space 

or with spare data. 

Random Search uses only a subset of hyperparameters from the search space and train 

the model using these hyperparameters. This approach avoids the computational burden of 

a Grid search and can be more efficient in finding best parameter configurations, especially 

when the parameter space is large, or data is sparse. Although this approach is less 

computational expensive than Grid search, it also has limitation – it does not guarantee the 

optimal set of parameters and may require many iterations to find a sufficient set of parameters.  

Snoek et al. (2012) highlights limitations of those two traditional approaches and propose 

the Bayesian optimization as a better hyperparameter tuning technique. Bayesian optimization 

is a statistical approach that constructs a probabilistic model of the objective function, which 

maps hyperparameter values to the validation set's objective value. It iteratively evaluates 

promising hyperparameter configurations based on the current model and updates it to acquire 
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observations revealing as much information as possible about this function, particularly the 

location of the optimum (Wu et al., 2019). It attempts to balance exploration of hyperparameters 

with uncertain outcomes and exploitation of those hyperparameters expected to be near the 

optimum. Empirical evidence (Snoek et al., 2012) has demonstrated that Bayesian optimization 

outperforms grid search and Random Search in terms of fewer evaluations required to achieve 

better results, mainly due to the ability to reason about the quality of experiments before 

conducting them. 

3.3.2 Performance metrics 

3.3.2.1 Annualized Return Compounded (ARC) 

The Annualized Return Compounded (ARC) is a financial metric that is widely used by 

investors to evaluate the performance of an investment over a certain period and compare the 

returns of different investments and evaluate the effectiveness of their investment strategies 

(Kosc et al., 2019). It represents the compounded rate of return that an investment has generated 

over a year. The ARC is expressed as a percentage (%) and is calculated by taking the product 

of the growth rate of each period over the sample size and then subtracting one from the result.  

 

The formula for ARC is represented as: 

𝐴𝐴𝐴𝐴𝐶𝐶 =ë(1 + 𝐴𝐴B);I;/C
C

B?(

− 1 (15) 

where 𝐴𝐴B is the percentage rate of return and 𝑁𝑁 is the sample size. 

3.3.2.2 Annualized Standard Deviation (ASD) 

The Annualized Standard Deviation (ASD) is a financial metric that is used to measure the risk 

associated with an investment and assess its volatility (Kosc et al., 2019). The ASD is expressed 

as a percentage (%) and is calculated by taking the square root of the product of the sample size 

and the variance of the returns.  

The formula for ASD is represented as: 

𝐴𝐴𝑆𝑆𝐴𝐴 = √252 ∗ [
1

𝑁𝑁 − 1W
(𝐴𝐴B − 𝐴𝐴î);

C

B?(

(16) 
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where 𝐴𝐴B is the percentage rate of return, 𝐴𝐴î is the average rate of return and 𝑁𝑁 is the sample 

size. 

3.3.2.3 Maximum Drawdown (MDD) 

Maximum Drawdown (MDD) is a financial metric that measures the maximum loss suffered 

by an investor during a certain period (Magdon-Ismail et al., 2004). It is calculated as the 

difference between the global maximum and the consecutive global minimum of the equity 

curve expressed as a percentage. 

𝑀𝑀𝐴𝐴𝐴𝐴(𝑁𝑁) = 𝐶𝐶𝑓𝑓𝑝𝑝
&∈[A,C]

ó 𝐶𝐶𝑓𝑓𝑝𝑝
O∈[A,&]

𝑋𝑋(𝐶𝐶) − 𝑋𝑋(𝑡𝑡)
𝑋𝑋(𝐶𝐶) ò (17) 

Where 𝑋𝑋(𝑛𝑛) is the price process in the time point 𝑛𝑛 and 𝑁𝑁 is the sample size. 

3.3.2.4 Equity curve 

The equity provides a graphical depiction of the performance of an investment strategy within 

a specified timeframe. The curve tracks the changes in investment value over time, enabling 

a comprehensive overview of the strategy's overall performance. The visual representation of 

the equity curve provides an intuitive view that can help identify trends, patterns, and strong or 

weak performance periods (Kisela et al., 2015). Comparing the equity curves of multiple 

investment strategies on a shared graph provides an efficient method to identify the most 

effective strategy. The side-by-side plotting of equity curves enables for an easy comparison 

the performance of different strategies, recognition of their strengths and weaknesses.  
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4 Results 

4.1 Model selection 

The model space for each metal encompassed two feature selection methods (Kendall-tau 

filtering and PCA), five different frequencies (1, 5, 10, 15 and 20 trading days) and four 

algorithms (MLR, k-NN, RFC and XGB), resulting in a total of 40 possible combinations. Each 

combination was evaluated using three metrics: Balanced Accuracy (BA), F1-score and 

Annualized Return Compounded (ARC), calculated on the training data (2000-2018) using 

Time Series cross-validation methods as outlined in Section 3.1. The best-performing model 

based on each individual metric was subsequently selected for hyperparameter tuning. 

Figure 5. showcases the optimal combinations for predicting Gold price movements, following 

the outlined methodology. Despite evaluating each combination on three distinct statistics, only 

two models were selected, because the Random Forest Classifier trained on the 15 days 

frequency price movement data using Kendall-tau filtering as a feature selection performed best 

in terms of Balanced Accuracy: 0.3957 and Annualized Return Compounded: 0.1046, meaning 

that strategy brought on average 10.46% annually in the period 2000-2018. The k-Nearest 

Neighbors algorithm trained on 20 days frequency price movement data using PCA technique, 

was the best model in terms of F1-score, achieving 0.3807. This model also has a lower value 

of Drawdown: 8.95%, compared to the 10.27% in RFC. 

Figure 5. Best performing models for Gold (XAU/USD) market direction prediction 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day),          
Feature Selection – one of the feature selection methods: Kendall-tau filtering or Principal Component Analysis, 
Model – one of four models: MLR, KNN, RFC or XGB, Train – indication that statistics are calculated on the 
training subset (2000-2018), BA – Balanced Accuracy, F1 – F1-score, ARC – Annualized Return Compounded, 
DD – Drawdown, ASD – Annualized Standard Deviation. 

Source: Own calculations 

Figure 6. illustrates the optimal combinations for predicting Silver price movements. In contrast 

to Gold (Figure 5.), there are now three top-performing combinations, with each excelling in 

a different evaluation metric. The k-Nearest Neighbors model, trained on daily data and 

utilizing Kendall-tau filtering as a feature selection method, achieved the highest F1-score: 

0.3491. In terms of Annualized Return Compounded, the eXtreme Gradient Boosted model, 

Metal
Fre-

quency
Feature
Selection

Model
Train

BA F1 ARC DD ASD

Gold 15D Kendall-tau RFC 0.3957 0.3517 0.1046 0.1027 0.0016
Gold 20D PCA KNN 0.3839 0.3807 0.0472 0.0895 0.0011
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trained on daily data and employing PCA for dimensionality reduction, outperformed the other 

models with an impressive value of 23.28%. That XGB model achieved similar values of BA 

and F1-score to the k-NN, however the achieved ARC is over 20 times higher, meaning that 

strategy brought on average 23.28% return annually!  The best performing model in terms of 

BA turned out to be XGB with PCA trained on the 20 days frequency price movement data, 

achieving 0.4049. 

Figure 6. Best performing models for Silver (XAG/USD) market direction prediction 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day),          
Feature Selection – one of the feature selection methods: Kendall-tau filtering or Principal Component Analysis, 
Model – one of four models: MLR, KNN, RFC or XGB, Train – indication that statistics are calculated on the 
training subset (2000-2018), BA – Balanced Accuracy, F1 – F1-score, ARC – Annualized Return Compounded, 
DD – Drawdown, ASD – Annualized Standard Deviation. 

Source: Own calculations 

Figure 7. demonstrates the best combinations for predicting Platinum price movements. Only 

two models were selected, achieving similar values of all three metrics. The best model in terms 

of BA and F1-score turned out to be RFC model with PCA technique trained on daily data, 

achieving respectively: 0.3719 and 0.3621, while XGB with PCA technique trained on daily 

data as well, achieved the highest score of ARC: 15.63%, a value comparable with ARC 

achieved by the other model (12.90%), however the Drawdown was significantly lower: 23%, 

compared to 32.70% achieved by the RFC. 

Figure 7. Best performing models for Platinum (XPT/USD) market direction prediction 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day),          
Feature Selection – one of the feature selection methods: Kendall-tau filtering or Principal Component Analysis, 
Model – one of four models: MLR, KNN, RFC or XGB, Train – indication that statistics are calculated on the 
training subset (2000-2018), BA – Balanced Accuracy, F1 – F1-score, ARC – Annualized Return Compounded, 
DD – Drawdown, ASD – Annualized Standard Deviation. 

Source: Own calculations 

It is important to note that the choice of model, feature selection method and data frequency 

can have a significant impact on performance metrics, encompassing both statistical (BA, F1-

Metal
Fre-

quency
Feature
Selection

Model
Train

BA F1 ARC DD ASD

Silver 1D Kendall-tau KNN 0.3464 0.3491 0.0124 0.3141 0.0047
Silver 1D PCA XGB 0.3494 0.3429 0.2328 0.1810 0.0053
Silver 20D PCA XGB 0.4049 0.3448 0.0643 0.2002 0.0045

Metal
Fre-

quency
Feature
Selection

Model
Train

BA F1 ARC DD ASD

Platinum 1D PCA RFC 0.371900 0.362100 0.129000 0.327000 0.002900
Platinum 1D PCA XGB 0.363800 0.360300 0.156300 0.230000 0.002900
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score) and financial indicators (ARC, DD, ASD). No universal solution exists for this problem, 

as the most suitable combinations vary depending on the specific task, whether the goal is to 

maximize BA, ARC or other relevant statistics. An interesting observation across all three noble 

metals is the absence of Multinomial Logistic Regression (MLR) as a selected algorithm in any 

case. This outcome was somewhat anticipated, as MLR is a parametric model that possesses 

limited capability to capture the underlying relationships between variables when compared to 

tree-based models or k-Nearest Neighbors (k-NN). 

Another noteworthy discovery applicable to all three precious metals is that investment 

strategies constructed on models trained solely using Technical Analysis (TA) indicators data 

managed to attain positive ARC, ranging from 1.24% to 23.28%, depending on the specific 

metal. Additionally, investment strategies for Silver and Platinum exhibited a higher degree of 

Drawdown, varying from 18.1% to 32.7%, in contrast to Gold, which demonstrated a lower-

level ranging from 4.72% to 10.46%. This observation aligns with a higher volatility observed 

in the daily returns of Silver and Platinum, as illustrated in Figure 3. 

Additional observation is that there appears to be no discernible correlation between 

statistical measures and the financial profitability of the strategy, as indicated by the ARC 

statistic. Specifically, when examining the data for Gold, it was found that the model with the 

highest ARC also had the highest BA. However, this relationship did not hold true for Silver or 

Platinum. Furthermore, the absence of a consistent relationship between BA, F1-score and ARC 

becomes even more apparent when analyzing strategies built on Silver and Platinum data. 

Despite minimal discrepancies in BA and F1-scores across different models, the ARC exhibited 

significant variations ranging from approximately 1% to 23%. 

4.2 Model evaluation  

4.2.1 Hyperparameter tuning 

The model selection process involved identifying, for each metal (Gold, Silver, and Platinum), 

a combination of model type (MLR, k-NN, RFC, XGB), data frequency (1, 5, 10, 15, 20 trading 

days), and variable selection method (Kendall-tau filtering, PCA) that yielded the highest 

possible scores for metrics: BA, F1-score and ARC. For each metal, 2 (for Gold and Platinum) 

or 3 (for Silver) top-performing combinations, which were then subjected to a hyperparameter 

tuning process. 
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The hyperparameter tuning process is conducted using the Randomized Search method, 

which unlike Grid Search, does not test all possible combinations from the declared 

hyperparameter space. Instead, it randomly selects a specified number (in this case, 𝑁𝑁 = 50) of 

combinations and chooses the best one among them. To ensure results reproducibility, a seed 

value is specified by the 𝑟𝑟𝑒𝑒𝑛𝑛𝑑𝑑𝐶𝐶𝑒𝑒_𝐶𝐶𝑡𝑡𝑒𝑒𝑡𝑡𝐶𝐶 parameter. Randomized Search significantly reduces 

computational costs, however, there is a risk that the obtained combination of hyperparameters 

may not be optimal. 

Among the selected combinations, none of them included the MLR model. Therefore, 

when describe the hyperparameter space for each model, emphasis will be placed on the 

remaining three models: k-NN, RFC and XGB. 

The hyperparameter space, denoted as 𝐻𝐻𝑃𝑃 for each model is defined as follows (default values 

of those hyperparameters were described in Section 3.2.1 – 3.2.4): 

𝐻𝐻𝑃𝑃 =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝐻𝐻𝑃𝑃@CC = ô

𝑘𝑘 ∈ {1, 2, … , 10}
𝑝𝑝 ∈ {1, 2}
𝑒𝑒𝐶𝐶𝑡𝑡𝑟𝑟𝑖𝑖𝑐𝑐 ∈ {𝑒𝑒𝑖𝑖𝑛𝑛𝑘𝑘𝐶𝐶𝑚𝑚𝐶𝐶𝑘𝑘𝑖𝑖,𝑒𝑒𝑒𝑒𝑛𝑛ℎ𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑛𝑛, 𝐶𝐶𝑓𝑓𝑐𝑐𝐶𝐶𝑖𝑖𝑑𝑑𝐶𝐶𝑒𝑒𝑛𝑛}
 𝑚𝑚𝐶𝐶𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝐶𝐶 ∈ {𝑓𝑓𝑛𝑛𝑖𝑖𝑙𝑙𝐶𝐶𝑟𝑟𝑒𝑒, 𝑑𝑑𝑖𝑖𝐶𝐶𝑡𝑡𝑒𝑒𝑛𝑛𝑐𝑐𝐶𝐶}

𝐻𝐻𝑃𝑃PQR =

⎩
⎪
⎨

⎪
⎧
𝑛𝑛_𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡𝐶𝐶𝑟𝑟𝐶𝐶 ∈ {100, 110,… ,150}
𝑒𝑒𝑒𝑒𝑥𝑥_𝑑𝑑𝐶𝐶𝑝𝑝𝑡𝑡ℎ ∈ {𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶, 5, 10, … , 30}
𝑒𝑒𝑖𝑖𝑛𝑛_𝐶𝐶𝑒𝑒𝑒𝑒𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝑝𝑝𝐶𝐶𝑖𝑖𝑡𝑡 ∈ {2, 5, 10}
𝑒𝑒𝑖𝑖𝑛𝑛_𝐶𝐶𝑒𝑒𝑒𝑒𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝑒𝑒𝑙𝑙 ∈ {1, 2, 4}
𝑒𝑒𝑒𝑒𝑥𝑥_𝑙𝑙𝐶𝐶𝑒𝑒𝑡𝑡𝑓𝑓𝑟𝑟𝐶𝐶𝐶𝐶 ∈ {𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶, 𝐶𝐶𝑠𝑠𝑟𝑟𝑡𝑡, 𝐶𝐶𝐶𝐶𝑤𝑤	2}

𝐻𝐻𝑃𝑃8ST =

⎩
⎪
⎨

⎪
⎧
𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝑟𝑟 ∈ {𝑤𝑤𝑏𝑏𝑡𝑡𝑟𝑟𝐶𝐶𝐶𝐶}
𝑛𝑛_𝐶𝐶𝐶𝐶𝑡𝑡𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡𝐶𝐶𝑟𝑟𝐶𝐶 ∈ {100, 110,… ,150}	
𝑒𝑒𝑒𝑒𝑥𝑥_𝑑𝑑𝐶𝐶𝑝𝑝𝑡𝑡ℎ ∈ {𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶, 1, 2, … , 10}
𝐶𝐶𝐶𝐶𝑒𝑒𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛𝑤𝑤_𝑟𝑟𝑒𝑒𝑡𝑡𝐶𝐶	 ∈ {0.01, 0.1, 0.5}
𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∈ {0, 0.1, … , 0.4}

(18) 

The models are evaluated using a separate test subset of the data that covers the period from 

2018 to 2022. During the hyperparameter tuning process using Randomized Search, different 

combinations of hyperparameters are tested and evaluated on the training subset of the data, 

using Time Series cross-validation technique outlined in the Section 3.1. However, it is 

important to outline once again that even though Randomized Search aims to find the best 

hyperparameters combinations, there is no guarantee that the obtained combination will be 

optimal. In some cases, the combination found through Randomized Search may even perform 
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worse than the model with default parameter values. In such cases, Figure 8. – Figure 10. will 

include models with their default parameter values. 

The column 𝑆𝑆𝑐𝑐𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟 specifies the metric against which the hyperparameters were tuned. 

This metric represents the performance measure used to evaluate and compare the models. It is 

a metric in which the baseline model, with its default parameter values, outperformed the other 

models. 

Ultimately, from the 2-3 models that underwent hyperparameter tuning process, the best 

model is selected based on its highest ARC value on the test subset. 

The case of Gold (Figure 8.) illustrates that model trained on the 15 trading days data 

frequency yielded a hyperparameter combination that performed worse than the baseline model. 

However, the model trained on data with a frequency of 20 trading days showed improved F1 

metric value compared to the baseline model (Figure 5.). That metric increased from 0.3807 to 

0.3991 on the training data, accompanied by a slight increase in Balanced Accuracy from 

0.3839 to 0.3871. However, the ARC metric decreased by over 1 percentage point from 4.71% 

to 3.33%. 

Although the k-NN model trained on 20D data frequency achieved higher BA and F1 

metric values on the test subset, the RFC model trained on 15D data frequency with Kendall-

tau filtering as a feature selection method achieved higher ARC metric values on both train and 

test subsets and thus was selected as the best model, respectively: 10.46 % and 8.57%. The 

model with BA and ARC as 𝑆𝑆𝑐𝑐𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟 metrics was the model which produced the best trading 

signals. A relationship true for Gold but it will not hold true in the remaining two cases. 

Figure 8. Selected models for XAU/USD (Gold) after hyperparameter tuning 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day),          
Feature Selection – one of the feature selection methods: Kendall-tau filtering or Principal Component Analysis, 
Model – one of four models: MLR, KNN, RFC or XGB, Train – indication that statistics are calculated on the 
training subset (2000-2018), BA – Balanced Accuracy, F1 – F1-score, ARC – Annualized Return Compounded, 
DD – Drawdown, ASD – Annualized Standard Deviation. 

Source: Own calculations 

Metal
Fre-

quency
Feature
Selection

Model Scorer
Data
Subset

BA F1 ARC DD ASD

Gold 15D Kendall-tau RFC
BA & Train 0.3957 0.3517 0.1046 0.1027 0.0016
ARC Test 0.3271 0.3120 0.0857 0.1898 0.0008

Gold 20D PCA KNN F1
Train 0.3871 0.3991 0.0333 0.1348 0.0013
Test 0.3932 0.3785 -0.0033 0.1892 0.0002
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In the case of Silver (Figure 9.), the tuning process improved improves the F1 score for 

the k-NN model from 0.3491 to 0.3685 and the BA score for the XGB model trained on the 

20D frequency data from 0.4049 to 0.4183 on the training subset, in comparison to baseline 

models (Figure 6.) 

Nevertheless, the model that achieved the best results in terms of both BA (0.3759) and 

F1 (0.3766) metrics on the test dataset was the baseline XGB model trained on daily frequency 

data with PCA as a dimensionality reduction technique. That model was also the one with the 

highest value of ARC on both train (23.28%) and test (4.84%) subsets. The selected model 

was the one with ARC alone as the 𝑆𝑆𝑐𝑐𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟 metric, not together with BA, as was the case for 

Gold (Figure 8.) 

Figure 9. Selected models for XAG/USD (Silver) after hyperparameter tuning 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day),          
Feature Selection – one of the feature selection methods: Kendall-tau filtering or Principal Component Analysis, 
Model – one of four models: MLR, KNN, RFC or XGB, Train – indication that statistics are calculated on the 
training subset (2000-2018), BA – Balanced Accuracy, F1 – F1-score, ARC – Annualized Return Compounded, 
DD – Drawdown, ASD – Annualized Standard Deviation. 

Source: Own calculations 

The example of Platinum (Figure 10.) clearly highlights the main drawback of Randomized 

Search, which is that the obtained hyperparameter combination may not be optimal. This was 

the case for both XPT/USD models, because of which Figure 10. Displays the baseline models 

for both scenarios. 

It is worth noting that the model which showed the highest ARC metric value on the 

training subset (15.63%) achieved a significantly worse result of nearly 30 percentage points 

lower on the test subset (-14.29%)! 

The model that achieved the best ARC score on the test subset was the RFC model 

trained on daily data with PCA as a dimensionality reduction technique and BA and F1 as the 

𝑆𝑆𝑐𝑐𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟 metrics, unlike Silver (which had ARC) and partially like Gold (which had BA and 

ARC). 

Metal
Fre-

quency
Feature
Selection

Model Scorer
Data
Subset

BA F1 ARC DD ASD

Silver 1D Kendall-tau KNN F1
Train 0.3602 0.3685 0.0199 0.3006 0.0050
Test 0.3454 0.3456 0.0245 0.4284 0.0011

Silver 1D PCA XGB ARC
Train 0.3494 0.3429 0.2328 0.1810 0.0053
Test 0.3759 0.3766 0.0484 0.2694 0.0041

Silver 20D PCA XGB BA
Train 0.4183 0.3362 0.0518 0.1150 0.0046
Test 0.2940 0.2455 -0.0421 0.5975 0.0010
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Figure 10. Selected models for XPT/USD (Platinum) after hyperparameter tuning 

 
Note: Metal – one of three metals, Frequency – time frequency of the data in trading days (D – trading day),          
Feature Selection – one of the feature selection methods: Kendall-tau filtering or Principal Component Analysis, 
Model – one of four models: MLR, KNN, RFC or XGB, Train – indication that statistics are calculated on the 
training subset (2000-2018), BA – Balanced Accuracy, F1 – F1-score, ARC – Annualized Return Compounded, 
DD – Drawdown, ASD – Annualized Standard Deviation. 

Source: Own calculations 

The hyperparameter tuning process did not yield significant improvements to the overall 

performance. That can be attributed to the limitations of the Randomized Search approach, 

which does not guarantee the globally optimal sets of hyperparameters. The relatively small 

computational complexity of Randomized Search could be overshadowed by its inherent 

pseudo-randomness (or even pure randomness, if 𝑟𝑟𝑒𝑒𝑛𝑛𝑑𝑑𝐶𝐶𝑒𝑒_𝐶𝐶𝑡𝑡𝑒𝑒𝑡𝑡𝐶𝐶 is not declared), which may 

result in high variance in performance evaluation, leading to difficulty in identifying the best 

performing hyperparameters. 

4.3 Equity curves 

The equity curves presented for each noble metal illustrate the investment strategy built on the 

signals derived from the best performing models. The strategy employs a set of basic rules, 

where the initial balance is set to 1,000 USD, and a long or short position is opened for every 

BUY or SELL signal, respectively, with the entire account at the opening price of the 

subsequent candle. The position is closed at the closing price of the same candle. To provide 

a baseline for comparison, a simple Buy & Hold strategy is also plotted. 

4.3.1 Gold 

The equity curves for Gold (Figure 11.) reveal that the investment strategy based on the baseline 

Random Forest model trained on the 15D frequency with Kendall-tau filtering, outperformed 

the Buy & Hold strategy during the testing period (01/2018 – 12/2022). However, for most of 

that period, the strategy performed worse than Buy & Hold, apart for two short periods in late 

2020 and the second half of 2022. It was the latter period that contributed to the fact that in the 

end strategy yielded bigger return than Buy & Hold. It is worth noting that the overall 

Drawdown during the entire period was only 8.57%. Although the second model, trained on 

Metal
Fre-

quency
Feature
Selection

Model Scorer
Data
Subset

BA F1 ARC DD ASD

Platinum 1D PCA RFC
BA & Train 0.3719 0.3621 0.1290 0.3270 0.0029
F1 Test 0.3691 0.3765 0.0944 0.2898 0.0042

Platinum 1D PCA XGB ARC
Train 0.3638 0.3603 0.1563 0.2300 0.0029
Test 0.3361 0.3442 -0.1429 0.6945 0.0041
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the 20D frequency data, exhibits outstanding BA and F1-score, it did not result in better 

performing investment strategies. Another noteworthy fact is that Random Forest Classifier 

was successful in outperforming the market in Gold, this may not hold true for other metals as 

well. 

Figure 11. Equity curve of ML-based investment strategy on Gold in comparison to Buy 
& Hold 

 
Source: Own calculations 

4.3.2 Silver 

The results for Silver, as depicted in Figure 12., differ from those of Gold. The equity curve 

illustrates the performance of the strategy based on the k-NN model, tuned against the F1-score 

metric, trained on daily data with Kendall-tau filtering, compared to the Buy & Hold approach 

during the period from 01/2018 to 12/2022. The graph shows a clear division in the strategy’s 

performance: until the first quarter of 2020, the strategy tended to outperform the market. 

However, around the time of the pandemic breakout, the strategy experienced a significant loss, 

resulting in a Drawdown of 26.94%. Ultimately, after the five-year period, both the ML-based 

strategy and Buy & Hold yielded comparable results. 
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In contrast to Gold, where the best model was the baseline RFC trained on 15D frequency data, 

in the case of Silver, the best model turned out to be k-NN trained on daily data and tuned 

against the F1-score metric. Up to this point, the feature selection method of Kendall-tau 

filtering was found to be effective for the best strategies in both Gold and Silver. However, it 

should be noted that this dependency will not hold true for Platinum, as for that metal the 

relationship between the feature selection method and the performance will differ. 

Figure 12. Equity curves of ML-based investment strategy on Silver in comparison to Buy & 
Hold 

 
Source: Own calculations 

4.3.3 Platinum 

Figure 13. Illustrates the investment strategy base on the baseline RFC model, trained on daily 

data with PCA as a dimensionality reduction technique. The strategy performed well overall 

during the period from 01/2018 to 12/2022. It experienced a significant loss in the first quarter 

of 2020, following the outbreak of the pandemic, resulting in Drawdown of 28.98%. However, 

the strategy quickly recovered from this loss, and for the remainder of the testing period, it 

outperformed the market to a great extent. 
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The best model for Platinum turned out to be the baseline RFC model (as in Gold), trained on 

daily data (as in Silver), using PCA as the dimensionality reduction technique (unlike in any 

other metal). That difference highlights the lack of a consistent relationship between specific 

components (data frequency, feature selection, model) and overall performance. 

Figure 13. Equity curves of ML-based investment strategy on Platinum in comparison to Buy 
& Hold 

 
Source: Own calculations 

4.4 Confusion matrices 

In the context of classification models evaluation, confusion matrices serve as a useful tool for 

analyzing the accuracy of model predictions because it can show if and which class is over- or 

underpredicted by the given model. 

The analysis of confusion matrices across all three precious metals (Figure 14.) indicates 

that in case of Gold and Platinum there tends to be an overprediction of class SELL. At the 

same time, those two models outperformed the market in the testing period, while in the case 

of Silver, where prediction of classes is more equal strategy yielded comparable (but slightly 

worse) results than the market. 
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Figure 14. Confusion Matrices for best performing models in each metal 

 
Source: Own calculations 
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5 Conclusions 

In this paper, the performance of various Machine Learning algorithms: Multinomial Logistic 

Regression, k-Nearest Neighbors, Random Forest and XGBoost in predicting the direction of 

the price movements of three precious metals: Gold, Silver and Platinum pairs correlated with 

US Dollar listed on the Foreign Exchange. Models were evaluated with a Time Series cross-

validation process and then chosen based on cross-validated metrics: Balanced Accuracy and 

F1-score. It was found that the best performing models varied depending on the metal being 

analyzed and the specific evaluation metric being used. The behavior of various combinations 

of models, data frequency (1, 5, 10, 15, 20 trading days), and feature selection methods 

(Kendall-tau filtering, PCA) varies depending on the specific context. However, a common 

observation across all three metals is that investment strategies based on selected models were 

able to generate positive returns. Additionally, in two out of three cases (Gold and Platinum), 

these strategies even outperformed the market. 

The performance of various investment strategies based on the signals generated by 

these models was evaluated as well. Simple Buy & Hold strategy was compared as a baseline 

with more complex strategies based on the Machine Learning model. It was found that past 

performance in the form of Balanced Accuracy, F1 and ARC scores achieved on the training 

data subset cannot indicate the future performance. There is no rule that could be generalized 

over all three noble metals. For Gold the best strategy was built on model with the highest BA 

& ARC score, for Silver – with the highest ARC score and for Platinum – with the highest BA 

& F1-score. Study suggests that a “one-size-fits-all” approach to machine learning models is 

not suitable for noble metal price movement prediction. Each metal requires a tailored approach 

for optimal performance and there is no singular model that would be the best choice in each 

case. 

Random Forest, k-NN and XGBoost have been shown to be highly effective in 

predicting movements using Technical Analysis indicators only, without relying on creation of 

mathematical rules based on those indicators. Unlike traditional rule-based models, black-box 

models can capture the subtle nuances of market behavior, expressed by TA indicators. 

However, usage of black-box models also comes with some limitations, including their 

complexity and lack of interpretability, especially combined with PCA.  

While the study aimed to investigate the performance of Machine Learning algorithms 

on noble metals price movement using Technical Analysis indicators, it is important to note the 

limitations of this research. One limitation was the introduction of a threshold selection method, 
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aiming for equal distribution across all three classes. This approach may not capture the nuances 

of the market and could limit the effectiveness of the models. Future studies in this field could 

explore the usage of more dynamic thresholds that adjust to changing market conditions. 

Another limitation was the lack of transaction costs. In real-world scenarios, transaction 

costs can have a significant impact on the profitability of a strategy, as argue Bajgrowicz and 

Scaillet (2012). Incorporating transaction costs could provide more realistic evaluation of the 

performance of the investment strategies, especially for relatively rare traded noble metal such 

as Platinum. 

The study focused solely on Technical Analysis indicators as predictors, without 

considering other variables that could potentially impact the price movements of precious 

metals, such as macroeconomic indicators or news events. Macroeconomic news events may 

be a valuable source of information for predicting the price movements, but only on a relatively 

high frequency such as daily. Considering news events on weekly or monthly frequency is 

pointless since the news does not have the effect on the market over such a long period of time. 

However, investigating the impact of additional variables could potentially improve the results. 

Additionally, only a basic methods of feature selection were considered in this study. 

Fact that the problem is a multi-class classification limits the possible methods of feature 

selection. More nuanced methods, such as ReliefF, the multi-class extension of a Relief, 

introduced first by Kira and Rendell (1992), possibly outperform traditional methods, thus 

reducing data dimension even more. 

Lastly, the hyperparameter tuning process only utilized the Random Search approach. 

While this method was primarily used for the purpose of reducing the computational complexity 

of model training, it may not find the optimal set of hyperparameters. A more nuanced 

approach, such as Bayesian optimization may be more beneficial, as it was proved to be more 

effective than standard methods such as Random or Grid Search (Snoek et al., 2012). Despite 

these limitations, the study provides a valuable insight into the performance of Machine 

Learning models in predicting price movements of noble metals, questioning once again the 

Efficient Market Hypothesis. 
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