
Warsaw 2023

Working Papers
No. 5/2023 (412)

THE PERFORMANCE OF TIME SERIES
FORECASTING BASED ON CLASSICAL
AND MACHINE LEARNING METHODS

FOR S&P 500 INDEX

MAUDUD HASSAN UZZAL

ROBERT ŚLEPACZUK

WORKING PAPERS 5/2023 (412)

Working Papers contain preliminary research results. Please consider this when citing the paper. Please contact the
authors to give comments or to obtain revised version. Any mistakes and the views expressed herein are solely those
of the authors

The performance of time series forecasting based on classical and machine
learning methods for S&P 500 index

Maudud Hassan Uzzal a, Robert Ślepaczuk b

a University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research
Group,
b University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research
Group, Department of Quantitative Finance

Corresponding author: rslepaczuk@wne.uw.edu.pl

AAbbssttrraacctt:: Based on one step ahead forecasts, this study compares the forecasting abilities of the
traditional technique (ARIMA) with recurrent neural network (LSTM). In order to check the
possible use of these forecasts in different asset management methods, these forecasts are
afterwards included into trading signals of investment strategies. As a benchmark method, the
Random Walk model producing naive forecasts has been utilized. This research examines daily
data from the S&P 500 index for 20 years, from 2000 to 2020, and it includes information on
some significant market turbulence. The methods were tested in terms of robustness to changes
in parameters and hyperparameters and evaluated based on various error metrics (MAE, MAPE,
RMSE MSE). The results show that ARIMA outperforms LSTM in terms of one step ahead
forecasts. Finally, LSTM model with a variety of hyperparameters - including a number of epochs,
a loss function, an optimizer, activation functions, a number of units, a batch size, and a learning
rate - was tested in order to check its robustness.

KKeeyywwoorrddss:: deep learning, recurrent neural networks, ARIMA, algorithmic investment
strategies, trading systems, LSTM, walk-forward process, optimization

JJEELL ccooddeess:: C4, C14, C45, C53, C58, G13

NNoottee:: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 1

1

Introduction

Predicting the behavior of the stock market includes using time series forecasting as a key

component. The unprecedented economic trends and information asymmetry are the main

reasons why it is a difficult task. However, the recent growth in algorithmic trading technologies

made it quicker and easier to analyze large datasets and provide a forecast with high accuracy.

Taking into consideration that investors are highly interested in risk management, they are more

likely to invest in a strategy that yields higher risk adjusted returns, and such strategy can be

obtained with methods characterized by lower forecasting errors. Hence the accuracy of the

forecast plays an important role for the investors.

The main aim of this paper is to investigate which forecasting methods provide the best

predictions with regards to lower forecasting errors. A classical model such as ARIMA is

compared with a machine learning model such as LSTM which is a type of recurrent neural

network. The first research hypothesis of this paper is that LSTM outperforms ARIMA in terms

of one step ahead forecasts (RH1). The second hypothesis tested in this paper is that LSTM is

robust to changes in the hyperparameters (RH2), where the hyperparameters were set

heuristically at the beginning. Other hypotheses with regards to tuning hyperparameters of the

LSTM model are as follows. The third one states that Increasing the number of epochs leads to

better performance of the model, however using more than an optimal number of epochs leads

to an over-fitted model (RH3). The fourth hypothesis is that using the wrong optimizer and

activation function can significantly worsen the accuracy of the LSTM model (RH4).

Additionally, we have added one research of more practical finance nature question (RQ1): Can

we use one step ahead forecasts from ARIMA or LSTM model in buy/sell signals of investment

strategies?

The initial assumption, based on many previous research papers, is that neural networks

might, in fact, perform at least as good as the classical method. In order to test this, the research

focuses on the performance of each strategy using various error metrics. The study assumes that

there is asymmetric information in the stock market which makes it possible to analyze the

volatility in the stock prices, as well as predicting the prices within available historical data.

This research uses S&P 500 index close prices from 03.01.2000 till 29.06.2020.

The results for Random Walk, ARIMA, and LSTM were obtained using Python in version

3.8.5. Deep learning libraries used for designing, training, and testing the neural network are

Keras (version 2.4.3) and TensorFlow (version 1.8.0). All the calculations, as well as graphs

and tables were done using Python with Jupyter Notebook (version 6.0.3) development

environment. All the relevant libraries and packages were installed using Anaconda Prompt

(conda version 4.8.5) on a 64-bit Windows 10 operating system.

This study is divided into five chapters. The first chapter consists of a literature review

discussing the previous studies done in the field of automated transactional systems, including

the models implemented in this research. The second chapter briefly describes the data used in

this study. The third chapter focuses on methodology used for forecasting and error metrics to

evaluate the performance of the models. It touches upon time series analysis and the methods

of generating a forecast for the implemented models. The fourth chapter presents the empirical

results for every method used in this study and compares the performance of each of the

forecasts. The fifth chapter consists of sensitivity analysis. It tests the robustness of results by

changing parameters and hyperparameters (e.g., changing the size of the training-testing split)

and RNN hyperparameters used in the methodology section (e.g., neurons, batch size, epochs,

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 2

2

activation functions, optimizers, etc.). Lastly, the research concludes, verifies hypotheses, and

discusses some recommendations for future research.

1. Literature Review

Statistical and machine learning methods are widely discussed in empirical research. The

quality of forecast is of great importance to investors around the world. A correct prediction of

the stock prices could lead to a greater profit for the investors. In recent times, there has been

great improvement in the technology sectors such as increased computational power, which

results in a faster calculation in algorithmic trading. The investors are always keen to invest in

a strategy that would lead to greater risk-adjusted profit and algorithmic trading can help in

such decision makings. Kirilenko and Lo (2013) summarize the fundamental improvement in

the field of Finance and the technological improvement that has led to the growth of this field.

It occurred mainly due to technological improvements, lower transaction costs, a large volume

of trades, and its faster executions, which finally has led to wide-ranging domination of

algorithmic trading in 2009 on the NASDAQ, and then it led to the global discussion on the

essential changes in regulation. The change was not directed towards enhancements in trading.

The changes have essentially been caused by an increment in speed of trading and the volume

created by high-frequency trading in all asset markets including equities, currencies, and others

(Brogaard et al., 2014).

Several studies show that the economic time series behaves like Random Walk models or

at least seem to have Random Walk components. Accepting that certain economic variables

behave in a similar way as a Random Walk model is needed as regressing a certain variable

against another variable might lead to spurious results. It is mainly due to the fact that the

relationship between economic variables is usually observed when, such a relationship does not

exist. Similarly, the effects of a temporary shock will not disappear after several years but

instead will be permanent (Pindyck and Rubinfeld, 1998). Reilly (1980) and Reynolds et al.

(1995) developed methods for automatically identifying ARIMA models for time series

(hereafter TS). The method developed by Reynolds et al. (1995) takes into consideration a

neural network approach and it is restricted to non-seasonal TS, whereas the method developed

by Reilly (1980) works properly for non-seasonal TS but it is a bit less effective when seasonal

TS data is concerned. Analytical neural network methods have been widely used in prediction

(Chiu et al., 1995; Gao et al., 1997; Cook and Chiu, 1997; Saad et al., 1998).

The recent papers concerning the evaluation of the performance of neural network in

pricing liabilities focus mainly on testing various types and architectures of the neural networks,

such as the recurrent neural networks (RNNs) and the convolutional neural networks (CNNs).

Yang et. al (2017) suggested the use of the gated neural networks, which not only provide

reliable prices of the options, but also contain an assurance of economically reasonable and

rational results. The model outperforms other network-based models and some of the

econometric methods described in the paper. Siami-Namini et al., (2018) has conducted a study

on whether and how deep learning-based algorithms for forecasting time series data, such as

LSTM, are superior to the traditional algorithms. The ARIMA model has shown great precision

and accuracy in terms of predicting the next lags of time series. The empirical studies conducted

in this article show that LSTM beats the traditional-based algorithms such as the ARIMA model

with an average reduction in error rates obtained by LSTM between 84-87 percent, indicating

the superiority of LSTM to ARIMA. Moreover, it was observed that the number of training

times ("epoch”) has no effect on the performance of the forecast and it shows truly random

behavior.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 3

3

Zenkova and Ślepaczuk (2018) conducted studies on the profitability of an algorithmic

trading strategy based on training SVM model for identification of cryptocurrencies with low

or high predicted returns. Each cryptocurrency is represented using a set of six technical

features: Momentum, Volume change, Relative Strength Index, Force Index, Williams Percent

Range and Parabolic stop and reversal system. The performance of the SVM portfolio is

compared with the performance of the four benchmark strategies: equally weighted portfolio

(EqW), market-cap weighted portfolio (McW) and two buy and hold strategy (one for bitcoin

and the second for S&P500 index. It is noted that EqW portfolio outperforms the SVM strategy

and all the benchmark strategies. The SVM strategy has not demonstrated any abnormal returns

in comparison to benchmark strategies and the algorithm itself does not provide robust

outcomes. Bukhari et al. (2020) conducted studies on a novel hybrid model with the strength of

fractional order derivative along with their dynamical features of deep learning, long-short term

memory (LSTM) networks, in order to predict the abrupt stochastic variation of the financial

market. A novel ARFIMA-LSTM hybrid recurrent network together with ARFIMA model-

based filters exhibits the linear tendencies better than ARIMA model in the data and passes the

residual to the LSTM model which captures nonlinearity in the residual values from exogenous

dependent variables. The model overcomes the problem of overfitting and also minimizes the

volatility problem. The forecasting performance indicates the effectiveness of the estimated

AFRIMA-LSTM hybrid model to improve around 80% of accuracy on RMSE in comparison

to traditional forecasting methods.

Qian and Chen (2019) has researched stationary analysis of the stock's time-series data

and used the LSTM neural network algorithm in order to predict stock data under various

stationary conditions, and conducted statistical analysis on multiple experimental data.

Moreover, an ARIMA algorithm was introduced in order to compare with the LSTM. A large

number of experimental results show that neural network prediction algorithm - LSTM has a

higher prediction accuracy and is not sensitive to the stability response. (Sakshi and A, 2020)

have conducted studies on hybrid models using LSTM and ARIMA to capture S&P 500 index

using pre-existing Application Programming Interface (API). The Prophet forecasting library

created by Facebook which requires less prepossessing has also been used for the purpose of

comparison. Prophet has a comparatively high Root Mean Square Error (RMSE) of 27.59 and

the Mean Square Error (MSE) of 761.33 whereas the proposed ARIMA- LSTM hybrid has an

MSE of 3.03 and RMSE of 1.74 along with a 99% fit of the model, which proves that hybrid

performs much better than Prophet forecasting.

Chlebus et al. (2020) tested various machine learning techniques for time series

forecasting with the following methods: SVR, KNN, XGBoost, LightGBM, LSTM, ARIMA,

ARIMAX with features coming from classes like technical analysis, fundamental analysis,

Google Trends entries, markets regarding Nvidia. SVR had the best performance based on

stationary attributes. It was also noted that the models based on the stationary variables have a

better performance than the models based on stationary and non-stationary variables. Kijewski

and Ślepaczuk (2020) compares investment algorithm performance on S&P 500 index with 20

years of data from 2000 to 2020. Several algorithmic strategies including classical methods

such as moving average crossover, volatility breakouts, and macroeconomic factors were tested.

Statistical and machine learning approaches like ARIMA and LSTM models were also tested

respectively. The results show that classical methods using the rolling training-testing window

were significantly more robust to changes in hyperparameters than LSTM. Adil and Hamiche

(2020) used LSTM to forecast future values for GOOGL and NKE assets using various epochs.

It is noted that the number of epochs and the length of the dataset both have a significant impact

on testing results. The dataset was tested with various epochs (12 epochs, 25 epochs, 50 epochs

and 100 epochs) and it was noticed that training less data with more epochs can significantly

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 4

4

improve the testing results and allows to have better forecasting and prediction values.

Table 1. Significant studies related to various prediction techniques
Authors Dataset Technique Evaluation Metrics

Liu et al,

2016

S&P 500 Logistic regression,

GDA, Naive Bayes,

Linear SVM, RBF

SVM, Poly SVM

Accuracy:

Logistic regression:60.62%, GDA: 60.62%, Naive Bayes:

60.38%, Linear SVM:59.79%, RBF SVM: 62.51%, Poly

SVM: 59.43%

Selvin et

al., 2017

NSE RNN, LSTM, CNN MAE: 5.13% (RNN), 5.31% (LSTM), 4.98% (CNN)

Maini et

al., 2017

Dow Jones

Industrial

Average

SVM, Random

Forest

Accuracy:

84.6% (SVMlinear), 85.18% (SVMRBF)

86.2% (Random forest)

Persio et

al., 2017

Google

Assets

RNN, LSTM, GRU Accuracy- 72%

Creighton

et al., 2017

S&P 500 and

S&P 400

ARIMA- BPNN

hybrid

MAE: 16.68, MSE: 434.121

RMSE: 20.836, Accuracy: 45.1%

Deepak et

al., 2017

BSE Sensex SVM- RBF kernel Accuracy: 80 to 85%

Zhang et

al., 2018

TA- Lib Random Forest Accuracy: 67.5%

Std deviation:3.7%

Baek & Kim,

2018

S&P500 and

KOSPI200

LSTM with

SingleNet

MSE: 54.1% (S&P500) & 48% (KOSPI200)

MAPE: 35.5% (S&P500) & 23.9% (KOSPI200)

MAE: 32.7% (S&P500) & 32.7% (KOSPI200)

Wen et al.,

2019

S&P 500 CNN using Motif

extraction

Accuracy: 56.14%, Precision: 55.44%

Recall: 74.75%

Sadia et al.,

2019

Kaggle

Dataset

SVM, Random

Forest

Accuracy: 78.7% (SVM), 80.8%

(Random forest)

Mehtab &

Sen, 2019

NIFTY 50 LSTM MAPE: 10.75

Sakshi & A,

2020

S&P 500 Prophet forecasting

LSTM-ARIMA

hybrid

Prophet:

RMSE: 27.59, MSE: 761.33

LSTM-ARIMA hybrid:

RMSE: 3.03, MSE: 1.74

Note: GDA: Gaussian Discriminant Analysis, SVM: support vector machine, RBF: Radial Basis Function, RNN:

Recurrent neural network, LSTM: Long short-term memory, CNN: Convolutional neural network, GRU: Gated

recurrent units, BPNN: Back Propagation Neural Network. ARIMA: Autoregressive integrated moving average.

2. Data Description

This paper uses S&P 500 index close prices from 03.01.2000 till 29.06.2020. The data is

downloaded from Yahoo Finance. The S&P 500 is a free float-adjusted weighted stock market

capitalization index in the United States. Taking into consideration the United States is one of

the financial centers of the world, the S&P 500 is considered one of the most important indexes

in the world.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 5

5

Figure 1. S&P 500 index

Note: S&P 500 index values in US dollars for the period 03.01.2000-29.06.2020.

3. Methodology

3.1. Random Walk model

One of the simplest but yet considered as a very important model in the time series forecasting

is the Random Walk model. It assumes that for each period the variable has a state away from

the previous value, and each step is independently and identically distributed (“i.i.d.”). The first

difference of the variable is a series for which the mean model can be applied. So, if the first

difference of a time series is an i.i.d. sequence, then it can be said that the Random Walk model

is possibly a good candidate.

A Random Walk model can be with “drift” or there might be “no drift” in accordance

with the distribution of step sizes having a non-zero mean. Random Walk model without drift

can be represented as follows:

 𝑌̂𝑛+𝑘 = 𝑌𝑛 (1)

where:

n=number of periods,

k=number of steps ahead forecast,

𝑌̂=predicted value of y,

Y=Value at a specific period

The prediction of a Random Walk model without drift says that all future values are equal

to the last observed value. However, it does not really mean that all of them are expected to be

the same, but they can actually be equally likely to be higher or lower. If the Random Walk

model is extrapolated for forecasting the distant future, they are very likely to go off on a

horizontal line, which is very similar to the mean model. So, it can be said that they behave like

the mean model during long term forecasting.

Random Walk model with drift can be represented as follows:

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 6

6

 𝑌̂𝑛+𝑘 = 𝑌𝑛 + 𝑘𝑑̂ (2)

where:

𝑑̂=estimated drift,

k=number of steps ahead forecast

 The estimated drift 𝑑̂ is the average increment from one period to the next. Hence the

long-term forecast for a Random Walk with drift model appears to be a trend line, having a

slope 𝑑̂. The drift 𝑑̂ in Random Walk model can be represented as follows:

𝑑̂ =

𝑌𝑛 − 𝑌1
𝑛 − 1

 (3)

It is the slope line in between the first and last data point which is different from the slope

line fitted in simple regression. The slope line is then divided by n-1 period to get the estimated

drift.

3.2. ARIMA model

Autoregressive Integrated Moving Average (ARIMA) became well known after its wide

description in the first edition of Box and Jenkins (1970), where they prepared procedures for

specification, estimation diagnostics and forecasting for the univariate time series.

Figure 2. Schematic Representation of the Box-Jenkin Approach

Source: Makridakis et al., 1983

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 7

7

ARIMA (p, d, q) model is divided into three parts:

● autoregressive - adds dependent variables as p-lagged observations,

● integrated - describes d - number of differentiations required to make the time series

stationary,

● moving average - adds independent variables as q-lagged error terms.

The model can be described with the following formula:

 𝑦𝑡 = 𝑎1𝑦𝑡−1 +⋯+ 𝑎𝑝𝑦𝑡−𝑝 + 𝑒𝑡 + 𝑏1𝑒𝑡−1 +⋯+ 𝑏𝑞𝑒𝑡−𝑞 (4)

where:

p - is the number of autoregressive lags,

q - is the number of the error lags,

yt – is the value of time series at time t,

et – is the error term at time t.

There are many methods to calculate the goodness of fit such as Chi-Squared,

Kolmogorov-Smirnoff and Anderson-Darling, however, the information criteria are considered

to be one of the most important ones and used in this paper.

AIC: Akaike information criterion (Akaike, 1974):

𝐴𝐼𝐶 = (

2𝑛

𝑛 − 𝑘 − 1
) 𝑘 − 2𝑙𝑛⁡[𝐿𝑚𝑎𝑥] (5)

SIC: Schwarz information criterion, also known as Bayesian information criterion BIC

(Schwarz, 1997):

 𝐵𝐼𝐶 = 𝑙𝑛⁡[𝑛]𝑘 − 2𝑙𝑛⁡[𝐿𝑚𝑎𝑥⁡] (6)

HQIC: Hannan-Quinn information criterion (Hannan and Quinn, 1979):

 𝐻𝑄𝐼𝐶 = 2𝑙𝑛⁡[𝑙𝑛⁡[𝑛]𝑘 − 2𝑙𝑛⁡[𝐿𝑚𝑎𝑥] (7)

where:

n = number of observations,

k = number of parameters for estimation,

Lmax = the maximized value for the log-Likelihood for the estimated model

The main way to find the optimal ARIMA model is to find the lowest value of the selected

information criteria. The -2𝑙𝑛⁡[𝐿𝑚𝑎𝑥]term found in each formula is an estimation of the

deviation of the model fit. The coefficients k found in the first part in each formula is the degree

to which the number of the model parameters that are being penalized.

Once the lowest information criteria are selected, the second step is to estimate the model

with the selected parameters using OLS estimation or the maximum likelihood estimation. In

this paper, maximum likelihood estimation is selected due to time efficiency. The last step for

forecasting in this study is to calculate one step ahead forecast. The detailed procedure is as

follows:

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 8

8

1. Set a training sample for first 4150 days1 in the dataset

2. Identify the optimal values of p, d, q with p: 0-10, d: 0-3, q: 0-102

3. Estimate the model for selected p, d, q parameters using the maximum likelihood method3

4. Forecast one-step ahead

5. Repeat 1-4 points moving the training sample by one day ahead, until the end of the dataset.

6. Calculate the error metrics for the testing dataset (last 1005 days)

3.3. LSTM

3.3.1. Recurrent Neural Network

Recurrent Neural Network unlike the classical Neural network is based on loops as it does not

start every time from scratch. It is a network with loops which allows the information to persist.

Figure 3. Recurrent Neural Networks are based on loops

Note: Example of single layer in RNN. In the above diagram, xt are inputs and ht are output. A is the neural layer.

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020.

The above picture is a representation of a chunk of neural network. A loop allows this

information to pass from one step to the network towards the next step. A recurrent network

can be assumed to be multiple copies of the same network and the previous step of the loop

helps to predict the next step. Here is what an unrolled recurrent network looks like when the

loops are unrolled.

Figure 4. An unrolled recurrent neural network

Note: An unrolled recurrent neural network, where xt are inputs and ht are output. A is the neural layer. Source:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020.

1 The length of the in-sample period was determined by the need to cover at least two significant downward

(2000-2003, 2007-2009) and upward (2003-2007, 2009-2015) trends of the prices, characterized by different

volatility and duration.
2 The rationale for selecting the range for p and d from 0 to 10 was that we wanted to verify diverse possible

values of orders for MA(p) and AR(q) processes. We pursued the same aim when examining the possible values

of the order of d in the range d 0 to 3.
3 WE did not decide to eliminate the intermediate lags due to the necessity to run hundreds of regressions in an

automatic way.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 9

9

The chain-like Figure 4 reveals that recurrent neural networks are closely related to the

sequences and lists. In the last few years, there has been great success applying RNNs towards

a variety of problems such as speech recognition, translation, image captioning, stock price

forecasting and many others.

3.3.2. Long-Term Dependencies

One of the main problems of RNN is the long-term dependencies. RNN in general connects

previous information to predict the next. However, sometimes the most recent information

provides the best prediction for the next. However, if there is a considerably large amount of

data and the prediction performs between only with the most recent information, the gap grows

and RNN finds it harder to connect the information.

Figure 5: Problem with long term dependencies

Note: In the above diagram, xt are inputs and ht are output. A is the neural layer.

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020.

Figure 5 presents a simple representation of the problem with long term dependencies. If

𝑥0 and 𝑥1 are the recurrent inputs used for prediction of ℎ𝑡+1, it might not get the result as per

expectation due to the fact that all previous information might not be relevant for performing

the present task. Otherwise only the most recent information might be useful. The problem was

further explored by (Bengio et al., 1994). However, thanks to LSTM which solves this problem.

3.3.3. LSTM

There are many types of Recurrent Neural network (RNN). Long Short-Term Memory (LSTM)

is one of the very popular ones. It is capable of taking data from the past and using this data for

future predictions (Patterson and Gibson, 2017). LSTM solves the issues related to long term

dependencies. It was introduced by (Hochreiter and Schmidhuber, 1997) and later refined and

popularized by many other researchers. Currently, it is widely used and works very well with a

large variety of problems.

Figure 6. Architecture of the recurrent neural network

Note: Example of a simple recurrent neural network architecture with a single layer and a tanh activation function,

where xt are inputs and ht are output. A is the neural layer.

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 10

10

RNN is derived by using hidden states from vanilla neural networks, which are a matrix

of parameters that are passed between the sequential inputs. The abovementioned is presented

in Figure 6 with a horizontal arrow. Taking into consideration that the matrix is passed between

the inputs, it allows transferring information from inputs about the importance of the given

input, which results in LSTM returning different results for the same input. It takes into

consideration the weights of each input.

Figure 7. Architecture of long short-term memory (LSTM)

Note: Example of a multiple layered architecture of LSTM model with input gate, forget gate and output gate,

where xt are inputs and ht are outputs. A is the neural layer.

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/, Retrieved on 26.11.2020.

The key to the LSTM model is the cell state shown with the horizontal line running at the

top of Figure 7. Even though the LSTM model looks complex at the first glance, the main

difference between LSTM and the RNN is that it has three outputs instead of two. The first

output is the memory matrix, which is never transformed with non-linear functions, which

makes it easier for optimization and solves the problem of gradient vanishing. The second and

the third output are the same one and are passed as a classical output from the layer and one is

passed towards the next input cells. A single cell in LSTM can be divided into three parts:

1. Forget gate

2. Input gate

3. Output gate

A forget gate is a sigmoid function, which is applied on the concatenation of the input 𝑥𝑡
and the previous output ℎ𝑡−1. It returns the matrix of values from range 0 to 1 and then the

matrix will be multiplied with the memory matrix. Parameters for which the values are closer

to 1 will remain in the memory matrix. The second part Input gate adds new weight with the

memory matrix and updates it. Firstly, the sigmoid function decides the impact of each current

input data and then the next tanh function applies the non-linear transformation of the modified

input data. The weight matrix prepared in such a manner is then added to the memory cell.

Lastly, there is an output gate, which outputs the results obtained with the adjusted memory

matrix. The main difference between the normal neural network and the LSTM model is that

LSTM helps to be able to do weight adjustments made in the memory matrix in accordance

with the importance of past information.

3.3.4. Hyperparameters

Deep learning can be a complicated task taking into consideration there are lots of

hyperparameters. Taking into consideration the size of the deep learning model such as LSTM,

hyperparameter tuning usually takes a considerably long time. There are two ways to do

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 11

11

hyperparameter tuning. The first way is to select one training sample and then use cross-

validation in order to solve the best hyperparameter on a training sample and use this single

model for the entire testing period. The second is to use heuristic methods and the literature in

order to find the optimal hyperparameter. It requires refitting the model several times. The first

method is not selected since, in order to get the reliable results using the first method of

optimization, the training sample needs to be significantly higher than the testing sample; for

instance, to test this method on the last 20 years of data, the model should be tested on the last

80 years of data, which is considerably time-consuming and the stock market might have not

had the similar relation as it used to be for such a long period of time. Hence the best method

to obtain more accuracy it is better to refit the model by tuning several hyperparameters, which

is explored in the sensitivity analysis chapter.

The following hyperparameters were selected using heuristic methods:

● number of units in hidden layers (Neurons): 30

● number of samples in one iteration (Batch size): 64

● activation function used for hidden layer: tanh

● loss function: Mean Squared Error

● optimizer: Adam

● epochs: 100

● learning rate: 0.001

● default dropout rate for LSTM layer: 0

3.4. Performance measures

The predictive ability of each model was evaluated using four error metrics:

1. Mean absolute error (MAE),

2. Mean absolute percentage error (MAPE),

3. Mean squared error (MSE) and

4. Root-mean-square error (RMSE).

The formulas are as follows:

Mean absolute error (MAE): The n-period average of the absolute difference between the

actual value and predicted value.

𝑀𝐴𝐸 =

1

𝑛
∑  

𝑛

𝑡=1

|𝑦𝑡 − 𝑦̂𝑡| (8)

where:

𝑦̂𝑡 - predicted value of y

𝑦𝑡 - actual value

Mean absolute percentage error (MAPE): Mean absolute error in percentage terms

𝑀𝐴𝑃𝐸 =

1

𝑛
∑  

𝑛

𝑡=1

|
𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

| × 100% (9)

Mean squared error (MSE): The n-period average squared difference between the actual value

and the predicted value.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 12

12

𝑀𝑆𝐸 =

1

𝑛
∑  

𝑛

𝑡=1

(𝑦𝑡 − 𝑦̂𝑡)
2 (10)

Root-mean-square error (RMSE): Square root of MSE.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑡=1

(𝑦𝑡 − 𝑦̂𝑡)2 (11)

4. Empirical Results

4.1. Random Walk Model

Random Walk model generating naïve forecasts has been used as a benchmark strategy in order

to compare other strategies. The residual refers to the difference between the observed value

and the actual value of the model. The error refers the difference between the forecasted value

and the actual value of S&P500 time series data, which has been used for the purpose of

comparison with other models. Looking at Figure 8 and Table 2, we can observe very poor

performance.

Figure 8. Random Walk Model Simulation

Note: Simulation of Random Walk Model where ts refers to time series of S&P500 index.

Table 2. Error metrics for Random Walk model

Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

Note: Random Walk model results for S&P 500 index.

4.2. ARIMA

This strategy has been optimized using the lowest AIC, BIC and HQIC criteria. Table 2 shows

that the lowest AIC observed is 34364.292, BIC is 34379.615 and HQIC is 34363.252. The best

p, d, q values for ARIMA is ARIMA (1,1,1) which has been used during this study.

Table 3. Statistical measures of fit - Information Criteria
ARIMA (1,1,1)

AIC BIC HQIC

34354.292 34379.615 34363.252

Note: The lowest measures of information criteria for ARIMA (1,1,1) model.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 13

13

The best p, d, q values for ARIMA trained on S&P 500 dataset from 03.01.2000-

30.06.2016 have been implemented for testing dataset from 01.07.2016 till 29.06.2020 (total

1005 days). Figure 8 shows that ARIMA (1,1,1) forecasting performed very well in comparison

to the Random Walk model for one step ahead forecasting. Training and testing size have been

changed in the sensitivity analysis section to check how it performed during the 2008 financial

crisis as well as during COVID time in 2020. Main forecast error metrics are summarized in

Table 4, where we see much lower values for ARIMA model when compared with Random

Walk model.

Figure 9. The forecasts of ARIMA (1,1,1) model for S&P 500 index.

Note: Training period: the first 4150 days and testing period: the last 1005 days of S&P 500 index.

Table 4. Error metrics for ARIMA (1,1,1) model.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

ARIMA 16.96 0.13 741.72 27.23

Note: Training was performed on the first 4150 days and testing on the last 1005 days of S&P 500 Index. Bolded

numbers indicate the lowest value of error metric.

4.3. LSTM

Figure 10 shows the MSE loss function for the LSTM model with regards to the number of

epochs. As the number of the epochs increases, it is noted that the losses for both the training

and testing set decreases and when it approaches near 100 epochs, the loss fluctuations observed

is closer to 0. More than 100 epochs might lead to overfitting of the model, which is testing

during the sensitivity analysis section.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 14

14

Figure 10. MSE for LSTM model with various number of epochs.

Note: LSTM strategy with the following hyperparameters: Training period: the first 4150 days and testing: the last

1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 30, Batch size: 64,

activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: Adam, epochs: 100,

dropout rate: 0, learning rate: 0.001.

Figure 11 presents forecasted values for S&P 500 index with LSTM models. It can be

noted that LSTM provided considerably good predictions with very low forecast errors, which

are additionally presented in Table 5.

Figure 11. The forecasts of LSTM model for S&P 500 index.

Note: The following hyperparameters were used: Training period: the first 4150 days and testing: the last 1005

days of S&P 500 index. Hyperparameters used: Training: First 4150 datasets and testing last 1005 datasets of S&P

500 Index. Hyperparameters used: Number of units in hidden layers: 30, Batch size: 64, activation function used

for hidden layer: tanh, loss function: Mean Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning

rate: 0.001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 15

15

Table 5. Error metrics for LSTM model.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

Note: Error metrics for LSTM model. The following hyperparameters were used: Training period: the first 4150

days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers:

30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer:

Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. Bolded numbers indicate the lowest value of error metric.

4.4. Comparison

Overall, both tested models were quite good at one step ahead forecasting. As for comparison,

ARIMA (1,1,1) overall performed better than the LSTM model what is summarized in Table 6.

Table 6. The comparison of error metrics for ARIMA (1,1,1) and LSTM models.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

ARIMA 16.96 0.13 741.72 27.23

LSTM 21.77 0.81 1399.43 37.40

Note: ARIMA (1,1,1) uses the same training and testing datasets: Training: First 4150 days and testing last 1005

days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 30, Batch size: 64, activation

function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: Adam, epochs: 100, dropout

rate: 0, learning rate: 0.001. Bolded numbers indicate the lowest value of error metric.

5. Sensitivity Analysis

5.1. ARIMA Sensitivity

Figure 12 shows ARIMA (1,1,1) with 1760 training days and 3395 testing days. The testing

dataset starts from the start of 2007 to check how the model performed during the financial

crisis and afterwards. Figure 12 and Table 7 show that it performed considerably well and the

financial crisis does not impact much one-step forecasting. Taking into consideration, that

testing data includes not only the financial crisis, but also the period after the financial crisis,

where the market was in general upward trending, such good performance makes sense.

Figure 12. ARIMA (1,1,1) with 1760 training days,

Note: The training dataset was set to the first 1760 observations for the S&P 500 index to see how it performed

during and after the 2007-2008 financial crisis and afterwards.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 16

16

Figure 13 shows ARIMA (1,1,1) with 3000 training days. It is chosen randomly to check

how well it is able to predict during non-crisis time. Figure 13 and Table 7 show that it

performed considerably well for one-step forecasting.

Figure 13. ARIMA (1,1,1) with 3000 training days.

Note: The training dataset consists of the first 3000 observations for S&P 500 index.

Figure 14 shows ARIMA (1,1,1) with 5093 training datasets. The testing dataset starts

from the start of 2020 to check how the model performed during the COVID-19. Figure 14 and

Table 7 show that it performed the worst in comparison to other training datasets, which is

reasonable. However, the impact was not very significant during one step ahead forecasting.

Figure 14. ARIMA (1,1,1) with 5093 training days.

Note: The training dataset was set to the first 5093 observations for the S&P 500 index to see how it performed

during COVID-19.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 17

17

Table 7. Error metrics for ARIMA (1,1,1) model with various length of training period.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

ARIMA 16.96 0.13 741.72 27.23

ARIMA 1760 training days 12.87 0.45 391.98 19.80

ARIMA 3000 training days 13.34 0.30 446.48 21.13

ARIMA 5093 training days 39.98 0.07 2700.33 51.96

Note: Dataset used: S&P 500 Index from the beginning of 2000 till mid-2020. 1760 training days period is used

to check the behaviour of the ARIMA model during and after the 2007–2008 financial crisis. 3000 training days

period is chosen randomly and 5093 training days period is used to check the behaviour of the ARIMA model

during the 2020 COVID-19. Initial training days period: 4150 days. Bolded numbers indicate the lowest value of

error metric.

5.2. LSTM Sensitivity

5.2.1. Epochs

The first tested hyperparameter is the number of epochs. A line plot is created which shows the

MSE loss function over the number of epochs for both the training (blue) and testing (orange)

sets. MSE is the default loss function used for the LSTM model. Mathematically, it is a

preferred loss function under the inference framework of maximum likelihood when the

distribution of the target variable is Gaussian. In all the epochs evaluated, it can be seen that the

model learned the problem achieving zero error or at least to three decimal places. Looking at

Figure 15, 16 and 17 and Table 8, it can be seen that the model performed very well with 100

epochs and worst with 50 epochs. However, increasing the epochs to 300 leads to overfitting

of the data.

Figure 15. LSTM model with 50 epochs

Note: Sensitivity analysis of epochs in LSTM strategy. The following hyperparameters were used: Training: First

4150 days and testing last 1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers:

30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer:

Adam, epochs: 50, dropout rate: 0, learning rate: 0.001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 18

18

Figure 16. LSTM model with 150 epochs

Note: Sensitivity analysis of epochs in LSTM strategy. The following hyperparameters were used: Training: First

4150 days and testing last 1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers:

30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer:

Adam, epochs: 150, dropout rate: 0, learning rate: 0.001.

Table 8. Error metrics for LSTM model with various number of units.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: 50 epochs 37.26 1.37 2453.63 49.53

LSTM: 150 epochs 26.87 0.98 1759.62 41.95

LSTM: 300 epochs 65.95 2.48 5862.99 76.57

Note: Error metrics for various number of epochs in LSTM strategy. The following changes in the number of

epochs were tested: 50 epochs, 150 epochs, 300 epochs. Initial epochs: 100. Bolded numbers indicate the lowest

value of error metric.

Figure 17. LSTM model with 300 epochs

Note: Sensitivity analysis for various number of epochs in LSTM strategy. The following hyperparameters were

used: Training: Note: Training: First 4150 days and testing last 1005 days of S&P 500 index. Hyperparameters

used: Number of units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss

function: Mean Squared Error, optimizer: Adam, epochs: 300, dropout rate: 0, learning rate: 0.001.

5.2.2. Loss Function

The next tested hyperparameter is the loss function. Figures 18, 19, 20 and Table 9 present

results using this changed hyperparameter. Three options were tested for loss function: MAE,

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 19

19

logcosh and huber loss. Initially, the loss function was set to be MSE. LSTM with huber loss

performed the best among these three options. However, none of them beat the initial MSE.

There is not a single loss function which works for all the data types. It depends on many factors

including the presence of outliers in the data, the choice of the machine learning algorithm, the

time efficiency of the gradient descent in the data, the ease of finding the derivatives and the

confidence of predictions. Having in mind that huber loss takes into account the outliers and

the data had 258 outliers, the result obtained makes sense.

Figure 18. LSTM model with loss function: Mean Absolute Error (MAE)

Note: Sensitivity analysis of loss function in LSTM strategy. The following hyperparameters were used: Training

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Absolute Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Figure 19. LSTM model with loss function: logcosh

Note: Sensitivity analysis of loss function in LSTM strategy. The following hyperparameters were used: Training

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: logcosh,

optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 20

20

Figure 20. LSTM model with loss function: huber loss

Note: Note: Sensitivity analysis of loss function in LSTM strategy. The following hyperparameters were used:

Training period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used:

Number of units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function:

huber loss, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Table 9. Error metrics for LSTM model with various loss functions.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: Loss function: MAE 37.40 1.39 2736.53 52.31

LSTM: Loss function: logcosh 49.42 1.84 3685.27 60.71

LSTM: Loss function: huber loss 29.88 1.10 2020.87 44.95

Note: Error Metrics for the loss function in LSTM strategy. The following changes in loss functions were tested:

MAE loss, logcosh loss and huber loss. Initial loss function: MSE. Bolded numbers indicate the lowest value of

error metric.

5.2.3. Optimizer

The next tested hyperparameter is the optimizer. Figures 21, 22, 23 and Table 10 present the

result using this changed hyperparameter. The following optimizers were tested: sgd, RMSprop

and adagrad. Initially the optimizer was set to be adam. The results obtained were not robust to

changes in the optimizers. The optimization process is important in terms of achieving accurate

results. It is noted that the model performed best with the RMSprop optimizer among three of

these tested hyperparameters. It performed worst with sgd and adagrad. However, none of them

beat adam optimizer that was set at the beginning.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 21

21

Figure 21. LSTM model with sgd optimizer

Note: Sensitivity analysis of optimizer in LSTM strategy. The following hyperparameters were used: Training

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: sgd, epochs: 100, dropout rate: 0, learning rate: 0.001.

Figure 22. LSTM model with RMSprop optimizer

Note: Sensitivity analysis of optimizer in LSTM strategy. The following hyperparameters were used: Training

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: RMSprop, epochs: 100, dropout rate: 0, learning rate: 0.001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 22

22

Figure 23. LSTM model with adagrad optimizer

Note: Sensitivity analysis of optimizer in LSTM strategy. The following hyperparameters were used: Training

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: adagrad, epochs: 100, dropout rate: 0, learning rate: 0.001.

Table 10. Error metrics for LSTM model with various optimizers.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: Optimizer: sgd 281.03 11.54 95555.80 309.12

LSTM: Optimizer: RMSprop 105.16 3.98 14158.35 118.99

LSTM: Optimizer: adagrad 184.50 6.27 43970.19 209.69

Note: Error Metrics for various optimizer in LSTM strategy. The following changes in optimizers were tested:

sgd, RMSprop, adagrad. Initial optimizer: Adam. Bolded numbers indicate the lowest value of error metric.

5.2.4. Activation Functions

Next tested hyperparameter is the activation function. Figure 24, 25, 26 and Table 11 use these

changed hyperparameters. The following activation functions were tested: ReLU, ELU and

sigmoid. Initially, the activation function was set to be tanh. The activation function: ELU

performed best among these three tested whereas ReLU and sigmoid performed the worst and

none of the activation functions beat tanh, which was set at the beginning. However, the results

obtained are not robust to changes in the hyperparameters. -

Table 11. Error metrics for LSTM Model with various activation functions.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: Activation: ReLU 226.45 9.11 58650.27 242.18

LSTM: Activation: ELU 67.27 2.54 5822.19 76.30

LSTM: Activation: sigmoid 230.19 9.21 64842.60 254.64

Note: Error metrics sensitivity analysis for various activation functions in LSTM strategy. The following changes

in activation functions were tested: ReLU, ELU, sigmoid. Initial activation function: tanh. Bolded numbers

indicate the lowest value of error metric.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 23

23

Figure 24. LSTM model with ReLU activation functions.

Note: Sensitivity analysis of activation functions in LSTM strategy. The following hyperparameters were used:

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: ReLU, loss function: Mean

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Figure 25. LSTM model with ELU activation functions.

Note: Sensitivity analysis of activation functions in LSTM strategy. The following hyperparameters were used:

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: ELU, loss function: Mean

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 24

24

Figure 26. LSTM model with sigmoid activation functions.

Note: Sensitivity analysis of activation functions in LSTM strategy. The following hyperparameters were used:

Training: Note: Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters

used: Number of units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: sigmoid, loss

function: Mean Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

5.2.5. Number of Units

The number of units in the hidden layer is also known as a node, or sometimes also called a

neuron or perceptron. It is a computational unit which has one or multiple weighted input

connections, there is a transfer function which combines the inputs in some way, and there is

an output connection. Nodes are organized into layers to comprise a neural network. Each of

the nodes in the single-layer connects directly to an input variable which then contributes

towards an output variable.

Figure 27. LSTM model with the Number of Units equal to 10.

Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used:

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of

units in hidden layers: 10, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Next tested hyperparameter is the number of units in the hidden layer. Figure 27, 28, 29,

30 and Table 12 show the results of these changes. The following number of units were tested:

10, 50, 100 and 300. Initially, the number of units was set to be 30 units. It is noted that an

increasing number of units in the hidden layer leads to better performance, however increasing

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 25

25

it more than the optimal units worsens the performance, due to the overfitting of the data.

However, it depends on the complexity of the problem. It is very hard to find the optimal

number of units in the hidden layer. Several search methods such as random search, grid search,

heuristic and exhaustive search methods can be used to find an approximation of the optimal

number of units to be used in the hidden layer. LSTM with 100 units performed in a similar

way as with the initial hyperparameter of 30 units.

Figure 28. LSTM model with the Number of Units equal to 50.

Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used:

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of

units in hidden layers: 50, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Figure 29. LSTM model with the Number of Units equal to 100.

Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used:

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of

units in hidden layers: 100, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 26

26

Figure 30. LSTM model with the Number of Units equal to 300.

Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used:

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of

units in hidden layers: 300, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Table 12. Error metrics for LSTM Model with various number of units.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: Units:10 73.67 2.77 7079.72 84.14

LSTM: Units:50 32.98 1.20 2220.63 47.12

LSTM: Units:100 21.45 0.80 1244.48 35.28

LSTM: Units:300 49.98 1.84 3440.05 58.65

Note: Error metrics for various number of units in LSTM strategy. The following changes in number of units were

tested: Number of units in hidden layer: 10, 50, 100 and 300. Initial number of units: 30. Bolded numbers indicate

the lowest value of error metric.

5.2.6. Batch Size

Next tested hyperparameter is the Batch size. Figure 31, 32, 33 and Table 13 show the results

of these changes. The following batch sizes were tested: 32, 128 and 256. Batch size has a great

impact on learning. It is the number of samples in one iteration. For instance, when a batch is

put through the network, it averages the gradients. By taking samples from the dataset, the

gradient can be estimated while reducing computational cost significantly. There are of course

variants in Gradient Descent Algorithms such as Vanilla Gradient Descent, Stochastic Gradient

Descent and Mini-Batch Gradient Descent. The smaller the Mini-Batch, the better would be the

performance of the model (not always) and of course it has got to do with the epochs too for

faster learning. It is noted that using lower batch sizes with 100 epochs provides better

performance. However, none of the batch sizes could beat the 64 set at the beginning.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 27

27

Figure 31. LSTM model with Batch Size equal to 32.

Note: Sensitivity analysis of batch size in LSTM strategy. The following hyperparameters were used: Training:

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in

hidden layers: 30, Batch size: 32, activation function used for hidden layer: tanh, loss function: Mean Squared

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Figure 32. LSTM model with Batch Size equal to 128.

Note: Sensitivity analysis of batch size in LSTM strategy. The following hyperparameters were used: Training:

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in

hidden layers: 30, Batch size: 128, activation function used for hidden layer: tanh, loss function: Mean Squared

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

Table 13. Error metrics for LSTM model with various batch size.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: Batch size: 32 28.88 1.05 1916.12 43.77

LSTM: Batch size: 128 47.31 1.80 3129.70 55.94

LSTM: Batch size: 256 85.15 3.19 10476.70 102.36

Note: Error metrics for various batch size in LSTM strategy. The following changes in batch size were tested:

Batch size: 32, 128 and 256. Initial Batch size: 64. Bolded numbers indicate the lowest value of error metric.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 28

28

Figure 33. LSTM model with Batch Size equal to 256.

Note: Sensitivity analysis of batch size in LSTM strategy. The following hyperparameters were used: Training:

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in

hidden layers: 30, Batch size: 256, activation function used for hidden layer: tanh, loss function: Mean Squared

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001.

5.2.7. Learning Rate

Next tested hyperparameter is the learning rate. Figure 34, 35, 36 and Table 14 show the results

of these changes. The following values of learning rate were tested: 0.01, 0.0001 and 0.0005. It

is noted that lowering the learning rate leads to better performance. The learning rate controls

how quick the LSTM model is adapted to the problem. Several optimizers use default learning

rates as per its calculation methods. For instance: Adam optimizer uses the default learning rate

of 0.001.

Figure 34. LSTM model with learning rate equal to 0.01.

Note: Sensitivity analysis of learning rate in LSTM strategy. The following hyperparameters were used: Training:

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in

hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.01.

It is noted that smaller learning rates require more training epochs considering the

smaller changes are made to the weights for each update, whereas larger learning rate results

in rapid changes and requires fewer training epochs. A learning rate which is too large can

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 29

29

cause the model converging too quickly towards a suboptimal solution, whereas a learning

rate which is too small can cause the process to get stuck. The challenge of training deep

learning neural networks involves selecting the learning rate in a careful manner as it is one of

the most important hyperparameters for the model.

Figure 35. LSTM model with learning rate equal to 0.0005.

Note: Sensitivity analysis of learning rate in LSTM strategy. The following hyperparameters were used: Training:

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in

hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.0005.

Figure 36. LSTM model with learning rate equal to 0.0001.

Note: Sensitivity analysis of learning rate in LSTM strategy. The following hyperparameters were used: Training:

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in

hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.0001.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 30

30

Table 14. Error metrics for LSTM model with various learning rate.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: Leaning Rate: 0.01 51.27 1.85 4752.21 68.94

LSTM: Leaning Rate: 0.0005 23.09 0.87 1223.28 34.98

LSTM: Leaning Rate: 0.0001 39.29 1.44 4439.35 66.63

Note: Error metrics for various learning rate in LSTM strategy. The following changes in learning rate were tested:

Learning rate: 0.01, 0.0001 and 0.0005. Initial learning rate: 0.001. Bolded numbers indicate the lowest value of

error metric.

5.2.8. Summary of LSTM sensitivity analysis

Table 15 summarizes the results of the whole sensitivity analysis for LSTM model.

Table 15. The summary of error metrics for LSTM model.
Model Name MAE MAPE MSE RMSE

Random Walk 958.36 34.42 1135820.64 1066.57

LSTM 21.77 0.81 1399.43 37.40

LSTM: 50 epochs 37.26 1.37 2453.63 49.53

LSTM: 150 epochs 26.87 0.98 1759.62 41.95

LSTM: 300 epochs 65.95 2.48 5862.99 76.57

LSTM: Loss function: MAE 37.40 1.39 2736.53 52.31

LSTM: Loss function: logcosh 49.42 1.84 3685.27 60.71

LSTM: Loss function: huber loss 29.88 1.10 2020.87 44.95

LSTM: Optimizer: sgd 281.03 11.54 95555.80 309.12

LSTM: Optimizer: RMSprop 105.16 3.98 14158.35 118.99

LSTM: Optimizer: adagrad 184.50 6.27 43970.19 209.69

LSTM: Activation: ReLU 226.45 9.11 58650.27 242.18

LSTM: Activation: ELU 67.27 2.54 5822.19 76.30

LSTM: Activation: sigmoid 230.19 9.21 64842.60 254.64

LSTM: Units:10 73.67 2.77 7079.72 84.14

LSTM: Units:50 32.98 1.20 2220.63 47.12

LSTM: Units:100 21.45 0.80 1244.48 35.28

LSTM: Units:300 49.98 1.84 3440.05 58.65

LSTM: Batch size: 32 28.88 1.05 1916.12 43.77

LSTM: Batch size: 128 47.31 1.80 3129.70 55.94

LSTM: Batch size: 256 85.15 3.19 10476.70 102.36

LSTM: Leaning Rate: 0.01 51.27 1.85 4752.21 68.94

LSTM: Leaning Rate: 0.0005 23.09 0.87 1223.28 34.98

LSTM: Leaning Rate: 0.0001 39.29 1.44 4439.35 66.63

Note: Summary of the error metrics for LSTM hyperparameters used during sensitivity analysis. Bolded numbers

indicate the lowest value of error metric.

Conclusions

Technology has revolutionized the functions of financial markets and the way the financial

assets are traded. Two significant technological changes are that the investors are using

computers to automate their trading activity and the markets rearranging themselves in such a

way that virtually all markets are now based on electronic limit order books (Jain, 2005). The

quality and speed of access to such markets encourage the use of algorithmic trading by

investors. What is more, the main aim of this automated trading was to delete human errors in

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 31

31

trading and risk management. None of the trading strategies could provide perfect forecasting

methods, however, the investors are always interested in trading strategies that are able to

predict the future price with high accuracy. The main aim of this paper is to investigate which

forecasting methods provide the best predictions with regards to lower forecasting errors. A

classical model such as ARIMA is compared with a machine learning model such as LSTM.

This research focuses on the performance of ARIMA and LSTM using various error

metrics. The study assumes that there is asymmetric information in the stock market which

makes it possible to analyze the volatility in the stock prices, as well as predicting the prices

within available historical data. This paper uses S&P 500 index close prices from 03.01.2000

t0 29.06.2020. This study uses Random Walk model generating naïve forecasts as a benchmark

model. Both ARIMA and LSTM perform better than the benchmark model, in terms of lower

forecasting errors.

 The results for all the models were obtained using Python (version 3.8.5) with Jupyter

Notebook (version 6.0.3) development environment. All the relevant libraries and packages

were installed using Anaconda Prompt (conda version 4.8.5) on a 64-bit Windows 10 operating

system. Deep learning libraries used for designing, training, and testing the neural network are

Keras (version 2.4.3) and TensorFlow (version 1.8.0).

At the beginning of this research four main hypotheses and one research question were

stated, and they were verified and answered during the empirical part. The first hypothesis is

rejected since the result showed that ARIMA outperforms LSTM in terms of one-step ahead

forecasts, which is similar to the results obtained by (Siami-Namini et al., 2018). Several

combinations of hyperparameters for LSTM were tested during sensitivity analysis sections,

however, it was unable to beat the ARIMA (1,1,1). The second hypothesis that LSTM is robust

to changes in the hyperparameters was rejected since the results obtained during sensitivity

analysis do not show robustness of this model. The third hypothesis, i.e. Increasing the number

of epochs leads to better performance of the model, however using more than the optimal

number of epochs leads to an over-fitted model was not rejected based on the sensitivity

analysis. The fourth one, i.e. Using the wrong optimizer and activation function can

significantly worsen the accuracy of the LSTM model, was not rejected based on our results.

Finally, research question (RQ1): Can we use one step ahead forecasts from ARIMA or LSTM

model in buy/sell signals of investment strategies? can be answered positively based on the

results of this study.

This study can be extended by testing more hyperparameters of the LSTM model and

using rolling regression for forecasting. The use of cross-validation such as K-fold, Stratified

K-Fold, and Leave-P-Out can be applied instead of one step forecasting. More various strategies

can be implemented and combining them into a complex sophisticated model could provide

better performance. Additionally, investment could be done based on the models, where

buy/sell/hold signal generations could be implemented and then performance statistics such as

Information Ratio, Maximum Drawdown could be calculated, which would be more attractive

to the investors. As for LSTM, looking for optimization of hyperparameters using grid search

could be implemented in future works.

References

A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib and P. Kumam, 2020, Fractional Neuro-

Sequential ARFIMA-LSTM for Financial Market Forecasting, in IEEE Access, vol. 8, pp. 71326-71338,

doi: 10.1109/ACCESS.2020.2985763.

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 32

32

Adil Moghar, Mhamed Hamiche, 2020, Stock Market Prediction Using LSTM Recurrent Neural Network, Procedia

Computer Science, Volume 170, Pages 1168-1173, ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2020.03.049.

Akaike, 1974, A new look at the statistical model identification. IEEE Trans. Automat. Control. vAC-19. 716-723

Baek, Y., & Kim, H., 2018. ModAugNet: A new forecasting framework for stock market index value with an

overfitting prevention LSTM module and a prediction LSTM module. Expert Systems With Applications,

113, 457-480. https://doi.org/10.1016/j.eswa.2018.07.019

Bengio, Y., Simard, P., & Frasconi, P., 1994, Learning long-term dependencies with gradient descent is

difficult. IEEE Transactions On Neural Networks, 5(2), 157-166. https://doi.org/10.1109/72.279181

Box, G. and Jenkins, G., 1970, Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.

Brogaard, Jonathan and Hendershott, Terrence J. and Riordan, Ryan, 2016, High Frequency Trading and the 2008

Short Sale Ban (March 30, 2016). Journal of Financial Economics (JFE), Forthcoming, Available at SSRN:

https://ssrn.com/abstract=2509376 or http://dx.doi.org/10.2139/ssrn.2509376

Chiu C.C., Cook D.F., Pignatiello J.J., 1995, Radial basis function neural network for Kraft pulping forecasting.

International Journal of Industrial Engineering 2(2): 209-215

Chlebus M., DyczkoM., Woźniak M., 2020, Nvidia’s stock returns prediction using machine learning techniques

for time series forecasting problem, Working Papers of Faculty of Economic Sciences, University of

Warsaw, WP 22/2020 (328), https://www.wne.uw.edu.pl/files/6415/9481/5844/WNE_WP328.pdf

Cook D.F., Chiu C.C., 1997, Predicting the internal bond strength of particleboard utilizing a radial basis function

neural network, Engineering Applications AI 10(2): 171-177

Cowpertwait, P., & Metcalfe, A., 2009, Introductory time series with R (p. 142). Springer.

F. Qian and X. Chen, 2019, Stock Prediction Based on LSTM under Different Stability, 2019 IEEE 4th International

Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, pp. 483-486, doi:

10.1109/ICCCBDA.2019.8725709.

Gao X.M., Gao X.Z., Tanskanen J., Ovaska, S.J., 1997, Power prediction in mobile communications systems using

an optimal neural network structure. IEEE Transportation Neural Networks 8(6), 1446-1455

Hannan, E.J. and Quin, G.G.,1979, The determination of the order of an autoregression. J.R. Statistic. Soc. B, 41,

190-195.

Hochreiter, S., & Schmidhuber, J., 1997, Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735s

Jain, P., 2005, Financial market design and the equity premium: Electronic versus floor trading. Journal of Finance

60 (6), 2955–2985.

Jing Zhang, Shicheng Cui, Yan Xu, Qianmu Li, and Tao Li, 2018. A Novel Data-driven Stock Price Trend

Prediction System, Elsevier Expert Systems with Applications, Vol. 97, pp.60–69.

Jonathan Creighton, and Farhana H Zulkernine, 2017, Towards Building a Hybrid Model for Predicting Stock

Indexes, IEEE International Conference on Big Data.

K Hiba Sadia, Aditya Sharma, Adarrsh Paul, Sarmistha Padhi, and Saurav Sanyal, 2019. Stock Market Prediction

Using Machine Learning Algorithms, International Journal of Engineering and Advanced Technology, Vol.

8, No. 4, pp.25-31.

Kijewski M., Ślepaczuk R., 2020, Predicting prices of S&P500 index using classical methods and recurrent neural

networks. Working Papers of Faculty of Economic Sciences, University of Warsaw, WP 27/2020 (333),

https://www.wne.uw.edu.pl/files/6215/9765/7140/WNE_WP333.pdf

Kirilenko, Andrei A. and Lo, Andrew W., 2013, Moore's Law vs. Murphy's Law: Algorithmic Trading and Its

Discontents. Journal of Economic Perspectives, Available at SSRN: https://ssrn.com/abstract=2235963 or

http://dx.doi.org/10.2139/ssrn.2235963

Liu, C.D., Wang, J.H., Xiao, D. and Liang, Q., 2016, Forecasting S&P 500 Stock Index Using Statistical Learning

Models. Open Journal of Statistics, 6, 1067-1075. http://dx.doi.org/10.4236/ojs.2016.66086

https://doi.org/10.1016/j.procs.2020.03.049
https://doi.org/10.1016/j.eswa.2018.07.019
https://doi.org/10.1109/72.279181
http://dx.doi.org/10.2139/ssrn.2509376
https://www.wne.uw.edu.pl/files/6415/9481/5844/WNE_WP328.pdf
https://doi.org/10.1162/neco.1997.9.8.1735s
https://www.wne.uw.edu.pl/files/6215/9765/7140/WNE_WP333.pdf
https://ssrn.com/abstract=2235963
http://dx.doi.org/10.2139/ssrn.2235963
http://dx.doi.org/10.4236/ojs.2016.66086

Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412) 33

33

Luca Di Persio, and Oleksandr Honchar, 2017, Recurrent Neural Networks Approach to the Financial Forecast of

Google Assets, International Journal of Mathematics and Computers in Simulation, Vol. 11, pp.7-13.

Makridakis, S., Wheelwright, S., and McGee, V., 1983, Forecasting Methods and Applications (2nd Edition),

Wiley and Sons, New York.

Mehtab, S., & Sen, J., 2019. A Robust Predictive Model for Stock Price Prediction Using Deep Learning and

Natural Language Processing. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3502624

Min Wen, Ping Li, Lingfei Zhang, and Yan Chen, 2019, Stock Market Trend Prediction Using High-Order

Information of Time Series, IEEE Access, Vol. 7, pp.28299-28308.

Mohammad Asiful Hossain, Rezaul Karim, Ruppa Thulasiram, Neil D B Bruce, and Yang Wang, 2018. Hybrid

Deep Learning Model for Stock Price Prediction, IEEE Symposium Series on Computational Intelligence

SSCI, pp.1837-1844

Patterson, J. and Gibson, A., 2017, Deep Learning: A Practitioner’s Approach. O’Reilly Media, Inc., Sebastopol.

Pindyck, R.S., Rubinfeld D.L. 1998. Econometric Models and Economic Forecasts. 4th edn. McGraw-Hill

International Editions

Raut Sushrut Deepak, Shinde Isha Uday, and Dr D Malathi, 2017, Machine Learning Approach in Stock Market

Prediction, International Journal of Pure and Applied Mathematics, Vol. 115, No. 8, pp.71-77.

Reilly D.P., 1980, Experiences with an automatic Box-Jenkins modelling algorithm. Time Series Analysis-

Proceedings of Houston Meeting on Time Series Analysis. Amsterdam, North-Holland Publishing

Reynolds S.B., Mellichamp J.M., Smith R.E., 1995, Box-Jenkins forecast model identification. AI Expert, June,

15-28

Saad E.W., Prokhorov D.V., Wunsch D.C., 1998, Comparative study of stock trend prediction using time delay,

recurrent and probabilistic neural networks. IEEE Transportation Neural Networks 9(6): 1456-1469

Sahaj Singh Maini, and Govinda K, 2017. Stock Market Prediction using Data Mining Techniques, Proc. Int.

Conf. Intelligent Sustainable Systems, IEEE Xplore Compliant - Part Number: CFP17M19-ART, pp.654-

661.

Sakshi, K., & A, V. , 2020. An ARIMA- LSTM Hybrid Model for Stock Market Prediction Using Live Data. Journal

Of Engineering Science And Technology Review, 13(4), 117-123. https://doi.org/10.25103/jestr.134.11

Schwartz E.S, 1997, The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging. J

Finance 52(3) Papers and Proceedings Fifty-Seventh Annual Meeting, American Finance Association, New

Orleans, Louisiana January 4-6, (July 1997), 923-973.

Siami-Namini, S., Tavakoli, N., & Siami Namin, A., 2018, A Comparison of ARIMA and LSTM in Forecasting

Time Series. 2018 17Th IEEE International Conference on Machine Learning and Applications (ICMLA).

doi: 10.1109/icmla.2018.00227

Sreelekshmy Selvin, Vinayakumar R, Gopalakrishnan EA, Vijay Krishna Menon, and Soman KP, 2017. Stock

Price Prediction using LSTM, RNN and CNN- Sliding Window Model, IEEE Conference Paper, doi:

10.1109/ICACCI.2017.8126078, pp.1643- 1647

Yang Y., Zheng Y., Hospedales T., 2017, Gated neural networks for option pricing: rationality by design,

Association for the Advancement of Artificial Intelligence.

Zenkova M., Ślepaczuk R., 2018, Robustness of Support Vector Machines in Algorithmic Trading on

Cryptocurrency Market, Central European Economic Journal, 5(1), pp. 186-205.

https://doi.org/10.2139/ssrn.3502624
https://doi.org/10.25103/jestr.134.11

UNIVERSITY OF WARSAW

FACULTY OF ECONOMIC SCIENCES

44/50 DŁUGA ST.

00-241 WARSAW

WWW.WNE.UW.EDU.PL

	WNE WP 5/2023 (412)
	Introduction
	Literature Review
	Data Description
	Methodology
	Empirical Results
	Sensitivity Analysis
	Conclusions

