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Introduction 

Predicting the behavior of the stock market includes using time series forecasting as a key 

component. The unprecedented economic trends and information asymmetry are the main 

reasons why it is a difficult task. However, the recent growth in algorithmic trading technologies 

made it quicker and easier to analyze large datasets and provide a forecast with high accuracy. 

Taking into consideration that investors are highly interested in risk management, they are more 

likely to invest in a strategy that yields higher risk adjusted returns, and such strategy can be 

obtained with methods characterized by lower forecasting errors. Hence the accuracy of the 

forecast plays an important role for the investors.  

The main aim of this paper is to investigate which forecasting methods provide the best 

predictions with regards to lower forecasting errors. A classical model such as ARIMA is 

compared with a machine learning model such as LSTM which is a type of recurrent neural 

network. The first research hypothesis of this paper is that LSTM outperforms ARIMA in terms 

of one step ahead forecasts (RH1). The second hypothesis tested in this paper is that LSTM is 

robust to changes in the hyperparameters (RH2), where the hyperparameters were set 

heuristically at the beginning. Other hypotheses with regards to tuning hyperparameters of the 

LSTM model are as follows. The third one states that Increasing the number of epochs leads to 

better performance of the model, however using more than an optimal number of epochs leads 

to an over-fitted model (RH3). The fourth hypothesis is that using the wrong optimizer and 

activation function can significantly worsen the accuracy of the LSTM model (RH4). 

Additionally, we have added one research of more practical finance nature question (RQ1): Can 

we use one step ahead forecasts from ARIMA or LSTM model in buy/sell signals of investment 

strategies? 

The initial assumption, based on many previous research papers, is that neural networks 

might, in fact, perform at least as good as the classical method. In order to test this, the research 

focuses on the performance of each strategy using various error metrics. The study assumes that 

there is asymmetric information in the stock market which makes it possible to analyze the 

volatility in the stock prices, as well as predicting the prices within available historical data. 

This research uses S&P 500 index close prices from 03.01.2000 till 29.06.2020.  

The results for Random Walk, ARIMA, and LSTM were obtained using Python in version 

3.8.5. Deep learning libraries used for designing, training, and testing the neural network are 

Keras (version 2.4.3) and TensorFlow (version 1.8.0). All the calculations, as well as graphs 

and tables were done using Python with Jupyter Notebook (version 6.0.3) development 

environment. All the relevant libraries and packages were installed using Anaconda Prompt 

(conda version 4.8.5) on a 64-bit Windows 10 operating system. 

This study is divided into five chapters. The first chapter consists of a literature review 

discussing the previous studies done in the field of automated transactional systems, including 

the models implemented in this research. The second chapter briefly describes the data used in 

this study. The third chapter focuses on methodology used for forecasting and error metrics to 

evaluate the performance of the models. It touches upon time series analysis and the methods 

of generating a forecast for the implemented models. The fourth chapter presents the empirical 

results for every method used in this study and compares the performance of each of the 

forecasts. The fifth chapter consists of sensitivity analysis. It tests the robustness of results by 

changing parameters and hyperparameters (e.g., changing the size of the training-testing split) 

and RNN hyperparameters used in the methodology section (e.g., neurons, batch size, epochs, 
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activation functions, optimizers, etc.). Lastly, the research concludes, verifies hypotheses, and 

discusses some recommendations for future research. 

1. Literature Review 

Statistical and machine learning methods are widely discussed in empirical research. The 

quality of forecast is of great importance to investors around the world. A correct prediction of 

the stock prices could lead to a greater profit for the investors. In recent times, there has been 

great improvement in the technology sectors such as increased computational power, which 

results in a faster calculation in algorithmic trading. The investors are always keen to invest in 

a strategy that would lead to greater risk-adjusted profit and algorithmic trading can help in 

such decision makings. Kirilenko and Lo (2013) summarize the fundamental improvement in 

the field of Finance and the technological improvement that has led to the growth of this field. 

It occurred mainly due to technological improvements, lower transaction costs, a large volume 

of trades, and its faster executions, which finally has led to wide-ranging domination of 

algorithmic trading in 2009 on the NASDAQ, and then it led to the global discussion on the 

essential changes in regulation. The change was not directed towards enhancements in trading. 

The changes have essentially been caused by an increment in speed of trading and the volume 

created by high-frequency trading in all asset markets including equities, currencies, and others 

(Brogaard et al., 2014).  

Several studies show that the economic time series behaves like Random Walk models or 

at least seem to have Random Walk components. Accepting that certain economic variables 

behave in a similar way as a Random Walk model is needed as regressing a certain variable 

against another variable might lead to spurious results. It is mainly due to the fact that the 

relationship between economic variables is usually observed when, such a relationship does not 

exist. Similarly, the effects of a temporary shock will not disappear after several years but 

instead will be permanent (Pindyck and Rubinfeld, 1998). Reilly (1980) and Reynolds et al. 

(1995) developed methods for automatically identifying ARIMA models for time series 

(hereafter TS). The method developed by Reynolds et al. (1995) takes into consideration a 

neural network approach and it is restricted to non-seasonal TS, whereas the method developed 

by Reilly (1980) works properly for non-seasonal TS but it is a bit less effective when seasonal 

TS data is concerned. Analytical neural network methods have been widely used in prediction 

(Chiu et al., 1995; Gao et al., 1997; Cook and Chiu, 1997; Saad et al., 1998).  

The recent papers concerning the evaluation of the performance of neural network in 

pricing liabilities focus mainly on testing various types and architectures of the neural networks, 

such as the recurrent neural networks (RNNs) and the convolutional neural networks (CNNs). 

Yang et. al (2017) suggested the use of the gated neural networks, which not only provide 

reliable prices of the options, but also contain an assurance of economically reasonable and 

rational results. The model outperforms other network-based models and some of the 

econometric methods described in the paper. Siami-Namini et al., (2018) has conducted a study 

on whether and how deep learning-based algorithms for forecasting time series data, such as 

LSTM, are superior to the traditional algorithms. The ARIMA model has shown great precision 

and accuracy in terms of predicting the next lags of time series. The empirical studies conducted 

in this article show that LSTM beats the traditional-based algorithms such as the ARIMA model 

with an average reduction in error rates obtained by LSTM between 84-87 percent, indicating 

the superiority of LSTM to ARIMA. Moreover, it was observed that the number of training 

times ("epoch”) has no effect on the performance of the forecast and it shows truly random 

behavior. 
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Zenkova and Ślepaczuk (2018) conducted studies on the profitability of an algorithmic 

trading strategy based on training SVM model for identification of cryptocurrencies with low 

or high predicted returns. Each cryptocurrency is represented using a set of six technical 

features: Momentum, Volume change, Relative Strength Index, Force Index, Williams Percent 

Range and Parabolic stop and reversal system. The performance of the SVM portfolio is 

compared with the performance of the four benchmark strategies: equally weighted portfolio 

(EqW), market-cap weighted portfolio (McW) and two buy and hold strategy (one for bitcoin 

and the second for S&P500 index. It is noted that EqW portfolio outperforms the SVM strategy 

and all the benchmark strategies. The SVM strategy has not demonstrated any abnormal returns 

in comparison to benchmark strategies and the algorithm itself does not provide robust 

outcomes. Bukhari et al. (2020) conducted studies on a novel hybrid model with the strength of 

fractional order derivative along with their dynamical features of deep learning, long-short term 

memory (LSTM) networks, in order to predict the abrupt stochastic variation of the financial 

market. A novel ARFIMA-LSTM hybrid recurrent network together with ARFIMA model-

based filters exhibits the linear tendencies better than ARIMA model in the data and passes the 

residual to the LSTM model which captures nonlinearity in the residual values from exogenous 

dependent variables.  The model overcomes the problem of overfitting and also minimizes the 

volatility problem. The forecasting performance indicates the effectiveness of the estimated 

AFRIMA-LSTM hybrid model to improve around 80% of accuracy on RMSE in comparison 

to traditional forecasting methods. 

Qian and Chen (2019) has researched stationary analysis of the stock's time-series data 

and used the LSTM neural network algorithm in order to predict stock data under various 

stationary conditions, and conducted statistical analysis on multiple experimental data. 

Moreover, an ARIMA algorithm was introduced in order to compare with the LSTM. A large 

number of experimental results show that neural network prediction algorithm - LSTM has a 

higher prediction accuracy and is not sensitive to the stability response. (Sakshi and A, 2020) 

have conducted studies on hybrid models using LSTM and ARIMA to capture S&P 500 index 

using pre-existing Application Programming Interface (API). The Prophet forecasting library 

created by Facebook which requires less prepossessing has also been used for the purpose of 

comparison. Prophet has a comparatively high Root Mean Square Error (RMSE) of 27.59 and 

the Mean Square Error (MSE) of 761.33 whereas the proposed ARIMA- LSTM hybrid has an 

MSE of 3.03 and RMSE of 1.74 along with a 99% fit of the model, which proves that hybrid 

performs much better than Prophet forecasting. 

Chlebus et al. (2020) tested various machine learning techniques for time series 

forecasting with the following methods: SVR, KNN, XGBoost, LightGBM, LSTM, ARIMA, 

ARIMAX with features coming from classes like technical analysis, fundamental analysis, 

Google Trends entries, markets regarding Nvidia. SVR had the best performance based on 

stationary attributes. It was also noted that the models based on the stationary variables have a 

better performance than the models based on stationary and non-stationary variables. Kijewski 

and Ślepaczuk (2020) compares investment algorithm performance on S&P 500 index with 20 

years of data from 2000 to 2020. Several algorithmic strategies including classical methods 

such as moving average crossover, volatility breakouts, and macroeconomic factors were tested. 

Statistical and machine learning approaches like ARIMA and LSTM models were also tested 

respectively. The results show that classical methods using the rolling training-testing window 

were significantly more robust to changes in hyperparameters than LSTM. Adil and Hamiche 

(2020) used LSTM to forecast future values for GOOGL and NKE assets using various epochs. 

It is noted that the number of epochs and the length of the dataset both have a significant impact 

on testing results. The dataset was tested with various epochs (12 epochs, 25 epochs, 50 epochs 

and 100 epochs) and it was noticed that training less data with more epochs can significantly 
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improve the testing results and allows to have better forecasting and prediction values. 

Table 1. Significant studies related to various prediction techniques 
Authors Dataset Technique Evaluation Metrics 

Liu et al, 

2016  

S&P 500 Logistic regression, 

GDA, Naive Bayes, 

Linear SVM, RBF 

SVM, Poly SVM 

Accuracy: 

Logistic regression:60.62%, GDA: 60.62%, Naive Bayes: 

60.38%, Linear SVM:59.79%, RBF SVM: 62.51%, Poly 

SVM: 59.43% 

    

Selvin et 

al., 2017 

NSE RNN, LSTM, CNN MAE: 5.13% (RNN), 5.31% (LSTM), 4.98% (CNN) 

    

Maini et 

al., 2017 

Dow Jones 

Industrial 

Average 

SVM, Random 

Forest 

Accuracy: 

84.6% (SVMlinear), 85.18% (SVMRBF) 

86.2% (Random forest) 

    

Persio et 

al., 2017 

Google 

Assets 

RNN, LSTM, GRU Accuracy- 72% 

    

Creighton 

et al., 2017 

S&P 500 and 

S&P 400 

ARIMA- BPNN 

hybrid 

MAE: 16.68, MSE: 434.121 

RMSE: 20.836, Accuracy: 45.1% 

    

Deepak et 

al., 2017 

BSE Sensex SVM- RBF kernel Accuracy: 80 to 85% 

    

Zhang et 

al., 2018 

TA- Lib Random Forest Accuracy: 67.5% 

Std deviation:3.7% 

    

Baek & Kim, 

2018 

S&P500 and  

KOSPI200 

 

LSTM with 

SingleNet 

MSE: 54.1% (S&P500) & 48% (KOSPI200) 

MAPE: 35.5% (S&P500) & 23.9% (KOSPI200) 

MAE: 32.7% (S&P500) & 32.7% (KOSPI200) 

    

Wen et al., 

2019 

S&P 500 CNN using Motif 

extraction 

Accuracy: 56.14%, Precision: 55.44% 

Recall: 74.75% 

    

Sadia et al., 

2019 

Kaggle 

Dataset 

SVM, Random 

Forest 

Accuracy: 78.7% (SVM), 80.8% 

(Random forest) 

    

Mehtab & 

Sen, 2019 

NIFTY 50 LSTM MAPE: 10.75 

    

Sakshi & A, 

2020 

S&P 500 Prophet forecasting 

LSTM-ARIMA 

hybrid 

 

Prophet: 

RMSE: 27.59, MSE: 761.33 

LSTM-ARIMA hybrid: 

RMSE: 3.03, MSE: 1.74 

Note: GDA: Gaussian Discriminant Analysis, SVM: support vector machine, RBF: Radial Basis Function, RNN: 

Recurrent neural network, LSTM: Long short-term memory, CNN: Convolutional neural network, GRU: Gated 

recurrent units, BPNN: Back Propagation Neural Network. ARIMA: Autoregressive integrated moving average. 

2. Data Description 

This paper uses S&P 500 index close prices from 03.01.2000 till 29.06.2020. The data is 

downloaded from Yahoo Finance. The S&P 500 is a free float-adjusted weighted stock market 

capitalization index in the United States. Taking into consideration the United States is one of 

the financial centers of the world, the S&P 500 is considered one of the most important indexes 

in the world.  
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Figure 1. S&P 500 index

 
Note: S&P 500 index values in US dollars for the period 03.01.2000-29.06.2020. 

3. Methodology 

3.1. Random Walk model  

One of the simplest but yet considered as a very important model in the time series forecasting 

is the Random Walk model. It assumes that for each period the variable has a state away from 

the previous value, and each step is independently and identically distributed (“i.i.d.”). The first 

difference of the variable is a series for which the mean model can be applied. So, if the first 

difference of a time series is an i.i.d. sequence, then it can be said that the Random Walk model 

is possibly a good candidate.  

A Random Walk model can be with “drift” or there might be “no drift” in accordance 

with the distribution of step sizes having a non-zero mean. Random Walk model without drift 

can be represented as follows: 

 𝑌̂𝑛+𝑘 = 𝑌𝑛 (1) 

where: 

n=number of periods, 

k=number of steps ahead forecast, 

𝑌̂=predicted value of y, 

Y=Value at a specific period 

The prediction of a Random Walk model without drift says that all future values are equal 

to the last observed value. However, it does not really mean that all of them are expected to be 

the same, but they can actually be equally likely to be higher or lower. If the Random Walk 

model is extrapolated for forecasting the distant future, they are very likely to go off on a 

horizontal line, which is very similar to the mean model. So, it can be said that they behave like 

the mean model during long term forecasting.  

Random Walk model with drift can be represented as follows: 
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 𝑌̂𝑛+𝑘 = 𝑌𝑛 + 𝑘𝑑̂ (2) 

where: 

𝑑̂=estimated drift, 

k=number of steps ahead forecast 

  The estimated drift 𝑑̂ is the average increment from one period to the next. Hence the 

long-term forecast for a Random Walk with drift model appears to be a trend line, having a 

slope 𝑑̂. The drift 𝑑̂ in Random Walk model can be represented as follows: 

 
𝑑̂ =

𝑌𝑛 − 𝑌1
𝑛 − 1

 (3) 

It is the slope line in between the first and last data point which is different from the slope 

line fitted in simple regression. The slope line is then divided by n-1 period to get the estimated 

drift.  

3.2. ARIMA model 

Autoregressive Integrated Moving Average (ARIMA) became well known after its wide 

description in the first edition of Box and Jenkins (1970), where they prepared procedures for 

specification, estimation diagnostics and forecasting for the univariate time series. 

Figure 2. Schematic Representation of the Box-Jenkin Approach 

 
Source: Makridakis et al., 1983 
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ARIMA (p, d, q) model is divided into three parts: 

● autoregressive - adds dependent variables as p-lagged observations, 

● integrated - describes d - number of differentiations required to make the time series 

stationary, 

● moving average - adds independent variables as q-lagged error terms. 

The model can be described with the following formula: 

 𝑦𝑡 = 𝑎1𝑦𝑡−1 +⋯+ 𝑎𝑝𝑦𝑡−𝑝 + 𝑒𝑡 + 𝑏1𝑒𝑡−1 +⋯+ 𝑏𝑞𝑒𝑡−𝑞 (4) 

where: 

p - is the number of autoregressive lags, 

q - is the number of the error lags, 

yt – is the value of time series at time t, 

et – is the error term at time t. 

There are many methods to calculate the goodness of fit such as Chi-Squared, 

Kolmogorov-Smirnoff and Anderson-Darling, however, the information criteria are considered 

to be one of the most important ones and used in this paper.  

AIC: Akaike information criterion (Akaike, 1974): 

 
𝐴𝐼𝐶 = (

2𝑛

𝑛 − 𝑘 − 1
) 𝑘 − 2𝑙𝑛⁡[𝐿𝑚𝑎𝑥] (5) 

SIC: Schwarz information criterion, also known as Bayesian information criterion BIC 

(Schwarz, 1997): 

 𝐵𝐼𝐶 = 𝑙𝑛⁡[𝑛]𝑘 − 2𝑙𝑛⁡[𝐿𝑚𝑎𝑥⁡] (6) 

HQIC: Hannan-Quinn information criterion (Hannan and Quinn, 1979): 

 𝐻𝑄𝐼𝐶 = 2𝑙𝑛⁡[𝑙𝑛⁡[𝑛]𝑘 − 2𝑙𝑛⁡[𝐿𝑚𝑎𝑥] (7) 

where: 

n = number of observations, 

k = number of parameters for estimation, 

Lmax = the maximized value for the log-Likelihood for the estimated model  

The main way to find the optimal ARIMA model is to find the lowest value of the selected 

information criteria. The -2𝑙𝑛⁡[𝐿𝑚𝑎𝑥]term found in each formula is an estimation of the 

deviation of the model fit. The coefficients k found in the first part in each formula is the degree 

to which the number of the model parameters that are being penalized.  

Once the lowest information criteria are selected, the second step is to estimate the model 

with the selected parameters using OLS estimation or the maximum likelihood estimation. In 

this paper, maximum likelihood estimation is selected due to time efficiency. The last step for 

forecasting in this study is to calculate one step ahead forecast. The detailed procedure is as 

follows: 
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1. Set a training sample for first 4150 days1 in the dataset 

2. Identify the optimal values of p, d, q with p: 0-10, d: 0-3, q: 0-102 

3. Estimate the model for selected p, d, q parameters using the maximum likelihood method3 

4. Forecast one-step ahead 

5. Repeat 1-4 points moving the training sample by one day ahead, until the end of the dataset. 

6. Calculate the error metrics for the testing dataset (last 1005 days) 

3.3. LSTM 

3.3.1. Recurrent Neural Network 

Recurrent Neural Network unlike the classical Neural network is based on loops as it does not 

start every time from scratch. It is a network with loops which allows the information to persist.  

Figure 3. Recurrent Neural Networks are based on loops 

 
Note: Example of single layer in RNN. In the above diagram, xt are inputs and ht are output. A is the neural layer. 

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020. 

The above picture is a representation of a chunk of neural network. A loop allows this 

information to pass from one step to the network towards the next step. A recurrent network 

can be assumed to be multiple copies of the same network and the previous step of the loop 

helps to predict the next step. Here is what an unrolled recurrent network looks like when the 

loops are unrolled.  

Figure 4. An unrolled recurrent neural network 

 
Note: An unrolled recurrent neural network, where xt are inputs and ht are output. A is the neural layer. Source: 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020. 

 
1 The length of the in-sample period was determined by the need to cover at least two significant downward 

(2000-2003, 2007-2009) and upward (2003-2007, 2009-2015) trends of the prices, characterized by different 

volatility and duration. 
2 The rationale for selecting the range for p and d from 0 to 10 was that we wanted to verify diverse possible 

values of orders for MA(p) and AR(q) processes. We pursued the same aim when examining the possible values 

of the order of d in the range d 0 to 3. 
3 WE did not decide to eliminate the intermediate lags due to the necessity to run hundreds of regressions in an 

automatic way. 
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The chain-like Figure 4 reveals that recurrent neural networks are closely related to the 

sequences and lists. In the last few years, there has been great success applying RNNs towards 

a variety of problems such as speech recognition, translation, image captioning, stock price 

forecasting and many others.  

3.3.2. Long-Term Dependencies 

One of the main problems of RNN is the long-term dependencies. RNN in general connects 

previous information to predict the next. However, sometimes the most recent information 

provides the best prediction for the next. However, if there is a considerably large amount of 

data and the prediction performs between only with the most recent information, the gap grows 

and RNN finds it harder to connect the information.   

Figure 5: Problem with long term dependencies 

 
Note: In the above diagram, xt are inputs and ht are output. A is the neural layer.  

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020. 

Figure 5 presents a simple representation of the problem with long term dependencies. If 

𝑥0 and 𝑥1 are the recurrent inputs used for prediction of ℎ𝑡+1, it might not get the result as per 

expectation due to the fact that all previous information might not be relevant for performing 

the present task. Otherwise only the most recent information might be useful. The problem was 

further explored by (Bengio et al., 1994). However, thanks to LSTM which solves this problem. 

3.3.3. LSTM 

There are many types of Recurrent Neural network (RNN). Long Short-Term Memory (LSTM) 

is one of the very popular ones. It is capable of taking data from the past and using this data for 

future predictions (Patterson and Gibson, 2017). LSTM solves the issues related to long term 

dependencies. It was introduced by (Hochreiter and Schmidhuber, 1997) and later refined and 

popularized by many other researchers. Currently, it is widely used and works very well with a 

large variety of problems.  

Figure 6. Architecture of the recurrent neural network 

 
Note: Example of a simple recurrent neural network architecture with a single layer and a tanh activation function, 

where xt are inputs and ht are output. A is the neural layer.  

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Retrieved on 26.11.2020. 



Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412)  10 

 

10 

 

RNN is derived by using hidden states from vanilla neural networks, which are a matrix 

of parameters that are passed between the sequential inputs. The abovementioned is presented 

in Figure 6 with a horizontal arrow. Taking into consideration that the matrix is passed between 

the inputs, it allows transferring information from inputs about the importance of the given 

input, which results in LSTM returning different results for the same input. It takes into 

consideration the weights of each input. 

Figure 7. Architecture of long short-term memory (LSTM) 

 
Note: Example of a multiple layered architecture of LSTM model with input gate, forget gate and output gate, 

where xt are inputs and ht are outputs. A is the neural layer.  

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/, Retrieved on 26.11.2020. 

The key to the LSTM model is the cell state shown with the horizontal line running at the 

top of Figure 7. Even though the LSTM model looks complex at the first glance, the main 

difference between LSTM and the RNN is that it has three outputs instead of two. The first 

output is the memory matrix, which is never transformed with non-linear functions, which 

makes it easier for optimization and solves the problem of gradient vanishing. The second and 

the third output are the same one and are passed as a classical output from the layer and one is 

passed towards the next input cells. A single cell in LSTM can be divided into three parts: 

1. Forget gate 

2. Input gate  

3. Output gate 

A forget gate is a sigmoid function, which is applied on the concatenation of the input 𝑥𝑡 
and the previous output ℎ𝑡−1. It returns the matrix of values from range 0 to 1 and then the 

matrix will be multiplied with the memory matrix. Parameters for which the values are closer 

to 1 will remain in the memory matrix. The second part Input gate adds new weight with the 

memory matrix and updates it. Firstly, the sigmoid function decides the impact of each current 

input data and then the next tanh function applies the non-linear transformation of the modified 

input data. The weight matrix prepared in such a manner is then added to the memory cell. 

Lastly, there is an output gate, which outputs the results obtained with the adjusted memory 

matrix. The main difference between the normal neural network and the LSTM model is that 

LSTM helps to be able to do weight adjustments made in the memory matrix in accordance 

with the importance of past information. 

3.3.4. Hyperparameters 

Deep learning can be a complicated task taking into consideration there are lots of 

hyperparameters. Taking into consideration the size of the deep learning model such as LSTM, 

hyperparameter tuning usually takes a considerably long time. There are two ways to do 
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hyperparameter tuning. The first way is to select one training sample and then use cross- 

validation in order to solve the best hyperparameter on a training sample and use this single 

model for the entire testing period. The second is to use heuristic methods and the literature in 

order to find the optimal hyperparameter. It requires refitting the model several times. The first 

method is not selected since, in order to get the reliable results using the first method of 

optimization, the training sample needs to be significantly higher than the testing sample; for 

instance, to test this method on the last 20 years of data, the model should be tested on the last 

80 years of data, which is considerably time-consuming and the stock market might have not 

had the similar relation as it used to be for such a long period of time. Hence the best method 

to obtain more accuracy it is better to refit the model by tuning several hyperparameters, which 

is explored in the sensitivity analysis chapter. 

The following hyperparameters were selected using heuristic methods:   

● number of units in hidden layers (Neurons): 30 

● number of samples in one iteration (Batch size): 64 

● activation function used for hidden layer: tanh 

● loss function: Mean Squared Error 

● optimizer: Adam 

● epochs: 100 

● learning rate: 0.001  

● default dropout rate for LSTM layer: 0 

3.4. Performance measures 

The predictive ability of each model was evaluated using four error metrics:  

1. Mean absolute error (MAE),  

2. Mean absolute percentage error (MAPE),  

3. Mean squared error (MSE) and  

4. Root-mean-square error (RMSE).  

The formulas are as follows: 

Mean absolute error (MAE): The n-period average of the absolute difference between the 

actual value and predicted value. 

 
𝑀𝐴𝐸 =

1

𝑛
∑  

𝑛

𝑡=1

|𝑦𝑡 − 𝑦̂𝑡| (8) 

where: 

𝑦̂𝑡 - predicted value of y 

𝑦𝑡 - actual value 

Mean absolute percentage error (MAPE): Mean absolute error in percentage terms 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑  

𝑛

𝑡=1

|
𝑦𝑡 − 𝑦̂𝑡
𝑦𝑡

| × 100% (9) 

Mean squared error (MSE): The n-period average squared difference between the actual value 

and the predicted value. 
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𝑀𝑆𝐸 =

1

𝑛
∑  

𝑛

𝑡=1

(𝑦𝑡 − 𝑦̂𝑡)
2 (10) 

Root-mean-square error (RMSE): Square root of MSE. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑡=1

(𝑦𝑡 − 𝑦̂𝑡)2 (11) 

4. Empirical Results 

4.1. Random Walk Model 

Random Walk model generating naïve forecasts has been used as a benchmark strategy in order 

to compare other strategies. The residual refers to the difference between the observed value 

and the actual value of the model. The error refers the difference between the forecasted value 

and the actual value of S&P500 time series data, which has been used for the purpose of 

comparison with other models. Looking at Figure 8 and Table 2, we can observe very poor 

performance.  

Figure 8. Random Walk Model Simulation 

 
Note: Simulation of Random Walk Model where ts refers to time series of S&P500 index.  

Table 2. Error metrics for Random Walk model 

Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

Note: Random Walk model results for S&P 500 index. 

4.2. ARIMA 

This strategy has been optimized using the lowest AIC, BIC and HQIC criteria. Table 2 shows 

that the lowest AIC observed is 34364.292, BIC is 34379.615 and HQIC is 34363.252. The best 

p, d, q values for ARIMA is ARIMA (1,1,1) which has been used during this study.  

Table 3. Statistical measures of fit - Information Criteria  
ARIMA (1,1,1)  

AIC BIC HQIC 

34354.292 34379.615 34363.252 

Note: The lowest measures of information criteria for ARIMA (1,1,1) model.  
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The best p, d, q values for ARIMA trained on S&P 500 dataset from 03.01.2000-

30.06.2016 have been implemented for testing dataset from 01.07.2016 till 29.06.2020 (total 

1005 days). Figure 8 shows that ARIMA (1,1,1) forecasting performed very well in comparison 

to the Random Walk model for one step ahead forecasting. Training and testing size have been 

changed in the sensitivity analysis section to check how it performed during the 2008 financial 

crisis as well as during COVID time in 2020. Main forecast error metrics are summarized in 

Table 4, where we see much lower values for ARIMA model when compared with Random 

Walk model. 

Figure 9. The forecasts of ARIMA (1,1,1) model for S&P 500 index. 

 
Note: Training period: the first 4150 days and testing period: the last 1005 days of S&P 500 index. 

Table 4. Error metrics for ARIMA (1,1,1) model. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

ARIMA 16.96 0.13 741.72 27.23 

Note: Training was performed on the first 4150 days and testing on the last 1005 days of S&P 500 Index. Bolded 

numbers indicate the lowest value of error metric. 

4.3. LSTM 

Figure 10 shows the MSE loss function for the LSTM model with regards to the number of 

epochs. As the number of the epochs increases, it is noted that the losses for both the training 

and testing set decreases and when it approaches near 100 epochs, the loss fluctuations observed 

is closer to 0. More than 100 epochs might lead to overfitting of the model, which is testing 

during the sensitivity analysis section.  
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Figure 10. MSE for LSTM model with various number of epochs. 

 
Note: LSTM strategy with the following hyperparameters: Training period: the first 4150 days and testing: the last 

1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 30, Batch size: 64, 

activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: Adam, epochs: 100, 

dropout rate: 0, learning rate: 0.001. 

Figure 11 presents forecasted values for S&P 500 index with LSTM models. It can be 

noted that LSTM provided considerably good predictions with very low forecast errors, which 

are additionally presented in Table 5. 

Figure 11. The forecasts of LSTM model for S&P 500 index. 

 
Note: The following hyperparameters were used: Training period: the first 4150 days and testing: the last 1005 

days of S&P 500 index. Hyperparameters used: Training: First 4150 datasets and testing last 1005 datasets of S&P 

500 Index. Hyperparameters used: Number of units in hidden layers: 30, Batch size: 64, activation function used 

for hidden layer: tanh, loss function: Mean Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning 

rate: 0.001.  
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Table 5. Error metrics for LSTM model. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

Note: Error metrics for LSTM model. The following hyperparameters were used: Training period: the first 4150 

days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 

30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: 

Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. Bolded numbers indicate the lowest value of error metric. 

4.4. Comparison  

Overall, both tested models were quite good at one step ahead forecasting. As for comparison, 

ARIMA (1,1,1) overall performed better than the LSTM model what is summarized in Table 6. 

Table 6. The comparison of error metrics for ARIMA (1,1,1) and LSTM models. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

ARIMA 16.96 0.13 741.72 27.23 

LSTM 21.77 0.81 1399.43 37.40 

Note: ARIMA (1,1,1) uses the same training and testing datasets: Training: First 4150 days and testing last 1005 

days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 30, Batch size: 64, activation 

function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: Adam, epochs: 100, dropout 

rate: 0, learning rate: 0.001. Bolded numbers indicate the lowest value of error metric. 

5. Sensitivity Analysis 

5.1. ARIMA Sensitivity 

Figure 12 shows ARIMA (1,1,1) with 1760 training days and 3395 testing days. The testing 

dataset starts from the start of 2007 to check how the model performed during the financial 

crisis and afterwards. Figure 12 and Table 7 show that it performed considerably well and the 

financial crisis does not impact much one-step forecasting. Taking into consideration, that 

testing data includes not only the financial crisis, but also the period after the financial crisis, 

where the market was in general upward trending, such good performance makes sense. 

Figure 12. ARIMA (1,1,1) with 1760 training days, 

 
Note: The training dataset was set to the first 1760 observations for the S&P 500 index to see how it performed 

during and after the 2007-2008 financial crisis and afterwards.  
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Figure 13 shows ARIMA (1,1,1) with 3000 training days. It is chosen randomly to check 

how well it is able to predict during non-crisis time. Figure 13 and Table 7 show that it 

performed considerably well for one-step forecasting.  

Figure 13. ARIMA (1,1,1) with 3000 training days. 

 
Note: The training dataset consists of the first 3000 observations for S&P 500 index. 

Figure 14 shows ARIMA (1,1,1) with 5093 training datasets. The testing dataset starts 

from the start of 2020 to check how the model performed during the COVID-19. Figure 14 and 

Table 7 show that it performed the worst in comparison to other training datasets, which is 

reasonable. However, the impact was not very significant during one step ahead forecasting.  

Figure 14. ARIMA (1,1,1) with 5093 training days. 

 

Note: The training dataset was set to the first 5093 observations for the S&P 500 index to see how it performed 

during COVID-19. 
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Table 7. Error metrics for ARIMA (1,1,1) model with various length of training period. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

ARIMA 16.96 0.13 741.72 27.23 

ARIMA 1760 training days 12.87 0.45 391.98 19.80 

ARIMA 3000 training days 13.34 0.30 446.48 21.13 

ARIMA 5093 training days 39.98 0.07 2700.33 51.96 

Note: Dataset used: S&P 500 Index from the beginning of 2000 till mid-2020. 1760 training days period is used 

to check the behaviour of the ARIMA model during and after the 2007–2008 financial crisis.  3000 training days 

period is chosen randomly and 5093 training days period is used to check the behaviour of the ARIMA model 

during the 2020 COVID-19. Initial training days period: 4150 days. Bolded numbers indicate the lowest value of 

error metric. 

5.2. LSTM Sensitivity 

5.2.1. Epochs 

The first tested hyperparameter is the number of epochs. A line plot is created which shows the 

MSE loss function over the number of epochs for both the training (blue) and testing (orange) 

sets. MSE is the default loss function used for the LSTM model. Mathematically, it is a 

preferred loss function under the inference framework of maximum likelihood when the 

distribution of the target variable is Gaussian. In all the epochs evaluated, it can be seen that the 

model learned the problem achieving zero error or at least to three decimal places. Looking at 

Figure 15, 16 and 17 and Table 8, it can be seen that the model performed very well with 100 

epochs and worst with 50 epochs. However, increasing the epochs to 300 leads to overfitting 

of the data.  

Figure 15. LSTM model with 50 epochs 

 
Note: Sensitivity analysis of epochs in LSTM strategy. The following hyperparameters were used: Training: First 

4150 days and testing last 1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 

30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: 

Adam, epochs: 50, dropout rate: 0, learning rate: 0.001. 
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Figure 16. LSTM model with 150 epochs 

 
Note: Sensitivity analysis of epochs in LSTM strategy. The following hyperparameters were used: Training: First 

4150 days and testing last 1005 days of S&P 500 index. Hyperparameters used: Number of units in hidden layers: 

30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared Error, optimizer: 

Adam, epochs: 150, dropout rate: 0, learning rate: 0.001. 

Table 8. Error metrics for LSTM model with various number of units. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: 50 epochs 37.26 1.37 2453.63 49.53 

LSTM: 150 epochs 26.87 0.98 1759.62 41.95 

LSTM: 300 epochs 65.95 2.48 5862.99 76.57 

Note: Error metrics for various number of epochs in LSTM strategy. The following changes in the number of 

epochs were tested: 50 epochs, 150 epochs, 300 epochs. Initial epochs: 100. Bolded numbers indicate the lowest 

value of error metric. 

Figure 17. LSTM model with 300 epochs 

 
Note: Sensitivity analysis for various number of epochs in LSTM strategy. The following hyperparameters were 

used: Training: Note: Training: First 4150 days and testing last 1005 days of S&P 500 index. Hyperparameters 

used: Number of units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss 

function: Mean Squared Error, optimizer: Adam, epochs: 300, dropout rate: 0, learning rate: 0.001. 

5.2.2. Loss Function  

The next tested hyperparameter is the loss function. Figures 18, 19, 20 and Table 9 present 

results using this changed hyperparameter. Three options were tested for loss function: MAE, 
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logcosh and huber loss. Initially, the loss function was set to be MSE. LSTM with huber loss 

performed the best among these three options. However, none of them beat the initial MSE. 

There is not a single loss function which works for all the data types. It depends on many factors 

including the presence of outliers in the data, the choice of the machine learning algorithm, the 

time efficiency of the gradient descent in the data, the ease of finding the derivatives and the 

confidence of predictions. Having in mind that huber loss takes into account the outliers and 

the data had 258 outliers, the result obtained makes sense. 

Figure 18. LSTM model with loss function: Mean Absolute Error (MAE)

  
Note: Sensitivity analysis of loss function in LSTM strategy. The following hyperparameters were used: Training 

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Absolute Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

 

Figure 19. LSTM model with loss function: logcosh 

  
Note: Sensitivity analysis of loss function in LSTM strategy. The following hyperparameters were used: Training 

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: logcosh, 

optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

 



Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412)  20 

 

20 

 

Figure 20. LSTM model with loss function: huber loss 

   
Note: Note: Sensitivity analysis of loss function in LSTM strategy. The following hyperparameters were used: 

Training period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: 

Number of units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: 

huber loss, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Table 9. Error metrics for LSTM model with various loss functions. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: Loss function: MAE 37.40 1.39 2736.53 52.31 

LSTM: Loss function: logcosh 49.42 1.84 3685.27 60.71 

LSTM: Loss function: huber loss 29.88 1.10 2020.87 44.95 

Note: Error Metrics for the loss function in LSTM strategy. The following changes in loss functions were tested: 

MAE loss, logcosh loss and huber loss. Initial loss function: MSE. Bolded numbers indicate the lowest value of 

error metric. 

5.2.3. Optimizer 

The next tested hyperparameter is the optimizer. Figures 21, 22, 23 and Table 10 present the 

result using this changed hyperparameter. The following optimizers were tested: sgd, RMSprop 

and adagrad. Initially the optimizer was set to be adam. The results obtained were not robust to 

changes in the optimizers. The optimization process is important in terms of achieving accurate 

results.  It is noted that the model performed best with the RMSprop optimizer among three of 

these tested hyperparameters. It performed worst with sgd and adagrad. However, none of them 

beat adam optimizer that was set at the beginning.  
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Figure 21. LSTM model with sgd optimizer 

 
Note: Sensitivity analysis of optimizer in LSTM strategy. The following hyperparameters were used: Training 

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: sgd, epochs: 100, dropout rate: 0, learning rate: 0.001. 

 

Figure 22. LSTM model with RMSprop optimizer 

 
Note: Sensitivity analysis of optimizer in LSTM strategy. The following hyperparameters were used: Training 

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: RMSprop, epochs: 100, dropout rate: 0, learning rate: 0.001. 
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Figure 23. LSTM model with adagrad optimizer 

  
Note: Sensitivity analysis of optimizer in LSTM strategy. The following hyperparameters were used: Training 

period: the first 4150 days and testing: the last 1005 days of S&P 500 index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: adagrad, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Table 10. Error metrics for LSTM model with various optimizers. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: Optimizer: sgd 281.03 11.54 95555.80 309.12 

LSTM: Optimizer: RMSprop 105.16 3.98 14158.35 118.99 

LSTM: Optimizer: adagrad 184.50 6.27 43970.19 209.69 

Note: Error Metrics for various optimizer in LSTM strategy. The following changes in optimizers were tested: 

sgd, RMSprop, adagrad. Initial optimizer: Adam. Bolded numbers indicate the lowest value of error metric. 

5.2.4. Activation Functions 

Next tested hyperparameter is the activation function. Figure 24, 25, 26 and Table 11 use these 

changed hyperparameters. The following activation functions were tested: ReLU, ELU and 

sigmoid. Initially, the activation function was set to be tanh. The activation function: ELU 

performed best among these three tested whereas ReLU and sigmoid performed the worst and 

none of the activation functions beat tanh, which was set at the beginning. However, the results 

obtained are not robust to changes in the hyperparameters. - 

Table 11. Error metrics for LSTM Model with various activation functions. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: Activation: ReLU 226.45 9.11 58650.27 242.18 

LSTM: Activation: ELU 67.27 2.54 5822.19 76.30 

LSTM: Activation: sigmoid 230.19 9.21 64842.60 254.64 

Note: Error metrics sensitivity analysis for various activation functions in LSTM strategy. The following changes 

in activation functions were tested: ReLU, ELU, sigmoid. Initial activation function: tanh.  Bolded numbers 

indicate the lowest value of error metric. 
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Figure 24. LSTM model with ReLU activation functions.  

  
Note: Sensitivity analysis of activation functions in LSTM strategy. The following hyperparameters were used: 

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: ReLU, loss function: Mean 

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Figure 25. LSTM model with ELU activation functions.  

  
Note: Sensitivity analysis of activation functions in LSTM strategy. The following hyperparameters were used: 

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of 

units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: ELU, loss function: Mean 

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 
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Figure 26. LSTM model with sigmoid activation functions.  

 
Note: Sensitivity analysis of activation functions in LSTM strategy. The following hyperparameters were used: 

Training: Note: Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters 

used: Number of units in hidden layers: 30, Batch size: 64, activation function used for hidden layer: sigmoid, loss 

function: Mean Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

5.2.5. Number of Units  

The number of units in the hidden layer is also known as a node, or sometimes also called a 

neuron or perceptron. It is a computational unit which has one or multiple weighted input 

connections, there is a transfer function which combines the inputs in some way, and there is 

an output connection. Nodes are organized into layers to comprise a neural network. Each of 

the nodes in the single-layer connects directly to an input variable which then contributes 

towards an output variable. 

Figure 27. LSTM model with the Number of Units equal to 10. 

Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used: 

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of 

units in hidden layers: 10, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Next tested hyperparameter is the number of units in the hidden layer. Figure 27, 28, 29, 

30 and Table 12 show the results of these changes. The following number of units were tested: 

10, 50, 100 and 300. Initially, the number of units was set to be 30 units. It is noted that an 

increasing number of units in the hidden layer leads to better performance, however increasing 
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it more than the optimal units worsens the performance, due to the overfitting of the data. 

However, it depends on the complexity of the problem. It is very hard to find the optimal 

number of units in the hidden layer. Several search methods such as random search, grid search, 

heuristic and exhaustive search methods can be used to find an approximation of the optimal 

number of units to be used in the hidden layer. LSTM with 100 units performed in a similar 

way as with the initial hyperparameter of 30 units. 

Figure 28. LSTM model with the Number of Units equal to 50. 

Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used: 

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of 

units in hidden layers: 50, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Figure 29. LSTM model with the Number of Units equal to 100. 

 
Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used: 

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of 

units in hidden layers: 100, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 
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Figure 30. LSTM model with the Number of Units equal to 300. 

 
Note: Sensitivity analysis of number of units in LSTM strategy. The following hyperparameters were used: 

Training: First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of 

units in hidden layers: 300, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean 

Squared Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Table 12. Error metrics for LSTM Model with various number of units. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: Units:10 73.67 2.77 7079.72 84.14 

LSTM: Units:50 32.98 1.20 2220.63 47.12 

LSTM: Units:100 21.45 0.80 1244.48 35.28 

LSTM: Units:300 49.98 1.84 3440.05 58.65 

Note: Error metrics for various number of units in LSTM strategy. The following changes in number of units were 

tested: Number of units in hidden layer: 10, 50, 100 and 300. Initial number of units: 30. Bolded numbers indicate 

the lowest value of error metric. 

5.2.6.  Batch Size 

Next tested hyperparameter is the Batch size. Figure 31, 32, 33 and Table 13 show the results 

of these changes. The following batch sizes were tested: 32, 128 and 256. Batch size has a great 

impact on learning. It is the number of samples in one iteration. For instance, when a batch is 

put through the network, it averages the gradients. By taking samples from the dataset, the 

gradient can be estimated while reducing computational cost significantly. There are of course 

variants in Gradient Descent Algorithms such as Vanilla Gradient Descent, Stochastic Gradient 

Descent and Mini-Batch Gradient Descent. The smaller the Mini-Batch, the better would be the 

performance of the model (not always) and of course it has got to do with the epochs too for 

faster learning. It is noted that using lower batch sizes with 100 epochs provides better 

performance. However, none of the batch sizes could beat the 64 set at the beginning.  
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Figure 31. LSTM model with Batch Size equal to 32. 

 
Note: Sensitivity analysis of batch size in LSTM strategy. The following hyperparameters were used: Training: 

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in 

hidden layers: 30, Batch size: 32, activation function used for hidden layer: tanh, loss function: Mean Squared 

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Figure 32. LSTM model with Batch Size equal to 128. 

 
Note: Sensitivity analysis of batch size in LSTM strategy. The following hyperparameters were used: Training: 

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in 

hidden layers: 30, Batch size: 128, activation function used for hidden layer: tanh, loss function: Mean Squared 

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

Table 13. Error metrics for LSTM model with various batch size. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: Batch size: 32 28.88 1.05 1916.12 43.77 

LSTM: Batch size: 128 47.31 1.80 3129.70 55.94 

LSTM: Batch size: 256 85.15 3.19 10476.70 102.36 

Note: Error metrics for various batch size in LSTM strategy. The following changes in batch size were tested: 

Batch size: 32, 128 and 256. Initial Batch size: 64. Bolded numbers indicate the lowest value of error metric. 

 

 



Uzzal M.H. and Slepaczuk, R./WORKING PAPERS 5/2023 (412)  28 

 

28 

 

Figure 33. LSTM model with Batch Size equal to 256. 

 
Note: Sensitivity analysis of batch size in LSTM strategy. The following hyperparameters were used: Training: 

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in 

hidden layers: 30, Batch size: 256, activation function used for hidden layer: tanh, loss function: Mean Squared 

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.001. 

5.2.7. Learning Rate 

Next tested hyperparameter is the learning rate. Figure 34, 35, 36 and Table 14 show the results 

of these changes. The following values of learning rate were tested: 0.01, 0.0001 and 0.0005. It 

is noted that lowering the learning rate leads to better performance. The learning rate controls 

how quick the LSTM model is adapted to the problem. Several optimizers use default learning 

rates as per its calculation methods. For instance: Adam optimizer uses the default learning rate 

of 0.001.  

Figure 34. LSTM model with learning rate equal to 0.01. 

 
Note: Sensitivity analysis of learning rate in LSTM strategy. The following hyperparameters were used: Training: 

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in 

hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared 

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.01. 

It is noted that smaller learning rates require more training epochs considering the 

smaller changes are made to the weights for each update, whereas larger learning rate results 

in rapid changes and requires fewer training epochs. A learning rate which is too large can 
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cause the model converging too quickly towards a suboptimal solution, whereas a learning 

rate which is too small can cause the process to get stuck. The challenge of training deep 

learning neural networks involves selecting the learning rate in a careful manner as it is one of 

the most important hyperparameters for the model. 

Figure 35. LSTM model with learning rate equal to 0.0005. 

 
Note: Sensitivity analysis of learning rate in LSTM strategy. The following hyperparameters were used: Training: 

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in 

hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared 

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.0005. 

Figure 36. LSTM model with learning rate equal to 0.0001. 

  
Note: Sensitivity analysis of learning rate in LSTM strategy. The following hyperparameters were used: Training: 

First 4150 datasets and testing last 1005 datasets of S&P 500 Index. Hyperparameters used: Number of units in 

hidden layers: 30, Batch size: 64, activation function used for hidden layer: tanh, loss function: Mean Squared 

Error, optimizer: Adam, epochs: 100, dropout rate: 0, learning rate: 0.0001. 
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Table 14. Error metrics for LSTM model with various learning rate. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: Leaning Rate: 0.01 51.27 1.85 4752.21 68.94 

LSTM: Leaning Rate: 0.0005 23.09 0.87 1223.28 34.98 

LSTM: Leaning Rate: 0.0001 39.29 1.44 4439.35 66.63 

Note: Error metrics for various learning rate in LSTM strategy. The following changes in learning rate were tested: 

Learning rate: 0.01, 0.0001 and 0.0005. Initial learning rate: 0.001. Bolded numbers indicate the lowest value of 

error metric. 

5.2.8. Summary of LSTM sensitivity analysis 

Table 15 summarizes the results of the whole sensitivity analysis for LSTM model. 

Table 15. The summary of error metrics for LSTM model. 
Model Name MAE MAPE MSE RMSE 

Random Walk 958.36 34.42 1135820.64 1066.57 

LSTM 21.77 0.81 1399.43 37.40 

LSTM: 50 epochs 37.26 1.37 2453.63 49.53 

LSTM: 150 epochs 26.87 0.98 1759.62 41.95 

LSTM: 300 epochs 65.95 2.48 5862.99 76.57 

LSTM: Loss function: MAE 37.40 1.39 2736.53 52.31 

LSTM: Loss function: logcosh 49.42 1.84 3685.27 60.71 

LSTM: Loss function: huber loss 29.88 1.10 2020.87 44.95 

LSTM: Optimizer: sgd 281.03 11.54 95555.80 309.12 

LSTM: Optimizer: RMSprop 105.16 3.98 14158.35 118.99 

LSTM: Optimizer: adagrad 184.50 6.27 43970.19 209.69 

LSTM: Activation: ReLU 226.45 9.11 58650.27 242.18 

LSTM: Activation: ELU 67.27 2.54 5822.19 76.30 

LSTM: Activation: sigmoid 230.19 9.21 64842.60 254.64 

LSTM: Units:10 73.67 2.77 7079.72 84.14 

LSTM: Units:50 32.98 1.20 2220.63 47.12 

LSTM: Units:100 21.45 0.80 1244.48 35.28 

LSTM: Units:300 49.98 1.84 3440.05 58.65 

LSTM: Batch size: 32 28.88 1.05 1916.12 43.77 

LSTM: Batch size: 128 47.31 1.80 3129.70 55.94 

LSTM: Batch size: 256 85.15 3.19 10476.70 102.36 

LSTM: Leaning Rate: 0.01 51.27 1.85 4752.21 68.94 

LSTM: Leaning Rate: 0.0005 23.09 0.87 1223.28 34.98 

LSTM: Leaning Rate: 0.0001 39.29 1.44 4439.35 66.63 

Note: Summary of the error metrics for LSTM hyperparameters used during sensitivity analysis. Bolded numbers 

indicate the lowest value of error metric. 

Conclusions 

Technology has revolutionized the functions of financial markets and the way the financial 

assets are traded. Two significant technological changes are that the investors are using 

computers to automate their trading activity and the markets rearranging themselves in such a 

way that virtually all markets are now based on electronic limit order books (Jain, 2005). The 

quality and speed of access to such markets encourage the use of algorithmic trading by 

investors. What is more, the main aim of this automated trading was to delete human errors in 
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trading and risk management. None of the trading strategies could provide perfect forecasting 

methods, however, the investors are always interested in trading strategies that are able to 

predict the future price with high accuracy. The main aim of this paper is to investigate which 

forecasting methods provide the best predictions with regards to lower forecasting errors. A 

classical model such as ARIMA is compared with a machine learning model such as LSTM. 

This research focuses on the performance of ARIMA and LSTM using various error 

metrics. The study assumes that there is asymmetric information in the stock market which 

makes it possible to analyze the volatility in the stock prices, as well as predicting the prices 

within available historical data. This paper uses S&P 500 index close prices from 03.01.2000 

t0 29.06.2020. This study uses Random Walk model generating naïve forecasts as a benchmark 

model. Both ARIMA and LSTM perform better than the benchmark model, in terms of lower 

forecasting errors.   

  The results for all the models were obtained using Python (version 3.8.5) with Jupyter 

Notebook (version 6.0.3) development environment. All the relevant libraries and packages 

were installed using Anaconda Prompt (conda version 4.8.5) on a 64-bit Windows 10 operating 

system. Deep learning libraries used for designing, training, and testing the neural network are 

Keras (version 2.4.3) and TensorFlow (version 1.8.0).  

At the beginning of this research four main hypotheses and one research question were 

stated, and they were verified and answered during the empirical part. The first hypothesis is 

rejected since the result showed that ARIMA outperforms LSTM in terms of one-step ahead 

forecasts, which is similar to the results obtained by (Siami-Namini et al., 2018). Several 

combinations of hyperparameters for LSTM were tested during sensitivity analysis sections, 

however, it was unable to beat the ARIMA (1,1,1).  The second hypothesis that LSTM is robust 

to changes in the hyperparameters was rejected since the results obtained during sensitivity 

analysis do not show robustness of this model. The third hypothesis, i.e. Increasing the number 

of epochs leads to better performance of the model, however using more than the optimal 

number of epochs leads to an over-fitted model was not rejected based on the sensitivity 

analysis. The fourth one, i.e. Using the wrong optimizer and activation function can 

significantly worsen the accuracy of the LSTM model, was not rejected based on our results. 

Finally, research question (RQ1): Can we use one step ahead forecasts from ARIMA or LSTM 

model in buy/sell signals of investment strategies? can be answered positively based on the 

results of this study. 

This study can be extended by testing more hyperparameters of the LSTM model and 

using rolling regression for forecasting.  The use of cross-validation such as K-fold, Stratified 

K-Fold, and Leave-P-Out can be applied instead of one step forecasting. More various strategies 

can be implemented and combining them into a complex sophisticated model could provide 

better performance. Additionally, investment could be done based on the models, where 

buy/sell/hold signal generations could be implemented and then performance statistics such as 

Information Ratio, Maximum Drawdown could be calculated, which would be more attractive 

to the investors. As for LSTM, looking for optimization of hyperparameters using grid search 

could be implemented in future works. 
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