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Introduction

Numerous studies have been conducted on the ongoing debate surrounding the pre-
dictability of financial markets, but no agreement has been established yet. With the rise
and development of effective machine learning (ML) algorithms in recent years, it is not
surprising that this topic has resurfaced. Today’s ML algorithms complete jobs that until
recently could only be undertaken by highly skilled people. This has resulted in both
academia and practitioners seeking an innovative technology that will revolutionize how
everyone invests for years.

The emergence of High-Frequency Trading during the previous two decades has caused
a very rapid transition in the financial markets. Looking at daily closing prices does not
provide us with a complete view of the market. This is why in our research, we attempt to
develop a successful algorithmic investment strategy (AIS) not just utilizing daily data, but
also using intra-day prices. Our study focuses on the application of the Long Short-Term
Memory (LSTM) networks. The following are our research questions:

RQ1. Which type of LSTM model architecture generates the best buy/sell
signals for Bitcoin and/or S&P 500 Index algorithmic trading?

RQ2. Does intra-day data improve the performance of transactional systems
compared to systems using daily data?

RQ3. Does ensembling assets or signal frequencies improve the outcomes of
investing strategies when compared to individual strategies?

RQ4. Does hyperparameter tuning help achieve better performance of the
investment strategy?

RQ5. Do the results of the study change under different assumptions?

The assets under consideration are the S&P 500 Index (SPX) and Bitcoin (BTC). Our
in-sample data begins on 2013-01-01 for daily data and 2014-01-01 for higher frequencies.
We decided to limit the in-sample data for intra-day since in 2014 Bitcoin volatility
was quite high and the trading volumes were low, and intra-day prices might have been
unreliable. The out-of-sample data ranges from 2014-02-06 to 2020-11-27 for S&P 500
Index and 2014-02-01 to 2020-12-01 for Bitcoin. This difference was driven by the fact that
S&P 500 Index trading hours are restricted, while Bitcoin trading hours are 24 hours per
day, every day. The length of the out-of-sample period is the same across all frequencies
to ensure comparability between them.

In order to answer the research questions, we undertake empirical research that involves
developing AlSes based on signals from different types of LSTM model architectures (called
approaches). Each approach is tested on data collected at three different intervals: daily,
hourly, and every 15 minutes. In addition, we aggregate signals from all three frequencies
into an ensemble investment strategy by taking the majority vote of the models for price
movement prediction. Having three predictors should result in a more robust outcome.
The strategies’ performance is then compared to one another.

To generate buy/sell signals, we use the LSTM model for price prediction, based on
a walk-forward approach. We start with hyperparameters found in the literature and
then adjust them with hyperparameter tuning. It is expected that the models based on
hyperparameters that were chosen by the algorithm, will perform better.
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Then we utilize LSTM to forecast price direction rather than the price itself in Approach
#3 and #4. This model should be better suited for the needs of generating investment
signals since the loss function makes more sense in this scenario - the algorithm is penalized
for making a wrong decision. Finally, we conduct sensitivity analysis to see whether the
study’s findings alter under other assumptions.

This paper has the following structure: Section 1 includes a brief review of the literature,
focusing on the use of recurrent neural networks in stock or cryptocurrency price prediction.
Section 2 describes in detail the data and financial instruments used in this study. Section
3 outlines the study’s methodology, which includes a description of the LSTM, a walk-
forward approach, the construction of an equity line, an ensemble model, and performance
metrics. It also contains a research description, which explains all of the approaches used
in the research. Section 4 presents the empirical results in the form of a chart of equity
lines and a table of performance metrics. The outcomes are compared to the benchmark
- the buy-and-hold strategy. In section 5, a sensitivity analysis is performed to see how
the most promising approach’s outcomes change when the hyperparameters are altered.
Finally, conclusions of the research are provided in section 6.

1 Literature review

Academics have been interested in the issue of financial market efficiency and, conse-
quently, predicting stock price movements for decades now. The high interest has thus
resulted in a lot of research that includes the usage of machine learning methods. The
Efficient Market Hypothesis, also known as Random Walk Hypothesis, states that financial
markets are unpredictable because current asset prices already include all publicly available
information. The theory is known in three forms (the “weak”, the “semi-strong” and the
“strong”). All three versions imply that short-run movements in stock prices cannot be
predicted. The weak form undermines the foundations of technical analysis by stating
that stock prices behave like a random walk. The semi-strong version argues that all
public information is already included in the stock price, diminishing fundamental analysis.
The strong version goes even further, claiming that all information about the company is
reflected in the price of the stock, even if it is not publicly available. (Malkiel, 1973).

Fama (1970) argues that there exists some statistically significant evidence for positive
dependence in daily returns and it can be used to create profitable trading strategies but it
is either insufficient or still consistent with the efficient market hypothesis. Malkiel (2005)
goes as far as to say that active equity management is unlikely to obtain higher rates of
return than passive investing. On the other hand, behaviouralists state that prices of equity
shares can be away from their fundamental value and professional portfolio managers not
beating benchmark does not necessarily mean that the market is efficient (Barberis and
Thaler, 2002). The broad community of practicing technical analysts (“technicians”) are
also in opposition to the Random Walk Hypothesis, claiming that prices can be predicted
based on historical price returns (Lo and Hasanhodzic, 2010). Finally, it is argued that
the existence of stock market phenomena and serial correlations among economic figures
influencing the market are evidence against the Efficient Market Hypothesis (Abu-Mostafa
and Atiya, 1996).
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1.1 Statistical approach

Due to the lack of agreement on the efficient market hypothesis, numerous studies have
attempted to analyze and forecast asset prices, particularly stock prices. Many statistical
techniques have been developed and tested for this purpose so far. A common smoothing
method for time series data is called the exponential smoothing model (ESM), which
effectively employs the exponential window function to smooth the data and analyze it
(Billah et al. 2006). The adaptive ESM model and the ANN are compared by De Faria et
al. (2009) for forecasting Brazilian stock indices. Their investigation demonstrates that
both approaches yield comparable outcomes when it comes to forecasting index returns.
It is argued that neural networks do better than the ESM at predicting the right sign of
index return.

The Box-Jenkins Model for time series prediction was developed by two mathematicians:
George Box and Gwilym Jenkins. They describe the concepts of their model, also
known as ARIMA (autoregressive integrated moving average), in their publication “Time
Series Analysis: Forecasting and Control” (1976). The method uses three principles:
autoregression, differencing and moving average. This autoregressive model has been
widely used for stock price prediction.

Ariyo et al. (2014) build a stock price predictive model using the ARIMA model on
New York Stock Exchange and Nigeria Stock Exchange data. The results show that the
ARIMA model demonstrates a capability for short-term price prediction and is able to
compete with other forecasting techniques, namely Artificial Neural Networks (ANNs).

Azari (2018) demonstrates the utility of the ARIMA model in predicting the future
value of Bitcoin by analyzing price time series over a three-year period. They find out that
this method works well for short-term prediction, such as one day, when the time-series
behavior is relatively constant. However, the ARIMA model fails to account for the sudden
changes in price, such as the volatility towards the end of 2017. In general, it produces
significant prediction errors for a long-term projection or when trained during a three-year
period in which the Bitcoin price has changed substantially.

1.2 Machine Learning Approach

It is not surprising that many machine learning (ML) techniques have been researched
for forecasting the direction of financial instruments’ prices given the recent increase
and development of powerful computers and efficient machine learning (ML) algorithms.
Support Vector Machine (SVM), Decision Trees, and ANNs are examples of supervised
learning approaches that can be trained to forecast asset prices and trends based on
previous data and provide insightful historical price analysis.

Long short-term memory (LSTM) networks were developed by Hochreiter and Schmid-
huber in 1997. LSTM was found to be much more successful and learn much faster than
other recurrent neural network (RNN) architectures (Hochreiter and Schmidhuber, 1997).
The biggest advancement in comparison with previously designed RNNs is that LSTM is
able to capture long-term relationships thanks to the lack of vanishing gradient problem.
LSTM networks have revolutionized speech recognition but prove to be effective for other
sequential tasks like stock price prediction.

Siami et al. (2018) examine if and how recently discovered deep learning-based time
series forecasting algorithms, including LSTM, outperform more established ones. LSTM
and other deep learning-based algorithms are found to perform better than more conven-
tionally based algorithms like the ARIMA model. More specifically, the average error
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rate reduction achieved by LSTM was between 84 and 87 percent lower than ARIMA,
demonstrating LSTM’s superiority over ARIMA. Furthermore, it was found that the
trained forecast model behaved truly randomly and that the number of training cycles, or
“epochs” as it is known in deep learning, had no impact on its performance.

Grudniewicz and Slepaczuk (2021) apply several Machine Learning algorithms to
technical analysis indicators for the WIG20, DAX, S&P 500, and a few selected CEE
indices. The study’s findings reveal that quantitative techniques beat passive strategies in
terms of risk-adjusted returns, with the Bayesian Generalized Linear Model and Naive
Bayes being the top models for the investigated indices.

Di Persio and Honchar (2017) use the price of Google stock to investigate the perfor-
mance of three distinct recurrent neural network models: a basic RNN, the LSTM, and
the Gated Recurrent Unit (GRU). The authors also describe and illustrate the hidden
dynamics of RNN. It is clear from the data that the LSTM beat other versions with a 72
percent accuracy on a five-day horizon.

Kijewski and Slepaczuk (2020) implement buy/sell signals by using algorithmic invest-
ment strategies based on traditional techniques and a recurrent neural network model
(LSTM). The study evaluates the effectiveness of investment algorithms on S&P 500
index time series that span 20 years of data from 2000 to 2020. The method for dynamic
parameter optimization throughout the backtesting process is presented in this study by
employing a rolling training-testing window. The combination of signals from several
methods performed well and doubled the returns on the same level of risk of the Buy &
Hold strategy benchmark. LSTM model was found to be substantially less resistant to
changes in parameters than conventional techniques, according to a thorough sensitivity
study.

Additionally, studies attempt to use an ensemble or hybrid technique with LSTM. A
deep learning-based hybrid model made up of the well-known DNN architectures LSTM
and GRU is developed by Hossain et al. (2018). The S&P 500 time series, which spans over
66 years, is used by the authors to train a prediction model (1950 to 2016). In this method,
the input data is passed to the LSTM network to produce a first-level prediction, and
the output of the LSTM layer is passed to the GRU layer to provide the final prediction.
The suggested network outperforms earlier neural network techniques, achieving a Mean
Squared Error (MSE) of 0.00098 in prediction.

Non-stationarity is not taken into consideration in the majority of current studies.
An excellent illustration of how an LSTM-RNN-based model may provide exceptional
predictions on non-stationary data is Shah et al. (2018). The study of Shah et al. (2018)
demonstrates that the LSTM model not only provides excellent results for daily forecasts,
i.e., predictions made one day in advance, but also provides more than satisfactory outcomes
for predictions made seven days in advance using simply the daily price as a feature. The
authors purposefully use a larger training dataset (price data spanning 20 years), as that
time span includes numerous market ups and downs. Authors claim that the LSTM RNN
exhibits potential for identifying underlying trends and producing longer-term forecasts
on volatile stock data sets with the addition of more features.

Cross-validation of ML models is another issue in financial time series forecasting. To
predict future asset values, Baranochnikov and Slepaczuk (2022) present a walk-forward
procedure that is in charge of training models and choosing the best one. They test the
algorithms on four financial assets (Bitcoin, Tesla, Brent Oil, and Gold) and discover that
LSTM outperforms GRU in the vast majority of cases.

Stock price and return are two of the most frequent input elements in a directional
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forecasting model. The decision between the former and latter variables is frequently
arbitrary. Kamalov et al. (2021) compare the efficiency of stock price and return as input
features in directional forecasting models, using historical data from ten high-cap US
corporations spanning 10 years. They use four well-known categorization techniques as
the foundation for the forecasting models in the investigation. As an independent input
feature, stock price performs better than return, according to the findings. When technical
indicators are included in the input feature set, the difference diminishes. Authors come
to the conclusion that when predicting the direction of price movement, price is typically
a more powerful input characteristic than return value.

Due to the notable increase in cryptocurrency trading on digital blockchain platforms,
Machine Learning techniques are increasingly being used for reliable prediction of highly
nonlinear and noisy data. Suhwan et al. (2019) investigate and examine numerous cutting-
edge deep learning techniques for predicting Bitcoin prices, including deep neural networks
(DNN), long short-term memory (LSTM) models, convolutional neural networks, deep
residual networks, and their combinations. Experimental results reveal that while DNN-
based models outperform the other models for the direction of price movement prediction,
LSTM-based models surpassed the other models for price prediction. Additionally, prof-
itability evaluation revealed that classification models were superior to regression models
for algorithmic trading.

The current developments in high-frequency data estimation are linked not only to
technical progress and big data’s expanding processing power but also to the need to
comprehend and forecast the behavior of variables across shorter time horizons. Lahmiri
and Bekiros (2020) use three different types of ML models in high-frequency trading of
Bitcoin: (i) algorithmic models like regression trees, (ii) statistical ML approaches like
support vector regressions (SVR), and (iii) ANN topologies like feedforward (FFNN) or
Bayesian regularization (BRNN). Their findings indicate an overall superiority of artificial
neural networks in noisy signal environments.

Michankéw et al. (2022) forecast the Bitcoin and S&P 500 index values using data
from 2013 to the end of 2020 and the following frequency ranges: daily, 1 h, and 15
min. They create their own loss function, which enhances the LSTM model’s predictive
power in algorithmic investing strategies. They find that the main factors influencing the
effectiveness of LSTM in algorithmic investment strategies are the method used to tune
the hyperparameters, the model’s architecture, and the estimation process.

In the spot and futures markets for the S&P 500, Schulmeister (2009) examines how
technical trading strategies can use momentum and reversal effects. Based on daily
statistics, 2580 technical models’ profitability has continuously decreased from 1960 and
has been negative since the early 1990s. The same models, however, yield an average gross
return of 7.2% each year between 1983 and 2007 when based on 30-minutes-data. This
outcome may be the consequence of recent improvements in stock market efficiency or a
change in stock price trends from 30-minute prices to higher frequency pricing.

To summarize, many studies indicate that the LSTM model outperforms other tech-
niques, particularly statistical approaches (e.g., ARIMA models), especially for non-
stationary data. It has been proposed that models perform better when the input value is
asset price rather than return. It has further been suggested that intra-day data-driven
strategies should outperform inter-day data-driven strategies. In our study, we aim to
enhance the research by comparing different types of LSTM models to develop successful
trading strategies using prices as input data. We will also investigate whether intraday
data can increase the strategy’s profitability.
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2 Data description

In our study the trading algorithm is tested on two assets: Bitcoin (BTC) and S&P 500
Index (SPX). The choice of these two assets has been dictated by the availability of intraday
data. Historical intraday data from the securities trading markets is rarely available for
free, especially for a longer period, which is essential to backtest the investment strategy.

In case of Bitcoin, we downloaded raw transactional data from Bitstamp - the world’s
longest-standing cryptocurrency exchange - and grouped it into OHLC (open-high-low-
close) data, with different frequencies (15 minutes, 1 hour, and 1 day). In this manner,
we obtained closing prices, which we used in the study, Regarding S&P 500 Index, we
gathered data from CBOE, which contained bid and ask prices at a 1-minute frequency.
We combined them into mid prices and again derived OHLC data for frequencies given
above. In our analysis for S&P 500 Index, as for Bitcoin, we only use the closing price.

These two financial instruments differ significantly in terms of volatility. Figures 1
and 2 depict S&P 500 Index and Bitcoin prices as well as rolling 2-week volatility across
the examined period. It is apparent that Bitcoin prices are characterized by very high
volatility, especially in the period until 2014. Our sample is restricted in such a way
that for all frequencies the out-of-sample period starts on 2014-01-01. The sample was
restricted for both of the assets to ensure comparability of results. For S&P 500 Index we
removed observations for which there was no trading - namely holidays and prices after 1
pm at partial holidays (days when the stock exchange closes early).

Figure 1: S&P 500 Index value and rolling 2-week volatility

Panel A: S&P 500 Index value Panel B: 2-week rolling volatility of S&P 500 Index
$3,500 A
30% A
$3,000
20% A
$2,500
$2,000 10% - M
$1,500 00

2013 2014 2015 2016 2017 2018 2019 2020 2021 2013 2014 2015 2016 2017 2018 2019 2020 2021

Note: Daily data from 2013-01-02 until 2020-11-27. Calculated using bid-ask prices from CBOE. 2-week rolling volatility means the
Standard Deviation of the last 10 daily returns, annualized.
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Figure 2: Bitcoin price and its rolling 2-week volatility

Panel A: Bitcoin price Panel B: Rolling 2-week volatility of Bitcoin

$20,000 125% 1
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Note: Daily data from 2013-01-01 until 2020-12-01. Calculated using transactional prices from Bitstamp. 2-week rolling volatility
means the Standard Deviation of the last 14 daily returns, annualized. access: https://api.bitcoincharts.com/v1/csv/

The descriptive statistics obtained for all financial instruments at all frequencies are
shown in Table 1. We can notice that the average return across all frequencies and for
both instruments is positive. We cannot compare the Standard Deviation across frequency
and assets since it is not annualized.

We can observe that the distributions of all the time series under study exhibit
the negative skewness and leptokurtosis that characterize time series in finance. The
distribution’s negative skewness suggests that an investor could anticipate frequent small
gains and occasional heavy losses. With a leptokurtic distribution, there is a larger chance
of receiving exceptionally low or high returns due to wider fluctuations. A leptokurtic
distribution with negative skewness (left-tailed distribution) suggests a higher risk due to
the increased likelihood of negative outliers.

Table 1: Descriptive statistics for the log returns series

Frequency Mean Standard Maximum Minimum Skewness Kurtosis Jarque-Bera
deviation p-value

S&P Index
daily 0.0005 0.0109 0.0900 -0.1280 -1.0317 25.6865 0
hourly 0.0001 0.0041 0.0563 -0.0720 -1.2678 43.7967 0
15-minute 0.0000 0.0021 0.0503 -0.1066 -4.6923 284.1831 0

Bitcoin

daily 0.0025 0.0467 0.3375 -0.6639 -1.4953 27.9631 0
hourly 0.0001 0.0086 0.2055 -0.1809 -0.4622 37.9786 0
15-minute 0.0000 0.0046 0.1796 -0.1563 -0.5600 73.1581 0

Note: The statistics for the log-returns series are not annualized. The null hypothesis of the Jarque-Bera test is that the distribution
is normal.

The Jarque-Bera test measures how well sample data fit a normal distribution in
terms of skewness and kurtosis. The statistic can be applied to determine if the data
are representative of a normal distribution. We can reject the null hypothesis that the
distribution is normal since the p-value of the test for all time series is less than 0.
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3 Methodology

3.1 LSTM

Artificial neural networks (ANN) loosely mimic the primary actions of biological
learning systems (Jain et al., 1996). Simple units, called neurons, process a vector of
input values and provide a single output value. Feed-forward neural networks (FFNNs)
are the most frequent form of conventional neural network. In this system, neurons are
structured in layers, where each neuron calculates a weighted sum of its inputs. The input
layer receives signals from the environment, whereas the output layer transmits signals
to it. Hidden neurons are connected to other neurons but are not directly linked to the
environment. Feed-forward neural networks are loop-free, meaning that neurons forward
signal to the next layer, never returning it back to the previous one. Consequently, only
static classification tasks can be handled by feed-forward neural networks. As a result,
they can only offer a static matching between input and output. A so-called dynamic
classifier is required to model sequential prediction tasks.

Feed-forward neural networks can be expanded to support dynamic classification.
We must feed signals from earlier timesteps back into the network in order to gain this
capability. The term “Recurrent Neural Networks” refers to these networks with recurrent
connections (RNN). RNNs have an internal state at each classification time step. Circular
connections between neurons in higher and lower layers as well as connections for optional
self-feedback are responsible for this. RNNs can convey data from earlier events to current
processing steps thanks to these feedback links. RNNs develop a memory of time series
events as a result. However, RNNs can only look back around ten timesteps at a time
(Gers et al., 2000). The reason for this is that the gradient that carries information tends
to either vanish or explode. This means that the process of learning long data sequences
is hampered.

Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) were used to
overcome this problem of either vanishing or exploding gradient. The solution uses a
special structure of the repeating module, which has four neural network layers that
interact in a unique way. Multiplicative gate units control access to the cells and learn
when to allow it. Depending on the size of the created network, LSTM networks are able
to learn more than 1,000 timesteps (Sepp et al., 1997).

The LSTM’s core architecture is as follows. Let x; stand for the input at the present
time step t and h;_; stand for the output of the hidden layer at step ¢ — 1. The cell state
Cy is the LSTM’s central component. The LSTM solves the vanishing gradient issue by
allowing the gradient to be propagated effectively even after the cell state (C') was passed
many steps before.

The first element of the LSTM cell is the forget gate f;. Then the input gate i; defines
the information to update. Before a new cell state value is changed, the new candidate
value C, is momentarily stored. h;_; and z; are the inputs at each step, and the output
is generated using the parameters of the weights, biases, and the activation function
(e.g. tahn or ReLU). Following is the calculation for the gates:

fe = oWy [he1, 2] + by) (1)

g = o(Wi  [hy_1, 2] + b;)) (2)
Cy = tanh(We * [hy_1, 2] + be) (3)
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The forget gate f; is then multiplied element-wise with the cell state C;—; and the
input gate i; is multiplied element-wise with the potential candidate value C;. The cell
state C is determined by the sum of these two.

Ct:ft*ctfl‘i‘it*é (4)

The output gate o; is the final component of the cell. This gate decides what information
will be in the output.
Oy = U(WO * [ht—h :Et] + b0> (5)

The final step is to calculate the hidden state h;.
hi = o x tanh(C}) (6)
The construction of an LSTM cell is seen in Figure 3.
Figure 3: The LSTM cell’s structure.
hy

*

C.s A pe N C
\Z5 -*'_/ T g

\tanh

fe r‘)(") Ot r‘)
Cel ‘
hti o tanh o] +ht

LSTM cell

source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

3.2 Walk-forward approach

Cross-validation (CV) is a technique used to avoid overfitting by measuring out an ML
algorithm’s generalization error. CV is simply another example of how traditional ML
approaches to financial issues go wrong. CV’s hyper-parameter adjustment will increase
overfitting. Because observations cannot be considered to be produced out of an 11D
process, CV fails in financial time series analysis and forecasting.

Instead, what financial researchers often use is a walk-forward approach. First, in-
sample data is used to optimize the trading strategy. Following the in-sample data, a small
portion of the rest of the data is evaluated, and the results are stored. Then, the period
covered by the out-of-sample test is added to the in-sample time frame, and the procedure
is repeated. Finally, by employing such a walk-forward optimization technique, we are able
to generate a relatively long total out-of-sample duration made up of numerous shorter
OOS periods. This prolonged total OOS is used to assess the performance metrics of tested
investing strategies. Figure 4 provides an illustration of the walk forward optimization.


https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 4: Walk forward optimization chart with 1-year in-sample periods with 0.5 years
out-of-sample periods.

1 year 0.5 years
in-sample out-of-sample
in-sample out-of-sample
in-sample out-of-sample

in-sample out-of-sample

30.06.2017

31.12.2014 30.06.2015 31.12.2015 30.06.2016 31.12.2016

total out-of-sample period

Walk-forward approach has two major benefits: (1) WF has a direct historical inter-
pretation. Its success can be explained by paper trading - in other words, we simulate
purchasing and selling decisions without placing actual orders. (2) Since history acts as
a filter, employing sequential data ensures that there is no leakage between testing and
out-of-sample datasets.

The walk-forward method may also be used to tune hyperparameters. A validate period
follows the in-sample and is before the out-of-sample in this scenario. The walk-forward
model training with the hyperparameter adjustment procedure is analogous to the process
described above.

3.3 Construction of equity line

In order to show how LSTMs may be used in algorithmic trading, a straightforward
buy-sell trading strategy is chosen based on whether the instrument price is anticipated to
rise or fall over the next time period. For simplicity, we assume that the orders we place
will not have an effect on the market and that they are executed instantly, at the last
close price. As both S&P 500 Index and Bitcoin markets are very liquid, this assumption
seems not far from the truth. If our model sends a “buy” signal, the strategy closes out a
short position and takes a long position. If the long position was already taken, it leaves
the position open. If the model sends a “sell” signal the algorithm takes a short position.
To calculate the cumulative unrealized P&L the following assumptions are used:

1. The account is opened with $1.000;
2. Positions can be opened in any amount, they do not have to be full units;

3. Transaction costs are calculated for each opening and closing of the position, which
means changing position from short to long will incur double costs. Transaction cost
for S&P 500 Index amounts to 0.005%*, for Bitcoin it is 0.1%?;

IThe transactional cost is the sum of the nominal cost and half of the bid-ask spread, divided by the
value of the investment (e.g. for a very liquid futures contract on E-mini S&P 500 Index quoted on CME
and Globex). We assume the nominal cost at the level of 1.5 USD, a contract multiplier of 50 USD, the
level of the index of 3-4 thousand USD on average, and a minimum spread of 12.5 USD per contract
(=0.25*$50). Therefore, finally we have TC%=($1.54-0.5*$12.50)/($3000*50)=0.005%

2 Average transaction cost in percentage terms of the largest platforms (Binance, Coinbase, Bitstamp)
over the last 10 years.
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4. If the leverage is used, the cost of leveraging and the required margin are ignored.
Additionally, if the leverage is lower than 1 (where leverage equal to 1 means no
leverage), the cash account is assumed to accrue zero interest;

5. No risk mitigation strategies, such as setting stop-loss orders, are used;

6. The benchmark “buy-and-hold” strategy is created using the same assumptions. The
long position is opened in the first period and held throughout the whole period.

The assumptions above provide a foundation for the practical application of this
research, simulating the P&L of our strategy in conditions as close to the market ones.

3.4 Ensemble models

We also test the efficacy of a strategy based on a mix of signals from models based
on daily, hourly, and 15-minute data in our study. We collect the votes from all three
models every 15 minutes, so if the hourly model delivers a “buy” signal, it will create four
15-minute “buy” signals. The majority vote is then used to determine our buy-sell signal.
As a result, we should see fewer changes in positions compared to a strategy based only on
15-minute signals. An illustration of the ensemble signal combination is presented below,
in Figure 5.

Figure 5: A demonstration of an ensemble model for different frequencies.

signal
15-minutes hourly daily ensemble
18.03.2015 14:45 buy buy buy buy
18.03.2015 15:00 sell buy
18.03.2015 15:15 sell sell sell
18.03.2015 15:30 sell sell
18.03.2015 15:45 buy buy
19.03.2015 16:00 sell sell
19.03.2015 09:45 buy sell sell sell

Additionally, we employ ensembling for the combination of assets as well as frequencies.
We put together a portfolio with the following weights: 50% for S&P 500 Index and 50%
for Bitcoin. The account is opened with $1,000, financial instruments are totally divisible,
and transaction charges are 0.005% for S&P 500 Index and 0.1% for Bitcoin. This is
done to allow comparability with single strategies. The portfolio is rebalanced every three
months, which means the asset allocation proportions are brought back to the starting
points. During the rebalancing operations, the transaction fees are paid in accordance
with the amount that has to be bought or sold.

3.5 Performance metrics

For each strategy and asset, a number of indicators are computed in order to evaluate
profitability and performance. When evaluating portfolio performance, it is critical to
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consider not just the return but also the risk of the strategy. In the study we utilize
performance metrics from Michankéw et al. (2022) and Ry$ and Slepaczuk (2018).

3.5.1 Annualized Return Compounded (ARC)

The Annualized Return Compounded (ARC), is the constant rate of annual return
over the whole period of investment, so that:

V(t,) = V(to) * (1 + ARC)" (7)

where:
V(o) - the initial value of the investment
V (t,) - the value of the investment at the end of the period
t, — to - number of years
ARC may be simply derived using the equation above.

ARC(1o, 1) = (3 yto — 1 (8)

3.5.2 Annualized Standard Deviation (ASD)

Volatility is a statistical indicator of the variation of returns. Most of the time, a
security is riskier the more volatile it is. Volatility may be expressed as either the standard
deviation or variation between returns from the same securities or market index. Volatility
might be easily switched to annualized values by multiplying the standard deviation of
the returns by the square root of the number of observations in a year (e.g. 252 for daily
data of the S&P 500 Index and 365 for daily data of Bitcoin prices). In our research we
use Annualized Standard Deviation (ASD) as a measure of volatility:

R =
ASD - J m (Rt - R)2 * \/nyea'r (9>

t=1
where:
R - the average simple return (e.g. daily for daily data) of the given instrument
R; - the simple return during period ¢
Nyear - NUMber of observations in a year

3.5.3 Information Ratio*

Sharpe ratio, created by Nobel Prize winner William F. Sharpe, aids investors in
determining the return on investment relative to its risk. The ratio is the average return
over the risk-free rate for each unit of volatility or overall risk. Because we assume a
zero-rate risk-free rate, instead of Sharpe Ration we will define IR*:

ARC

IR =755

(10)

3.5.4 Max Drawdown (MDD)

A portfolio’s maximum drawdown (MDD) is the largest loss that could be recorded
between a portfolio’s peak and bottom before a new high is reached. Maximum drawdown
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serves as a gauge for the potential loss over a certain time frame. Maximum drawdown
(MDD), a major concern for most investors, is a tool used to compare the relative riskiness
of different investment strategies.

MDD(T) = max cpo,r)(mazscon Ve — Vz), (11)

3.5.5 Maximum Loss Duration (MLD)

Maximum Loss Duration (MLD) is the worst (the greatest/longest) period of time
between peaks that the investment has experienced. It is expressed in a number of years:
m;

m Pppp—
MLD = 24—
max 5

for which Val(m;) > Val(m;) and j > i. Val(m;) and Val(m;) are the values of the local
maximums in days m; and m; respectively. m; and m; are the numbers of days indicating
local maximums of the equity line. The scale parameter S denotes the number of trading
sessions in a year.

(12)

3.5.6 Information Ratio**

Kosé et al. (2018) in their study use an additional measure to assess the effectiveness of
the strategy, which is a modification of the Information Ratio measure. This measure also
takes into account the sign of the portfolio’s rate of return and the maximum drawdown:

ARC? x sign(ARC)
ASD x MDD

[R™ = (13)

3.5.7 Position changes

Position changes, expressed as a percentage, indicates the relative number of position
changes to all trading days. For instance, if the position changes for daily data are equal
to 20%, then our trading strategy includes a position change every fifth trading day on
average.

3.6 Research description
3.6.1 Description of approaches used in the study

The difficulty to optimize the model’s hyperparameters due to its high computational
complexity is one of the foremost challenges with neural networks. Our first approach is
to choose a set of hyperparameters using heuristic techniques and existing research, which
allows us to refit the model more than once and execute training on a rolling window. The
exact values of hyperparameters used are based on the research of Kijewski and Slepaczuk
(2020) and presented in Table 2.

Table 2: The model frameworks used in the algorithmic investing strategy

Approach #1 Approach #2 Approach #3 Approach #4
Input Price Price Price Price
Output Price Price Price direction Price direction

Units 30 {20,40,60,80,100} 30 n/a**



Krynska, K. and Slepaczuk, R. /WORKING PAPERS 25/2022 (401) 14

Table 2: The model frameworks used in the algorithmic investing strategy (continued)

Approach #1 Approach #2 Approach #3 Approach #4
Activation tahn* tahn tahn tahn
Loss method mse mse log-loss log-loss
Epochs 50* 50 50 n/a**
Learning rate 0.01 {0.1, 0.01, 0.001} 0.01 n/a**
Dropout rate 0.2 {0.1,0.2,0.3,0.4,0.5} 0.2 n/a**
# hidden 1 {1,2,3} 1 n/a**
layers
Description Regression Regression Classification Classification
problem problem problem problem
Source Kijewski and Approach #1 Approach #1 but Voting of
Slepaczuk (2020) with classification pre-defined 10
hyperparameter problem LSTM models
tuning

Note: The hyperparameters are shown in curly brackets if they are calibrated during the research
phase (hyperparameter tuning). The Adam optimizer is used to train each model. The sequence
length in each approach is 15 and the batch size (the number of samples per gradient update) is
32.

* Number of epochs and the activation function were modified to reduce computing time

** The hyperparameters for Approach 4 are different for each of the LSTM models employed.

The hyperparameters are optimized in Approach #2 using the walk-forward method.
Because this is a computationally intensive problem, we utilize RandomSearch rather than
GridSearch on each window, with 15 trials to identify the best hyperparameters. The
criterion metric for determining the best set of hyperparameters for regression issues is
MSE. It is worth noting that the total out-of-sample duration for this approach is reduced
because it needs a validation period to fine-tune the hyperparameters.

Approach #3 employs the same LSTM model hyperparameters as Approach #1, but
this time on a classification problem. Instead of forecasting prices, we predict price
direction. This entails modifying the loss function to one that is suitable for binary
classification - in our instance, the log-loss function.

Finally, Approach #4 employs an ensemble (voting) model-inspired strategy. We
incorporate the predictions of ten models published in the literature and utilized by
Baranochnikov and Slepaczuk (2022) to produce a final voting model. We do not tune
hyperparameters in this procedure since fitting ten models to each frequency and asset is
highly computationally intensive, especially for 15-minute Bitcoin data. Unlike in other
approaches, we generate hold signals as well as buy/sell indications. Table 3 lists all of
the model architectures employed in the voting model.

It is worth mentioning that we employ all four approaches at each frequency for
both S&P 500 Index and Bitcoin. For each approach, we also derive ensemble models.
Eventually, for each approach, we produce 12 equity lines (4 types of frequency - daily,
hourly, 15-minute, and ensemble for 3 types of portfolios - pure Bitcoin, pure S&P 500
Index, and ensemble BTC+SPX).
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Table 3: Model architectures used in the voting (Approach #4) model.

Model #1 Model #2 Model #3 Model #4 Model #5

# neurons 1st layer 64 30 4 25 32
# neurons 2nd layer 128 - 10 - -
Dropout rate 0.3 0.2 0.1 0.1 0.2
Epochs 100 100 100 30 100
Learning rate 0.001 0.01 le-04 0.001 0.001
Source Sethia and Kijewski Lim and Ghosh et Zou and Qu

Raut (2019) and Lundgren al.(2021) (2020)

Slepaczuk (2019)
(2020)

Model #6 Model #7 Model #8 Model #9  Model #10

# neurons 1st layer 12 128 32 120 50

# neurons 2nd layer 12 64 16 - -

Dropout rate 0.2 0 0.2 0.2 0.25

Epochs 100 100 100 100 100

Learning rate 0.003 0.001 0.002 0.001 0.001

Source Du et al. Roondiwala  Site et al. ~ Shahi et al.  Girsang et
(2019) et al. (2019) (2020) al. (2020)

(2015)

Note: The Adam optimizer is used to train each model. The sequence length in each approach
is 15 and the batch size (the number of samples per gradient update) is 32. ’-” by the number
of neurons in the 2nd layer means that the model does not include a 2nd hidden layer.

3.6.2 Loss functions

The loss function we deploy for regression problems (price prediction) is the Mean
Squared Error (MSE). The mean squared error is determined by averaging the squared
discrepancies between the expected and actual figures. Regardless of the sign of the
anticipated and actual numbers, the outcome is always positive, and a perfect value is
0.0. Because of the squaring, bigger mistakes cost the model more in terms of error than
smaller ones, which means that bigger mistakes are penalized more.

1 & N
MSE= > (¥~ Vi)’ (14)
i=1
where:

Y, - observed values of the variable being predicted

Y; - the predicted values

However, MSE might be inappropriate for algorithmic investment strategy development
because it penalizes both good and bad decisions. To address this issue, we switch from
regression to classification problem (price direction prediction) and use one of the loss
functions appropriate for such tasks, namely log-loss, also known as binary cross-entropy
loss:

LogLoss = —(y;log(9i) + (1 — y;) log(1 — %)) (15)
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where:
y; - the real (binary) value, where 1 represents the “buy” signal and 0 the “sell” signal,
y; - the predicted probability of a “buy” signal"
We can also present this equation in a conditional form:

LogLoss = —log(9;) ify, =1 (16)

{ LogLoss = —log(1 —9;) ify; =0
The logarithmic function y = log(z), which is only defined for positive x, rises from —oo to
0 as x increases to 1. Thanks to this property, entropy loss severely penalizes predictions
that are confident yet inaccurate.

3.6.3 Sensitivity analysis

Sensitivity analysis is a method used to examine how the test results change when
specific parameters are altered. This is one technique to assess the robustness of a strategy.
A sensitivity analysis, sometimes referred to as a what-if analysis or a what-if simulation
exercise, is used to forecast how various independent variable values impact a certain
dependent variable in a given set of circumstances.

The following variables will be altered throughout the sensitivity analysis:

1. Training period’s duration,

2. Testing period’s duration,

3. Type of optimizer,

4. Type of loss function,

5. Type of input variable normalization,
6. Length of the sequence,

7. Number of epochs,

8. Transaction costs.

4 Results

With the use of daily, hourly, and 15-minute data frequencies, we test our investment
algorithm. The S&P 500 Index out-of-sample data spans from 2014-02-06 to 2020-11-27
and the Bitcoin out-of-sample data spans from 15.01.2014 to 2020-12-01. The Adjusted
Information Ratio (IR**), which is determined by formula 13, will serve as our primary
performance criterion. By including the return volatility and the maximum drawdown,
this metric incorporates not only the strategy’s profitability but also its riskiness. A
buy-and-hold scenario will serve as our benchmark for evaluating how well our approach
performed.

The lengths of the walk-forward process unit periods vary with data frequency. In
all cases, the training and testing durations are the same. The daily data in-sample size
is one year, which equals 252 observations for S&P 500 Index and 365 for Bitcoin. The
training period for hourly data is one month, with 126 observations for S&P 500 Index
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and 720 for Bitcoin. Finally, for 15-minute data the period equals 260 observations for
S&P 500 Index and 1344 for Bitcoin throughout a two-week period.

4.1 Approach #1 - Regression problem

In the first approach, we use an LSTM model with a set of hyperparameters that have
already been tested in the literature. We use the instrument’s price as an output. When
the price forecast for the next time step is greater than the present price, a buy signal is
created. The outcomes of our trading algorithm for all instruments are displayed in Table
4. The Adjusted Information Ratio is included in the table along with all other relevant
performance measures.

Moreover, Figure 6 displays how the results of strategies have been developing through-
out time in the form of an equity line. For S&P 500 Index only the daily strategy does
not outperform the benchmark in terms of IR**, with the ensemble model performing the
best. However, the model does not provide profitable buy/sell signals for Bitcoin. All
of the strategies lag behind buy-and-hold investing. This lowers the performance of the
SPX+BTC portfolio, which does not beat the benchmark.

Table 4: Performance metrics for strategies based on signals generated by Approach 1

Cumulative ARC% ASD IR* MDD MLD IR** Position
Return changes
S&P 500 Index
daily 61.27% 7.27% 17.97% 0.4 -26.24% 3.21 0.11 26.41%
hourly 114.48% 11.86% 16.08% 0.74 -19.07% 1.69 0.46 23.14%
15-minute 94.59% 10.27% 16.81% 0.61 -22.44% 3.59 0.28 19.99%
ensemble 223.16% 18.79% 16.81% 1.12 -16.3% 2.0 1.29 11.51%
buy-and-hold 114.57% 11.86% 17.96% 0.66 -33.97% 1.65 0.23 -
Bitcoin
daily 64.06% 7.51% 75.31% 0.1 -92.75% 3.06 0.01 13.3%
hourly -99.67% -56.69% 80.33% -0.71 -99.82% 9.84 -0.4 18.02%
15-minute -100.00% -100.0% 86.46% -1.16 -100.0% 6.8 -1.16 18.83%
ensemble -100.00% -97.98% 86.1% -1.14 -100.0% 6.75 -1.12 10.74%
buy-and-hold 2,340.49% 59.58% 75.27% 0.79 -83.43% 2.96 0.57 -
SPX+BTC
daily 176.93% 16.13% 37.95% 0.43 -68.42% 3.05 0.1 -
hourly -77.96% -19.91% 43.39% -0.46 -91.59% 6.79 -0.1 -
15-minute -100.00% -86.4% 32.11% -2.69 -100.0% 6.79 -2.32 -
ensemble -99.98% -72.25% 36.71% -1.97 -99.99% 6.74 -1.42 -
buy-and-hold 1,017.18% 42.52% 41.32% 1.03 -61.42% 2.86 0.71 -

Note: Trading S&P 500 Index starts on 2014-02-06 and ends on 2020-11-27, while trading Bitcoin starts on 2014-02-01 and
ends on 2020-12-01. The period for SPX+BTC portfolio was limited to S&P 500 Index trading period. Transaction costs
are 0.005% for S&P 500 Index and 0.1% for Bitcoin. Ensemble model means combining daily, hourly and 15-minutes signals
into one strategy. SPX+BTC assumes quarterly rebalancing, with weights for both assets equal to 50%. Both training and
testing periods contain a year of observations for daily frequency, one month for hourly and two weeks for 15-minute. For
each portfolio (S&P 500 Index, Bitcoin, or SPX+BTC), the strategy with the greatest Adjusted Information Ratio is shown
in bold.

The variations in relative position changes between the strategies based on different
frequencies are minor. However, if we convert position changes from percentages to nominal
values (how many transactions have been made in total, regardless of the frequency), it
appears that the daily strategy makes the fewest transactions and the 15-minute approach
makes the most. The ensemble frequency method creates fewer position changes than the
straight 15-minute data strategy, as expected.

Figure 6 shows that our approach demonstrates a sharp increase in value for S&P 500
Index when the market was moving downhill, notably in March 2020, when the covid crisis
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rattled the markets. It appears to be investing in the instability as a contrarian. However,
Bitcoin models for all frequencies except daily data see a value decline from 2014 to 2015
and are unable to recover.

In general, we can observe that for Approach #1, intra-day data strategies outperform
inter-day data methods for S&P 500 Index but do substantially worse for Bitcoin. Poor
performance of intra-day strategies for Bitcoin brings down the performance of the intra-
day SPX+BTC portfolio, resulting in the daily model outperforming the inter-day and
ensemble models.

Figure 6: S&P Equity line for strategies generated by Approach #1.

Panel A: S&P 500 Index

B Daily data .
. B Hourly data I
$3,000 I 15-minute data \ ),‘W ‘
[ Ensemble model -
M Buy-and-hold ‘\ v
$2,500 -
$2,000
$1,500
$1,000
2014 2015 2016 2017 2018 2019 2020 2021
Panel B: Bitcoin
$25,000 M Daily data
I Hourly data
I 15-minute data
$20,000 [ Ensemble model
M Buy-and-hold
$15,000
$10,000
$5,000
$0 e
2014 2015 2016 2017 2018 2019 2020 2021
Panel C: SPX+BTC
$12.5
$12,500 M Daily data
I Hourly data
. M 15-minute data
$10,000 [ Ensemble model
M Buy-and-hold
$7,500
$5,000
$2,500
$0
2014 2015 2016 2017 2018 2019 2020 2021

Note: The charts show the strategies’ net value in USD over time. Trading S&P 500 Index starts on 2014-02-06 and ends on
2020-11-27, while trading Bitcoin starts on 2014-02-01 and ends on 2020-12-01. For SPX+BTC portfolio trading period
was restricted to S&P 500 Index trading period. Transactional costs are 0.005% for S&P 500 Index and 0.1% for Bitcoin.
Ensemble model means combining daily, hourly and 15-minute signals into one strategy. SPX+BTC assumes quarterly
rebalancing, with weights for both assets equal to 50%. Both training and testing periods contain a year of observations for
daily frequency, one month for hourly, and two weeks for 15-minute.
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4.2 Approach #2 - Hyperparameter tuning

In this technique, we employ an LSTM model structure comparable to Approach #1,
but we tune the hyperparameters. We adjust the number of hidden layers, the number of
neurons in each layer, the dropout rate, and the learning rate. The trials are conducted
throughout a validation period that has the same duration as the training and testing
periods.

Table 5 displays the performance metrics for the strategies developed by Approach
#2. We can observe that none of the strategies outperformed the benchmark in terms of
ARC%, while the daily strategy for SPX+BTC portfolio outperformed in terms of IR**,
owing to (i) a lower drawdown, and (ii) limiting the trading time of SPX+BTC portfolio
to match the S&P 500 Index. In days 2015-01-15 to 2015-01-26 the buy-and-hold strategy
gained over 30%, while our algorithm based on daily signals lost 15%. Then, in days
2020-11-27 to 2020-12-01, the buy-and-hold gained 16%, while our strategy lost 14%. All
in all, if we had restricted Bitcoin trading period to the S&P 500 Index trading period,
the IR** for our daily strategy would equal 1.88 and it would beat the benchmark, which
would have IR** at 1.72.

Table 5: Performance metrics for strategies based on signals generated by Approach #2

Cumulative ARC% ASD IR* MDD MLD IR** Position
Return changes
S&P 500 Index
daily 36.06% 5.41% 18.85% 0.29 -44.75% 4.86 0.03 22.83%
hourly 48.12% 6.96% 16.84% 0.41 -34.85% 1.46 0.08 22.99%
15-minute 4.92% 0.83% 17.61% 0.05 -31.9% 4.71 0.0 20.12%
ensemble 41.27% 6.09% 17.61% 0.35 -33.56% 3.98 0.06 12.52%
buy-and-hold 84.97% 11.1% 18.84% 0.59 -33.97% 1.65 0.19 -
Bitcoin
daily 3,718.34% 85.75% 73.72% 1.16 -67.75% 1.41 1.47 16.29%
hourly -99.95% -72.23% 78.98% -0.91 -99.95% 8.52 -0.66 16.14%
15-minute -100.00% -100.0% 82.94% -1.21 -100.0% 5.85 -1.21 16.04%
ensemble -100.00% -96.74% 82.32% -1.18 -100.0% 5.88 -1.14 8.68%
buy-and-hold 9,306.96% 116.52% 73.71% 1.58 -83.43% 2.96 2.21 -
SPX+BTC
daily 1,525.06%  61.18%  40.88% 1.5 -40.29% 1.43 2.27 -
hourly -93.97% -38.18% 40.41% -0.94 -94.56% 5.84 -0.38 -
15-minute -100.00% -88.91% 30.29% -2.94 -100.0% 5.83 -2.61 -
ensemble -99.93% -71.06% 36.61% -1.94 -99.93% 5.84 -1.38 -
buy-and-hold 1,420.44% 59.35% 42.8% 1.39 -62.05% 2.89 1.33 -

Note: Trading S&P 500 Index starts on 2015-01-26 and ends on 2020-11-27, while trading Bitcoin starts on 2015-01-15 and
ends on 2020-12-01. The period for SPX+BTC portfolio was limited to S&P 500 Index trading period. Transaction costs
are 0.005% for S&P 500 Index and 0.1% for Bitcoin. Ensemble model means combining daily, hourly and 15-minutes signals
into one strategy. SPX+BTC assumes quarterly rebalancing, with weights for both assets equal to 50%. Both training and
testing periods contain a year of observations for daily frequency, one month for hourly and two weeks for 15-minute. For
each portfolio (S&P 500 Index, Bitcoin, or SPX+BTC), the strategy with the greatest Adjusted Information Ratio is shown
in bold.

For S&P 500 Index, the hourly model beats the inter-day model, however for Bitcoin,
none of the intra-day models perform better than the daily model. Because of the poor
performance of intraday Bitcoin strategies, the intraday SPX+BTC portfolio performs
very poorly.
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Figure 7: S&P Equity line for strategies generated by Approach #2.
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Note: The charts show the strategies’ net value in USD over time. Trading S&P 500 Index starts on 2015-01-26 and ends on
2020-11-27, while trading Bitcoin starts on 2015-01-15 and ends on 2020-12-01. For SPX+4+BTC portfolio trading period
was restricted to S&P 500 Index trading period. Transactional costs are 0.005% for S&P 500 Index and 0.1% for Bitcoin.
Ensemble model means combining daily, hourly and 15-minute signals into one strategy. SPX+BTC assumes quarterly
rebalancing, with weights for both assets equal to 50%. Both training and testing periods contain a year of observations for
daily frequency, one month for hourly, and two weeks for 15-minute.

Similar conclusions may be drawn from Figure 7’s equity lines. Only the daily strategy
for the SPX+BTC portfolio matches buy-and-hold investing. Bitcoin models perform very
poorly.

4.3 Approach #3 - Binary (buy-sell) prediction

Approach #3 entails utilizing the same model with the same hyperparameters as in
Approach #1, but this time doing a classification forecast - predicting the direction of
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the price rather than the price itself. The model structure differs only in the output
layer activation function - sigmoid activation is required for classification problems. In
this manner, the model’s outputs will be a probability of class membership - that is, the
likelihood of the signal belonging to the “buy” or “sell” class. Then we set the classification
threshold to 0.5, which means that if the output probability of being a “buy” class is more
than 50%), we take it as a “buy” signal.

Table 6: Performance metrics for strategies based on signals generated by Approach #3

Cumulative ARC% ASD IR* MDD MLD IR** Position
Return changes
S&P 500 Index
daily 176.26% 16.09% 17.95% 0.9 -36.05% 1.18 0.4 1.28%
hourly 192.43% 17.06% 16.08% 1.06 -32.25% 2.23 0.56 3.35%
15-minute 68.06% 7.92% 16.81% 0.47 -35.25% 4.26 0.11 1.1%
ensemble 147.5% 14.23% 16.81% 0.85 -35.23% 1.45 0.34 0.19%
buy-and-hold 114.57% 11.86% 17.96% 0.66 -33.97% 1.65 0.23 -
Bitcoin
daily -27.86% -4.67% 75.37% -0.06 -91.44% 3.53 -0.0 0.6%
hourly 81,526.51% 166.67%  80.05% 2.08 -65.711% 1.88 5.28 1.0%
15-minute 2,161.42% 57.81% 85.61% 0.68 -99.54% 5.89 0.39 3.33%
ensemble 1,836.27% 54.27% 85.48% 0.63 -86.9% 3.3 0.4 0.39%
buy-and-hold 2,340.49% 59.58% 75.27% 0.79 -83.43% 2.96 0.57 -
SPX+BTC
daily 193.48% 17.13% 39.99% 0.43 -69.13% 2.95 0.11 -
hourly 7,402.18% 88.5% 46.7% 1.9 -42.52% 0.85 3.95 -
15-minute 3,336.28% 68.09% 49.28% 1.38 -84.51% 2.94 1.11 -
ensemble 1,060.74% 43.33% 45.43% 0.95 -63.11% 2.59 0.65 -
buy-and-hold 1,017.18% 42.52% 41.32% 1.03 -61.42% 2.86 0.71 -

Note: Trading S&P 500 Index starts on 2014-02-06 and ends on 2020-11-27, while trading Bitcoin starts on 2014-02-01 and
ends on 2020-12-01. The period for SPX+BTC portfolio was limited to S&P 500 Index trading period. Transaction costs
are 0.005% for S&P 500 Index and 0.1% for Bitcoin. Ensemble model means combining daily, hourly and 15-minutes signals
into one strategy. SPX+BTC assumes quarterly rebalancing, with weights for both assets equal to 50%. Both training and
testing periods contain a year of observations for daily frequency, one month for hourly and two weeks for 15-minute. For
each portfolio (S&P 500 Index, Bitcoin, or SPX+BTC), the strategy with the greatest Adjusted Information Ratio is shown
in bold.

The results of our trading system for all instruments are shown in Table 6. The method
based on hourly frequency clearly beats other strategies, particularly for Bitcoin, getting
the greatest IR**. Except for the 15-minute model, all S&P 500 Index models surpass
the benchmark, however only the hourly model outperforms the benchmark for Bitcoin.
Both the hourly and 15-minute models outperform the buy-and-hold investment for the
SPX+BTC portfolio.

As position changes are far less frequent, the classification model appears to provide
more solid predictions than the regression model. As noted previously, the position changes
for ensemble frequency are the smallest.
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Figure 8: S&P Equity line for strategies generated by Approach #3.
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Note: The charts show the strategies’ net value in USD over time. Trading S&P 500 Index starts on 2014-02-06 and ends on
2020-11-27, while trading Bitcoin starts on 2014-02-01 and ends on 2020-12-01. For SPX+4+BTC portfolio trading period
was restricted to S&P 500 Index trading period. Transactional costs are 0.005% for S&P 500 Index and 0.1% for Bitcoin.
Ensemble model means combining daily, hourly and 15-minute signals into one strategy. SPX+BTC assumes quarterly
rebalancing, with weights for both assets equal to 50%. Both training and testing periods contain a year of observations for
daily frequency, one month for hourly, and two weeks for 15-minute.

Equity lines are shown in Figure 8 for each strategy produced by Approach #3. We
can observe that for S&P 500 Index, the equity lines for all frequencies have a fairly similar
form, with the majority of them (except for S&P 500 Index 15-minute) seeing a large
dip followed by a swift rebound after Covid-19 jolted the markets. However, for Bitcoin,
the approach based on hourly signals begins to decisively outperform other methods in
late 2017, with the gap only widening until 2021. The 15-minute approach beats other
strategies in late 2014, when volatility was high, but it quickly loses all of its lead.

In Approach #3, there is no indication that intra-day data models outperform inter-day
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strategies in the case of S&P 500 Index. However, for Bitcoin, intra-day and ensemble
algorithms outperform the daily strategy. As a result, the portfolio SPX+BTC performs
the best when based on intraday, particularly hourly indications.

4.4 Approach #4 - Voting model

The ensemble model-inspired voting approach #4 is used. To create a final voting
model, we combine the predictions from 10 models that have been published in the
literature. Unlike other approaches, we produce buy/sell signals as well as hold signals.
This situation happens when 5 of the models vote for the “buy” class and the other 5
for the “sell” class. Hold signals indicate that the position should be kept open without
trading.

Table 7 displays the outcomes of our trading strategies for all instruments. When
we look at IR**, we can see that for S&P 500 Index, the daily, hourly, and ensemble
techniques outperformed the buy-and-hold investment, with the hourly strategy achieving
the best results. However, in case of Bitcoin only the 15-minute technique outperforms
the benchmark, and it also performs the best for the SPX+BTC portfolio. Hourly and
ensemble methods for the SPX+BTC portfolio, on the other hand, provide outcomes that
are comparable to the benchmark.
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Table 7: Performance metrics for strategies based on signals generated by Approach #4

Cumulative ARC% ASD IR* MDD MLD IR** Position
Return changes
S&P 500 Index
daily 115.81% 11.96% 17.96% 0.67 -28.55% 0.85 0.28 1.22%
hourly 147.84% 14.25% 16.08% 0.89 -30.22% 1.25 0.42 1.92%
15-minute -20.77% -3.36% 16.81% -0.2 -37.63% 5.35 -0.02 0.97%
ensemble 128.86% 12.93% 16.81% 0.77 -34.15% 0.87 0.29 0.11%
buy-and-hold 114.57% 11.86% 17.96% 0.66 -33.97% 1.65 0.23 -
Bitcoin
daily 3.47% 0.5% 75.36% 0.01 -91.44% 3.58 0.0 0.44%
hourly 1,111.38% 44.04% 80.07% 0.55 -96.09% 2.49 0.25 0.58%
15-minute 3,489.22% 68.84% 85.5% 0.81 -97.7% 3.16 0.57 1.0%
ensemble 1,468.35% 49.58% 85.48% 0.58 -87.44% 3.34 0.33 0.15%
buy-and-hold 2,340.49% 59.58% 75.27% 0.79 -83.43% 2.96 0.57 -
SPX+BTC
daily 206.79% 17.89% 39.56% 0.45 -60.04% 2.96 0.13 -
hourly 1,129.09% 44.54% 42.19% 1.06 -67.11% 2.45 0.7 -
15-minute 1,927.95% 55.56% 48.26% 1.15 -80.95% 3.03 0.79 -
ensemble 952.57% 41.28% 45.57% 0.91 -52.5% 2.73 0.71 -
buy-and-hold 1,017.18% 42.52% 41.32% 1.03 -61.42% 2.86 0.71 -

Note: Trading S&P 500 Index starts on 2014-02-06 and ends on 2020-11-27, while trading Bitcoin starts on 2014-02-01 and
ends on 2020-12-01. The period for SPX+BTC portfolio was limited to S&P 500 Index trading period. Transaction costs
are 0.005% for S&P 500 Index and 0.1% for Bitcoin. Ensemble model means combining daily, hourly and 15-minutes signals
into one strategy. SPX+BTC assumes quarterly rebalancing, with weights for both assets equal to 50%. Both training and
testing periods contain a year of observations for daily frequency, one month for hourly and two weeks for 15-minute. For
each portfolio (S&P 500 Index, Bitcoin, or SPX+BTC), the strategy with the greatest Adjusted Information Ratio is shown
in bold.

In addition, we can see that the strategies in Approach #4 change positions the least
frequently when compared to other approaches. Same as in previous cases, the ensemble
frequency position changes are the smallest.

Figure 9 displays equity lines for each method generated by Approach #4. The equity
lines show that the 15-minute model takes a contrarian approach, earning the most when
the price falls. This method works well for Bitcoin but poorly for S&P 500 Index.

There is no evidence in Approach #4 that, for S&P 500 Index, intra-day data models
outperform inter-day tactics. On the other hand, for Bitcoin, intra-day and ensemble
algorithms perform better than the daily approach. Because of this, the SPX+BTC
portfolio performs the best when based on intraday signals while the ensemble model
produces performance comparable to the buy-and-hold investment.
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Figure 9: S&P Equity line for strategies generated by Approach #4.
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Note: The charts show the strategies’ net value in USD over time. Trading S&P 500 Index starts on 2014-02-06 and ends on
2020-11-27, while trading Bitcoin starts on 2014-02-01 and ends on 2020-12-01. For SPX+4+BTC portfolio trading period
was restricted to S&P 500 Index trading period. Transactional costs are 0.005% for S&P 500 Index and 0.1% for Bitcoin.
Ensemble model means combining daily, hourly and 15-minute signals into one strategy. SPX+BTC assumes quarterly
rebalancing, with weights for both assets equal to 50%. Both training and testing periods contain a year of observations for
daily frequency, one month for hourly, and two weeks for 15-minute.
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4.5 Summary

Tables 8 and 9 summarize the outcomes of our analysis. Table 8 provides IR** metrics
for all the LSTM architectures while Table 9 compares IR** statistics across tested
approaches and assets. As we can see, there is no single strategy that produces profitable
and consistent performance across all assets and frequencies. However, Approach #3
appears to be the best-performing model architecture, as it achieves the highest IR** in
half of the cases. We can also observe that in general, classification tasks outperform
regression tasks (in 8 out of 12 tested cases), particularly for intra-day data (in 5 out of 6
cases) and ensemble models (in 2 out of 3 cases).

We cannot say whether intra-day models performs better than inter-day models. For
example, in Approach #1, intra-day models outperform daily models in case of S&P 500
Index but underperform in case of Bitcoin and SPX+BTC. In Approach #3 and $4, the
dependence is less apparent in case of S&P 500 Index, but intra-day models outperform
significantly inter-day ones for Bitcoin.

Ensembling frequencies generally improves performance when compared to pure 15-
minute strategies (in 9 out of 12 cases), but it does not outperform other frequencies
often (outperforms daily in 7 out of 12 cases and outperforms hourly in only 3 out of 12
cases). In general, the ensemble model averages the result of all three input (component)
strategies. As a result, it can sometimes outperform all of the component strategies but it
can also perform slightly worse than the average of the three components.

Combining assets (SPX+BTC portfolio) does not always improve strategy results.
performing particularly poorly when one of the assets had performed incredibly badly.
When a model performs fairly well for both assets, ensembling provides higher IR** (see
ensemble frequency results for Approach #3 and Approach #4), resulting in significantly
better risk-adjusted performance.

We can also see that tuning the hyperparameters (Approach #2) has no positive
impact on the base case results (Approach #1). Approach #2 model actually performs
worse, beating Approach #1 only in case of daily data for Bitcoin and SPX+4+BTC. This
could be due to the use of an inappropriate objective function (MSE) when tuning the
hyperparameters or overfitting.
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Table 8: IR** statistics achieved by all the approaches

Approach 1 Approach 2 Approach 3 Approach 4

SPX

daily 0.11 0.03 0.4 0.28

hourly 0.46 0.08 0.56 0.42

15-minute 0.28 0 0.11 -0.02

ensemble 1.29 0.06 0.34 0.29
BTC

daily 0.01 1.47 0 0

hourly -0.4 -0.66 5.28 0.25

15-minute -1.16 -1.21 0.39 0.57

ensemble -1.12 -1.14 0.4 0.33
SPX+BTC

daily 0.1 2.27 0.11 0.13

hourly -0.1 -0.38 3.95 0.7

15-minute -2.32 -2.61 1.11 0.79

ensemble -1.42 -1.38 0.65 0.71

Note: Table presents IR** statistics for all the approaches, benchmark excluded. Strategy with
the greatest IR** (for each frequency and asset) is highlighted.

Table 9: Summary of performance based on IR** for all approaches

Best result # strategies Best IR** Average # intra-day
beating the IR** strategies beating
benchmark inter-day

Approach #1
S&P500 Index ensemble 3/4 1.29 0.535 2/2
Bitcoin buy&hold 0/4 0.01 -0.6675 0/2
SPX+BTC buy&hold 0/4 0.1 -0.935 0/2
Approach #2
S&P500 Index buy&hold 0/4 0.08 0.0425 1/2
Bitcoin buy&hold 0/4 1.47 -0.385 0/2
SPX+BTC daily 1/4 2.27 -0.525 0/2
Approach #3
S&P500 Index hourly 3/4 0.56 0.3525 1/2
Bitcoin hourly 1/4 5.28 1.5175 2/2
SPX+BTC hourly 2/4 3.95 1.455 2/2
Approach #4
S&P500 Index hourly 3/4 0.42 0.2425 1/2
Bitcoin 15-minute 0/4 0.57 0.2875 2/2
SPX+BTC 15-minute 1/4 0.79 0.5825 2/2

Note: Best result means a strategy or buy-and-hold investing with the greatest IR**. Columns
Best IR** and Average IR** summarize all strategies, benchmark excluded. Intra-day strategies
consist of hourly, 15-minute and ensemble models.
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5 Sensitivity Analysis

Sensitivity analysis is used to assess how the study’s results will alter under different
assumptions. We decided to limit the assessment to Approach #3 for two reasons: (i) On
average, it achieves the best IR** for both assets, which is worth investigating further,
and (ii) it is not as computationally intensive as Approach #2 or Approach #4. We
also limited the investigation to only one frequency - hourly data. Again, the model we
chose performs the best, therefore it is worth investigating whether the results are robust.
Additionally, it isn’t as computationally intensive as 15-minute data. Finally, because
there is less research on intra-day data, this will be more valuable to science.

The tested assumptions that will be changed are the model’s structure or major
hyperparameters. First, we modify the in-sample and out-of-sample periods by making
them twice as long or twice as short. We also put several optimizers (Adam, Nadam, and
RMSprop) and loss functions (log loss, hinge, and squared hinge) to the test. Then we look
at whether input variable normalization (MinMax in the range (-1,1) or (0,1) or Robust
Scaler normalization) produces the best results. Then, during training, we adjust the
sequence length (7, 15, 30) and the number of epochs (25, 50, 100). Finally, we examine
how sensitive the outcome is to transaction costs. With the ceteris paribus supposition
applied to all other parameters, each parameter is adjusted one at a time. After these
tests are performed, the outcomes are compared with the “Buy&Hold” benchmark and
the base case scenario.

Because we adjust the size of the input and output data, we also change the out-
of-sample period, which will start on 2014-03-10 for S&P 500 Index and 2014-03-03 for
Bitcoin across all frequencies and scenarios to guarantee that the results are comparable.
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Table 10: Performance metrics for Sensitivity Analysis for S&P500 Index

Cumulative ~ ARC% ASD IR* MDD MLD IR** Position
Return changes
Base case
Approach #3 213.1% 18.5% 16.14% 1.15 -32.25% 1.48 0.66 3.35%
Buy-and-hold 103.6% 11.15% 16.14% 0.69 -34.85% 1.65 0.22 -
In-sample period
63 138.82% 13.82% 16.14% 0.86 -20.69% 2.84 0.57 3.31%
252 277.25% 21.83% 16.14% 1.35 -40.53% 1.12 0.73 2.76%
Out-of-sample period
63 258.73% 20.92% 16.14% 1.3 -21.43% 1.08 1.27 4.33%
252 197.69% 17.62% 16.14% 1.09 -34.85% 1.27 0.55 2.23%
Optimizer
Nadam 187.3% 17.0% 16.14% 1.05 -35.43% 1.09 0.51 2.61%
RMSprop 269.88% 21.48% 16.14% 1.33 -25.09% 0.95 1.14 2.84%
Loss function
hinge 58.48% 7.09% 16.15% 0.44 -25.44% 2.04 0.12 0.59%
squared hinge -41.26% -7.61% 16.15% -0.47 -49.08% 9.6 -0.07 0.63%
Input variable normalization
MinMax(-1,1) 181.28% 16.63% 16.14% 1.03 -18.3% 1.65 0.94 6.02%
RobustScaler 69.88% 8.2% 16.14% 0.51 -37.65% 1.13 0.11 7.19%
Sequence lengths
7 369.13% 25.85% 16.13% 1.6 -22.32% 0.49 1.86 3.12%
30 188.47% 17.07% 16.14% 1.06 -41.22% 1.25 0.44 2.59%
Number of epochs
25 235.99% 19.75% 16.14% 1.22 -26.97% 1.48 0.9 2.14%
100 110.35% 11.69% 16.14% 0.72 -21.07% 1.11 0.4 4.97%
Transaction costs
0.01% 221.7% 18.98% 16.14% 1.18 -32.22% 1.48 0.69 3.35%
0.025% 173.44% 16.14% 16.14% 1.0 -32.38% 1.51 0.5 3.35%

Note: Trading begins on 2014-03-10 and ends on 2020-11-27. Base case (Approach #3) assumes in-sample
period=126, out-of-sample perdiod=126, Optimizer=Adam, Loss function=log-loss, normalization=MinMax(0,1),
sequence length=15, epochs=50 and transaction costs 0.005% for S&P 500 Index and 0.1% for Bitcoin.

The findings of the sensitivity analysis for the S&P 500 Index are shown in Table 10
and Figure 10. We can see that the base model does not always produce the best outcomes
for the S&P Index. A longer in-sample time to train the model, and predictions for a
shorter out-of-sample period produce better results. RMSprop is a better optimizer in
this case as well. The highest performance is obtained when using the log loss (base case)
function. MinMax scaler in the range (-1,1) enables a steadier result and greater IR**
than our base case scaler. Intriguingly, better outcomes are obtained with shorter sequence
lengths and with fewer training epochs. Last but not least, as anticipated, decreased
transaction costs enable higher performance.
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Figure 10: Sensitivity Analysis #1: S&P 500 Index
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Table 11: Performance metrics for Sensitivity Analysis for Bitcoin

Cumulative ~ ARC% ASD IR* MDD MLD IR** Position
Return changes
Base case
Approach #3 49,010.67%  150.32% 78.99% 1.9 -65.71% 1.3 4.35 0.94%
Buy-and-hold 3,373.06% 69.1% 78.99% 0.87 -83.94% 2.96 0.72 -
In-sample period
360 342,954.24%  233.8% 78.99% 2.96 -61.7% 1.01 11.22 1.03%
720 26,575.60%  128.69% 79.01% 1.63 -66.16% 14 3.17 1.41%
Out-of-sample period
360 480,853.69%  250.93% 79.02% 3.18 -66.68% 1.13 11.95 1.82%
720 282,084.00% 224.29% 78.99% 2.84 -76.56% 1.78 8.32 0.95%
Optimizer
Nadam 78,244.90%  168.24% 78.99% 2.13 -73.94% 1.18 4.85 0.9%
RMSprop 28,675.45%  131.27% 79.0% 1.66 -81.93% 2.29 2.66 1.79%
Loss function
hinge 7,307.44% 89.17% 78.99% 1.13 -87.56% 2.41 1.15 0.05%
squared hinge -99.96% -68.36% 78.99% -0.87 -99.98% 5.88 -0.59 0.0%
Input variable normalization
MinMax(-1,1) 3,416.80% 69.41% 79.04% 0.88 -68.95% 2.3 0.88 3.75%
RobustScaler 24.51% 3.3% 79.11% 0.04 -91.81% 5.88 0.0 5.58%
Sequence lengths
7 86,783.85%  172.38% 79.0% 2.18 -70.76% 2.1 5.32 1.0%
30 172,872.33% 201.62% 79.0% 2.55 -71.76% 1.22 7.17 0.88%
Number of epochs
25 256,580.46% 219.77% 78.98% 2.78 -74.31% 1.17 8.23 0.44%
100 3,400.54% 69.3% 79.06% 0.88 -76.07% 1.52 0.8 3.59%
Transaction costs
0.02% 119,092.53% 185.44% 78.98% 2.35 -64.93% 1.15 6.71 0.94%
0.5% -97.93% -43.68% 80.93% -0.54 -98.95% 6.65 -0.24 0.94%

Note: Trading begins on 2014-03-03 and ends on 2020-12-01. Base case (Approach #3) assumes in-sample
period=126, out-of-sample perdiod=126, Optimizer=Adam, Loss function=log-loss, normalization=MinMax(0,1),
sequence length=15, epochs=50 and transaction costs 0.005% for S&P 500 Index and 0.1% for Bitcoin.

Table 11 and Figure 11 present the results of the sensitivity analysis performed on
Bitcoin. It is evident that the base model does not always result in the best performance.
Better outcomes are obtained with a shorter in-sample training period for the model.
Performance improved whether the out-of-sample time was increased or decreased. In this
instance, Nadam is a superior optimizer. The log loss (base case) function yields the best
results, while the base scaler MinMax(0,1) also contributes to the best performance. It’s
interesting to note that both shorter and longer sequence lengths provide better results.
Fewer epochs improve performance of the strategy. Not to mention, as expected, lower
transaction costs enable better performance.
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Figure 11: Sensitivity Analysis #2: Bitcoin
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Table 12: Performance metrics for Sensitivity Analysis for SPX+BTC

Cumulative ~ ARC% ASD IR* MDD MLD IR**
Return

Base case

Approach #3 6,026.46% 84.43% 43.3% 1.95 -38.15% 0.9 4.32

Buy-and-hold 1,119.35% 45.06% 40.57% 1.11 -58.3% 1.99 0.86
In-sample period

0.5*base case 18,261.51%  117.13% 44.18% 2.65 -36.51% 0.9 8.51

2*base case 5,215.02% 80.57% 42.26% 1.91 -39.28% 0.92 3.91
Out-of-sample period

0.5*base case 23.953.51%  126.03% 44.63% 2.82 -39.77% 0.82 8.95

2*base case 17,612.86%  115.97% 43.63% 2.66 -51.34% 1.58 6.01
Optimizer

Nadam 8,004.19% 92.26% 43.86% 2.1 -40.93% 0.87 4.74

RMSprop 6,388.10% 86.01% 43.21% 1.99 -48.66% 1.64 3.52
Loss function

hinge 1,941.96% 56.62% 42.73% 1.33 -57.92% 1.83 1.3

squared hinge -96.20% -38.5% 38.93% -0.99 -97.55% 5.87 -0.39
Input variable normalization

MinMax(-1,1) 1,561.04% 51.89% 41.81% 1.24 -38.75% 1.3 1.66

RobustScaler 136.31% 13.65% 40.46% 0.34 -62.7% 2.88 0.07
Sequence lengths

7 12,111.98%  104.35% 43.06% 2.42 -41.17% 0.81 6.14

30 14,280.77%  109.38% 44.16% 2.48 -44.0% 1.17 6.16
Number of epochs

25 20,617.74%  121.07% 43.9% 2.76 -41.65% 0.92 8.02

100 1,211.41% 46.64% 43.33% 1.08 -52.7% 1.49 0.95
Transaction costs

0.2*base cost 9,992.09% 98.64% 43.49% 2.27 -37.68% 0.82 5.94

5%base cost 478.21% 29.82% 42.53% 0.7 -47.33% 1.52 0.44

Note: Trading begins on 2014-03-10 and ends on 2020-11-27. Base case (Approach #3) assumes in-
sample period=126, out-of-sample perdiod=126, Optimizer=Adam, Loss function=log-loss, normaliza-
tion=MinMax(0,1), sequence length=15, epochs=50 and transaction costs 0.005% for S&P 500 Index and
0.1% for Bitcoin. SPX+BTC portfolio assumes quarterly rebalancing, with weights for both assets equal to
50%.

The findings of the sensitivity analysis conducted on the SPX+BTC portfolio are
shown in Table 12 and Figure 12. We may use this to determine which criteria would be
most effective for the performance of combined two assets. It is clear that the performance
of the base model is not always the optimal. Shorter in-sample training times lead to
better results. Whether the out-of-sample period was extended or shortened, performance
improved. Furthermore, Nadam is a better optimizer. The best performance is produced
by the log loss (base case) function, and also the base scaler MinMax(0,1). It’s noteworthy
to remark that better outcomes may be obtained with both shorter and longer sequence
lengths, but with fewer epochs. As anticipated, higher performance is made possible by
decreased transaction costs.
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Figure 12: Sensitivity Analysis #3: SPX+BTC
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The sensitivity analysis results show that our strategy is not resistant to changes in
model structure or parameters; however, it is worth noting that the strategy for portfolio
SPX+BTC almost always outperforms the benchmark, with only two exceptions - when
we change the loss function or input variable normalization. The strategy appears to
be quite resistant to changes in optimizer and produces comparable results for all three
optimizers evaluated. Table 13 summarizes our sensitivity study, demonstrating how many
portfolios (pure S&P 500 Index, pure Bitcoin, or a mix of the two) achieve the highest
IR** measure for each parameter value.

We can see a few dependencies that are common to all assets. Firstly, the shortest length
of out-of-sample period improves the results, secondly, log-loss loss function consistently
produces the best outcomes. Surprisingly, the strategy performs better the fewer epochs
are used during the training. Finally, lower transaction costs enhance the performance of
the strategy.

Table 13: Summary of sensitivity analysis for all scenarios

A: In-sample duration B: Out-of-sample duration
in-sample=63 2 out-of-sample=63 3
126 (base case) 0 126 (base case) 0
in-sample=252 1 out-of-sample=252 0
C: Optimizer D: Loss function
optimizer=Nadam 2 loss function=hinge 0
Adam (base case) 0 log-loss (base case) 3
optimizer=RMSprop 1 loss function=squared__hinge 0
E: Input variable F: Sequence length
normalization
normalization=MinMax(-1,1) 1 sequence length="7 1
MinMax(0,1) (base case) 2 15 (base case) 0
normalization=RobustScaler 0 sequence length=30 2
G: Number of epochs H: Transactional costs
epochs=25 3 costs=0.2*base case 3
50 (base case) 0 base case 0
epochs=100 0 costs=5*base case 0

Note: Table illustrates how many financial portfolios obtained the greatest IR**
statistics for each parameter value during the sensitivity study

Conclusions and further research

Our study’s objectives were to develop a successful trading strategy and to clarify
which type of LSTM model architecture predicts better the values of particular financial
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instruments, namely S&P 500 Index and Bitcoin. In order to accomplish this, we developed
four LSTM approaches: the first one was an LSTM architecture based on literature with
a regression task, the second was hyperparameter tuning of the first approach, the third
was applying the same model from the first approach to a classification problem, and the
fourth was an ensemble model of ten models from literature used for classification. All of
the approaches were created in a walk-forward manner, with rolling windows of training,
testing (and validation for Approach #2) periods.

The algorithms were tested on two assets: the S&P 500 Index and Bitcoin, as well as a
portfolio made up of equal weights of each. For each portfolio, three data frequencies were
used: daily, hourly, and 15 minute. We also developed an ensemble strategy using signals
of all frequencies. The accuracy of forecasts was assessed by drawing an equity line for
each model and comparing the Adjusted Information Ratio value (IR**). Only historical
asset prices were used by our system to make decisions.

Five research questions were raised in this work:

RQ1. Which type of LSTM model architecture generates the best buy/sell signals
for Bitcoin and/or SEP 500 Index algorithmic trading? The findings from all of our
testing for the financial instruments were provided in Section 4. In Tables 8 and 9,
summing performance of all the strategies, we see that on average classification approaches
(Approaches #3 and #4) outperformed regression methods (Approaches #1 and 2), with
Approach #3 producing the best results.

RQ2. Does intra-day data improve performance of transactional systems compared
to systems using daily data? In Tables 8 and 9 there is no clear evidence that intra-day
strategies outperform inter-day strategies. For regression problems, we find that daily
data models outperform intra-day data models. However, for classification tasks, intra-day
models dominate inter-day models in most cases.

RQ3. Does ensembling assets or signals frequencies improve the outcomes of investing
strategies when compared to individual strategies? When compared to pure 15-minute
strategies, ensembling frequencies generally improved performance, but it did not consis-
tently outperform other frequencies. Ensembling assets did not always improve strategy
results. When a strategy performed fairly well for both assets, combining them provided
better risk-adjusted performance.

RQ)/. Does hyperparameter tuning help achieve better performance of the investment
strategy? We show results from hyperparameter tuning in Section 4.2 (Approach #2).
It is evident that hyperparameter tuning had no beneficial effect. In fact, Approach #2
outperformed Approach #1 only in the case of daily data for Bitcoin and SPX+BTC.

RQ5. Do the results of the study change under different assumptions? Section 5
reported the findings of Sensitivity Analysis for Approach #3 and hourly frequency. We
observed that the results vary greatly depending on the settings chosen. However, in the
majority of circumstances, our model outperformed the benchmark, resulting in a robust
profitable strategy.

Our research may be broadened in a variety of ways. The findings of our study differ
greatly depending on the asset. Therefore, it would be advantageous to test additional
asset classes to determine if they behave similarly. In our analysis, we only utilized the
closing price as input. More inputs, such as OHLC (open-high-low-close), transaction
volume, or technical indicators, may be useful. In our analysis, we create buy-sell signals
for each asset separately and then combine the equity lines, assuming a constant weight
of each asset in the portfolio. It would be good to build an ensemble LSTM model that
predicts buy-sell signals for both assets or generates the weights of the assets in our
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portfolio.
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