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1 Introduction

An attempt to reject the Efficient Market Hypothesis is a task often undertaken by theoreticians and market
practicioners. An intermediate problem in examining market efficiency is aiming to answer the question: Is
there an investment strategy that, given a set of information Ω𝜏 at time 𝜏 , could bring above-average and
statistically significant profits? The answer to this question depends on the validity of the Efficient Market
Hypothesis. If the Efficient Market Hypothesis is true, meaning that markets are efficient, then at any given
time, the prices of securities fully reflect all available information about them. This means that there is
no such investment strategy. In contrast, if the Efficient Market Hypothesis were not true, then a skillful
investor would be able to find informational gaps and achieve above-average profits.

The aim of this study is to reject the Efficient Market Hypothesis in informational sense using a specifically
designed investment strategy for the S&P 500 Index. The study will not only include an overview of the
base case strategy, but also a very detailed sensitivity analysis in order to check the robustness of presented
models, based on which additional conclusions will be drawn. During the research, the following research
hypotheses will be verified:

• Research Hypothesis 1 The Efficient Market Hypothesis is true, and it is not possible to achieve
above average risk-adjusted returns.

• Research Hypothesis 2 Machine learning based algorithms yield higher risk-adjusted returns than
technical analysis tools.

• Research Hypothesis 3 Ensembling LSTM with other strategies yields better results than stand-alone
machine learning or TA algorithms.

The dataset used in this study comprises of the adjusted close of the S&P 500 index, obtained in a daily
format from Yahoo Finance. The dataset used in this study comprises the adjusted close of the S&P 500
index, obtained in a daily format from Yahoo Finance. The S&P 500 index is a suitable choice for testing the
trading algorithms LSTM, XGBoost, and Moving Average Crossover, as it represents a broad and diverse
selection of 500 large-cap U.S. companies across various sectors. The index is highly liquid, allowing for easier
trade execution and tighter bid-ask spreads. Additionally, the S&P 500 is considered one of the most efficient
markets, making it an ideal benchmark for evaluating the performance of trading algorithms. Testing the
algorithms on the S&P 500 can provide valuable insight into their effectiveness in capturing market trends
and achieving above-average returns.

Moving averages, a widely recognized technical analysis tool for long-term investment, have been utilized to
detect trends persisting over an extended period of time, typically spanning multiple days or months. This
study addresses some issues often overlooked in scientific papers about algorithmic trading and investing,
which highly increases its innovative contribution to this field of study. Firstly, results of this study are
shown on the basis of the last 20 years of stock market data, which increases the informational content of
this study. Secondly, the majority of papers that make use of machine learning methods, optimize them on
a single in sample period and employ optimized strategy on a single out of sample period, which greatly
increases the risk of backtest overfitting. Because of this, a walk forward approach is used for optimizing
all of the strategies, resulting in generating a very long equity curve in the combined out of sample periods.
Thirdly, many research studies do not check the robustness of their strategies, showing only base case
results. Fourthly, most of the papers focus only on individual models without attempting to combine them
and creating more powerful ensemble concepts.

Our research shows that using advanced machine learning (ML) algorithms makes it possible to achieve
above average risk-adjusted returns compared to Buy And Hold (B&H) benchmark. Apart from that, ML
based algorithms achieve higher scores compared to Moving Average Crossover technique, which is a well
known technical analysis tool. Moreover, it was possible to achieve higher scores by applying ensembling
methods to ML methods than using non-ensembled ML algorithms. The work is divided into several parts.
The second part, after introduction, is devoted to the theoretical background and a review of the existing
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literature related to the issues addressed in the work. The next section presents the research methodology
and a description of the data used. The final section provides a summary of the empirical results, along with
a detailed sensitivity analysis of the strategies used and the conclusions.

2 Literature Review

2.1 Historical Background and Market Efficiency

Algorithmic trading systems have become increasingly popular in recent decades due to their ability to
analyze vast amounts of information and execute trades with minimal human intervention. By using these
systems, investors can react quickly to new information, potentially leading to higher profits and reduced risk.
However, the effectiveness of these systems depends on the efficiency of the markets in which they operate.
Therefore, understanding the efficiency of financial markets is crucial for investors looking to develop and
implement algorithmic trading strategies.

According to Sharpe (1994), the market is informationally efficient if all market participants have fast access
to information and all available information is reflected in the prices of securities. This implies that the actual
value of securities is always a reflection of their real value. According to Fama (1970), we can distinguish
three types of Efficient Market Hypotheses, which assume different effects of access to the relevant type
of information. Weak market efficiency assumes that investors relying on technical analysis cannot predict
future prices of a financial instrument. Semi-strong efficiency assumes that investors relying on fundamental
analysis cannot achieve above-average profits. Finally, strong efficiency assumes that all available information
(public and confidential) is reflected in the prices of financial instruments. From the definition, it is implied
that the set of information Ω1 assumed in weak efficiency is included in the set of information Ω2 assumed
in semi-strong efficiency, and the latter is included in the set of information Ω3 assumed in strong efficiency,
i.e. Ω1 ⊂ Ω2 ⊂ Ω3. Additionally, semi-strong efficiency implies weak market efficiency, and strong efficiency
implies semi-strong efficiency. However, it is important to note that these relationships are not bidirectional,
and the implications do not hold in the opposite direction

The algorithmization of markets and stock exchanges began in the 1970s and 1980s (Conlan, 2016) when
the New York Stock Exchange introduced the designated order turnaround (DOT) system for the first time.
Since then, algorithmic trading has significantly developed. Over the last 30 years, scientific research on
investment systems that uses changes in price trends (e.g. based on moving averages) has become extremely
popular. Interest in this area of investment often stems from the simplicity of the implemented strategy and
the relatively high risk-adjusted returns to the Buy and Hold strategy (Tapa et al., 2016, Castellano Gómez
and Ślepaczuk, 2021). Many investors and researchers are interested in reducing investment risk. According
to Markowitz (1952), optimal asset allocation allows for maximizing risk-adjusted returns. Therefore, in this
work, we focus on the aggregated results obtained by S&P 500 index.

The attempt to construct a counterexample to the Efficient Market Hypothesis is also an interesting and
popular research topic that will be undertaken in this work. Fama (1970) argued that markets are efficient
reflecting the full set of information that could be used to predict future prices, i.e., abnormal profits would
be achievable only by chance or by investing in risky assets. This was initially asserted by Cowles and Jones
(1937), who claim that investors are unable to achieve results better than the market itself.

2.2 Moving Average Crossover

Moving Average Crossover is a technical indicator introduced by Appel (1979). It is one of the oldest and
most commonly used trading indicators, still widely used by professional investors. The main advantage
of Moving Average Crossover (MAC) is undoubtedly its ability to follow the upward or downward trend of
prices, which offers investors the chance to identify emerging trends in prices. The issue of analyzing market
efficiency and investment strategies based on technical indicators has been present in literature since at least
the 1960s. James (1968) was one of the first to use technical analysis methods to predict price movements.
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In his article, James described the possibilities of using moving averages of different lengths and weights with
the aim of maximizing profits. The results showed that the benchmark Buy And Hold strategy achieved
better results in most cases than various variations of exponential or simple moving averages. However,
a rational investor will not analyze an investment strategy solely through the lens of earnings, but also
the risk taken during investing. Huang and Huang (2020) in their work, based on empirical results, show
that strategies based on moving averages generally correctly follow trends, bring positive returns, although
usually smaller than the Buy And Hold strategy. On the other hand, they bring significantly higher risk-
adjusted returns than Buy And Hold, which means that strategies based on moving averages are on average
safer and carry less risk. Similarly, in the study of Gurrib (2016), it was tried to evaluate effectiveness of
investment strategies based on Moving Average Crossover against the Buy And Hold (B&H) benchmark.
It confirmed results stated by Huang. Using strategies based on moving averages on S&P 500 index, it is
shown that the strategy based on MAs has both lower compounded returns, compounded risk and maximum
drawdown, but higher Sharpe Ratio (1.351) than Buy And Hold (1.214). Moreover, Alajbeg et al. (2012)
built an investment strategy based on Exponential Moving Averages on the S&P 500 index and achieved
similar results. He concluded that the strategy achieved higher returns than B&H on S&P 500 index during
the period 1990-2012, but not in the period 1950-2012. Additionally, the strategy had much lower maximum
drawdown of 19.47% compared to B&H’s drawdown of 56.77%.

Yet another way to test a strategy, is to use a profit factor defined as a ratio of gross profits divided by gross
loses. Using this metric, Aycel and Santur (2022) tested a hybrid approach based on moving averages and
compared it to strategies based on other technical indicators, such as Moving Average Crossover Divergence
(MACD), Stochastic approach and RSI on BIST30 stocks in Turkey. Using this metric, it was concluded
that the hybrid approach managed to achieve a higher PF than the other indicators widely used in trading
and literature.

Apart from the metrics mentioned before, such as profit factor, compounded returns or risk, one can also
measure the effectiveness of the strategy using derivatives of Sharpe Ratio, which take into account other
factors, such as Maximum Loss Duration (MLD), Maximum Drawdown (MD) or Annualized Standard
Deviation of rates of return (aSD). One such study that measured risk-adjusted returns using these metrics
is (Castellano Gómez & Ślepaczuk, 2021). Among many other strategies, single and complex, based on a
portfolio of them on S&P500 index, they focused on Moving Average Crossover strategy. Analyzing both
base and and sensitivity analysis models (which covered different lengths of walk forward’s in sample and
out of sample periods) we can conclude that none of the models managed to achieve a higher return than
B&H, but all models except one achieved higher IR∗ metrics (which is defined as annualized rate of return
ARC divided by annualized standard deviation of rates of return ASD) and all but two achieved higher IR∗∗

(which is a metrics derived from IR∗, but additionally is multiplied by ARC and divided by MD).

2.3 XGBoost

Due to disagreement about the validity of Efficient Market Hypothesis, nowadays many researchers try to
use machine learning techniques to construct such price-predicting algorithms that will be able to beat
the market without high levels of risk. Decision Trees, Neural Networks, Support Vector Machines, Fuzzy
Algorithms and so on. Such algorithms can be easily optimized and used to forecast future prices or rates
of returns with great accuracy. One commonly mentioned machine learning algorithm in the literature is
XGBoost. eXtreme Gradient Boosting is a machine learning algorithm, which gained traction in recent
years. Since it’s invention in 2016, it has been used in natural language processing, image recognition or
time series forecasting. XGBoost is an ensemble algorithm that ensembles multiple decision trees in order
to make a single prediction. The main idea is that by adding a new tree built atop of the old tree, we are
able to significantly reduce errors.

In the spirit of trying to beat Buy And Hold benchmark, Drahokoupil (2022) tried to predict future Bit-
coin BCT prices by optimizing XGBoost with Bayesian optimization techniques. In this paper, researcher
managed to beat the Buy And Hold benchmark in both total profit and two risk measuring performance
metrics that is Sharpe Ratio and Sortino Ratio. During sensitivity analysis, they also managed to prove
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robustness of used algorithm and showed promising results by ensembling variants of XGBoost with special
weight technique.

According to Yuan (2023), XGBoost outperforms other established machine learning algorithms, such as
KNN (K Nearest Neighbours), only to be beaten by a newer version of itself that is LightGBM algorithm
in the context of error metrics such as MSE, RMSE, MAE or MAPE. All the algorithms in this study were
trained only on closing prices. Another study comparing XGBoost to other machine learning algorithms,
such as Simple Decision Tree and Random Forest is (Mohammed et al., 2023), in which authors tried to
predict prices of BAC, CVX and HD stocks. MSE and Accuracy metrics were measured, and comparing to
the rest of strategies, XGBoost proved to bring the worst results out of the three. On the contrary, in the
study conducted by Sekhar et al. (2023), XGBoost proved to be more accurate compared to LSTM based
algorithm with enabled Early Stopping. XGBoost managed to have MAE equal to 0.023, where LSTM had
MAE equal to 0.107. Both algorithms had only one out of sample and one in sample periods, as both were
trained only on Adjusted Close Prices.

Another study, in which authors compare XGBoost to other established algorithms is (Chlebus et al., 2021).
In this research, authors compare XGBoost to methods based on Support Vector Regression (SVR), K-
Nearest Neighbours (KNN), Light Gradient Boosting Machine (LGBM) and Long Short-Term Memory
(LSTM) on the Nvidia’s stock from 2012 to 2018. It was shown that the SVR, based on stationary attributes,
exhibited the most optimal performance under the scores of Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Median Absolute Error (MedAE). In general, it was demonstrated that models
which rely solely on stationary variables outperformed models that incorporate both stationary and non-
stationary variables. XGBoost based model achieved the highest loss function value in almost every scenario.

2.4 LSTM

Another example of machine learning algorithm widely used by researchers are Artificial Neural Networks.
Recurrent Neural Networks (RNNs) are a sub-class of Artificial Neural Networks (ANNs) that can process
sequential data. RNNs have a history in the field of natural language processing, predicting DNA sequences
or algoritmic-trading. Unfortunately, RNNs can not manage the vanishing gradient problem (or exploding
gradient problem). To solve this problem, the gate mechanism is introduced, which successfully replaces
hidden layer in RNN. Long Short Term Memory (LSTM) is a type of RNN that is really effective in modelling
long term dependencies, thus making them a popular choice for researchers to use as a tool to predict the
stock prices or other financial time-series.

Since LSTM is a sub-class of Recurrent Neural Network group, it might be tempting to compare the two
of them in practical use. For example, in (Lv et al., 2021), authors not only compared LSTM and RNNs,
but also Ligth-LBGM-LSTM ensemble and GRU. Data used was Shanghai Composite Index and Shanghai
Shenzhen 300 index. Comparing accuracy and F-score of the predictions, it was concluded that LightGBM-
LSTM ensemble was the most accurate and precise.

In the study conducted by Nguyen and Ślepaczuk (2022), the authors decided to compare LSTM to well
known methods of investing and technical analysis, such as Relative Strength Index (RSI), Moving Average
Crossover Divergence (MACD) or Simple Moving Averages (SMA) on S&P 500 index. All of the models were
assessed using derivative of Sharpe Ratio, mainly Information Ratio IR∗ and Modified Information Ratio
IR∗∗. In the study, it was shown that LSTM based model outperformed all of the models based on technical
indicators in both IR∗ and IR∗∗.

For example, Chena (2022) compared aforementioned XGBoost and LSTM with the tasks of predicting
prices for gold and BTC. Researchers used error metrics and accuracy to measure how well these models
work. Being trained just on adjusted close prices, LSTM managed to achieve 51.04% accuracy on BTC and
53.03% accuracy on gold, while XGBoost managed to achieve 57.19% and 44.15% accuracy on BTC and
gold respectively.

Yet another study, where designed strategy managed to beat the benchmark with respect to risk-adjusted
returns is (Mahfooz et al., 2022), in which authors proposed training LSTM on so called Unified Trading
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Strategy (UTS) based on technical indicators. Later on, they compared effectiveness of the LSTM with
benchmark Buy And Hold strategy and UTS using Sharpe Ratio and Profit Factor, defined as the ratio of
winning to losing trades. Stocks used were AAPL, DIA, SPY, JNJ, MCD, NKE, MSFT, and PG. In this
study, LSTM managed to achieve the highest Sharpe Ratio out of all strategies used.

Not only one can base entire strategy on LSTM prediction, but one can also use LSTM in hybrid, more
advanced models. For example, in (Li et al., 2021) LSTM is used with Deep Q-Learning (DQN) model,
meaning it is used instead of traditional Recurrent Neural Network in order to predict the Q-estimate and
choose the action with the biggest predicted Q value. The LSTM-DQN ensemble was tested on data from
CSI Nine Sector Index. Results show that in eight out of nine tested sectors model with LSTM managed to
achieve higher Sharpe Ratio than Moving Average Crossover or Buy And Hold benchmarks.

2.5 Ensembling LSTM and XGBoost

Ensembling machine learning algorithms has become a popular technique for improving accuracy of predic-
tions and overall robustness of a model. There are several ways to ensemble a ML model, in particular:

• Bagging
Bagging involves optimizing models on different subsets of training data, where each models make a
prediction independently of each other. Final prediction of the model is given by an average, democratic
or weighted voting over all individual model predictions.

• Boosting
Boosting involves training many models on the same dataset, where each and next model is fed errors
or information about mistakes from the previous models. The global, final prediction usually is a
weighted vote composed from all previous models.

• Stacking
Stacking involves training multiple models on the same dataset and using outputs from one model as
inputs to another, for example predictions from model 𝐴 on day 𝑡 for day 𝑡 + 1 can be used as inputs
for model 𝐵 that also makes a prediction for day 𝑡 + 1. The final meta model can be trained on the
original raw data, just the outputs from other model or a concatenation of both mentioned.

Ensembling also can help to reduce overfitting of the model and smooth the predictions to reduce the impact
of individual model’s biases or peculiarities. In particular, ensembling LSTM with outputs from XGBoost
may produce better signals. LSTM is well known for being able to model sequential data, simultaneously
being able to capture existing long-term dependencies. XGBoost, one the other hand is well suited for
handling high-dimensional data and making accurate predictions. By ensembling these two, there is a
chance to achieve the best of both worlds and leverage the strengths of both models. Many researchers tried
to ensemble machine learning algorithms with one another, achieving mixed results.

One such study that tried ensembling LSTM with outputs from XGBoost is (Yu et al., 2021). In this
particular research, LSTM was compared to LSTM ensembled with XGBoost and with simple RNNs. The
models were compared to each other using Root Mean Squared Error RMSE, Mean Absolute Error MAE,
Accuracy and 𝑓1 score, which is calculated using precision and recall. The data used were ES, YM, AAPL,
SI and CL stocks. The stated conclusion was that there was no certain degree of stability in the forecast,
but in all cases in sensitivity analysis the ensembled model managed to have lower MAE and both higher
accuracy and 𝑓1 than simple LSTM and RNNs.

In the study by Jiang (2022), five algorithms were compared using performance scores and error metrics,
such as MSE, MAE and RMSE. Covered models were Attention based GRU - XGBoost, attention based
BiLSTM, LSTM, CNN and ARIMA. Results have shown that ensembled model managed to achieve lower
RMSE than all of the models, lower MAE than all models except Attention based BiLSTM and lower MSE
than ARIMA.
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Another example of ensembling XGBoost with other strategies that produces satisfying results is study
conducted by Kumar et al. (2022) on Microsoft stock. Outputs from models were analyzed with MAE,
MAPE and Accuracy metrics. It was shown that ensembled model brought better results in the context of
all metrics used when compared to SARIMA and XGBoost.

2.6 Novelty of Results

Most of the authors during their work do not use walk forward optimization, but instead split the entire
dataset into two (in case of ML algorithms three) parts and produce relatively short Equity line. In this
work, we will investigate ensembling Machine Learning algorithms and optimizing them with walk forward
procedure. Overall, in this study we will propose a model that is both optimized using walk forward opti-
mization procedure, and is an ensemble of both machine learning and technical indicator based algorithms.
Furthermore, we will analyze the results with many performance metrics that not only take into account
rate of returns, but also risk factors such as Maximum Loss Duration, Maximum Drawdown and Annualized
Standard Deviation of daily rates of return. All but one, newly introduced in this study IR∗∗∗, of mentioned
Performance Metrics are derived from metrics used in (Kryńska & Ślepaczuk, 2022).

3 Methodology

This study focuses on creating an investing strategy, such that it is a counterexample to Efficient Market
Hypothesis. We will explore topics of classical technical analysis tools, such as moving averages enhanced
with more advanced Machine Learning algorithms, and at the very end we will try to combine these strategies
into one using ensembling methods. All of the strategies were optimized with non-anchored walk forward
optimization and compared to each other using performance metrics and focusing on risk-adjusted returns.
In this study, we will introduce the following symbol to make equations more readable. For all natural
numbers 𝑛 let us define:

[𝑛] ∶= {𝑘 ∈ ℤ ∣ 1 ≤ 𝑘 ≤ 𝑛} (1)

3.1 Performance Metrics

In this study we will introduce methods for evaluating investment strategies that is Performance Metrics
that take into account not only return rates, but also factors indicating safety of the investment. Many of
the listed metrics are gathered from (Castellano Gómez & Ślepaczuk, 2021). Additionally, we will introduce
a new metrics IR∗∗∗, which also takes into account the length of loss periods. In analyzing performance of
investment strategies, one should not look only at returns, since it does not reflect how safe the strategy is.
Therefore, we will introduce methods of measuring risk-adjusted returns by combining loss duration periods,
percentage losses, standard deviation of return rates into three metrics: IR∗, IR∗∗, IR∗∗∗. These are the
following:

• Daily rate of return 𝑟

𝑟𝑖+1 ∶= 𝑝𝑖+1 − 𝑝𝑖
𝑝𝑖

(2)

where 𝑝𝑖 is the price of the asset on the 𝑖−th day. We will be using these notations extensively further
on in the work.
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• Annualized Rate of Return Compounded 𝐴𝑅𝐶

𝐴𝑅𝐶 ∶= −1 +
𝑛

∏
𝑖=1

(1 + 𝑟𝑖)
252

𝑛 (3)

where 𝑛 is the number of days the strategy has been running.
Annualized rate of return 𝐴𝑅𝐶 is a measure of average yearly compounded wealth growth on a tested
period. Two assumptions are made regarding 𝐴𝑅𝐶. First of all, average wealth growth from previous
year is accumulated and added to next year capital. Second of all, on average stock markets are opened
between 250 and 254 days every year, which for simplicity purposes we will approximate by 252 days
in order to annualize the returns.

• Annualized Standard Deviation 𝑎𝑆𝐷

𝑎𝑆𝐷 ∶=
√√
⎷

252
𝑛 − 1

𝑛
∑
𝑖=1

(𝑟𝑖 −
𝑛

∑
𝑘=1

𝑟𝑘
𝑛 )

2
(4)

aSD is a yearly annualized standard deviation of daily returns (𝑟𝑖)𝑛
𝑖=1.

• Maximum Drawdown 𝑀𝐷

𝑀𝐷 ∶= sup
(𝑥,𝑦)∈{(𝑡1,𝑡2)∈ℝ2

≥0 ∶ 𝑡1<𝑡2}
𝑃𝑥 − 𝑃𝑦

𝑃𝑥
(5)

where 𝑃𝑡 is overall equity held at the moment 𝑡 in time.
Maximum Drawdown MD shows the greatest percentage capital loss across the entire investment hori-
zon. Large values of 𝑀𝐷 that is large losses, may suggest that strategy is not stable. Optimal value
of 𝑀𝐷 to be achieved is zero, since it implies that strategy has never lost any capital. The number is
always non-negative and is shown in percentage terms.

• Maximum Loss Duration 𝑀𝐿𝐷
𝑀𝐿𝐷 ∶= 𝑦 − 𝑥

252 (6)

where 𝑥 and 𝑦 are moments in time defined in equation (5).
Maximum Loss Duration MLD measures in years the longest loss period across the entire investment
horizon when the value of our investments was on the lower level than the previous local maximum.
Figure 1 presents graphically how MD and MLD are calculated.
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Figure 1: Graphical representation of MD and MLD

Note: The figure shows MLD and MD graphically on fictional equity curve achieved by some strategy.
The width represents the time period, in which the highest percentage loss occurs and goes back to the
previous maximum. The height represents biggest percentage loss on the entire investment horizon.

Apart from the above measures of profits and risk, we also propose three additional metrics IR∗,
IR∗∗, IR∗∗∗ that accumulate information about returns and volatility of the strategy which combine
mentioned metrics into one:

• Information Ratio IR∗

𝐼𝑅∗ ∶= 𝐴𝑅𝐶
𝑎𝑆𝐷 (7)

First iteration of Information Ratio is calculated as a ratio of annualized return rate to annualized
standard deviation, so in a sense it is really similar to Sharpe Ratio, since the ratio is defined as:

Sharpe Ratio ∶= return of portfolio − risk free returns
standard deviation of rates of return = 𝐴𝑅𝐶 − 𝑅𝑓

𝑎𝑆𝐷 = 𝐼𝑅∗ − 𝑅𝑓
𝑎𝑆𝐷 (8)

and one only needs to assume that risk free returns 𝑅𝑓 are equal to zero. The more profitable the
strategy is (higher return rate 𝐴𝑅𝐶), or the safer the strategy is (lower standard deviation of daily
returns), the higher information ratio is.

• Information Ratio IR∗∗

𝐼𝑅∗∗ ∶= 𝐼𝑅∗ ⋅ 𝐴𝑅𝐶
𝑀𝐷 ⋅ sgn(𝐴𝑅𝐶) = sgn(𝐴𝑅𝐶) ⋅ 𝐴𝑅𝐶2

𝑎𝑆𝐷 ⋅ 𝑀𝐷 (9)

Second iteration of information ratio takes into account the same parameters as IR∗, but also the
maximum loss of our investment (Maximum Drawdown MD). The lower MD, the higher IR∗∗ is. In
the best, optimal scenario IR∗∗ is equal to infinity (when 𝑀𝐷 = 0). IR∗∗ has the same monotonicity
characteristics as IR∗.
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• Information Ratio IR∗∗∗

𝐼𝑅∗∗∗ ∶= 𝐼𝑅∗∗ ⋅ 𝐴𝑅𝐶
𝑀𝐿𝐷 = 𝐴𝑅𝐶3

𝑎𝑆𝐷 ⋅ 𝑀𝐷 ⋅ 𝑀𝐿𝐷 (10)

Third and last iteration of information ratio is IR∗∗∗. Not only does it have the same parameters as
IR∗∗, but it also takes into account Maximum Loss Duration 𝑀𝐿𝐷. IR∗∗∗ is positively correlated with
𝐴𝑅𝐶 and negatively with all of the metrics that reflect risks of an investment. Value of IR∗∗∗ usually
is very low, so for visualization aspects we will multiply this value by 10000.

From the point of our analysis, the most important metric is IR∗, and so most of the optimization criteria in
the base case scenario are based on choosing a combination of hyperparameters with the highest IR∗ value.
The rest of the metrics are supplementary, and additional conclusions are drawn from analyzing their values.

3.2 Training inputs for LSTM

In this study, we tried to build investment algorithms, including LSTM based models. Some of the training
inputs were technical indicators, those being RSI (Relative Strength Index) and SD (Standard Deviation)
of returns rates of B&H, the definition of which can be found in many papers listed in literature review on
the topic of technical indicators.

3.2.1 RSI

Relative Strength Index is one of the technical analysis indicators that determines the strength of a trend.
It takes values in the range of [0, 100] and is expressed by the formula defined in (Wilder, 1978):

𝑅𝑆𝐼𝑛 ∶= 100 − 100
1 + 𝑅𝑆𝑛

(11)

𝑅𝑆𝑛 ∶= average value of the closing price increase over last 𝑛 days
average value of the closing price decrease over last 𝑛 days (12)

where 𝑛 is the number of observed days. If 𝑅𝑆𝐼 is around 100, it indicates an increased probability of a
trend reversal to a downtrend. If it is in the range of (70, 100), it gives a sell signal. If it is in the range of
(0, 30), it gives a buy signal. If 𝑅𝑆𝐼 is around 0, it indicates an increased probability of a trend reversal to
an uptrend.

3.3 Moving Average Crossover

The idea of moving averages is well-known to investors and often used in technical analysis. Moving Average
Crossover method does not predict future prices, but indicates current market trend. For MAC to work,
one needs to employ them on a market that has both long- and short-term trends. The strategy consists of
calculating and looking for crossovers of two averages that is one slow, and one fast. Buy signal is created,
when fast moving average is below slow moving average, and then we can expect the prices to grow in short
term. Analogously, sell signal is created when slow moving average is below fast moving average, which
indicates that we expect the prices to fall. If we denote the value of fast moving average on day 𝑡 by 𝐹𝑀𝐴𝑡
and slow moving average by 𝑆𝑀𝐴𝑡, we can write:

signal generated on the day t ∶= {𝐵𝑢𝑦, if 𝐹𝑀𝐴𝑡 > 𝑆𝑀𝐴𝑡
𝑆𝑒𝑙𝑙, otherwise

(13)
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In this study, we chose hyperparameter space defined as:

Length of Fast Moving Average ∈ Ω𝑓𝑎𝑠𝑡 ∶= {1, 3, 5, ..., 39, 41} (14)
Length of Slow Moving Average ∈ Ω𝑠𝑙𝑜𝑤 ∶= {40, 50, 60, ..., 140} (15)

Thus, in each iteration we need to calculate #Ω𝑓𝑎𝑠𝑡 × #Ω𝑠𝑙𝑜𝑤 combinations of parameters. In walk forward
procedure, a combination of fast and slow moving averages that gives the best value of chosen optimization
criterion is employed in out of sample period. Additionally, we define a Moving Average of length one as a
index price from previous day. Figure 2 presents graphically how MAC strategy works in practice.

Figure 2: Moving Average Crossover

Note: Visualization of Moving Average Crossover trading method. Figure represents one period of
using the method, with fixed lengths of both slow and fast moving averages. OX axis represents
trading days, and OY axis represents both moving averages and stock price in dollars.

In the base case scenario, we chose optimization criteria to be IR∗, the in sample period length of 3 years
and out of sample period length of 1 year. In the sensitivity analysis, we calculate more combinations of
optimization criteria, OOS and IS period lengths.

Table 1: Hyperparameters for moving averages

Optimization Criteria IS Length OOS Length Ω𝑓𝑎𝑠𝑡 Ω𝑠𝑙𝑜𝑤

Base Case IR∗ 3 years 1 year {1,3,...,41} {40,50,...,140}
Sensitivity

analysis {𝐴𝑅𝐶, IR∗, IR∗∗, IR∗∗∗} {1,2,3,4} years 1 year {1,3,...,41} {40,50,...,140}

Note: Note: Curly brackets denote possible combinations of the hyperparameter. The in sample period starts in 1996
and ends in 2023. The out of sample period starts on 2000.01.01 and ends on 2023.05.11. Both base case and sensitivity
analysis are optimized on space of hyperparameters defined by #Ω𝑓𝑎𝑠𝑡 × #Ω𝑠𝑙𝑜𝑤.

All in all, thirteen models of moving averages are calculated, since there is one base case model and twelve
possible combinations (four possible optimization criteria timer three possible lengths of in sample period)
of optimization criteria and IS length in sensitivity analysis.
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3.4 XGBoost

3.4.1 Theory behind XGBoost

XGBoost (eXtreme Gradient Boosting), introduced in (Chen & Guestrin, 2016), is a machine learning algo-
rithm that is widely used for various tasks, including classification or regression. It is a boosted tree ensemble
model, meaning it iteratively trains weak decision trees and combines their output to make predictions. The
algorithms works by minimizing loss function that measures, how far apart were predicted values and the
actual value. XGBoost works as shown on Figure 3.

Figure 3: Visualization of XGBoost

Input features Tree 1 Tree 2 … Tree 𝑛 Output

Note: Figure shows standard visualization of XGBoost. In our study XGBoost is optimized with grid search,
defined in Table 2, based on walk forward optimization.

Let 𝐷 be a training set with 𝑛 samples and 𝑚 features, in which 𝑦 is the target variable. XGBoost constructs
an ensemble of 𝐾 decision trees 𝑓𝑘, such that each one maps an input feature vector 𝑥 ∈ ℝ𝑚 to a scalar
output ∀𝑘∈[𝐾] 𝑓𝑘(𝑥) ∈ ℝ. Output of XGBoost model is given by the formula:

̂𝑦(𝑥) ∶= ∑
𝑘∈[𝐾]

𝑓𝑘(𝑥) (16)

Let us denote a differentiable loss function by 𝑙(𝑦𝑖, 𝑓𝑘(𝑥𝑖)), measuring the difference between predicted value
̂𝑦(𝑥𝑖) and actual value 𝑦𝑖 for 𝑖 ∈ [𝑛]. Also, let Ω(𝑓𝑘) be a regularization term that prevents trees from

overfitting. Every decision tree is optimized by minimizing objective function ℒ defined by:

ℒ(𝑓𝑘) ∶=
𝑛

∑
𝑖=1

𝑙(𝑦𝑖, 𝑓𝑘(𝑥𝑖)) + Ω(𝑓𝑘) (17)

Regularization term Ω(𝑓𝑘) controls complexity (thus, prevents overfitting) of 𝑘 − 𝑡ℎ tree. Typically, it is
defined as:

Ω(𝑓𝑘) ∶= 𝛾 ⋅ 𝑇 + 1
2𝜆

𝑇
∑
𝑗=1

𝑤2
𝑗 (18)

where 𝑇 is the number of terminal nodes in the tree, 𝛾 and 𝜆 control the degree of regularization and 𝑤𝑗 is
the output of 𝑗 − 𝑡ℎ node.
XGBoost uses gradient boosting to iteratively improve the ensemble of decision trees, meaning at each
iteration 𝑡 the algorithm adds a new decision tree 𝑓𝑡, such that it minimises objective function:

ℒ(𝑡) =
𝑛

∑
𝑖=1

𝑙(𝑦𝑖, ̂𝑦(𝑡−1)(𝑥𝑖) + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) (19)

where ̂𝑦(𝑡−1)(𝑥𝑖) is the current prediction of the ensemble model for sample 𝑖 at iteration 𝑡 − 1.

3.4.2 XGBoost in practice

For our needs, we will use XGBoost with walk forward optimization and grid search to predict future prices.
In every in sample window, we will optimise the algorithm with grid search and employ the found combination
of parameters on out of sample period. Algorithm makes prediction for one day only, so after each day we
add previous day’s price to data vector and make predictions on new dataset. If predicted price is greater
than today’s price, a buy signal is created. Otherwise, a sell signal is created. Hyperparameter search space
is defined as follows:



Chojnacki, K. and Ślepaczuk, R./WORKING PAPERS 15/2023 (422) 12

Table 2: Hyperparameter space for XGBoost optimization

# of Estimators Learning Rate Max Depth Gamma
{100, 200, 300, 400} {0.001, 0.005, 0.01, 0.05} {8, 10, 12, 15} {0.001, 0.005, 0.01, 0.02}

Note: The table shows all possible parameters used in grid search optimization for XGBoost. Values were taken
from research conducted by Zhang Y. (2022). The number of tested combinations in grid search is equal to
4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 = 64.

3.5 LSTM

3.5.1 Theory behind LSTM

Long Short-Term Memory (LSTM) model, introduced in (Hochreiter & Schmidhuber, 1997), is particularly
useful in finance and algorithmic trading, because it can effectively capture complex patterns and depen-
dencies in financial time series data. By using LSTM networks, traders and investors can gain an edge by
identifying and acting on emerging market trends and investment opportunities.

LSTM is a type of Recurrent Neural Network RNN that additionally addresses the problem of vanishing
gradient present in standard Recurrent Neural Networks. In standard RNNs the gradient of loss function
can become incredibly small as it propagates backward, making it difficult for network to work effectively.
This problem can be especially acute in investing or algorithmic trading, where time series data may have
long term dependencies and complex patterns. LSTM networks have a dedicated memory cell that allow
them to selectively remember (or not) information from past inputs. The memory cell is controlled by three
gates: input gate, forget gate and output gate that control the flow of information. By selectively gating
information, systems based on LSTM can effectively capture long term dependencies in the data provided
and minimise the vanishing gradient problem. LSTM works as shown on Figure 4:

Figure 4: Visualization of how LSTM works

Input
𝑧𝑡

Forget gate
𝑓𝑡

Memory cell state
𝑐𝑡

Input gate
𝑖𝑡

Output gate
𝑜𝑡

Output
ℎ𝑡

Data
𝑥𝑡

Previous output
ℎ𝑡−1

𝔽

Note: Figure shows standard representation of LSTM. In our study, LSTM is optimized with grid
search defined in Table 3, which uses with walk forward optimization.

Let us denote output of the LSTM cell at time 𝑡 by ℎ𝑡, and input by 𝑥𝑡. Generalized input 𝑧𝑡 to the LSTM
cell is a concatenation of the input at time 𝑡 and output from the previous time step ℎ𝑡−1 that is:

𝑧𝑡 ∶= [ℎ𝑡−1, 𝑥𝑡] (20)

The input gate 𝑖𝑡 determines how much of the input should be stored in the memory cell. Let us assume that
𝑊𝑖 and 𝑏𝑖 are learnable parameters representing weights and biases of the network. Then it is calculated by
applying sigmoid function 𝜎 to a sum containing input and previous output:

𝑖𝑡 ∶= 𝜎(𝑊𝑖 ⋅ 𝑧𝑡 + 𝑏𝑖) (21)
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The forget gate 𝑓𝑡 determines how much of the previous memory cell state should be saved. Analogically to
input gate 𝑖𝑡, sigmoid function is applied to a sum containing input and previous output:

𝑓𝑡 ∶= 𝜎(𝑊𝑓 ⋅ 𝑧𝑡 + 𝑏𝑓) (22)

The output gate 𝑜𝑡 determines how much of the memory cell state will be in output, or simply what
information will be in the output:

𝑜𝑡 ∶= 𝜎(𝑊𝑜 ⋅ 𝑧𝑡 + 𝑏𝑜) (23)

The memory cell state 𝑐𝑡 is updated by selectively adding and removing information based on the input and
forget gates:

𝑐𝑡 ∶= 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝔽(𝑊𝑐 ⋅ 𝑧𝑡 + 𝑏𝑐) (24)

where 𝔽 is an activation function (usually hyperbolic tangent function tanh or ReLU). The output itself is
calculated by selectively selecting information from the memory cell based on the output gate:

ℎ𝑡 ∶= 𝑜𝑡 ⋅ 𝔽(𝑐𝑡) (25)

3.5.2 LSTM in practice

In this study, it was decided to train LSTM on current market price of an index and technical indicators
based on market price. At every day 𝑡, the LSTM model has access to the price from day 𝑡 and all indicators
calculated based on prices up to (and including) day 𝑡. This way, Data 𝑥𝑡 in Figure 5 consists of the newest,
but not future data (to avoid look-ahead bias, which is very common in many studies). LSTM models in
our case base their decisions on the last 15 days of available data that is on days 𝑡, 𝑡 − 1, …, 𝑡 − 14 when
making decision on day 𝑡 ≥ 15.

Figure 5: Visualization of base case LSTM model on the input layer

Data
𝑥𝑡

Technical
indicators

Prices
𝑝𝑡

RSI

SD

Note: Figure shows construction of Data 𝑥𝑡 used in calculation process by LSTM algorithm in base
case scenario. Logic behind calculations is the same as in Figure 4. SD stands for standard deviation.

Each and every one of the models listed below was subjected to grid search in order to find best-fitting
parameters in every walk forward period. Since grid search is very time consuming, we used predefined
combination of parameters chosen from literature. At every test period in in sample, algorithm performed
grid search and optimized all of the ten models, then chose the best one on the validation set with respect
to the highest value of optimization criteria, this being the highest value of IR∗. Proposed combination of
parameters are summarized in Table 3.
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Table 3: Chosen hyperparameters for LSTM optimization

Model Neuron
Dropout

# of
Neurons

# of
Hidden Layers

Learning
Rate

Loss
function

# of
Epochs

1. 0.3 64 1 0.001 BC 80
2. 0.2 30 0 0.01 BC 80
3. 0.1 10 1 0.0001 BC 80
4. 0.1 25 0 0.001 BC 30
5. 0.2 32 0 0.001 BC 80
6. 0.2 12 1 0.003 BC 80
7. 0 128 1 0.001 BC 80
8. 0.2 32 0 0.002 BC 80
9. 0.2 120 0 0.001 BC 80
10. 0.25 50 0 0.001 BC 80

Note: BC stands for Binary Cross-Entropy. Each of the models had a lag (decision period)
of 15. Optimization criterion was IR∗. #Ω means the cardinality of set Ω, or the number of
elements in the set, or simply ’the number of’.

3.5.3 LSTM Ensembles

Furthermore, we will ensemble models with signals produced by Moving Average Crossover and XGBoost.
At every day 𝑡, LSTM will not only base it’s prediction on technical indicators and prices explained in the
previous section, but also signals generated on day 𝑡 for day 𝑡 + 1. Overall, Ensembled LSTM data and
models are presented as follows:

Figure 6: Visualization of LSTM Ensembles

Data
𝑥𝑡

Technical
indicators

Prices
𝑝𝑡

Signals
𝑠𝑡

RSI

SD

Signals from
XGBoost

Signals from
MAC

Note: Figure shows construction of Data 𝑥𝑡 used in calculation process by LSTM algorithm in an
ensemble model. Logic behind calculations is the same as in Figure 4. SD stands for standard
deviation, MAC stands for Moving Average Crossover.

Logic behind generating signals is similar as in previous chapters. Four LSTM models for each Short Allowed
and Long Only format will be covered in base case scenario, so all in all eight models will be tested. We
will change the ranges of technical indicators and see, how the model performs in both Long Only and Short
Allowed scenario. Sensitivity analysis will not only cover lengths of inputs to technical indicators, but also
ratios pf partitions of train, validation and test periods. Overall, thirteen models will be calibrated and
presented for each LSTM model.
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Table 4: Proposed LSTM models

Slow
MA

Fast
MA

Slow
SD

Fast
SD RSI Signals from

MAC
Signals from

XGBoost Train Val Test

Base
Case

60 15 30 10 14 7 1 2
60 15 30 10 14 Yes 7 1 2
60 15 30 10 14 Yes 7 1 2
60 15 30 10 14 Yes Yes 7 1 2

Sensitivity
Analysis

60 15 30 10 14 Yes Yes 4 1 2
60 15 30 10 14 Yes Yes 12 1 2

60 15 30 10 14 Yes Yes 7 2 2
60 15 30 10 14 Yes Yes 7 4 2

60 15 30 10 14 Yes Yes 7 1 1
60 15 30 10 14 Yes Yes 7 1 3
60 15 30 10 14 Yes Yes 7 1 4

120 30 60 20 28 Yes Yes 7 1 2
30 8 15 5 7 Yes Yes 7 1 2

Note: By Slow a bigger value of hyperparameter was meant, by Fast a smaller, since it could adapt and represent
current market conditions faster. Four models are described in base case, two models in sensitivity analysis, each in
both Short-Allowed and Long-Only format. Numbers in Train, Val and Test columns represent a ratio in which the
sizes of the sets are. Given the entire window is 1000 days, for example in the base case scenario train set is 700 days
long, validation set is 100 days long and test set is 200 days long.

3.6 Walk Forward Optimization

3.6.1 General idea of Walk Forward Optimization

Every strategy mentioned is optimized with walk forward optimization. In this study, we chose a walk
forward optimization instead of anchored walk forward or having one 𝑂𝑂𝑆 and 𝐼𝑆 period for a few reasons.
First of all, we allow algorithm to face different market regimes in separate in sample periods, which leads
to better hyperparameter optimization. Second of all, chances of over-fitting are much lower, due to larger
number of shorter training periods. Methodology of walk forward in general is as shown on Figure 7.

1. Divide all of the available data into equal parts, containing 𝑛 of 𝐼𝑆 and 𝑂𝑂𝑆 periods

2. Choose In Sample (𝐼𝑆) and out of sample (𝑂𝑂𝑆) period lengths

3. Optimise strategy on 𝑖−th 𝐼𝑆 period, where 𝑖 ∈ [𝑛]
4. Employ optimized strategy on 𝑖−th 𝑂𝑂𝑆 period

5. Repeat for periods 𝐼𝑆𝑖+1 and 𝑂𝑂𝑆𝑖+1, until we’ve covered all partitions
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Figure 7: Walk forward Optimization in general

Note: Visualization of walk forward optimization in general. Total out of sample is constructed by
concatenating the results of all out of sample periods chronologically.

3.6.2 Walk Forward Optimization for Moving Average Crossover

Specifically for moving averages, walk forward process is as follows:

1. Divide all of the available data into equal parts, containing 𝑛 𝐼𝑆 and 𝑂𝑂𝑆 periods.

2. Choose in sample (𝐼𝑆) and out of sample (𝑂𝑂𝑆) period lengths.

3. Optimise strategy on 𝑖−th 𝐼𝑆 period, where 𝑖 ∈ [𝑛]. In the case of Moving Average Crossover, by that
we mean choose such combination of parameters denoting lengths of 𝐹𝑀𝐴 and 𝑆𝑀𝐴 that maximises
chosen optimization criteria (IR∗, IR∗∗, IR∗∗∗ and 𝐴𝑅𝐶). Performing grid search, we have to check
exactly # Ω𝑓𝑎𝑠𝑡 ⋅ # Ω𝑠𝑙𝑜𝑤 combinations, in our case 21 ⋅ 11 = 231 combinations.

4. Use chosen combination of 𝑆𝑀𝐴 and 𝐹𝑀𝐴 lengths in 𝑖−th 𝑂𝑂𝑆 period.

5. Repeat for periods 𝐼𝑆𝑖+1 and 𝑂𝑂𝑆𝑖+1, until we’ve covered all partitions.

3.6.3 Walk Forward Optimization for Machine Learning Algorithms

Similarly to moving averages, ML strategies are also optimized with walk forward approach. The difference
between WFO for MAs and Machine Learning based strategies is that we introduce a new period, i.e. val-
idation period. For a literature chosen space of hyperparameteres Ω, the optimization process is as shown
on Figure 8.

1. Divide all of the available data into 𝑛 equal parts 𝑇𝑖∣𝑖∈[𝑛], each 𝑇𝑖 consists of three nonoverlapping
periods: train 𝑇 𝑡𝑟𝑎𝑖𝑛

𝑖 , validation 𝑇 𝑣𝑎𝑙
𝑖 , test 𝑇 𝑡𝑒𝑠𝑡

𝑖 such that ∀𝑖∈[𝑛] 𝑇 𝑡𝑟𝑎𝑖𝑛
𝑖 ∪ 𝑇 𝑣𝑎𝑙

𝑖 ∪ 𝑇 𝑡𝑒𝑠𝑡
𝑖 = 𝑇𝑖.

2. Train the model on period 𝑇 𝑡𝑟𝑎𝑖𝑛
𝑖 .

3. Validate and choose the best set of hyperparameters 𝜔∗ ∈ Ω from available parameters 𝜔 ∈ Ω on 𝑇 𝑣𝑎𝑙
𝑖 .

4. Employ algorithm with chosen set of hyperparameters 𝜔∗ on 𝑇 𝑡𝑒𝑠𝑡
𝑖 and save the results.
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5. Repeat for 𝑇𝑖+1, until we’ve covered all indexes 𝑖 ∈ [𝑛].

Figure 8: Walk forward Optimization for Machine Learning Algorithms

Note: Visualization of walk forward optimization especially for Machine Learning Algorithms. Logic
stays the same, as in general case. Total out of sample is constructed by concatenating the results of
all out of sample periods chronologically.

3.7 Assumptions and Descriptions of Strategies

During investing process, some general assumptions are needed to be made. For simplicity purposes, for all
the strategies listed in this research, we assumed that:

• We could trade any fraction or quantity of an index

• During any trading day 𝑡, only one action could be made that is do nothing, buy or sell

• We are always able to perform an action on the market

• Transaction costs (0.02% of the value of an order) were included in every transaction

• We invest all the available capital (according to signal) and calculate the returns using percentage rates

• When buying or selling on trading day 𝑡, we assumed index close price from day 𝑡

Each strategy was tested in two variants: Long Only and Short Allowed. In general, all strategies produce
two signals, those being 1 and 𝜏 , where 𝜏 = 0 for Long Only and 𝜏 = −1 for Short Allowed. We denote
price of SP500 index at the end of the day 𝑡 by 𝑝𝑡, by ̂𝑝𝑡 a price prediction for day 𝑡, and by 𝑠𝑖𝑔𝑛𝑎𝑙𝑡 a signal
generated by the investment algorithm. Transaction cost at 0.02% level are a reasonable assumption, since
they are average of bid-ask spread typical range of 0.01% or less to 0.05% or more. Such spread heavily
depends on trading volume, liquidity and market volatility, thus making 0.02% a conservative estimate for
transaction costs, which includes reasonable assumptions about bid-ask spread costs.. For specific strategies,
following assumptions were made:
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• Buy And Hold
The index was bought at the beginning of out of sample period and sold at the end of it. B&H is a
benchmark strategy and represents all the changes in stock market over the years.

• Moving Average Crossover
We enter a long position, when Fast Moving Average (𝐹𝑀𝐴) is above Slow Moving Average (𝑆𝑀𝐴)
and analogically short position, when SMA is above FMA. Then:

signal𝑡 = {1 if 𝐹𝑀𝐴𝑡 > 𝑆𝑀𝐴𝑡
𝜏 otherwise

(26)

• LSTM Vanilla, Stacking, Voting and XGBoost
At the end of every day 𝑡, we make a prediction ̂𝑝𝑡+1 what tommorow’s (day 𝑡 + 1) price will be equal
to. If it’s higher than today’s (day 𝑡), we enter a long position. Otherwise, we enter position 𝜏 . Then:

signal𝑡 = {1 if ̂𝑝𝑡+1 > 𝑝𝑡
𝜏 otherwise

(27)

• Voting
Having 𝑛 systems that generate signals (𝑠𝑖)𝑖∈[𝑛], such that ∀𝑖∈[𝑛] 𝑠𝑖 ∈ {𝜏𝑖, 1} at the end of every day 𝑡
we define a vote (later denoted by Voting) as:

signal𝑡 = 1
𝑛 ∑

𝑖∈[𝑛]
𝑠𝑖 (28)

By this definition, we allow fractional signals to occur. They can be interpreted as investing only a
portion of capital.

3.8 Data Description

In the study all the algorithms were tested on S&P 500 index. The data, ranging from 01.01.1996 to
11.05.2023, was imported in daily format from Yahoo Finance using yfinance package. Figure 9 shows the
S&P 500’s adjusted close price, and Figure 10 shows the S&P 500’s rates of return in the covered period.
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Figure 9: S&P 500 index

Note: The figure shows S&P 500 index adjusted close value in American dollars over the years 1996-
2023.

Figure 10: Rates of return of S&P 500 index

Note: The figure shows S&P 500 index absolute rates of return over the years 1996-2023.

The data downloaded could not only be the period covering outputs of the models, mainly post 2000, because
it had to be trained and optimized in the years prior. We wanted to show the models performance starting
in the year 2000, and the longest optimization period was for the Moving Average Crossover with in sample
period length of four years, as shown in the sensitivity analysis. The Table 5 shows some descriptive statistics
for the data used, including arithmetic mean, standard deviation, minimum, maximum and 25%, 50%, 75%
percentiles.
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Table 5: Descriptive statistics S&P 500

Statistics SP 500 index Daily returns
Mean 1880.2144 0.0003

Standard deviation 970.8993 0.0125
Minimum 676.5300 -0.1198
Maximum 4796.5601 0.1158

P.25% 1184.4500 -0.0049
P.50% 1433.1899 0.0006
P.75% 2374.7300 0.0059

Skewness 1.2492 -0.1529
Kurtosis 0.6143 9.9866

Normal test 1007.9678 1043.5912
p-value 0.0000 0.0000

Note: P. is short for Percentile. Descriptive statistics calculated
on data ranging from 1996.01 to 2022.01. All the prices are
denoted in inflation adjusted American dollars.

4 Empirical results - base case

Every investment strategy is presented in two ways: Long Only and Short Allowed.

• Long Only
This strategy does not allow for shorting our positions, i.e. such a strategy produces only two types of
signals that is Buy Signal (1) and Market Neutral (0). Long only strategies are often used by investors,
who have a more conservative approach to investing and want to avoid risks associated with short
selling. Such investors buy assets with expectation that their value will increase over time.

• Short Allowed
This strategy allows for shorting our positions, and similarly to Long Only it produces two signals that
is Buy Signal (1) and a sell signal (-1). By adding the possibility of short selling, investors can profit
from falling prices as well as rising prices. This allows them to take advantage of market inefficiencies
and to potentially generate higher returns.

In this chapter base case empirical results the following models will be displayed and analyzed and compared
to benchmark Buy And Hold strategy. The models are divided into following subclasses:

• Benchmark
The benchmark strategy used is simple B&H, since we focus on Efficient Market Hypothesis.

• Vanilla
By vanilla we denote models that are used to derive more complicated algorithms from. These are:

– Moving Average Crossover
To optimize base case Moving Average Crossover method, we use both grid search and walk
forward optimization with hyperparameters defined in Table 1.

– XGBoost
To optimize base case XGBoost method, we use grid search with hyperparameters defined in
Table 2 and walk forward optimization with walk forward window equal to 1000 days, consisting
of train, validation and test set with lengths of the mentioned sets being equal to 7 : 1 : 2
respectively.
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– LSTM
To optimize base case LSTM method, we use grid search with pre-defined combinations of hyper-
parameters defined in Table 3 and walk forward optimization with window equal to 1000 days,
consisting of train, validation and test set with lengths of the mentioned sets being equal to 7 : 1
: 2 respectively as defined in Table 4. Also, in this table are specified information about training
inputs (besides prices) used to calibrate the model.

• Stacking
By stacking we mean ensembling algorithms on the input level, so in case of the methods used in this
work we feed LSTM outputs (generated signals) from both XGBoost and Moving Average Crossover.
We also denote stacking algorithm 𝕏 with outputs from algorithm 𝕐 by 𝕏 x 𝕐. We obtain the following:

– LSTM x MA
We optimize LSTM the same way, as vanilla LSTM. Apart from the vanilla LSTM training inputs,
we add signals generated by base case Moving Average Crossover.

– LSTM x XGBoost
We optimize LSTM the same way, as vanilla LSTM. Apart from the vanilla LSTM training inputs,
we add signals generated by base case XGBoost.

– LSTM x MA x XGBoost
We optimize LSTM the same way, as vanilla LSTM. Apart from the vanilla LSTM training inputs,
we add signals generated by both base case MAC and base case XGBoost.

• Voting
By voting we mean the procedure of generating a signal described in equation (28) by vanilla LSTM,
MAC and XGBoost. We denote ensembling algorithms 𝕏 and 𝕐 by voting as 𝕏 𝕐. This way, the
following is obtained:

– LSTM MA
– LSTM XGBoost
– LSTM MA XGBoost

All of the results of strategies described above are compared with ARC, MD, MLD, IR∗, IR∗∗ and IR∗∗∗

metrics.

4.1 Long Only strategies

Table 6 and Figure 11 show results of the benchmark, Vanilla, Stacking and Voting base case strategies for
S&P 500 on daily frequency using Long Only format.
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Table 6: Base Case - Long Only

Type Model ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
Benchmark B&H 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Vanilla
MA 2.73 12.75 0.21 33.92 0.02 1.36 3.45 142

XGBoost 6.91 14.80 0.47 37.43 0.09 1.37 43.54 2606
LSTM 8.57 14.19 0.60 31.61 0.16 1.35 103.68 411

Stacking
LSTM x MA 5.02 15.96 0.31 47.07 0.03 7.19 2.34 405

LSTM x XGBoost 5.22 14.77 0.35 43.12 0.04 6.17 3.63 641
LSTM x MA x XGBoost 4.19 13.28 0.32 36.42 0.04 2.68 5.66 489

Voting
LSTM MA 5.88 11.23 0.52 21.24 0.14 0.27 315.82 631

LSTM XGBoost 7.95 12.69 0.63 26.57 0.19 1.23 121.39 2796
LSTM MA XGBoost 6.35 11.18 0.57 21.37 0.17 1.43 74.94 2845

Note: Performance metrics for all base case strategies in Long Only scenario calculated from 2000.01.01 to 2023.05.11. Bold font
means that the strategy is the best in given metric. Length of the entire walk forward window was 1000 days, and the ratio of
train to validation to test set is equal to 7 to 1 to 2.

Figure 11: Base case strategies results - Long Only

Note: The figure shows Equity Curves of the strategies in the base case Long Only format. The
vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years. Out
of sample period covers 2000.01.01 to 2023.05.11.

Analyzing the results of Long Only strategies presented in Figure 11 and Table 6, we note that all but two
of the strategies managed to obtain higher ARC than simple Buy And Hold strategy. Vanilla LSTM proved
to be the best under ARC metric (ARC=8.57). Voting in general seems to have the best scores, distributed
among its iterations. Voting LSTM MA XGBoost had the lowest ASD (ASD=11.18) and MD (MD=21.37)
metric. Voting LSTM XGBoost obtained the best IR∗ and IR∗∗ scores, respectively equal to 0.63 and 0.19.
Voting LSTM MA managed to have the shortest loss period (MLD=0.27), thus having the highest IR∗∗∗

score of 315.82. Stacking, that is one of two analyzed types of ensembling machine learning algorithms, was
not the best under any criterion.
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4.2 Short Allowed strategies

Table 7 and Figure 12 show results of the benchmark, Vanilla, Stacking and Voting base case strategies for
S&P 500 on daily frequency using Short Allowed format.

Table 7: Base Case - Short Allowed

Type Model ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
Benchmark B&H 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Vanilla
MA -1.92 19.80 -0.10 66.91 -0.00 20.34 -0.03 156

XGBoost 7.44 19.79 0.38 47.53 0.06 11.16 3.92 2606
LSTM 10.73 19.65 0.55 35.56 0.16 3.19 55.44 411

Stacking

LSTM x MA 4.16 19.66 0.21 55.38 0.02 12.32 0.54 405
LSTM x XGBoost 4.19 19.66 0.21 49.65 0.02 16.86 0.45 641

LSTM x MA x XGBoost 1.72 19.66 0.09 61.22 0.00 18.48 0.02 489

Voting
LSTM MA 5.37 13.03 0.41 28.84 0.08 8.05 5.10 640

LSTM XGBoost 10.07 13.97 0.72 29.27 0.25 3.02 82.78 2797
LSTM MA XGBoost 6.68 10.80 0.62 15.19 0.27 2.57 70.71 2858

Note: Performance metrics for all base case strategies in Short Allowed scenario calculated from 2000.01.01 to 2023.05.11. Bold
font means that the strategy is the best in given metric. Length of the entire walk forward window was 1000 days, and the ratio
of train to validation to test set is equal to 7 to 1 to 2.

Figure 12: Base Case Strategies Results - Short Allowed

Note: The figure shows Equity Curves of the strategies in the base case Short Allowed format. The
vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years. Out
of sample period covers 2000.01.01 to 2023.05.11.

Analyzing results in Table 7 and Figure 12, we can see that similarly to Long Only results (Table 6), Vanilla
LSTM is the best strategy considering its rate of return (ARC=10.73). Voting LSTM XGBoost MA proved
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to be the best under ASD, MD, IR∗∗, obtaining 10.80, 15.19 and 0.27 respectively metrics. Voting LSTM
XGBoost managed to have the highest IR∗ of 0.72 and IR∗∗∗ of 82.78. Many models, except for Stacking,
managed to scored significantly higher than the benchmark B&H under all metrics. All Voting models scored
at least 0.2 higher IR∗, at least four times higher IR∗∗, and in case of models, where XGBoost could take a
vote, at least 10 times higher IR∗∗∗ than benchmark.

Based on the results of both Long Only and Short Allowed base case models, it can be said that there are
reasons to reject Research Hypothesis 1 (RH1), since in Table 6 and Table 7 several strategies are shown,
which managed to outperform benchmark strategy of B&H. Additionally, there are no reasonable grounds
to reject (RH2), since many ML base algorithms performed better than Moving Average Crossover strategy.
Finally, there are no grounds to reject (RH3), since Voting showed promising results in both Long Only and
Short Allowed format. In order to further verify research hypotheses, an extensive sensitivity analysis is
conducted.

5 Sensitivity analysis

Sensitivity analysis is a crucial tool for evaluating the robustness of machine learning models in algorithmic
investment strategies. By varying input parameters and analyzing the impact on output, sensitivity analysis
can identify the key drivers of an algorithm’s performance and assess its reliability under different market
conditions. This information is essential for algorithmic traders to make informed decisions about which
algorithms to use in real-world trading scenarios. Additionally, the sensitivity analysis can help to identify
areas where improvements can be made to enhance the algorithm’s performance, thereby increasing its
profitability and reducing the risk of losses.

5.1 Moving averages

Sensitivity analysis for Moving Average Crossover trading strategy is performed according to Table 1. Ceteris
paribus, both optimization criterion and length of in sample period are changed. Results are shown in Table 8
and Table 9.

5.1.1 Long Only strategies

From the results in Table 8 and Figure 13, we can clearly see that in the majority of the cases the base case
strategy, that is in sample length of three years and optimization criterion IR∗, scored less in IR∗, IR∗∗ and
IR∗∗∗ metrics than sensitivity analysis models. Combination of optimization criterion IR∗∗∗ and in sample
length of two years proved to be the best in every category.

It does not seem, in the case of Moving Average Crossover that there exists a correlation between in sample
period length and monotonicity of acquired results. For every optimization criterion, usually in sample
length of two years yields best results in every metric used, while in sample of one year yields the worst
results. Base case model in Long Only format proved to be worse that benchmark strategy of B&H in all but
MD metrics, whereas in performed significantly worse only in ARC and IR∗∗∗ metrics. Twelve out of fifteen
models in sensitivity analysis performed better under ARC metrics than base case, nine models performed
better under IR∗ metric, six in IR∗∗ metric and nine in IR∗∗∗ metric.
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Figure 13: Moving Average Crossover Sensitivity Analysis - Long Only

Note: The figure shows Equity Curves of the Moving Average Crossover strategy during
sensitivity analysis. The vertical axis shows ratio of current to starting capital, and hori-
zontal axis shows sequential years. Out of sample period covers 2000.01.01 to 2023.05.11.

Table 8: Sensitivity analysis for moving averages - Long Only

Model 𝐼𝑆𝑙𝑒𝑛
Optimization

criterion
ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗

Benchmark - - 4.58 19.79 0.23 56.78 0.02 1.35 6.33

Moving
Averages

1

ARC

3.10 12.61 0.25 36.50 0.02 1.86 3.48
2 4.31 12.07 0.36 26.39 0.06 1.35 18.63
3 2.76 12.86 0.21 35.61 0.02 3.48 1.32
4 3.04 12.49 0.24 35.59 0.02 3.48 1.81

1

IR∗

1.99 12.27 0.16 36.50 0.01 1.86 0.94
2 3.98 11.56 0.34 22.72 0.06 1.35 17.69
3 2.73 12.75 0.21 33.92 0.02 1.36 3.45
4 2.63 11.96 0.22 29.57 0.02 1.35 3.83

1

IR∗∗

1.15 12.18 0.09 36.50 0.00 3.23 0.11
2 4.98 11.73 0.42 23.48 0.09 1.35 33.18
3 2.74 12.77 0.21 33.92 0.02 1.36 3.49
4 2.61 13.38 0.19 33.92 0.01 1.36 2.87

1

IR∗∗∗

2.23 12.22 0.18 36.50 0.01 3.23 0.77
2 5.91 11.00 0.54 17.90 0.18 1.35 77.28
3 3.85 13.07 0.29 33.92 0.03 1.36 9.45
4 4.67 11.80 0.40 23.26 0.08 1.35 27.45

Note: Performance Metrics on MAC in Long Only format. Out of sample period covers 2000.01.01 to 2023.05.11.
Base case scenario is italicized, and the best results in each column is bolded.

5.1.2 Short Allowed strategies

From the results in Table 9 and Figure 14, we can clearly see that in nearly all of the cases, the benchmark
strategy of B&H scored higher under all metrics than strategies based on moving averages, with a single
exception of Moving Average Crossover optimized with IR∗∗ on two year in sample period. Twelve strategies
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gained negative returns, resulting in negative IR∗, IR∗∗ and IR∗∗∗, making the results uninterpretable. In
Table 8 it was observed that models optimized with two year in sample period brought the overall best
results, and the same holds true for Table 9.

Table 9: Sensitivity analysis for moving averages - Short Allowed

Model 𝐼𝑆𝑙𝑒𝑛
Optimization

criterion
ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗

Benchmark - - 4.58 19.79 0.23 56.78 0.02 1.35 6.33

Moving
Averages

1

ARC

-0.71 19.80 -0.04 58.10 -0.00 14.16 -0.00
2 1.51 19.80 0.08 42.03 0.00 17.18 0.02
3 -1.30 19.80 -0.07 61.82 -0.00 20.35 -0.01
4 -0.85 19.80 -0.04 62.08 -0.00 14.16 -0.00

1

IR∗

-0.71 19.80 -0.04 58.10 -0.00 14.16 -0.00
2 1.99 19.80 0.10 42.03 0.00 12.13 0.08
3 -1.92 19.80 -0.10 66.91 -0.00 20.34 -0.03
4 -0.85 19.80 -0.04 62.08 -0.00 14.16 -0.00

1

IR∗∗

-0.71 19.80 -0.04 58.10 -0.00 14.16 -0.00
2 2.59 19.79 0.13 35.40 0.01 6.20 0.40
3 -1.29 19.80 -0.06 63.65 -0.00 14.16 -0.01
4 -1.06 19.80 -0.05 62.08 -0.00 14.16 -0.01

1

IR∗∗∗

-0.79 19.80 -0.04 63.28 -0.00 14.16 -0.00
2 1.75 19.80 0.09 41.80 0.00 17.62 0.04
3 -3.91 19.80 -0.20 71.33 -0.01 20.78 -0.20
4 -0.89 19.80 -0.05 60.58 -0.00 14.16 -0.00

Note: Performance Metrics on MAC in Short Allowed format. Out of sample period covers 2000.01.01 to
2023.05.11. Base case scenario is italicized, and the best results in each column is bolded.

Figure 14: Moving Average Crossover Sensitivity Analysis - Short Allowed

Note: The figure shows Equity Curves of the Moving Average Crossover strategy during
sensitivity analysis. The vertical axis shows ratio of current to starting capital, and hori-
zontal axis shows sequential years. Out of sample period covers 2000.01.01 to 2023.05.11.
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5.2 LSTM Ensembled

Similarly to Moving Average Crossover, sensitivity analysis will also be conducted in case of LSTM. After
analyzing of the base case results in Table 6 and Table 7, we can see that the most advanced model (Stacking
LSTM with both XGBoost and MAC) did perform poorly in comparison to the other, less advanced models.
Because of this, the sensitivity analysis will be performed for this model to find reasons for such performance.
Also, the same sensitivity analysis is performed for Voting LSTM MA XGBoost, since it showed promising
results in both long only and short allowed scenarios. We change the range of technical indicators, on which
the model was trained and, ceteris paribus, lengths of train, validation and test periods. Overall, eighteen
new models are shown. For simplicity purposes “Big” and “Small” both refer to lengths of technical indicators
fed to the model, where LSTM x XGBoost x MA is the base case ensemble (stacking) LSTM with XGBoost
and MAC and LSTM XGBoost MA is the base case ensemble (voting) LSTM with XGBoost and MAC.

5.2.1 Long Only strategies

Looking at results in Table 10 and Figure 15, we can see that changing the lengths of technical indicators
helped the model perform better almost under every criterion. ‘Big’ Stacking model outperformed base case
Stacking model, ‘Small’ Stacking and Buy And Hold, whereas ‘Small’ Stacking scored lower than base case
on every metric except Maximum Loss Duration. Changes between base case and ‘Big’ Stacking are not as
significant, as changes between ‘Big’ and ‘Small’ models, since differences in between base case and ‘Big’
models are 0.02, 0.01, 9.54 respectively in IR∗, IR∗∗ and IR∗∗∗ metrics. Changes in the same metrics for ‘Big’
and ‘Small’ are 0.17, 0.04 and 13.92.

In the case of Voting, ‘Big’ and ‘Small’ models scored better than B&H under every metrics except MLD.
When it comes to comparing ‘Big’ and ‘Small’ Voting models to base case Voting, the results are not improved
except for ASD and MD metrics. Also, the changes in metrics between models are not as large as between
Stacking models.

Figure 15: Sensitivity analysis Stacking and Voting - Changes in lengths of technical indicators - Long Only

Note: The figure shows Equity Curves of the strategies in the Sensitivity analysis Long Only format.
The vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years.
Out of sample period covers 2000.01.01 to 2023.05.11.



Chojnacki, K. and Ślepaczuk, R./WORKING PAPERS 15/2023 (422) 28

Table 10: Sensitivity analysis Stacking and Voting - Changes in lengths of technical indicators - Long Only

Model Type ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
B&H Benchmark 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Stacking
Base Case 4.19 13.28 0.32 36.42 0.04 2.68 5.66 489

Big 5.09 14.82 0.34 34.52 0.05 1.69 15.20 581
Small 2.67 15.61 0.17 44.46 0.01 2.13 1.28 728

Voting
Base Case 6.35 11.18 0.57 21.37 0.17 1.43 74.94 2845

Big 4.73 9.83 0.48 21.81 0.10 3.25 15.18 2834
Small 5.16 10.05 0.51 20.36 0.13 2.79 23.99 2900

Note: Sensitivity analysis for Ensemble (both Voting and Stacking) of LSTM with XGBoost and MAC in
Long format. ”Big” and ”Small” both refer to models proposed in Table 4 in Sensitivity analysis from top
to bottom respectively. All of the models were optimized on 7:1:2 ratio of lengths of train to validation to
test sets. Out of sample period covers 2000.01.01 to 2023.05.11.

Figure 16: Sensitivity analysis Stacking - Changes in lengths of walk forward periods - Long Only

Note: The figure shows Equity Curves of the strategies in the Sensitivity analysis Long Only format.
The vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years.
Out of sample period covers 2000.01.01 to 2023.05.11.

Changing ceteris paribus possible lengths of training, validation and test periods yields interesting results
shown in Table 11 and Figure 16. Modifying length of any period resulted in higher ARC than the base case
(except combination 7:1:3), thus five out of seven models in SA scored higher IR∗ than base case. Model
7:1:4 managed to score the highest ARC, IR∗, IR∗∗ and IR∗∗∗. The model seems robust to changes in train,
validation and test periods, since the differences in values of performance metrics between the models are
not large. The biggest change though is observed while changing duration of test period, since the difference
between base case model and models with change test periods are nearly 0.2 in IR∗ and almost doubled in
IR∗∗ metrics.
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Table 11: Sensitivity analysis Stacking - Changes in lengths of walk forward periods - Long Only

Model Train Val Test ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
B&H - - - 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Base Case 7 1 2 4.19 13.28 0.32 36.42 0.04 2.68 5.66 489

Sensitivity
Analysis

4 1 2 5.28 14.07 0.38 34.53 0.06 1.24 24.45 690
12 1 2 5.22 13.66 0.38 31.00 0.06 1.51 22.32 655

7 2 2 6.13 15.69 0.39 51.82 0.05 1.77 15.97 576
7 4 2 4.44 14.13 0.31 46.04 0.03 2.20 6.11 530

7 1 1 6.59 14.28 0.46 35.53 0.09 2.91 19.41 709
7 1 3 2.71 15.54 0.17 46.36 0.01 0.54 5.06 522
7 1 4 7.63 13.57 0.56 43.87 0.10 1.10 68.12 712

Note: Sensitivity analysis for Stacking of LSTM with XGBoost and MAC in Long format. Out of sample period
covers 2000.01.01 to 2023.05.11.

Figure 17: Sensitivity analysis Voting - Changes in lengths of walk forward periods - Long Only

Note: The figure shows Equity Curves of the strategies in the Sensitivity analysis Long Only format.
The vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years.
Out of sample period covers 2000.01.01 to 2023.05.11.

Analyzing results of Table 12 and Figure 17, all but two models achieved higher returns than base case
strategy, and all models achieved higher returns that benchmark. Base case scored less than models in SA
in every metrics but ASD and MD. Model 7:1:4 achieved highest ARC, IR∗ and IR∗∗, while 7:4:2 achieved
lowest MLD and highest IR∗∗∗. The model seems robust to changes in parameters, since the changes in
performance metrics are not large between base case and sensitivity analysis models. Biggest changes in SA
and base case model are 0.13 in IR∗, 0.09 in IR∗∗ and a significant change of 180.17 in IR∗∗∗.
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Table 12: Sensitivity analysis Voting - Changes in lengths of walk forward periods - Long Only

Model Train Val Test ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
B&H - - - 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Base Case 7 1 2 6.35 11.18 0.57 21.37 0.17 1.43 74.94 2845

Sensitivity
Analysis

4 1 2 7.74 12.58 0.61 29.11 0.16 1.23 102.47 2811
12 1 2 6.24 12.76 0.49 39.85 0.08 0.50 96.30 2770

7 2 2 8.00 12.91 0.62 29.22 0.17 1.00 136.18 2833
7 4 2 6.31 13.04 0.48 26.06 0.12 0.29 255.11 2736

7 1 1 7.29 12.96 0.56 35.25 0.12 0.91 92.72 2778
7 1 3 6.68 13.04 0.51 29.53 0.12 0.52 150.17 2846
7 1 4 8.45 12.12 0.70 25.28 0.23 1.68 117.33 2934

Note: Sensitivity analysis for Voting of LSTM with XGBoost and MAC in Long format. Out of sample period covers
2000.01.01 to 2023.05.11.

5.2.2 Short Allowed strategies

Figure 18: Sensitivity analysis Stacking and Voting - Changes in lengths of technical indicators - Short
Allowed

Note: The figure shows Equity Curves of the strategies in the Sensitivity analysis Short Allowed format.
The vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years.
Out of sample period covers 2000.01.01 to 2023.05.11.

Analyzing results in Table 13 and Figure 18, we can see that contrary to long only strategies, short allowed
seem to have worse risk-adjusted returns that base case strategies. When it comes to Stacking, ‘Small’, as
one of the only ones in this study, achieved negative ARC, thus resulting in negative IR∗, IR∗∗ and IR∗∗∗

scores. ‘Big’ Stacking achieved higher metric scores than base case, except for ASD. For Voting, ‘Small’
model achieved the best ARC, IR∗, IR∗∗ and IR∗∗∗ scores in the entire Table 13. The Stacking model seems
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not to be robust to changes, since diversity in changes of performance metrics values can be easily seen,
unlike in Voting model.

Table 13: Sensitivity analysis Stacking and Voting - Changes in lengths of technical indicators - Short
Allowed

Model Type ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
B&H Benchmark 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Stacking
Base Case 1.72 19.66 0.09 61.22 0.00 18.48 0.02 489

Big 3.93 19.66 0.20 45.77 0.02 2.96 2.28 581
Small -0.56 19.66 -0.03 58.62 -0.00 21.95 -0.00 728

Voting
Base Case 6.68 10.80 0.62 15.19 0.27 2.57 70.71 2858

Big 8.30 13.99 0.59 30.37 0.16 3.43 39.18 2752
Small 9.70 14.01 0.69 24.71 0.27 1.65 159.85 2820

Note: Sensitivity analysis for Ensemble (both Voting and Stacking) of LSTM with XGBoost and MAC in Short
Allowed format. ”Big” and ”Small” both refer to models proposed in Table 4 in Sensitivity analysis from top
to bottom respectively. All of the models were optimized on 7:1:2 ratio of lengths of train to validation to test
sets. Out of sample period covers 2000.01.01 to 2023.05.11.

Figure 19: Sensitivity analysis Stacking - Changes in lengths of walk forward periods - Short Allowed

Note: The figure shows Equity Curves of the strategies in the Sensitivity analysis Short Allowed format.
The vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years.
Out of sample period covers 2000.01.01 to 2023.05.11.

Analyzing results in Table 14 and Figure 19, we can clearly see that 7:1:2 partition wasn’t the best partition
to begin with, since model 7:1:4 managed to obtain higher ARC, IR∗, IR∗∗ and IR∗∗∗ scores. Base case proved
to be the best only under MLD score. The model seems to be stable to changes in train period lengths, but
is not robust to changes in test and validation period length. Between base case and models with changed
train period lengths, changes in IR∗ and IR∗∗ are less than 0.12 and 0.02 respectively. Changes between base
case and models with changed test and validation period length are significant, since they are at least 0.3 in
IR∗ metric (apart from model 7:4:2 and uninterpretable model 7:1:3, since its IR∗ is negative).
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Table 14: Sensitivity analysis Stacking - Changes in lengths of walk forward periods - Short Allowed

Model Train Val Test ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
B&H - - - 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Base Case 7 1 2 1.72 19.66 0.09 61.22 0.00 18.48 0.02 489

Sensitivity
Analysis

4 1 2 4.12 19.61 0.21 56.76 0.02 11.64 0.54 690
12 1 2 3.77 19.75 0.19 55.79 0.01 2.62 1.86 655

7 2 2 6.46 19.46 0.33 51.82 0.04 3.71 7.20 576
7 4 2 2.36 19.76 0.12 60.51 0.00 19.37 0.06 530

7 1 1 6.72 19.70 0.34 48.28 0.05 3.15 10.13 709
7 1 3 -0.28 19.38 -0.01 48.27 -0.00 24.12 -0.00 522
7 1 4 8.86 19.40 0.46 48.12 0.08 3.61 20.64 712

Note: Sensitivity analysis for Stacking of LSTM with XGBoost and MAC in Short Allowed format. Out of sample
period covers 2000.01.01 to 2023.05.11.

Figure 20: Sensitivity analysis Voting - Changes in lengths of walk forward periods - Short Allowed

Note: The figure shows Equity Curves of the strategies in the Sensitivity analysis Short Allowed format.
The vertical axis shows ratio of current to starting capital, and horizontal axis shows sequential years.
Out of sample period covers 2000.01.01 to 2023.05.11.

Analyzing results in Table 15 and Figure 20, one can see that model 7:1:4 achieved the highest ARC, IR∗,
IR∗∗ (and almost IR∗∗∗) scores. Base case proved to be the best under ASD and MD metrics. Model 7:2:2
managed to obtain the IR∗∗∗ score of 164.17. The model seems stable to changes in all train, validation and
test period lengths, since the changes in metrics between base case and said models are not large. It seems
that the smaller train, validation and test periods, the better ARC, IR∗, IR∗∗ and IR∗∗∗ (excluding IR∗∗ in
model 7:1:1).
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Table 15: Sensitivity analysis Voting - Changes in lengths of walk forward periods - Short Allowed

Model Train Val Test ARC
(%)

ASD
(%) IR∗ MD

(%) IR∗∗ MLD
(years) IR∗∗∗ No.

trades
B&H - - - 4.56 19.79 0.23 56.78 0.02 1.35 6.27 2

Base Case 7 1 2 6.68 10.80 0.62 15.19 0.27 2.57 70.71 2858

Sensitivity
Analysis

4 1 2 9.68 13.78 0.70 21.68 0.31 2.08 145.73 2811
12 1 2 6.55 14.06 0.47 40.54 0.08 8.71 5.66 2771

7 2 2 10.41 13.76 0.76 23.04 0.34 2.17 164.17 2834
7 4 2 6.78 13.98 0.49 24.08 0.14 9.72 9.53 2736

7 1 1 8.75 14.13 0.62 31.63 0.17 1.79 83.97 2779
7 1 3 7.83 13.71 0.57 32.11 0.14 12.13 8.99 2847
7 1 4 11.21 13.40 0.84 24.17 0.39 2.84 153.15 2935

Note: Sensitivity analysis for Voting of LSTM with XGBoost and MAC in Short Allowed format. Out of sample period
covers 2000.01.01 to 2023.05.11.

6 Statistical significance of results

The regression analysis of rates of return of a benchmark to those of a strategy serves as a vital tool in analysis
for performance evaluation, benchmark comparison, risk assessment, factor analysis, and understanding the
strategy’s sensitivity to market movements. By quantifying the relationship between the strategy’s returns
and the benchmark’s returns, the regression enables the assessment of the strategy’s performance relative
to the benchmark and the identification of any additional factors contributing to its returns. Moreover,
it facilitates the measurement of systematic risk through the beta coefficient, providing insight into the
strategy’s risk exposure. Overall, this regression analysis plays a crucial role in evaluating the strategy’s
performance, risk profile, and its relative positioning in the market. A regression is performed:

𝑅𝑡 = 𝛼 + 𝛽 ⋅ 𝑟𝑡 + 𝜖𝑡 (29)

where, for a trading day 𝑡, 𝑟𝑡 is the daily return of the benchmark, 𝑅𝑡 is the daily return from the strategy
and 𝜖𝑡 is random interference. Table 16 and Table 17 and show results of regression on all models used in
this study. Assuming level of significance equal to 10%, we can say that 35 out of 56 models in this study
bear statistically significant results.
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Table 16: Linear regression on all models in Long Only format

Model 𝛼 Std. error
𝛼 𝑡𝛼 𝑝𝛼 𝛽 Std. error

𝛽 𝑡𝛽 𝑝𝛽

MA Base Case 0.0000 0.0001 0.42 0.6734 0.4150 0.0064 64.53 0.0000∗∗∗

XG 0.0002 0.0001 2.06 0.0395∗ 0.5592 0.0065 86.33 0.0000∗∗∗

L Base Case 0.0002 0.0001 2.92 0.0035∗∗ 0.5105 0.0065 78.85 0.0000∗∗∗

L x MA 0.0001 0.0001 1.06 0.2888 0.6453 0.0062 104.10 0.0000∗∗∗

L x XG 0.0001 0.0001 1.32 0.1878 0.5523 0.0064 85.72 0.0000∗∗∗

L x MA x XG 0.0001 0.0001 1.05 0.2936 0.4467 0.0064 69.33 0.0000∗∗∗

Voting L and XG 0.0002 0.0001 3.48 0.0005∗∗∗ 0.5288 0.0046 114.03 0.0000∗∗∗

Voting L and MA 0.0001 0.0001 2.54 0.0111∗ 0.4582 0.0043 106.98 0.0000∗∗∗

Voting L XG MA 0.0001 0.0000 3.21 0.0013∗∗ 0.4878 0.0036 134.18 0.0000∗∗∗

L MA XG Big 0.0001 0.0001 1.24 0.2162 0.5565 0.0064 86.44 0.0000∗∗∗

L MA XG Small -0.0000 0.0001 -0.04 0.9682 0.6170 0.0063 97.93 0.0000∗∗∗

Voting L XG MA 0.0003 0.0001 3.18 0.0017∗∗ -0.0024 0.0076 -0.35 0.6369
Voting L XG MA Big 0.0001 0.0001 2.00 0.0454∗ 0.3237 0.0048 66.84 0.0000∗∗∗

Voting L XG MA Small 0.0001 0.0001 2.19 0.0287∗ 0.3067 0.0052 58.86 0.0000∗∗∗

L MA XG 4 1 2 0.0001 0.0001 1.48 0.1391 0.5004 0.0065 77.42 0.0000∗∗∗

L MA XG 12 1 2 0.0001 0.0001 1.41 0.1589 0.4749 0.0065 73.03 0.0000∗∗∗

L MA XG 7 1 1 0.0002 0.0001 2.03 0.0424∗ 0.5216 0.0065 80.42 0.0000∗∗∗

L MA XG 7 1 3 0.0000 0.0001 0.12 0.9026 0.6075 0.0062 97.38 0.0000∗∗∗

L MA XG 7 1 4 0.0002 0.0001 2.81 0.0050∗∗ 0.4607 0.0064 72.26 0.0000∗∗∗

L MA XG 7 2 2 0.0001 0.0001 1.80 0.0721∗ 0.6158 0.0062 98.70 0.0000∗∗∗

L MA XG 7 4 2 0.0001 0.0001 0.99 0.3206 0.5103 0.0065 78.38 0.0000∗∗∗

Voting L XG MA 4 1 2 0.0002 0.0001 3.44 0.0006∗∗∗ 0.5233 0.0046 113.82 0.0000∗∗∗

Voting L XG MA 12 1 2 0.0001 0.0001 2.27 0.0231∗ 0.5371 0.0046 116.12 0.0000∗∗∗

Voting L XG MA 7 1 1 0.0002 0.0001 3.05 0.0023∗∗ 0.5505 0.0046 119.02 0.0000∗∗∗

Voting L XG MA 7 1 3 0.0002 0.0001 2.79 0.0053∗∗ 0.5456 0.0046 118.49 0.0000∗∗∗

Voting L XG MA 7 1 4 0.0002 0.0001 4.23 0.0000∗∗∗ 0.4907 0.0046 107.77 0.0000∗∗∗

Voting L XG MA 7 2 2 0.0002 0.0001 3.67 0.0002∗∗∗ 0.5355 0.0046 115.66 0.0000∗∗∗

Voting L XG MA 7 4 2 0.0001 0.0001 2.34 0.0192∗ 0.5590 0.0045 122.88 0.0000∗∗∗

Note: The table represents results of linear regression 𝑅𝑡 = 𝛼 + 𝛽 ⋅ 𝑟𝑡 + 𝜖𝑡, where 𝑟𝑡 is daily return from a benchmark, and 𝑅𝑡 is the
daily return from the strategy. Regression was calculated on the entire out of sample period 2000.01.01 - 2023.05.11. MA is short for
Moving Average Crossover, L is short for LSTM and X is short for XGBoost, BC is short for Base Case. Asterisks ∗, ∗∗ and ∗∗∗ denote
statistical significance at 10%, 1% and 0.1% respectively.
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Table 17: Linear regression on all models in Short Allowed format

Model 𝛼 Std. error
𝛼 𝑡𝛼 𝑝𝛼 𝛽 Std. error

𝛽 𝑡𝛽 𝑝𝛽

MA BC 0.0000 0.0002 0.28 0.7782 -0.1692 0.0129 -13.15 0.0000∗∗∗

XG 0.0003 0.0002 2.06 0.0395∗ 0.1184 0.0130 9.14 0.0000∗∗∗

L BC 0.0005 0.0002 2.93 0.0034∗∗ 0.0426 0.0128 3.33 0.0009∗∗∗

L x MA 0.0002 0.0002 1.05 0.2932 0.3123 0.0122 25.68 0.0000∗∗∗

L x XG 0.0002 0.0002 1.31 0.1915 0.1263 0.0127 9.94 0.0000∗∗∗

L x MA x XG 0.0002 0.0002 1.03 0.3027 -0.0850 0.0128 -6.65 0.0000∗∗∗

Voting L and XG 0.0004 0.0001 3.52 0.0004∗∗∗ 0.0792 0.0090 8.76 0.0000∗∗∗

Voting L and MA 0.0003 0.0001 2.42 0.0155∗ -0.0615 0.0085 -7.26 0.0000∗∗∗

Voting L XG MA 0.0003 0.0001 3.18 0.0015∗∗ -0.0024 0.0070 -0.34 0.7369
L MA XG Big 0.0002 0.0002 1.23 0.2206 0.1346 0.0127 10.60 0.0000∗∗∗

L MA XG Small -0.0000 0.0002 -0.07 0.9439 0.2557 0.0124 20.65 0.0000∗∗∗

Voting L XG MA Big 0.0003 0.0001 2.84 0.0046∗∗ 0.1583 0.0089 17.81 0.0000∗∗∗

Voting L XG MA Small 0.0004 0.0001 3.36 0.0008∗∗∗ 0.1073 0.0090 11.88 0.0000∗∗∗

L MA XG 4 1 2 0.0002 0.0002 1.43 0.1520 0.0288 0.0127 2.26 0.0240∗

L MA XG 12 1 2 0.0002 0.0002 1.46 0.1442 -0.0434 0.0130 -3.35 0.0008∗∗∗

L MA XG 7 1 1 0.0003 0.0002 2.01 0.0447∗ 0.0505 0.0129 3.91 0.0001∗∗∗

L MA XG 7 1 3 -0.0000 0.0001 -0.01 0.9921 0.2702 0.0119 22.65 0.0000∗∗∗

L MA XG 7 1 4 0.0004 0.0002 2.66 0.0079∗∗∗ -0.0204 0.0124 -1.65 0.0999∗

L MA XG 7 2 2 0.0003 0.0002 1.70 0.0884∗ 0.2845 0.0119 23.83 0.0000∗∗∗

L MA XG 7 4 2 0.0002 0.0002 1.01 0.3135 0.0235 0.0130 1.81 0.0704∗

Voting L XG MA 4 1 2 0.0004 0.0001 3.46 0.0006∗∗∗ 0.0746 0.0089 8.38 0.0000∗∗∗

Voting L XG MA 12 1 2 0.0003 0.0001 2.36 0.0184∗ 0.0811 0.0092 8.84 0.0000∗∗∗

Voting L XG MA 7 1 1 0.0003 0.0001 3.03 0.0025∗∗∗ 0.1084 0.0092 11.82 0.0000∗∗∗

Voting L XG MA 7 1 3 0.0003 0.0001 2.80 0.0051∗∗∗ 0.1465 0.0086 17.06 0.0000∗∗∗

Voting L XG MA 7 1 4 0.0004 0.0001 4.16 0.0000∗∗∗ 0.0396 0.0086 4.62 0.0000∗∗∗

Voting L XG MA 7 2 2 0.0004 0.0001 3.68 0.0002∗∗∗ 0.1239 0.0087 14.27 0.0000∗∗∗

Voting L XG MA 7 4 2 0.0003 0.0001 2.37 0.0178∗ 0.1209 0.0091 13.34 0.0000∗∗∗

Note: The table represents results of linear regression 𝑅𝑡 = 𝛼 + 𝛽 ⋅ 𝑟𝑡 + 𝜖𝑡, where 𝑟𝑡 is daily return from a benchmark, and 𝑅𝑡 is the
daily return from the strategy. Regression was calculated on the entire out of sample period 2000.01.01 - 2023.05.11. MA is short for
Moving Average Crossover, L is short for LSTM and X is short for XGBoost, BC is short for Base Case. Asterisks ∗, ∗∗ and ∗∗∗ denote
statistical significance at 10%, 1% and 0.1% respectively.

7 Summary

The last decades have brought a very rapid growth in the quantity and quality of automated investment
systems. Investment algorithms are commonly used by both private investors, large investment firms and
hedge funds. If the Efficient Market Hypothesis in an informational sense were true, according to the (Malkiel,
1973), no investment strategy could generate abnormal profits. As a result, the entire process of investing
and a whole host of experts working on Wall Street could be replaced by a “monkey throwing darts at a
board”, which in the long run would make decisions at least as good as the supposed experts. The main aim
of this paper was to create and test an automated investment strategy in order to provide a counterexample
to the Efficient Market Hypothesis. The work thoroughly explained the methodology, the process of walk
forward optimization, discussed the results of both base case and extended sensitivity analysis. The data
for S&P 500 index used in this research was downloaded from Yahoo Finance in a daily format from 1996
to 2022, thus covering various market and characteristics of returns.

At the beginning of the study, three Research Hypotheses were stated and then verified during the work.
There are reasonable grounds to reject Research Hypothesis 1, since we were able to suggest many strategies
that were able to ‘beat the market’ regarding risk-adjusted returns. Research Hypothesis 2 was not rejected,
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because LSTM and it’s ensembles were able to achieve higher risk-adjusted returns that MAC. Last but
not least, Research Hypothesis 3 was not rejected as well, since Voting LSTM with XGBoost and MAC and
many another yielded better risk-adjusted returns that simple LSTM.

The sensitivity analysis showed that Moving Average Crossover algorithm is not robust to changes in hy-
perparameters, while LSTM is. MAC strategy is not robust in changes to both optimization criterion and
length of in sample period. While performing sensitivity analysis for LSTM ensembles, it was discovered
that increasing lengths of technical indicators in the inputs yielded overall better results. Decreasing the
lengths of technical indicators yielded opposite results. Changing proportions on train, validation and test
periods resulted in higher risk-adjusted returns in most cases. It cannot be said, whether ceteris paribus
increasing length of any train, validation of test period on LSTM yields better results or not.

This study discussed topics oftentimes omitted by researchers. First of all, many studies focus solely on
vanilla machine learning models. In this study, we both compared vanilla machine learning based strategies
to technical analysis based models (Moving Average Crossover) and their ensembles (Voting and Stacking).
Also, many studies optimize their models on a single window, that is one train, one validation and one test
period, exposing themselves to the risks of overfitting. This problem can be avoided using walk forward
optimization, which was used in this study. Lastly, an often overlooked issue is robustness of the model. An
extended sensitivity analysis is performed to check robustness of the models.

Within this research new perspectives on investment strategies are offered, by demonstrating effectiveness of
combining LSTM, XGBoost and Moving Average Crossover in a trading algorithm. These perspectives can
inform and suggest potential benefits to traders and investment practitioners. By utilizing said strategies,
investors can have an advantage over other market participants. In the context of Efficient Market Hy-
pothesis, this study challenges the notion that markets are fully efficient, meaning that prices reflect all the
information available. This implies that there are opportunities for traders to exploit market inefficiencies
and generate above average returns. In light of risk management, the extended sensitivity analysis offers
insight into robustness and stability of the trading strategy. These findings may help manage potential risks
associated with using such trading algorithms. Finally, the findings may have implications for regulatory
policies on financial markets. Since this research shows profitability of proposed algorithms, it could spark
discussions on regulations surrounding algorithmic trading.

The study can be extended in many ways. First and foremost, having more time and powerful PC on
hands, one could perform better optimization in terms of searching for optimal parameters not chosen from
literature, for example by large grid search for an every model described in the paper. Moreover, one could
think of other Machine Learning methods to ensemble LSTM with, since ensembling LSTM with both MAC
and XGBoost showed promising results in sensitivity analysis.
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