
Working Papers
No. 9/2024 (445 )

STATISTICAL ARBITRAGE IN MULTI-PAIR TRADING 
STRATEGY BASED ON GRAPH CLUSTERING 

ALGORITHMS IN US EQUITIES MARKET 

ADAM KORNIEJCZUK

ROBERT ŚLEPACZUK 

 

Warsaw 2024

ISSN 2957-0506



WORKING PAPERS 8/2024 (444) 

Working Papers contain preliminary research results. Please consider this when citing the paper. Please contact the 
authors to give comments or to obtain revised version. Any mistakes and the views expressed herein are solely those 
of the authors   

 
 

 
Statistical arbitrage in multi-pair trading strategy based on graph clustering 
algorithms in US equities market 
 

Adam Korniejczuka, Robert Ślepaczukb*  

a University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research Group 
b University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research 
Group, Department of Quantitative Finance and Machine Learning  
 
* Corresponding author: rslepaczuk@uw.edu.pl 
 

AAbbssttrraacctt:: The study seeks to develop an effective strategy based on the novel framework of 
statistical arbitrage based on graph clustering algorithms. Amalgamation of quantitative and 
machine learning methods, including the Kelly criterion, and an ensemble of machine learning 
classifiers have been used to improve risk-adjusted returns and increase the immunity to 
transaction costs over existing approaches.  The study seeks to provide an integrated approach to 
optimal signal detection and risk management. As a part of this approach, innovative ways of 
optimizing take profit and stop loss functions for daily frequency trading strategies have been 
proposed and tested. All of the tested approaches outperformed appropriate benchmarks. The best 
combinations of the techniques and parameters demonstrated significantly better performance 
metrics than the relevant benchmarks. The results have been obtained under the assumption of 
realistic transaction costs, but are sensitive to the changes of some key parameters 
  

KKeeyywwoorrddss:: graph clustering algorithms, statistical arbitrage, algorithmic investment strategies, 
pair trading strategy, Kelly criterion, machine learning, risk adjusted returns 
  

JJEELL  ccooddeess:: C4, C45, C55, C65, G11 

 
AAcckknnoowwlleeddggmmeennttss::  This research did not receive any specific grant from funding agencies in 
the public, commercial, or not-for-profit sectors  
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1 Introduction

This research aims to develop an effective algorithmic trading strategy, which would be built
upon the novel framework involving graph clustering algorithms for statistical arbitrage. The aim
is important as the study contributes to the growing body of research exploring the applications
of graph theory in the algorithmic trading context. Furthermore, the detailed analysis of the
strategy performance will allow for the accurate assessment of the strengths and weaknesses of
the novel framework. In this study, the machine learning classifiers are utilized to enhance the
average profitability of the trades executed. Moreover, throughout the implementation of the
strategy, numerous optimizations are tested. Thus four research questions, around which the
study is organized have been formulated:

• RQ1: Does the usage of signal quality classifiers improve the quality of the graph-clustering-
based strategy?

• RQ2: To what extent, does the implementation of transaction and risk management mea-
sures to influence the performance of the strategy?

• RQ3: What is the sensitivity of the strategy to changes in transaction costs?

• RQ4: To what extent does the change of weights in the classifiers ensemble influence the
strategy performance?

The study is based on the daily data of constituents of S&P500, spanning from January
1, 2000, to December 31, 2022. To address the formulated questions, the proposed approach
involves creating an ensemble classifier of the quality of signals generated by a graph-based
strategy. Individual classifiers are trained and optimized using grid search cross-validation, then
combined in the weighted ensemble based on their performance on the validation dataset. Fi-
nally, the strategy involving classifiers, Kelly criterion, and innovative stop loss and take profit
functions is tested on out of sample, testing dataset.

Several novelties are present in the study. Firstly, the study aims to implement machine learn-
ing classifiers to filter the potentially profitable signals generated by another strategy. As far as is
known, this approach has not been implemented previously in the context of algorithmic trading
strategy, as usually the classification models are used for directional changes of stock prices.
Moreover, new, time-variant stop loss and take profit functions are introduced and tested with
the study. Furthermore, the modification of those functions is combined with signal-strength
scaling of take profit and stop loss functions, resulting in an unconventional approach. The
research examines the potential of emerging and almost unexplored graph-based approach. It
makes it highly relevant, as technological advancements increased the competitiveness in the
field of quantitative trading over the years, thus making it more difficult to sustain stable abnor-
mal returns over a prolonged time and creating the need for new, sophisticated methods.
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The structure of this paper is as follows: After an introduction in the first section, the sec-
ond section includes the literature review, giving a theoretical introduction to graph theory and
its applications in the context of algorithmic trading as well as examining the current research
regarding tools and techniques that are planned to be included in the strategy development. The
third section describes the methodology, including the data used, motivation for the chosen ap-
proach, feature selection, engineering, the classifiers ensemble building details, and the proposed
decision and risk management optimizations. The fourth section presents all the metrics used in
evaluating the strategies, then evaluates the proposed strategy’s performance using those metrics
against the relevant benchmarks and displays their equity curves. In the fifth section sensitivity
analysis has been conducted, to measure the impact of change of key parameters on model per-
formance. Finally, the sixth section contains the summary of the results obtained, conclusions,
and suggestions for possible further research.

2 Literature Review

Utilizing information about the relationship between stocks in the construction of investment
portfolios or algorithmic strategies has a long history. The rationale behind the approach is
straightforward. Companies and subsequently their stocks’ prices do not exist in a vacuum,
thus, assuming not the perfect market’s efficiency, information regarding one stock may be use-
ful when trading other, related stocks. A very influential and early work in the area was written
by Markowitz (1952), who formed a base of Modern Portfolio Theory. In this framework, the
correlation is used together with variance to find the optimal portfolio, which would be charac-
terized by maximum returns for a given amount of risk.

Since Markowitz’s times, various investment strategies leveraging relationships between as-
sets have emerged. The simplest approach might be grouping stocks by economy sector and
generalizing the behavior of stocks from certain sectors. For example, Fama and French (1997)
grouped stocks into 48 groups based on standardized industrial classification codes, to further
examine their properties.

More advanced strategies leveraging information about stock relationships include pair trad-
ing or statistical arbitrage. In those strategies, one intends to capitalize on short-term deviation
from some established relationship between asset prices. Different measures have been applied
to identify pairs or groups of mutually connected assets in the context of pair trading or arbitrage
strategy, including cointegration e.g. (Kim, 2011), correlation e.g.(Chen et al., 2019), euclidean
distance e.g. (Gatev et al., 2006), Hurst exponent (Bui and Ślepaczuk, 2022) or some combina-
tion of those e.g. (Miao, 2014). However, results obtained by Bredthauer and Stübinger (2017)
who tested multiple combinations of pair trading approaches found in the literature, indicate,
that most of those strategies displayed worsening performance in recent times, most likely due
to the increasing proliferation of such techniques. Such findings are also supported by Do and
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Faff (2012) and Gatev et al. (2006), implying that it becomes harder to capitalize on arbitrage
opportunities, thus creating a need for novel, more sophisticated approaches.

Among different pairwise relationship-based trading strategies, the area of research that dis-
plays a considerable amount of growth and success is a graph-based approach to quantitative
trading. Graphs are structures studied in discrete mathematics, which are a very convenient tool
for representing relationships between objects. They are composed of nodes, also referred to as
vertices, and connections between them, called edges. Two types of graphs can be considered:
Directed Graph is an ordered pair (V,E) such that V is a finite set of vertices and E is a subset
of V ×V . Elements of E are referred to as edges. An undirected Graph is an ordered pair (V,E)

such that V is a finite set of vertices and E, a set of edges is a subset of a set of all unordered
pairs from V , that is of a set {(u, v) : u ̸= v, u, v ∈ V } (Zawadowski 2020). One can also
distinguish between weighted and unweighted graphs, where in the case of the former, edges
have an assigned weight, which informs about the strength of a relationship. Similarly, graphs
could be signed, which means that edges can represent both positive and negative relationships
between nodes. An important property of a vertex in a graph is its degree, which is the sum of all
edges, having one end in that vertex. A commonly used form of graph representation involves
the use of an adjacency matrix. In the case of an undirected graph, a I × J symmetrical matrix
A stores information about the edge connecting vertices m and n in the Am,n, and Am,n. Such
representation is congruent with the structure of the correlation matrix, thus by using the corre-
lation matrix of (for example) returns one can analyze a group of assets using the graph-based
tools. As mentioned, a growing number of scholars apply graph theory-based techniques to the
investing and algorithmic trading realm.

Zhan et al. (2015) Used the neighbor net-based techniques to demonstrate, that the use of
correlation-based clustering is an effective way of risk reduction in investment portfolio creation.
Li et al. (2022) Represented a heterogeneous dataset containing news texts, graphical indicators,
and transaction data in the form of a weighted graph. The graph was later used in the training of
graph neural network, to predict the stock market volatility. The accuracy of the results obtained
was more than 14% higher than that of similar methods.

Similarly, Cheng et al. (2022) applied multi-modality graph neural networks for time series
forecasting. The model has been trained on a dataset combining news with market data, and
importantly included both directed and undirected edges, it predicted next-day price movement
based on the last 60 trading days. The approach outperformed other state-of-the-art benchmarks,
including LSTM-based approaches.

Yin et al. (2022 ) used a novel machine learning model called Graph Attention Long Short
Memory (GALSTM) for stock price predictions. The recent graph neural network was intended
to learn the patterns of correlations between stocks’ prices over time. The authors managed to
achieve outstanding results of annual returns and daily standard deviation equal to 44.71% and
0.42% respectively. However, it needs to be noted, that the trading system presented in the study
was to a great extent optimized for the optimal performance in the Chinese A-share market, and
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the testing period has been relatively short as it spanned only 13 weeks.
An important and novel study in the application of graph techniques to algorithmic trading

was published in September 2023 by Alvaro Cartea, Mihai Cucuringu, and Qi Jin. The paper,
titled: ”Correlation Matrix Clustering for Statistical Arbitrage Portfolios” is the first one to ap-
ply graph clustering algorithms to construct statistical arbitrage portfolios. In the study, stocks
from the US market have been represented as vertices of undirected, signed, weighted graph.
Meanwhile, the correlations between the residual returns from the last sixty days of those stocks
have been used as weights for the edges. Thus, the correlation matrix of the stocks considered
has been the adjacency matrix of the constructed graph. Such a representation allowed for the
usage of graph clustering algorithms. A few clustering algorithms have been considered, includ-
ing Spectral clustering (Ng et al., 2002), two versions of Signed Laplacian Clustering (Kunegis
et al., 2010), and the two versions of Signed Positive Over Negative Generalized Eigenprob-
lem (SPONGE) clustering (Cucuringu et al., 2019) algorithms. Moreover, three techniques for
determining the optimal number of clusters have been tested. The first one is keeping the fixed
numbers of 30 clusters. In the second approach, the number of clusters corresponds to the small-
est number of eigenvectors which explain 90% of the variance of the correlation matrix upon
which clustering is performed. The third approach makes use of the asymptotic properties of
Marchenko-Pastur distribution and random matrix theory.

Out of those choices, variants utilizing the second or third approach to finding the optimal
number of clusters as well as the symmetrical version of the SPONGE algorithm, referred to
as SPONGEsym performed the best. As described by Cartea et al. (2023) the SPONGEsym

algorithm decomposes the adjacency matrix A into A+ and A−, containing only positive and
negative entries respectively. Then it computes the Laplacian matrices L+ and L−, each calcu-
lated by the formulas L+ = A+ − D+ and L− = A− − D−, where D is the diagonal matrix
based on the matrix A, representing the degree of each vertex. In the next step L+

sym, given by:
(D+)−

1
2L+(D+)−

1
2 is calculated ( L−

sym is also computed analogously). Then, the algorithm
finds k smallest generalized eigenvectors of (L+

sym + τ−I, L−
sym + τ+I). Finally, the k-means++

algorithm is used to find clusters in the Induced K-dimensional Euclidean space.
The innovative approach of the authors of the study led to significant results. The strategy

utilizing SPONGEsym outperformed the strategy using fixed FamaFrench sector-based clusters
and significantly outperformed the buy and hold benchmark, achieving annualized returns equal
to 12.2%, Sharpe ratio of 1.1 and Sortino ratio of 2.01. However, the overall implementation of
the statistical arbitrage strategy seems to be simple, which most likely has been dictated by the
focus of the study - testing a novel graph clustering approach. Precisely, upon performing the
clustering, the mean of the last five days’ returns have been calculated for each cluster. Then long
and short positions were opened on assets whose returns during the last five days were lower or
higher, respectively than the calculated clusters’ means. Such a procedure was repeated every
three days. No attempts at optimizing the strategy in regards to optimal allocation, beyond the
choice of clustering algorithm have been mentioned in the study. Moreover, no information on
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the transaction costs being considered was present in the paper. Thus, an attempt at optimizing
the strategy presented, and further inspecting the potential of graph clustering algorithms in
quantitative trading, will be the main focus of this study.

There is a significant body of literature applying machine learning classification algorithms
to predict an asset’s price change direction. Older studies by Yangru and Zhang (1997) and
by Chen et al. (2000) suggest that the prediction of the direction of price change may be a
more effective tool for trading strategy, than predicting the value of price indices. Moreover,
the presence of studies achieving very good results (Borovkova, 2019; Dixon, 2017; Kryńska
and Ślepaczuk, 2023) signifies the validity of such an approach. Furthermore, Bieganowski and
Ślepaczuk (2024), demonstrated the validity of a classification-based approach over regression
one, in the context of high-frequency data. In their study, the performance of the forecasting base
strategy has been examined in four configurations, with varying levels of complexity. In order to
rigorously assess the potential of the introduced strategy, it has been tested on cryptocurrency,
stocks, and currency prices. Importantly, the best results have been observed in the case of an
approach combining supervised autoencoders, combined with triple barrier labeling.

Furthermore, Worasucheep (2021) showcased, that the usage of an ensemble of machine
learning classifiers can lead to better performance than the use of one model. In his study,
the author combined artificial neural network, support vector machine, random forest, extreme
gradient boosting, and light gradient boosting. The results demonstrated, that the ensemble
outperformed both buy and hold benchmark as well as strategies utilizing individual classifiers,
in terms of both returns and Sharpe ratio. Similarly, Zelenkov (2017) has managed to outperform
various benchmarks by utilizing the ensemble with weighted voting, in which the weights were
optimized using the genetic algorithm.

In spite of the described success in using the classification algorithms in an algorithmic trad-
ing context, the approach based on using machine learning algorithms classifiers for improving
the quality of some strategy’s signals seems to be novel and unexplored. A hypothetical ad-
vantage of such a method could be the possibility of using risk-weighted decision-making and
portfolio construction techniques, by utilizing probability estimates returned from the model.
An example of such a technique is the Kelly criterion.

Kelly criterion (Kelly, 1956) is a formula for maximizing the expected value of the logarithm
of wealth. Kelly has shown, that under sufficient assumption, the capital managed with the for-
mula will, with a probability equal to one surpass the capital managed in other ways. Moreover,
the author of the formula pointed out, that even though the example of gambling has been given
in the derivation, the concept can be applied to any economic situation, where one can operate
on fractions of the total capital and reinvesting is possible. Since then Thorp (1969) proposed
the usage of the Kelly criterion in various games, such as Blackjack, Roulette, or The Wheel of
Fortune, but also in Stock Market investing. Evidence exists (Anderson and Faff, 2004; Bron-
akowska et al. 2021; Hagman, 2014), suggesting that using the Kelly criterion can improve the
profitability of trading strategies. Furthermore, what is important in the context of this study, it
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has been also successfully applied to algorithmic trading strategies (Chen et al., 2021; Li et al.
2020). At the same time, contrary evidence can also be found (Lähteenmäki, 2023), suggesting
that the usage of the formula may not be optimal in all of the cases.

In conclusion, leveraging relationships between stocks is a classical tool in the algorithmic
trading strategy domain. Strategies like statistical arbitrage or pair trading, based on measures
like correlation or cointegration have become more widespread, thus making them less prof-
itable. Studies from an emerging branch of research involving graph theory-based approaches
have been characterized by very good performance, often outperforming other state-of-the-art
methods. However, good performance is often linked to a very complicated architecture, in-
volving complex implementations of graph neural networks, or graphs based on multi-modal
datasets. Nevertheless, a recent study by Cartea et al. (2023) reveals a new framework involving
graph clustering, which can potentially outperform traditional approaches in statistical arbitrage
applications. The innovative approach definitely has a lot of potential thus it will serve as the
base of this study. The proposed solution of filtering the signals based on their quality seems
to be novel, as classifiers have been commonly and successfully used for some kind of buy/sell
problems. Although applied in slightly different settings, ensemble classifiers showed promis-
ing results, thus such an approach will be utilized in this research. Moreover, the long history
and successful applications of Kelly criterion in the algorithmic trading context, are convincing
arguments to optimize the strategy using this tool.

3 Methodology

3.1 Data used

The data used in the study comes from the Yahoo Finance database. In order to ensure a sufficient
degree of realism, historical components of the S&P 500 index have been used, such that during
backtesting, positions could be opened only on the stocks which were historically present in the
index’s components list on a given date. The data regarding historical components of the index
have been sourced from a GitHub repository which included a file with all of the changes in
S&P500 constituents (Farrell 2024). Due to the data availability issues, the stock universe on
some dates was smaller than 500, however on each trading day, the majority of stocks have been
represented. Adjusted closing prices have been used for both the opening and closing of all of
the positions.

3.2 Performance metrics

Comprehensive list of performance metrics will be considered, in order to evaluate the strategy
in detail. Aside from metrics used by (Carea et al. 2023), metrics used by (Bieganowski and
Ślepaczuk 2024) will also be utilized.
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• Annualized Return Compounded (ARC)

Annualized returns could be the simplest metric informing about the profitability of the
strategy. Since in this study, all the returns are reinvested, the compounded version will
be considered and used in the calculations of all the metrics involving annualized returns.

ARC = (tn−to)

√
Vtn

Vto

− 1 (1)

Where:

– (tn − to) - Duration of the investment in years

– Vtn - Starting capital

– Vto - Final capital

• Annualized Standard Deviation (ASD)

Volatility is a standard measure of Portfolio performance. Generally, the higher volatility
of a given asset corresponds to a higher associated risk of investing in this asset. Annual-
ized standard deviation is a standard metric of volatility, also used in other metrics. In this
paper, it is computed as the standard deviation of daily returns, scaled by a square root of
trading days of S&P500 stocks in a year (252)

ASD =

√√√√∑N
t=1(Rt − R̂)2

(N − 1)
· ndays (2)

where:

– Rt - Return on day t

– R̂ - Average of daily returns

– ndays - number of trading days in a year

• Information Ratio* (IR*)

Sharpe ratio is the most popular measure of risk-adjusted returns, computed as a quotient
of the difference between average portfolio returns and the risk-free rate and average stan-
dard deviation of the returns. Since the strategy tested in this paper is market-neutral, a
risk-free rate is omitted. Moreover, all of the returns are compounded, thus the formula
presented below has been used:

IR∗ =
ARC

ASD
(3)

• Sortino Ratio (ST)

Sortino ratio (Sortino 1994) is a modified Sharpe ratio, which only considers the downside
deviation of the returns. It is an arguably significantly better metric, as the high deviation
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of positive returns is unlikely to be a concern for an investor, while the same can’t be said
about negative returns. It can be calculated as follows.:

Sortinoratio =
ARC −RiskFreeRate

Downisdedeviation
(4)

In this paper the risk-free rate is assumed to be 0 since the strategy is market-neutral.

• Max Drawdown (MDD)

Maximum drawdown is the largest observed drop of the portfolio’s value, expressed as a
percentage of the highest value observed before the drawdown. It is a crucial risk met-
ric for through assessment of an investment strategy, as it conveys information about the
robustness to tail events, as well as the extent of potential leverage that can be possibly
applied to the strategy with no risk of bankruptcy.

MDD = max
τ∈[0,T ]

(max
t∈[0,τ ]

Vt − Vτ

Vt

) ∗ 100% (5)

• Max Loss Duration (MLD)

Maximum Loss Duration informs about the longest period in which a portfolio’s value has
been lower than any previously observed local maximum. It is expressed in years.

MLD =
tj − ti
nobs

(6)

where:

– nobs - number of trading days in a year

– tj > ti

– V al(tj) > V al(ti)

– Value of the portfolio had local maximums in days tj and ti

• Calmar ratio (CR)

Calmar Ratio, proposed by Terry W. Young is another useful metric, allowing for assess-
ment of the strategy performance, by focusing on the tail risk measure such as Maximum
Drawdown.

CR =
ARC

MDD
(7)

• Information Ratio** (IR**)

Modified version of Information Ratio, introduced by Kość et al. (2019) will also be
applied, as a synthetic measure, able to capture different dimensions of Portfolio perfor-
mance. In essence, the measure is a product of the Information Ratio and Calmar Ratio,
with respect to the direction of the portfolio’s value change.

IR∗∗ =
ARC2 · sign(ARC)·

ASD ·MDD
(8)



Korniejczuk, A. and Ślepaczuk, R./WORKING PAPERS 9/2024 (445) 9

3.3 Framework exploration - problem statement

As stated in the introduction and literature review, The study is based on the strategy proposed by
Cartea et al. (2023). Since the authors of the paper used different sources of data and considered
a slightly different stock universe, some discrepancies in the results may be present, even in the
case of mirroring implementation. To assess the extent of it, the strategy has been tested on
the dataset described in 3.1. Precisely, an own implementation has been developed in Python 3,
replicating all of the steps and parameters of the strategy discussed in the Cartea et al. (2023)
paper. The version involving the use of SPONGEsym algorithm for clustering, and the number
of eigenvectors corresponding to 90% of explained variance for optimal number of clusters has
been selected, as it displayed the best performance in the paper. Since no information about the
transaction costs has been given in the paper, the results have been generated in two variants:
with transaction costs equal to 0 and 0.05%. Strategies has been evaluated with the help of
metrics used in the original study.

Table 1: Performance comparison of strategy implementations and benchmark

Metric Original Own-no-TC Own-0.05%-TC SPY

AR 12.20 10.24 2.44 6.48
SHARPE 1.10 1.17 0.28 0.33
SORTINO 2.01 2.09 0.49 0.51

Source: Own Elaboration. Table comparing the performance of the original strategy, own replications, and the
benchmark, market performance. Original - Results from author’s paper. Own-no-TC - Results of the own im-
plementation without transaction costs. Own-0.05%-TC - Results of the own implementation with 0.05% trans-
action costs. SPY - Performance of SPY ETF. AR stands for annualized returns, SHARPE for Sharpe ratio while
SORTINO for Sortino ratio. The strategies testing period lasted from 03.2000 to 12.2022.

As can be seen in Table 1, with the assumption of no transaction costs, the values of Sharpe
and Sortino ratios as well as annual returns closely match the results obtained by Cartea et al.
(2023). The discrepancies could be caused by differences in the stock universe considered or
convention of metrics calculation. However, once the transaction costs have been applied, a
significant impact on performance can be observed. Figures 1 and 2, attached below further
visualize the situation. Both figures visualize the equity curve, which is a function of the value
of a portfolio managed using a given strategy over time.
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Figure 1: Equity curve of own implementation with no transaction costs

Source: Own Elaboration. equity curve generated using own backtesting implementation, based on the paper of
Cartea et al. (2023)SPY: SPY ETF, Strategy W/o tc: own implementation of the strategy with no transaction costs

Figure 2: Equity curve of own implementation with 0.05% transaction costs

Source: Own Elaboration. equity curve generated using own backtesting implementation, based on the paper of
Cartea et al. (2023). SPY: SPY ETF, Strategy 0.05% tc: own implementation of the strategy with transaction
costs equal to 0.05%.

As can be observed in Figure 1 and Figure 2, the strategy is very susceptible to transaction
costs, which effectively turns periods of low growth into periods of losses and stagnation. As
can also be observed in Figure 3, The amount of transaction costs incurred is four times larger
than the net profit from the strategy, as visible in Figure 2.



Korniejczuk, A. and Ślepaczuk, R./WORKING PAPERS 9/2024 (445) 11

Figure 3: Curve of transaction costs incurred over time, in the own implementation with 0.05%
transaction costs

Source: Own Elaboration. Curve produced using the own backtesting implementation, assuming 0.05% transaction
costs.

However, the transaction costs issue is to a large extent fixable. Fundamentally one needs to
reduce the volume traded. Therefore, as a starting point in this research, the described strategy
has been altered, such that the rebalance of the portfolio occurs every 10th trading day, instead
of every 3rd one. Subsequently, the number of days used in the lookback window to identify
clusters of correlated groups of stocks has been also increased (to 30 days, from an initial value
of 5).

The more thorough solution to the problem has been proposed after analyzing it from first
principles. While extending the time between portfolio rebalances reduces the amount of trans-
action costs incurred, by limiting the amount of transactions, it needs to be acknowledged that
the mere value of costs incurred has secondary importance. The significant decline in the per-
formance of the strategy can to a large extent be attributed to the period in which the transaction
costs outweighed gains from the strategy, creating periods of downward trend, not present with-
out transaction costs, but spanning multiple years when transaction costs have been considered.
Such periods worsen the performance the most, by impairing annualized returns, increasing
downside risk and draw-down, as returns higher than x% are needed to recover from x% loss.
A potential solution to this issue could be based on improving the average quality of signal, as
marginal improvements in that domain could be sufficient to eliminate long periods of down-
ward trend. Therefore, in this study machine learning classifiers will be used to identify signals
which are likely to be profitable, and then positions will be opened only for those with a high
enough degree of certainty.
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3.4 Features Extraction and Engineering

In order to implement the proposed solution, a specific dataset was needed in order to train clas-
sifiers. In order to ensure that both training and testing datasets were representative of various
market conditions, the first 1500 trading days starting at the beginning of the year 2000 had been
selected as the train data, with the remaining part of the data serving as an out-of-sample test. In
order to successfully train classifiers to recognize mean reverting signals, features based on both
graph properties and standard price behavior have been extracted. Such an approach was im-
plemented with the goal of capturing both within-cluster relationships and idiosyncratic stocks’
behaviors while training the model on a simple format of data, where each signal corresponds to
one observation. Below is the list of all features extracted. In line with the interpretation of the
clustering algorithm, the naming convention is applied, such that a set of actively traded stocks
(constituents of S&P500 in a given day) is referred to as a graph and the identified cluster is
referred to as a sub-graph.

3.4.1 Graph-based features

• Local vertex degree: ∑S
n=1 ei,n − 1

S − 1
(9)

Where:

– ei,n = weight of an n-th edge coming from an i-th vertex

– S = sub-graph size

• Global vertex degree: ∑G
n=1 ei,n − 1

G− 1
(10)

Where:

– ei,n = weight of an n-th edge coming from an i-th vertex

– G = Graph size

• Graph density: ∑S
i=1(

∑S
n=1 ei,n − 1)

(S − 1)S
(11)

Where:

– ei,n = weight of an n-th edge coming from an i-th vertex

– S = sub-graph size

• Cluster size:
|vj|
G

(12)

Where:
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– |vj| = Number of vertices in a j-th Cluster

– G = Graph size

• Number of clusters:
Number of clusters (sub-Graphs) divided by Graph size

As can be observed all of the graph-based features have been normalized by dividing by the
term containing either the number of stocks traded (graph size) or by cluster size (sub-graph
size). While dividing by cluster size is intended to make features comparable between clusters,
dividing by graph size is intended to accommodate the issue of stock universe size being not
equal to 500 at times (as mentioned in section 3.1)

3.4.2 Conventional features

• Cumulative returns deviation from the cluster returns for the last five days

• Sign of the deviation from cluster’s mean (type of position - long/short)

• Mean cluster returns for the last 10 days

• Mean stock returns in the last 10 days

The dataset has been created by backtesting the version of the original strategy with reduced
frequency of rebalances as described in part 3.3. Only the first 1500 trading days have been used,
making that period an in-sample one, thus it has not been used for the strategy testing in chapters
4 and 5. For every signal, a record has been stored, which included both the described features
as well as binary variables indicating whether the signal has been profitable. Two alternative
conditions have been specified for noting the signal as profitable. The first condition assumed
signal is profitable if its cumulative returns at the end of a trading day since the last portfolio’s
rebalance has been greater than the specified threshold T . The second condition assumes that
the signal is profitable if at the time of a rebalance, cumulative returns since the last rebalance
have been greater than the transaction costs (meaning no loss has been incurred on the position).

An important decision was selecting an appropriate value of the threshold T . Figure 4 below
displays how the percentage of signals classified as profitable and shares of signals in the case
of which two conditions were met changed as the value of T changed.
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Figure 4: Share of signals by type, with different take profit threshold

Source: Own Elaboration. Results generated by backtesting the strategy and noting the percentage of trades meeting
given condition depending on the value of the take profit threshold. Condition 1 met - Position closed at take profit.
Condition 2 met - Position not closed at take profit but no loss incurred during next rebalance. No conditions met
- losses incurred on given signal Either condition met - Condition 1 or Condition 2 met. results generated based
on data from the first 1500 trading days

As can be observed in Figure 4, with the increase of T , the percentage of signals classified as
profitable slowly converges to 0.5. What can also be observed is the visible migration of signals
from meeting the first condition to meeting the second condition. Overall, since the data was to
be used by the machine learning models, the situation with a close to even balance of classes has
been identified as a favorable choice. At the same time, choosing too high T could compromise
the model’s ability to recognize less stable, but profitable signals. Finally, considering such a
trade-off, T equal to 4% has been selected, as it guaranteed the split close to even and represented
a significant majority of profitable signals.

After deciding on the value of T , the back-testing simulation has been executed, with the
parameters discussed in the section 3.3. Thus, a dataset has been constructed in which a single
observation consisted of the 14 features listed in the previous paragraph, as well as a binary
variable indicating, whether the signal was profitable. This dataset was then scaled using the
SKlearn implementation of MinMax Scaler.
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3.5 Ensemble Classifier of signals quality

To maximize the potential of successful classification, five different models have been trained, to
identify the best ones and construct an ensemble, to boost the performance of individual models.
In the case of each model, the prepared dataset has been split into training and validation subsets
by random sampling, with 80% and 20% of samples respectively. Then, in order to optimize
performance, grid search cross-validation have been performed, using the standard SKLearn
GridSearchCV function. Moreover, Brier score loss has been selected as a metric for hyper
parameters tuning, as it optimizes the quality of probability estimates in classification tasks,
rather than just the quality of binary class predictions.

• Multi-layer Perceptron Classifier

Multi-layer Perceptron Classifer used, or in short MLP, is a simple, SKLearn native, neural
network implementation, which minimizes the logarithmic loss function. It also supports
a softmax output layer, thus it’s able to return probabilities of belonging to a certain class
in classification problems (Pedregosa et al., 2011). The Grid of hyper-parameters searched
has been included in Table 2. The set of best parameters, selected through cross-validation,
has been bolded.

Table 2: Hyper-parameters grid- multi-layer perception classifier

Hidden layer sizes Activation function Alpha Learning rate Batch size Solver
64,64 tanh 0.1 constant 50 sgd
64,32 relu 0.01 adaptive 100 adam

64 sigmoid 0.0001 200
32, 16 0.00001

0.000001
0.0000001

Source: Own Elaboration. hyperparameters used in grid search cross validation on the randomly selected 80%
fraction of the dataset created based on the strategy performance during first 1500 trading days. Chosen hyperpa-
rameters has been bolded.

• AdaBoost Classifier

Ada boost classifier (Freund and Schapire, 1995) is an algorithm in which a sequence of
weak learners is fitted, and their predictions are combined in majority voting (Pedregosa
et al., 2011). In successive iterations, the weights of samples that were incorrectly clas-
sified are being increased, thus forcing the model to learn how to classify difficult cases
effectively (Hastie et al., 2009). The Grid of hyper-parameters searched has been included
in Table 3. The set of best parameters, selected through cross-validation, has been bolded.
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Table 3: Hyper-parameters grid - AdaBoost Classifier

number of estimators learning rate
3 0.001
5 0.01
10 0.1
20 1
50 10
100

Source: Own Elaboration. hyperparameters used in grid search cross validation on the randomly selected 80%
fraction of the dataset created based on the strategy performance during first 1500 trading days. Chosen hyperpa-
rameters has been bolded.

• HistGradientBoosting Classifier

HistGradientBoosting is another SKlearn implementation of gradient-boosted trees, based
on Microsoft’s LightGBM. As stated on the SKLearn website, the algorithm is in order of
magnitudes faster on datasets containing large numbers of samples. The main difference
between the algorithm and other gradient-boosting-based solutions is that it groups data
into bins, which limits the number of splits to consider and allows for the use of integer-
based data structures rather than continuous ones (Pedregosa et al., 2011). The Grid of
hyper-parameters searched has been included in Table 4. The set of best parameters, se-
lected through cross-validation, has been bolded.

Table 4: Hyper-parameters Grid, Histogram Gradient Boosting Classifier

learning rate early stopping Max iter Warm start
0.01 auto 50 0
0.1 False 100 1
0.5 150
1 250
5 500

Source: Own Elaboration. hyperparameters used in grid search cross validation on the randomly selected 80%
fraction of the dataset created based on the strategy performance during first 1500 trading days. Chosen hyperpa-
rameters have been bolded.

• Stochastic Gradient Descent Classifier Although it is not a specific algorithm in itself,
Stochastic Gradient Descent is a very efficient approach to fitting linear classifiers, with
convex loss functions (Pedregosa et al., 2011). The method has been thus used to add
another linear classifier, other than logistic regression. The Grid of hyper-parameters
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searched has been included in Table 5. The set of best parameters, selected through cross-
validation, has been bolded.

Table 5: Hyper-parameters grid - Stochastic gradient Descent classifier

Loss
function

Penalty Alpha Max iter
Early

stopping
Learning

rate
Warm start

modified Huber l2 0.5 200 1 constant 1
log loss l1 0.1 1000 0 optimal 0
hinge elastic net 0.01 10000 adaptive

0.001 invscaling
0.0011

Source: Own Elaboration. hyperparameters used in grid search cross-validation on the randomly selected 80%
fraction of the dataset created based on the strategy performance during first 1500 trading days. Chosen hyperpa-
rameters have been bolded.

• Logistic regression

Logistic regression is a simple linear model used for classification, in the case of which
the probabilities of a given observation belonging to a certain class are modeled through
the logistic function (Pedregosa et al., 2011). The Grid of hyper-parameters searched has
been included in Table 6. The set of best parameters, selected through cross-validation,
has been bolded.

Table 6: Hyper-parameters grid - Logistics regression

C Penalty Solver Max iter Class weight Warm start
0.1 l2 lbfgs 50 Balanced 1
0.5 l1 libliner 75 None 0
1 elastic net newton-cholesky 100

1.5 200
2 500
5
8
10
12
15
20

Source: Own Elaboration. hyperparameters used in grid search cross-validation on the randomly selected 80%
fraction of the dataset created based on the strategy performance during the first 1500 trading days. Chosen hyper-
parameters have been bolded.
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Performance of classifiers
After hyperparameter tuning and training, the performance of the five models has been ex-

amined. Brier Score and precision score have been selected as performance metrics, as they
have been identified as most appropriate for the task. The results have been presented in Table
7.

Table 7: Classifiers Performance

Classifier Brier Score Precision
MLP 0.243 0.568

ADA boost 0.247 0.544
HistGradientBoosting 0.218 0.653

SGD 0.247 0.547
Logistic Regression 0.249 0.580

Source: Own Elaboration. Comparison of the performance of individual classifiers on validation dataset, created
as remaining 20% of the generated dataset. The bolded values indicate the best scores

As can be seen in Table 7, the Histogram Gradient Boosting algorithm has performed the
best in both metrics, significantly better than all the other algorithms. However, since in each
case, the value of the Brier score has been lower than 0.25 and the value of precision has been
greater than 0.541 (prevalence of positive class in the dataset), all of the classifiers, have out-
performed random results, thus learning some patterns. Due to that, an adjusted solution has
been proposed. The solution involves the ensemble of all five models, based on the soft vot-
ing, in which the Histogram Gradient Boosting classifier would be assigned a higher weight,
due to its performance. To set specific weights, simple heuristics of the double weight for the
best-performing model have been used. This means, that once all models output the probability
that a certain signal is profitable, those values are divided by three in the case of the Histogram-
GradientBoosting model and by 6 in the case of other models, and then added. However, it is
acknowledged that this choice is largely arbitrary, thus, to assess the impact of such a rule, the
results for an equally weighted ensemble, ensemble with the triple weight of the best model and
the classifier involving just HistogramGradient Boosting have been generated, and compared
with the proposed solution in the Sensitivity analysis.

Another crucial decision that needed to be made in the implementation of the strategy was a
selection of the appropriate threshold of probability estimate, above which the signal is consid-
ered profitable. The naive way is the selection of the threshold equal to 0.5. However, as pointed
out in section 3.3, in order to reduce the impact of transaction costs, classifiers implementation
was intended to reduce the number of transactions. As can be seen in Figure 5 below, a naive
approach would not limit the amount of transactions to a great extent, as a great majority of
signals will still be considered.
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Figure 5: Distribution of predicted probabilities - Classifiers Ensemble

Source: Own Elaboration. The histogram of probability estimates on validation set returned by soft voting, weighted
ensemble of MLPClassifier, AdaBoostClassifier, HistogramGradientBoosting, Logistic Regression, and Stochastic
Gradient Descent.HistogramGradientBoosting’s weight is doubled in comparison to other weights

Discarding the naive approach, an appropriate value needs to be found for a higher thresh-
old. Sources in literature seem to suggest that generally, a set of 30 to 40 stocks makes a well-
diversified portfolio (Statman 1987), thus, selecting a threshold such that on average 10% of
signals will be traded should lead to the construction of a portfolio that will be large enough to
fully reap benefits of diversification in a majority of cases.

Having decided on the desired number of signals accepted, two possible approaches can
be identified. The first approach involves considering certain fixed percentile P1, such that on
each portfolio re-balance 1 − P1 percent of best-performing stocks is being purchased. The
downside of such an approach would be inflexibility, such that numerous positions are still being
opened when no very good signals are identified. The second approach involves setting a fixed
threshold P2 so that only signals with probability estimates greater than P2 are considered on
each rebalance. The inflexibility of the previous one does not burden this approach and, therefore
has been selected. In the case of the analyzed ensemble, the 90th percentile of the distribution
of predicted probabilities on the validation dataset corresponds to the probability value equal to
0.602, thus, the value of P2 has been rounded up to 0.6.
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Figure 6: Distribution of predicted probabilities - equally weighted ensemble

Source: Own Elaboration. The histogram of probability estimates on validation set returned by soft voting, an
equally weighted ensemble of MLPClassifier, AdaBoostClassifier, HistogramGradientBoosting, Logistic Regres-
sion, and Stochastic Gradient Descent.

The same analysis has been performed for equally weighted Ensemble Figure 6, resulting in
finding the 90th percentile of the distribution at 60.08%, which has also been rounded to 0.6.

Figure 7: Distribution of predicted probabilities - Histogram Gradient Boosting

Source: Own Elaboration. The histogram of probability estimates on the validation set returned by HistogramGra-
dientBoosting classifier

In the case of Histogram Gradient Boosting alone, the distribution of predicted probabilities
has been more skewed towards the higher values Figure 7. Therefore, applying the same analysis,
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a 90th percentile equal to 0.679 and the corresponding value of P2 of 0.68 have been selected.

3.6 implementation and set up

All of the tests have been conducted using the own backtesting implementation. In each testing
instance, the equity curve is constructed by starting with 1000 dollars and reinvesting the profits.
Moreover, the assumption of the possibility of buying fractional shares is made, as well as the
assumption of no excess capital being needed for short positions deposit, thus allowing for zero
cost arbitrage at inception. Unless stated otherwise, transaction costs equal to 0.05% have been
applied, both at the closing and opening of the position.

3.7 Risk management optimizations

3.7.1 Time variant take profit functions

As discussed earlier the classification of signal quality has been based on the detection of achiev-
ing a fixed profit target threshold. An experimental approach to risk management has been tested
in the study. The approach aims at hedging against the possibility of signal misclassification, by
lowering the threshold with each day passing from opening the position. The take profit function
can be expressed with the equation 5:

Thresholdtp = THR ∗ 10− TD

10
(13)

where:

• TD = number of days since the last portfolio rebalance

• THR = scaling factor

To assure congruence with the classifiers, THR has been set to 8%, as with such value, the
expected value of Thresholdtp over the 9 days during which the take profit function can be
triggered is equal to the threshold used in model’s training (4%). The impact of changing this
value has been checked in the sensitivity analysis. The take profit function is only considering
the adjusted close prices, on the dates without portfolio rebalance. It means, that the realized
profit may be higher, than the Thresholdtp

3.7.2 Stop loss functions

Another risk management optimization applied is the use of stop loss. Although the strategy
aims to capitalize on mean reversion effects, thus it seems likely for a position to note increasing
loss before the reversal, stop loss could be a helpful tool in preventing abnormal losses during
times of market downturn. Similarly to take profit, a time-variant scheme has been tested, with
an arbitrary scaling factor equal to 5%, however, different values have also been inspected in the
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sensitivity analysis. As in the case of take profit, stop loss is activated based solely on the values
of adjusted close prices. Equation 6 represents the Threshold of the applied stop loss function.

Thresholdsl = 0.05 ∗ 10− TD

10
(14)

where:

• TD = number of days since the last portfolio rebalance

3.8 Likelihood weighted decisions

3.8.1 Kelly criterion weighted positions

As stated in the literature review, the Kelly criterion is a formula for optimal sizing of the posi-
tions, applicable when one knows the level of risk and wants to maximize the logarithm of wealth
in the long term, given that returns are reinvested. In this study, given the overall complexity of
the strategy, a simple version of the formula has been applied to each stock separately, to obtain
the value of the fraction. Consequently, all of those fractions have been scaled, so that the sums
of both shorts’ and longs’ signals fractions sum up to one. Such scaled fractions represent the
share of the current equity assigned to given stocks. Below will be presented the derivation of
the optimal fraction value, based on the one presented by (Hagman 2014). A given signal is
projected to be profitable with probability P .

Let’s assume, that the strategy starts with the initial capital equal to W0. then, assuming the
extent of wins and losses is symmetric and given by factor λ, by investing a fraction f , in the
nth step, the capital is equal to:

Wn = W0 ∗ (1− λ · f)L(1 + λ · f)W (15)

Where L represents the number of losses and W the number of wins. The rate of growth of
capital can be given by:

Wn

W0

= (1− λ · f)L(1 + λ · f)W (16)

Average returns, calculated by geometric mean are thus, equal to:

R = (1− λ · f)
L
n (1 + λ · f)

W
n (17)

The goal is to maximize the value of R. The logarithmic transformation can be applied, as the
logarithm is an increasing function. This leads to:

log(R) =
L

n
· log(1− λ · f) + W

n
· log(1 + λ · f) (18)

At this stage, in line with the frequentist approach to probability, it is assumed that the likelihood
P of a given signal being profitable, estimated by the classifiers module corresponds to the
fraction W

n
. Consequently, W

n
= P and L

n
= 1− P . This gives:

log(R) = (1− P ) · log(1− λ · f) + P · log(1 + λ · f) (19)
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In order to find the value of f which maximizes R, the first derivative of R with respect to f is
computed, which results in:

dR

df
=

P

1 + λ · f
− 1− P

1− λ · f
=

P − λ · f · P − 1 + P − λ · f + λ · f · P
1− (λ · f)2

=
2P − 1− λ · f
1− (λ · f)2

(20)
Setting the expression to 0, one obtains:

f =
2P − 1

λ
(21)

It is easy to check, that the solution is a maximum of R.

d2R

df 2
=

−(1 + λ · f)2 − (2P − 1− λ) · f · 2(1 + λ · f)
(1− λ · f 2)2

< 0 (22)

Also, since the fractions for all signals are scaled, to sum up to 1, under the assumption of equal
λ, the formula for optimal fraction can be further simplified to:

f = 2P − 1 (23)

This result will be applied during the testing of the strategies, and compared with the variant in
which all opened positions are equally weighted.

3.8.2 Risk weighted stop functions

Another usage of probabilities outputted by the classifier is weighting the take profit and stop
loss function. The rationale behind such an approach being similar as with the usage of the Kelly
criterion. Through multiplying the take profit function by the likelihood that a signal is profitable,
the threshold at which the position is closed is lower for more risky signals, thus the risk of
signals closing in loss, due to weak mean reversion is mitigated. Both of the measures described
have been tested with the goal of not losing the benefits of diversification while selecting strong
signals. The idea has been captured in the equation 16.

ThresholdRW = Threshold ·P (24)

Where:

• ThresholdRW - Risk-weighted threshold of take profit/stop loss function

• Threshold - Threshold of stop loss/take profit function before this modification

• P - Probability that given signal belongs to the class of profitable ones, outputted by the
machine learning classifier.
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4 Empirical results

4.1 Performance of Portfolios

In this subsection the performance of the the proposed solution is compared with relevant bench-
marks. Namely, the strategy is compared with replications of the one proposed by Cartea et al
(2023) described in section 3.3, with and without transaction costs. Moreover, SPY ETF has
been included in the comparison, serving as a proxy for overall market performance. The table
with the computed values of the metrics described in the previous section and the plot of equity
curves has been included below.

Table 8: Performance metrics of the proposed strategy and the relevant benchmarks

Metric Strategy Benchmark Benchmark W/o tc SPY

ARC 49.33% 1.13% 9.01% 9.12%
ASD 38.01% 9.16% 9.14% 20.11%
IR* 1.30 0.14 0.96 0.45

SORTINO 3.38 0.29 1.77 0.70
MDD 31.98% 34.30% 20.68% 55.19%
MLD 2.10 years 2.59 years 1.54 years 4.85 years
CR 1.54 0.04 0.44 0.17

IR** 2.00 0.01 0.42 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022. Strategy: proposed approach, with weighted ensemble classifier, stop loss and take profit function mod-
ifications and kelly citerion. Benchmark: Own implementation of the strategy proposed by Cartea et al. (2023),
with 0.05% transaction costs. Benchmark W/o tc: Own implementation of the strategy proposed by Cartea et al.
(2023), with no transaction costs. SPY: SPY ETF. Bolded values indicate the best metric of all presented strategies.

As can be seen in Table 8, the proposed strategy is characterized by a high rate of returns and
volatility. However, when compared to the benchmarks, the increase in the rate of annualized
returns compounded (ARC) is disproportionately higher than the increase in volatility (ASD),
resulting in IR* almost ten times higher than that of the benchmark strategy at the same level of
transaction costs. Moreover, the strategy’s edge over compared approaches is even greater in the
case of the Sortino ratio, indicating that the downside volatility is less than overall volatility. Such
a situation is favorable for an investor. These results have been achieved with a simultaneous
decrease of drawdown when compared to the benchmark and the overall market (represented by
SPY). Therefore, the proposed strategy is characterized by visibly higher values of calmar ratio
and Information Ratio**.

To ensure the significance of obtained results, a probabilistic t-test has been conducted, to
compare information ratios of the proposed strategy and the one of the SPY ETF. The critical
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value has been set at 0.01. The test has been constructed like the one applied by Bieganowski &
Ślepaczuk (2024), meaning that, it was calculated by the formula:

t =
IR∗

s − IR∗
b

σ√
n

(25)

Where:

• n - sample size

• σ represents the standard deviation of the difference between the benchmark and the strat-
egy returns

• IR∗
s - represents IR* of the proposed strategy

• IR∗
b - represents IR* of benchmark

The p-values were then calculated based on the Student’s t-distribution, with 4225 degrees
of freedom.

Table 9: T-test comparing information ratios of the proposed strategy and S&P500 benchmark

IR*-Strategy IR*-SPY SE df t p-value
1.30 0.45 0.0004 4225 2118.84 < 0.00001

Source: Own Elaboration. IR*-Strategy: IR* of the proposed strategy. IR*-SPY: IR* of the SPY ETF. SE -
standard error. df - number of the degrees of freedom. t - the value of the t-test statistics. H0 - IR* of the proposed
strategy is not greater than that of SPY ETF

The null hypothesis stated that the Information Ratio* of the proposed strategy is not greater
than that of the SPY benchmark. Results obtained in Table 9 indicate that the null hypothesis
can be rejected at a 1% significance level indicating the strong significance of obtained results.
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Figure 8: equity curves of the proposed strategy and the relevant benchmarks

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

As can be seen in Figure 8, the proposed strategy generates substantially higher returns,
though the rate of growth slowed down around the year 2016. An analysis of this phenomenon
led to the identification of two factors. Firstly, the starting-point strategy of Cartea et al (2023)
also notices a visible decline in performance in a similar time frame. Secondly, a very high rate
of returns in the 2010-2016 period can be to a significant extent attributed to the limited num-
ber of very profitable transactions. This behavior of the model also leads to a largely ’step-like’
structure of the equity curve. Through monitoring of the transactions closed after fulfilling the
take-profit criterion, it has been discovered that the stock ’Emporium Petroleum’ with ticker EP
has been responsible for the majority of those occurrences. Although not frequently, the sit-
uation also occurred in the case of the stock of the company: ’Ocean Thermal Energy Corp’
(ticker CPWR). Although the companies have indeed been a part of S&P500 during the testing
period, their stocks have been characterized by high volatility with very low to moderate vol-
ume. Therefore, even though earning on significant price movements is desirable behavior, the
situation in which such a situation is the main driver of the performance is not desirable, thus
the performance of the strategy on the datasets with EP and CPWR stocks excluded has been
tested in the sensitivity analysis. On the other hand, it could mean that the proposed strategy
has a very big potential of gaining a lot on stocks with high volatility and should encourage the
potential readers to test it on stocks with lower capitalization and higher volatility than the ones
included in the S&P500 index, eg from RUSSEL2000 or similar indices.
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5 Sensitivity analysis

5.1 Stop functions modifications and the Kelly criterion

In this subsection performance of the proposed strategy (referred to as the base case from this
point) is compared with the performance of strategies that do not use the modifications described
in parts 3.6 and 3.7. The first one is the base case strategy without time-variant and probability-
weighted modifications in their stop-loss and take-profit functions, referred to as a flat base case
with Kelly. The second one, on top of the changes implemented in the first one, doesn’t utilize
the Kelly criterion and thus is referred to as a flat base case.

Table 10: Performance metrics for sensitivity analysis of the stop loss and take profit functions
modifications and the Kelly criterion

Metric Base case Flat Base Case Kelly Flat Base Case SPY

ARC 49.33% 52.63% 50.33% 9.12%
ASD 38.01$ 40.29% 38.95% 20.11%
IR* 1.30 1.31 1.29 0.45

SORTINO 3.38 3.25 3.26 0.70
MDD 31.98% 36.05% 33.94% 55.19%
MLD 2.10 years 2.82 years 1.99 years 4.85 years
CR 1.54 1.46 1.48 0.17

IR** 2.00 1.91 1.90 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022. Base Case: proposed approach, with weighted ensemble classifier, stop loss and take profit function
modifications and Kelly criterion. Flat Base case Kelly: Base case strategy without time variant stop function
modifications. Flat Base case: Base Case strategy without time variant take profit and stop loss functions and
Kelly criterion. SPY: SPY ETF. Bolded values indicate the best metric of all presented strategies.

As can be seen in Table 10, the performance of the base case and its two modifications are
very similar, as the values of IR* differ by not more than 2% between them. The results suggest
that the addition of the Kelly criterion increased the rate of returns at the expense of higher
volatility and longer maximum drawdown duration. At the same time, modifying the stop loss
and take profit functions reduced volatility and returns by roughly the same factor, but also led
to lower values of maximum drawdown, and downside risk allowing the base case strategy to
achieve slightly higher values of Calmar, Sortino, and IR** ratios. Reduction of the tail risk is
desirable, implying the validity of the time-variant and probability-weighted approach, however,
the differences are marginal. Thus it can be said that the strategy proposed is not sensitive to the
removal of these modifications.
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Figure 9: equity curves for sensitivity analysis of the stop loss and take profit functions modifi-
cations and the Kelly criterion

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

As can be seen in Figure 9, the equity curves of base case strategy and flat versions follow
very similar trajectories.

5.2 Ensemble Construction

The results presented in Table 11, clearly suggest that the ensemble weights selected for the base
case strategy were the optimal ones. The results obtained with modified weights are almost uni-
formly worse on every metric than the ones of the base case. At the same time, both alternative
strategies proposed are characterized by better values of the performance metrics than the bench-
mark SPY strategy. As can be further observed in Figure 10, an equally weighted ensemble is
characterized by higher volatility than the base case, which is congruent with higher values of
ASD and MDD in Table 11. Such results may suggest, that the relative increase of weights of
worse performing models leads to lower average quality of predictions, and thus more unprof-
itable positions have been opened. In contrast, although the equity curve of the strategy in which
only Histogram GradientBoosting has been utilized looks relatively stable, it has a significant
decrease in performance around the year 2017, which has been identified before as typical for
both the base case strategy as well as the strategy presented by Cartea et al (2023). Thus, it can
be deduced, that not using a diversified ensemble, when performing the classification of signals
quality, may increase the risk of reinforcing some undesirable characteristic of the underlying
strategy. Interestingly, the results of the base case strategy but without rounding the threshold
used for limiting the number of transactions, differ slightly from the base case, indicating the
sensitivity of the strategy to changes in the number of stocks traded.
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Table 11: Performance metrics for sensitivity analysis of the ensemble construction

Metric Base Case HistGradientBoosting equally weighted W/t rounding SPY

ARC 49.33% 31.58% 28.91% 47.15% 9.12%
ASD 38.01$ 34.82% 38.22% 38.99% 20.11%
IR* 1.30 0.91 0.76 1.21 0.45

SORTINO 3.38 1.89 1.54 3.11 0.70
MDD 31.98% 50.7% 63.95% 38.83% 55.19%
MLD 2.10 years 3.01 years 2.63 years 3.22 years 4.85 years
CR 1.54 0.62 0.45 1.38 0.17

IR** 2.00 0.56 0.34 1.67 0.08

Source: Own Elaboration. Out-of-sample performance between 03.2006 and 12.2022, own backtesting imple-
mentation. Base case: proposed approach, with weighted ensemble classifier, stop loss and take profit function
modifications and Kelly citerion. HistGradientBoosting: Base case but using only one model rather than an en-
semble. equally weighted: The base case with equally weighted ensemble. W/t rounding: Base case but without
rounding the threshold used in determining whether a signal is profitable. SPY: SPY ETF. Bolded values indicate
the best metric of all presented strategies.

Figure 10: equity curves for sensitivity analysis of the ensemble Weights

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022.

5.3 Transaction costs

The sensitivity analysis of the proposed approach performance at different transaction cost rates,
informs us that the base case strategy is largely immune to changes in this parameter. As can be
observed in Table 12, as the transaction costs increase the strategy displays monotonically worse
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performance. At the same time, performance with transaction costs equal to 0.1% is significantly
better than that of SPY ETF. The similarity of the performance is very visible in Figure 11. Thus,
the low sensitivity of the base case strategy to transaction costs can be concluded.

Table 12: Performance metrics for sensitivity analysis of the transaction cost rate

Metric 0% Base Case 0.075% 0.1% SPY

ARC 54.55% 49.33% 46.78% 44.27% 9.12%
ASD 38.02% 38.01% 38.02% 38.02% 20.11%
IR* 1.43 1.30 1.23 1.16 0.45

SORTINO 3.74 3.38 3.20 3.027 0.70
MDD 31.72% 31.98% 32.11% 32.24% 55.19%
MLD 1.98 years 2.10 years 2.14 years 2.17 years 4.85 years
CR 1.72 1.54 1.46 1.37 0.17

IR** 2.46 2.00 1.80 1.59 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022. 0%: Base Case with no transaction costs. Base case: proposed approach, with weighted ensemble
classifier, stop loss and take profit function modifications and Kelly criterion. 0.075%: Base Case with 0.075%
transaction costs. 0.1%: Base Case with 0.1% transaction costs.SPY: SPY ETF. Bolded values indicate the best
metric of all presented strategies.

Figure 11: equity curves for sensitivity analysis of the transaction cost rate

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022
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5.4 Stop Loss Threshold

As can be seen in Table 13, both lowering and increasing the stop loss threshold seem to have
a moderate negative impact on the performance of the strategy. While a slight decrease of the
threshold to 3% led to a decrease in maximum drawdown, no other benefits can be observed.
Those results align with the expectations, given the strategy design. from one perspective, if the
strategy aims to capitalize on mean reversion, having a stop loss threshold that is too low may
lead to premature closure of possibly profitable positions. Conversely, a threshold that is too
high may simply lead to insufficient reduction of downside risk. However, as previously stated,
the strategy is only moderately sensitive to the changes of the threshold.

Table 13: Performance metrics for sensitivity analysis of stop loss threshold value

Metric 1% 3% base case 10% SPY

ARC 41.54% 41.93% 49.33% 46.00% 9.12%
ASD 35.29% 35.75% 38.01% 39.12% 20.11%
IR* 1.18 1.17 1.30 1.18 0.45

SORTINO 3.21 3.14 3.38 2.84 0.70
MDD 32.08% 28.58% 31.98% 41.05% 55.19%
MLD 3.01 years 3.75 years 2.10 years 3.28 years 4.85 years
CR 1.30 1.52 1.54 1.12 0.17

IR** 1.53 1.78 2.00 1.32 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022. 1%: Base Case with stop loss threshold equal to 1%. 3%: Base Case with stop loss threshold equal to 3%.
Strategy: proposed approach, with weighted ensemble classifier, stop loss and take profit function modifications
and Kelly citerion. 10%: Base Case with stop loss threshold equal to 10%. SPY: SPY ETF. Bolded values indicate
the best metric of all presented strategies.
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Figure 12: equity curves for sensitivity analysis of stop loss threshold value

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

As visible in Figure 12, all stop-loss thresholds tested underperform the base case, but still
significantly overperform the SPY benchmark.

5.5 Over-performing stocks exclusion

As can be observed in Table 14, excluding best-performing stocks has a drastic effect on the
performance of the strategy. Given the nature of the stocks excluded, those findings strongly
suggest, that the base case strategy’s main advantage lays in ability to successfully capitalized
on extensive price movements. What needs to be noted, is the fact, that all three variants of
the strategy with best-performing stocks excluded, outperform both the benchmark strategy of
Cartea et al. (2023) with transaction costs applied and the SPY ETF performance, in terms of
the Calmar, Sortino, and information ratios. Those results evince the presence of a performance
improvement which can be attributed to the usage of signals quality classifiers. Concurrently, the
very high sensitivity of the base case strategy to the exclusion of the highly volatile, profit-driving
stocks, highlights both potential issues that can be expected with the scaling of the strategy, as
well as the potential opportunities associated with the application of the strategy to more volatile
markets.
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Table 14: Performance metrics for sensitivity analysis of over-performing stocks exclusion

Metric Base case Benchmark W/o EP & CPWR W/o EP /o CPWR SPY

ARC 49.33% 1.13% 10.73% 17.78% 26.65% 9.12%
ASD 38.01$ 9.16% 19.71% 22.72% 33.38% 20.11%
IR* 1.30 0.14 0.54 0.78 0.80 0.45

SORTINO 3.38 0.29 0.83 2.09 1.57 0.70
MDD 31.98% 34.30% 51.44% 24.95% 50.51% 55.19%
MLD 2.10 years 2.59 years 9.38 years 1.67 years 2.10 years 4.85 years
CR 1.54 0.04 0.21 0.71 0.53 0.17

IR** 2.00 0.01 0.11 0.55 0.42 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022. Strategy: proposed approach, with weighted ensemble classifier, stop loss and take profit function mod-
ifications and Kelly criterion. Benchmark: Own implementation of the strategy proposed by Cartea et al. (2023),
with 0.05% transaction costs. W/o EP & CPWR: Base Case with EP and CPWR stocks excluded from the dataset.
W/o EP : Base Case with EP stock excluded from the dataset. W/o CPWR: Base Case with CPWR stock excluded
from the dataset. SPY: SPY ETF. Bolded values indicate the best metric of all presented strategies.

Figure 13: equity curves for sensitivity analysis of over-performing stocks exclusion

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

The equity curves in Figure 13 clearly demonstrate the decrease in the performance of the
strategies when compared to the base case. However, is the drastic drop of the equity curve of
the strategy with both EP and CPWR stocks excluded, around the end of 2010 is worth more
detailed consideration. Before this significant drawdown, the strategy has been outperforming
all other approaches tested, displaying resilience to the 2008 and 2020 crises. Moreover, it also
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seems to be less susceptible than the base case to the performance drop after the year 2016. It
could be speculated, that with a focus on the parameters tuning for specifically this variant of the
strategy, a very stable, and profitable strategy could be achieved. Moreover, this hypothesis can
be supported by comparatively low values of maximum drawdown and maximum loss duration,
observed in the case of strategy in which only the EP stock has been excluded.

5.6 Take profit threshold

The values of IR* and Sortino for strategies with both halved and doubled take profit threshold
when compared to Base case, have changed by less than 10%. One noticeable change is around
50% increase of MDD in the case of strategy with a scaling factor equal to 0.16. Overall, as
shown in Figure 14, the strategy is not very sensitive to changes in this parameter.

Table 15: Performance metrics for sensitivity analysis of different take profit scaling factors

Metric Base Case Benchmark 0.04 0.16 SPY

ARC 49.33% 1.13% 45.99% 49.86% 9.12%
ASD 38.01$ 9.16% 36.91% 39.46% 20.11%
IR* 1.30 0.14 1.24 1.26 0.45

SORTINO 3.38 0.29 3.32 3.10 0.70
MDD 31.98% 34.30% 31.75% 48.43% 55.19%
MLD 2.10 years 2.59 years 3.72 years 3.37 years 4.85 years
CR 1.54 0.04 1.45 1.02 0.17

IR** 2.00 0.01 1.80 1.23 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022. Base Case: proposed approach, with weighted ensemble classifier, stop loss and take profit function
modifications and Kelly citerion. Benchmark: Own implementation of the strategy proposed by Cartea et al.
(2023), with 0.05% transaction costs. 0.04: Base Case with take profit scaling factor equal to 0.04. 0.16: Base
Case with take profit scaling factor equal to 0.16.SPY: SPY ETF. Bolded values indicate the best metric of all
presented strategies.
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Figure 14: Equity curves for sensitivity analysis of the take profit scaling factor

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

5.7 Threshold applied in construction of the in-sample dataset

The next tested parameter is the threshold applied in the construction of the in-sample dataset.
Namely, the take profit threshold required for the signal to be considered the representative of the
class of profitable signals. The change of this parameter has a substantial effect on the strategy
performance (Figure 15). The values of IR* have decreased significantly when compared to the
base case (Table 16). The MDD has more than doubled for the strategy with the parameter equal
to 0.08. Thus, the strategy is sensitive to changes in this parameter.



Korniejczuk, A. and Ślepaczuk, R./WORKING PAPERS 9/2024 (445) 36

Table 16: Performance metrics for sensitivity analysis of threshold applied in the construction
of in-sample dataset

Metric Base Case Benchmark 0.02 0.08 SPY

ARC 49.33% 1.13% 34.47% 30.57% 9.12%
ASD 38.01$ 9.16% 37.88% 43.33% 20.11%
IR* 1.30 0.14 0.91 0.71 0.45

SORTINO 3.38 0.29 2.05 1.32 0.70
MDD 31.98% 34.30% 45.70% 68.40% 55.19%
MLD 2.10 years 3.56 years 3.72 years 2.92 years 4.85 years
CR 1.54 0.04 0.75 0.45 0.17

IR** 2.00 0.01 0.68 0.32 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022.Base Case: proposed approach, with weighted ensemble classifier, stop loss and take profit function mod-
ifications and kelly citerion. Benchmark: Own implementation of the strategy proposed by Cartea et al. (2023),
with 0.05% transaction costs. 0.02: Base Case with halved threshold used in the construction of in-sample dataset.
0.08: Base Case with doubled threshold used in the construction of in-sample dataset. SPY: SPY ETF. Bolded
values indicate the best metric of all presented strategies.

Figure 15: Equity curves for sensitivity analysis of threshold applied in the construction of in-
sample dataset

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

5.8 Rebalance frequency and length of clustering lookback window

In order to examine the quality of assumption made in the section 3.3, the sensitivity to changes
of frequency of clustering and number of days used to construct correlation matrix which serves
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as an input to SPONGEsym method. The strategies tested are named according to the conven-
tion a&b where a denotes frequency of rebalance and b the length of lookback window used
to construct correlation matrix for clustering purposes. To mitigate the risk of serious classes
disbalance in classifers training, threshold used in the construction of in-sample dataset has been
scaled linearly by a/10 when a was not equal to 10.

Table 17: Performance metrics for sensitivity analysis of rebalance frequency and length of
clustering lookback window

Metric Base Case Benchmark 3&5 10&5 15&30 10&45 SPY

ARC 49.33% 1.13% -100% 16.78% 9.54% 37.34% 9.12%
ASD 38.01$ 9.16% 35.11% 33.48% 46.83% 59.92% 20.11%
IR* 1.30 0.14 -2.85 0.50 0.20 0.62 0.45

SORTINO 3.38 0.29 -3.18 0.94 0.95 1.42 0.70
MDD 31.98% 34.30% 100% 54.02% 37.67% 67.02% 55.19%
MLD 2.10 yrs. 3.56 yrs. 11.17 yrs. 2.92 yrs. 4.99 yrs. 4.79 yrs. 4.85 yrs.
CR 1.54 0.04 -1 0.31 0.25 0.58 0.17

IR** 2.00 0.01 -2.85 0.16 0.05 0.35 0.08

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022 Base Case: proposed approach, with weighted ensemble classifier, stop loss and take profit function mod-
ifications and kelly citerion. The values of a and b equal to 10&30. Benchmark: Own implementation of the
strategy proposed by Cartea et al. (2023), with 0.05% transaction costs.SPY: SPY ETF. Bolded values indicate the
best metric of all presented strategies.

The proposed strategy is very sensitive to changes in both the frequency of portfolio re-
balance as well as the length of the lookback window used for clustering. Changes of both
parameters in either direction worsened the strategy performance. Changes of clustering fre-
quency seem to have a stronger effect, moreover decreasing the value of both parameters leads
to stronger impairment of the IR*, IR**, CR, and Sortino ratio, than increasing them (Table
17). This could be caused by the presence of average cluster returns of last 10 days as well as
average stock returns of last 10 days in the training dataset, which is highly likely not optimal
for strategies tested in this part of the sensitive analysis, especially the one with rebalance every
three days. Thus, any attempt at implementation of the proposed strategy, but with different
values of the two parameters should also involve redefining features used in the training of the
machine learning classifiers. Figure 16 shows, the strongly varying performance of analyzed
strategies, and the substandard performance of the 3&5 strategy, which led to the bankruptcy of
that portfolio. The performance of the strategy was most likely caused by classifiers learning
noise, due to the issues with incompatible features, described before, which resulted in a lack of
ability to trade high-risk stocks like EP or CPWR
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Figure 16: Equity curves for sensitivity analysis of rebalance frequency and length of clustering
lookback window

Source: Own Elaboration. Own backtesting implementation, out-of-sample performance between 03.2006 and
12.2022

5.9 Summary of the sensitivity analysis

In order to summarize the sensitivity analysis, Table 18 has been provided. The table shows the
number of performance metrics on which a given strategy performed best within the sensitivity
analysis of a given parameter. Overall, in case of most of the parameters, the base case strategy
has been the best on the majority of the metrics, indicating substantial sensitivity of the selected
approach.
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Table 18: Summary of the sensitivity analysis conducted

Stop loss and take profit modifications Take Profit Threshold
No time-variant, no Kelly 1 0.04 2

No time Variant, Kelly 2 0.08 (Base Case) 5
Time variant & Kelly (Base Case) 5 0.16 1

Ensemble weights
Threshold for constructing

in-sample dataset
Equally Weighted 0 0.02 1

HistGradientBoosting weight doubled (Base Case) 7 0.04 (Base Case) 7
Only HistGradientBoosting 1 0.08 0

Transaction costs Stop loss threshold
0% 7 1% 1

0.05% (Base Case) 1 3% 1
0.075% 0 5% (Base Case) 6
0.1% 0 10% 0

Rebalance frequency and length
of clustering look back window

Overperforming stocks exclusion

3&5 1 With EP and CPWR (Base Case) 5
10&5 0 Without EP and CPWR 1

10&30 (Base Case) 7 Without EP 2
10&45 0 Without CPWR 0
15&30 0

Souce: Own elaboration. The table shows the number of performance metrics on which a given strategy performed
the best within the sensitivity analysis of a given parameter.

6 Conclusions and Further Research

The study examined the performance of the algorithmic trading strategy, in which the ensemble
of machine learning classifiers has been applied in order to filter the signals generated by a sta-
tistical arbitrage framework based on graph clustering. The work was based on the price data
of historical constituents of the S&P500 index, downloaded from the Yahoo finance database.
Cartea et al. (2023) strategy has been modified by decreasing the trading frequency. Subse-
quently, an In-sample dataset was created from the first 1500 trading days, which contained in-
formation about signals generated by that strategy and their performance. That dataset has been
split into training and validation fractions. The training fraction has been utilized to train and find
optimal hyperparameters of five machine learning classifiers, including Multi-layer perceptron,
Histogram Gradient Boosting, Ada Boost, Logistic regression, and stochastic gradient descent.
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Their performance has been assessed on the validation fraction of the dataset, using the Brier
and Precision scores. Finally, the strategy in which signals were filtered using the classifier has
been tested on the out-of-sample part of the dataset. Several optimizations, including, the Kelly
criterion, novel time-variant stop loss and take profit functions, and likelihood-weighed posi-
tions have been added and tested to accurately assess the potential of the graph-based methods.
A thorough evaluation of the strategy performance, measured by various metrics and deepened
in the sensitivity analysis, has been performed. The obtained results suggest the validity of the
approach, as all of the variants of the classifier-based strategy outperformed both the original
graph clustering-based statistical arbitrage strategy and the index-tracking ETF buy-and-hold
approach. These results have been obtained under realistic transaction cost assumptions. Thus,
the following answers could be given to the formulated research questions:

• RQ1: Does the usage of signal quality classifiers improve the quality of the graph-clustering-
based statistical arbitrage strategy? - The results of the backtesting, suggest that the usage
of the machine learning classifiers can indeed improve the performance of the strategy.
The conclusion is supported by the higher values of Calmar, Sortino, and modified infor-
mation ratios obtained by various versions of the strategy which used the classifiers when
compared to the one that didn’t. The improvement seemed to stem from the successful re-
duction of the volume of unprofitable signals traded. The best results have been observed
when using the weighted soft voting ensemble of classifiers.

• RQ2: To what extent, does the implementation of transaction and risk management mea-
sures to influence the performance of the strategy? - After performing the sensitivity anal-
ysis, in which the impact of removing the implemented optimization has been measured, it
can be concluded that their influence is limited. The addition of neither the Kelly criterion
nor stop loss and take profit function modification has led to an increase in the Information
Ratio*. However, the latter seems to have a moderate positive effect on downside and tail
risk reduction. Thus the novel approach of multiplying the stop functions by the predicted
probability of the signal’s profitability as well as the time-variant factor seems to have po-
tential for further examination. The very limited impact of the usage of the Kelly criterion
is most likely caused by the very rudimentary and simple implementation.

• RQ3: What is the sensitivity of the strategy to changes in transaction costs? - Sensitiv-
ity analysis has clearly demonstrated that the changes in transaction costs have a limited
impact on strategy performance. Strategy can be considered robust to changes of that
parameter, as doubling it resulted in only a 10% drop of Information Ratio*.

• RQ4: To what extent does the change of weights in the classifiers ensemble influence the
strategy - Changes of weights used in the construction of the ensemble have a measurable
impact on the performance of the strategy. Sensitivity analysis suggests, that both equally
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weighted ensemble and selection of only the best classifier lead to results that are worse
than weighted ensemble with the increased weight of the best-performing model.

It needs to be acknowledged, that the study is constrained by certain limitations. Firstly, the
data quality in the Yahoo finance database is certainly not perfect. Although the reproducing
of the methodology of Cartea et. al. (2023) resulted in very similar values of the performance
metrics, suggesting that the obtained results are representative, the extent of missing data has
been noticeable, thus increasing the uncertainty of the backtesting results. Moreover, no slippage
effects have been considered in the backtesting, which could also be a liberal assumption, given
that the strategy profited significantly from price movements of highly volatile stocks. Moreover,
the precision and negative brier scores of the classifiers on the validation datasets have not been
very high, which was likely caused by not optimal feature engineering and the lack of feature
elimination.

After conducting the study, a few possible ideas for further research can be identified. Firstly,
the drastic change in the strategy’s performance induced by the elimination of the overperform-
ing, volatile stocks may suggest that the strategy can potentially perform well in environments
in which assets commonly possess such characteristics. An example of a market worth consid-
ering could be the cryptocurrency market. Moreover, it needs to be noted that the overall design
of the classifiers has been rather simple. A further investigation worth conducting would test
how the performance of the classifiers changes, once the multilabel classification is utilized. For
example, signals can be classified as prospective profitable shorts, profitable longs, or the ones
that are not likely to be profitable. Of course, the whole framework can also be tested on higher
frequencies data, which are commonly used in the statistical arbitrage strategies.
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