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AAbbssttrraacctt:: Economic analysis of environmental policy projects typically use pre-existing welfare 
estimates that are then transferred over time to the policy relevant periods. Understanding how 
stable and predictable these welfare estimates are over time is important for applying these 
estimates in policy. Yet, revealed preference models of recreation demand have received few 
temporal stability assessments compared to other non-market valuation methods. We use a large 
administrative dataset on campground reservations covering ten years to study temporal stability 
and predictability of recreation demand welfare estimates of lake water quality changes. Based 
on single-year models, our findings suggest welfare estimates are temporally stable across years 
in around 50% of the comparisons. Using an event study design, we find evidence that welfare 
estimates are stable within a year, that is, for weeks after a change in water quality. Our findings 
further reveal that having two years of data for predicting welfare estimates in subsequent years 
improves the prediction accuracy by 22% relative to using a single year of data, but further 
improvements in the prediction accuracy are modest when including additional years of data. 
Predictions of welfare estimates are not necessarily improved when using data closer in time to 
the prediction year. We discuss the implications of our results for using revealed preference studies 
in policy analysis. 
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1. Introduction 

There is almost always a delay between the date of collecting preference and behavioral data and 

the application of the derived welfare measures in policy analysis. The temporal delay may only 

be months, often the delay is years, and sometimes it is decades. The delay is present in application 

of the data for policy assessments and benefit-cost analyses of projects with future streams of 

benefits. The underlying assumption made in these policy applications is that preferences, 

behaviors, and associated welfare measures are stable across the time of data collection, welfare 

estimation, and their application for policy purposes (Rolfe and Dyack 2019). Consequently, it is 

highly policy-relevant to understand whether welfare estimates are temporally stable and can be 

predicted based on existing welfare measures. In this study, we explore the question of whether 

recreation demand welfare estimates are stable over time and how the predictability of welfare 

measures across time depends on available data.  

Revealed preference models of recreation demand have received relatively few stability 

assessments compared to other non-market valuation approaches, such as stated preference and 

hedonic price methods (Kling et al. 2012; Ji et al. 2020; Lupi et al. 2020).1 Temporal stability is 

typically investigated through test-retest procedures by comparing welfare estimates from two or 

more points in time. This testing framework assumes that estimates of the same good obtained 

through the same research design from different points in time represent statistically 

indistinguishable values. While the literature is abundant with stated preference investigations of 

such test-retest type, the existing evidence about temporal stability of revealed preference 

recreation demand welfare estimates is scarce and predominantly based on survey data (e.g., 

Zandersen et al. 2007a, 2007b; Rolfe and Dyack 2019; Ji et al. 2020). With this study, we aim at 

contributing to empirical inquiries on temporal stability of recreation demand welfare estimates 

and their predictability based on existing estimates, by conducting the assessments with the use of 

administrative, not survey-based, revealed preference data. 

The three purposes of this paper are: (i) to examine temporal stability across years; (ii) to 

assess temporal stability within a year; and (iii) to study the predictability of recreational demand 

 
1 Another term for temporal stability often used synonymously in non-market valuation literature is temporal reliability 
(e.g., Brouwer 2006; Liebe et al. 2016). 
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welfare estimates. The latter is assessed with respect to two dimensions: the numbers of years (data 

points) of existing data used to predict welfare measures and the time delay between the prediction 

year and the data points. To explore these research areas, we employ a regional recreation demand 

model using data for ten consecutive years. The empirical investigation is based on a large-scale 

set of administrative data on campground reservations in Alberta, Canada. The data contains daily 

information on overnight trips taken by recreationists over a season to provincial parks in Alberta 

for the years from 2013 to 2022. Each year of data includes 80,000 to 128,000 trips taken by 56,000 

to 78,000 individuals to 58 campgrounds. 

The welfare estimates considered in our study concern the societal value of lake water 

quality. The empirical data enables estimation of welfare effects of changes in lake water quality 

measured by the presence, or lack, of water quality advisories. Water quality advisories are issued 

by the local health authority and indicate the water body is unsafe for human or animal contact. 

Changes in water quality over time are captured by whether an advisory is present at a lake next 

to a campground. The advantage of this water quality measure, compared to a single annual 

average often used in existing valuation studies concerning water quality, is that it helps us capture 

the actual water quality condition experienced by individuals. Additionally, the advisories are 

salient for people compared to other scientific measures (indices) of water quality, which do not 

necessarily correspond to people’s perceptions or may not be noticed by people. 

Results of site choice models reveal that the marginal willingness to pay (MWTP) to 

remove a water quality advisory range from $3 to $26 per trip depending on the year considered.2 

Out of the total of 45 year-to-year pairwise comparisons, about half (23) reveal statistically 

indistinguishable MWTP values. We do not observe any systematic pattern that adjacent years 

generate more similar values than non-adjacent years. We use an event study design to assess the 

within-year stability of water quality welfare estimates based on week-to-week comparisons and 

find consistent values of lifting a water quality advisory across weeks of single years after the first 

week from the date of issuing an advisory. We find evidence that people respond to water 

advisories already in the first week of an advisory being in place, but the response is greater in 

(and consistent across) subsequent weeks. After the first week, the behavioral response and implied 

values of lifting an advisory range between $13 and $18 per trip, depending on the week, and these 

 
2 All value estimates in this study are in 2020 Canadian dollars. 
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estimates do not differ statistically from each other. We find no evidence for anticipatory effects 

as the placebo value of lifting an advisory is not statistically different from zero in the weeks 

preceding the advisory issuance.  

We study the out-of-sample predictability of welfare estimates by using varying year 

subsets of the data to estimate and compare welfare measures. We find that having two years of 

data compared to one improves prediction accuracy by 22%, but the additional accuracy gains 

from using more than two years of data for predictions are more modest and are under 10%. 

Surprisingly, we do not observe that the time delay between the prediction year and the years of 

data used for making the predictions affect the accuracy of the prediction. 

Most of the existing evidence suggests that recreation demand welfare estimates are 

unstable over time.3 A summary of these studies along with a comparison with our study is 

presented in Appendix A.4 Cooper and Loomis (1990) estimate consumer surplus per fishing trip 

in each year over a period of five consecutive years and observe the value of a five-year benefit 

stream to be underestimated by 17% when calculated as an estimate transferred from the base (i.e., 

first) year throughout subsequent years. Zandersen et al. (2007a, 2007b) use data from two points 

in time, twenty years apart, and find welfare estimates of recreation access to a forest site not to 

be temporally stable. Similarly, Rolfe and Dyack (2019) show that value estimates of a recreational 

trip to an estuarine region derived for two data points, seven years apart, are statistically different 

across the data years. Ji et al. (2020) use five points of recreation demand data over the span of 

eight years and observe welfare estimates of water quality changes not being temporally stable 

over the full range of years, but report similarities across selected pairs of adjacent years. The 

recreation demand literature also provides (some) evidence of temporal stability. Hellerstein 

(1993) reports mixed findings for a studied period of seven consecutive years depending on 

a model specification: own-year models reveal a recreation site value to be stable or slightly 

decreasing over time, while a more naive, as assessed by the authors, pooled model suggests that 

 
3 We do not refer here to recreation demand models based on contingent behavior data (e.g., Xie and Adamowicz 
2022), which involves stated behaviors under hypothetical scenarios, in contrast to revealed preference recreation 
demand models relying on actual behaviors. We also do not refer to meta-analysis studies, which aggregate findings 
for various types and destinations of recreational trips and do not provide examination of temporal stability similar to 
test-retest procedures. 
4 The list has been prepared based on summaries of literature in other articles (e.g., Ji et al. 2020), thorough literature 
searches, and our best knowledge. 
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the value has been increasing over time. Yi and Herriges (2017) find estimates of the welfare loss 

from closure of two individual lakes to be fairly stable over a period of two consecutive years. All 

of the referred studies that are based on individual-level models rely on survey data.  

This study brings several new contributions to the non-market valuation literature. First, it 

provides novel evidence on temporal stability of recreation demand welfare estimates. In contrast 

to former investigations in this area reviewed above, we use a large set of administrative data, 

which is not subject to recall issues or other behavioral biases observed in survey responses (Lades 

et al. forthcoming; Lupi et al. 2020). We employ a water quality measure easily understandable to 

people and measuring the actual experienced condition. Because our water quality measure is day-

specific, instead of being a year or season average, we provide evidence on intra-annual temporal 

stability of welfare estimates which has not been the focus in the non-market valuation literature. 

The inclusion of the years 2020 and 2021 allows us to verify the stability of the welfare estimates 

in the face of a global pandemic and subsequent travel restrictions, which drastically changed 

recreation options. Second, building on the insights from temporal stability, we evaluate how well 

welfare estimates can be predicted based on two factors: the number of years of data used for 

forming the predictions and the time delay between the prediction year and the years of data used 

for making the predictions. This can be of practical importance for policy assessments requiring 

transferring welfare measures over time. Finally, we further argue that our day-specific trip and 

water quality data across ten years provides a unique opportunity to identify behavioral responses 

to changes in lake water quality. The data allows us to use an event study design and contributes 

to the need identified in recreational demand literature for expanded data sources allowing for 

validation of welfare estimates derived from single cross-section analyses (Lupi et al. 2020). 

2. Data and methods 

This section describes the data used in the analysis and the empirical approach. We start by 

discussing the data sources for camping trips and water quality advisories in Alberta, and the 

approach employed to calculate travel costs. We then describe the empirical strategy and modeling 

approach for the analysis. 
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2.1. Recreation data 

We focus on trips by Albertans to basic campgrounds in provincial parks, using data from the 

Recreation Alberta Parks (RAP) database for the years 2013-2022. The online camping reservation 

system is the primary way people make camping reservations in the province and provides a single 

interface to compare campground availability, prices, and amenities.5 The RAP database contains 

reservations made online through the RAP portal, by phone, and on-site walk-ins. The database 

includes the scheduled arrival and departure dates, group sizes, postal codes of the users making 

the reservations, and campground information. Each user of the online reservation portal is 

assigned a unique ID that stays with them over time, and thus we can connect multiple trips by the 

same person within a camping season and across years.  

The raw data includes 2.19 million camping reservations from 0.95 million unique users 

and we apply a set of exclusion criteria for the data to ensure we have a well-defined commodity 

and to mitigate the potential issue of multi-purpose trips (Lupi et al., 2020). In specifying the 

choice set, we focus on basic campgrounds and exclude group camping, comfort camping, and 

equestrian campgrounds. We further restrict the sample to the set of 58 campgrounds that we have 

trip information for every year of the analysis, although we also consider models with all available 

sites each year as a sensitivity analysis and present the results in Appendix D.6 We exclude 

individuals without a valid Alberta postal code as these out of province travelers are likely to have 

multiple purposes for their trip to Alberta besides camping and/or are more likely to visit multiple 

sites. We only include trips that are seven nights or less and involve five people or less for the 

purpose of studying a homogenous good. We focus the main results on trips taken during the 

summer season defined as between the third Monday in May and the first Monday in September 

(Victoria Day and Labor Day long weekends). Some campgrounds open later in the season and we 

only consider a campground as available to visit if at least one person made a reservation to that 

campground for a given day.  

 
5 The online reservation system of RAP: https://www.albertaparks.ca/albertaparksca/visit-our-parks/camping-in-
alberta-parks/online-reservations/ 
6 Some campgrounds were added to the RAP system throughout the study period and some campgrounds were closed 
in certain years due to fires and floods. The number of sites available in RAP over the years 2013-2022 ranged from 
62 to 111. 
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With these exclusion criteria to the data applied, we use 977,834 camping trips made by 364,157 

unique visitors over the ten-year period. Table 1 shows that each year includes approximately 

56,000 to 78,000 unique individuals taking 80,000 to 128,000 trips.7 The 2020 and 2021 years 

have around 30% more trips than previous years in large part due to out-of-province travel 

restrictions related to the COVID-19 pandemic.  

2.2. Water quality advisory data 

Water quality advisory data are obtained from Alberta Health Services (AHS). The AHS conducts 

a Routine Recreational Water Quality Monitoring Program involving a visual inspection of lakes 

and collecting water samples for lab testing. Advisories are issued when a blue-green algae 

(cynobacteria) bloom is identified and it poses a risk to human health. Advisories remain in place 

as long as there is a health risk, and this typically—but not always—lasts until the end of recreation 

season. We collect information on the dates of advisory issuance and lifting for each provincial 

park with lake access in the dataset. Advisories are published on the AHS website and shared with 

local media. Figure 1 presents an example of one of these advisory signs posted near a lake. 

Most recreation demand studies involving water quality use scientific measures of water 

quality, such as Secchi depth or total phosphorus, and there is an ongoing debate in the literature 

on which scientific measure matters for people’s behavior and welfare (Egan et al. 2009; Ji and 

Keiser 2016). Most studies also use a single measurement or annual average of water quality for 

the whole year. However, water quality in a waterbody can change substantially within a year, for 

example, due to changing temperature and precipitation events and thus a single annual measure 

might not reflect the water quality people actually face during their recreation activity. We use the 

dates when water quality advisories are issued and lifted by the provincial health authority 

throughout the camping season in response to changing water quality conditions. We expect these 

advisories to be more salient for people than scientific metrics of water quality as they provide a 

simple indication of water quality and thus may better fit people’s understanding of water quality. 

 
7 While our interest is in temporal stability of recreation demand welfare estimates, we do not restrict the sample of 
users to be the same each year due to data limitations. If we restrict the sample to include only the users taking trips 
each year, we are left with a sample size of 1,027 which is too small to identify the effect of advisories and with many 
campgrounds unvisited each year. Thus, we cannot rule out that the different composition of individuals across years 
is driving our finding of limited temporal stability. 
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Furthermore, the advisories are issued throughout the year, reflecting the time-varying nature of 

water quality. 

Of the 58 campgrounds included in the analysis, 48 campgrounds are adjacent to a lake 

with the majority of the remaining campgrounds being alongside a river. A total of 22 

campgrounds had at least one advisory between 2013 and 2022. Figure 2 shows the timing of the 

advisories for all campgrounds considered in the study over the ten years. Campgrounds without 

a water quality advisory in the studied period are omitted in the figure. The figure illustrates the 

variation in water quality across campgrounds and years that is used to identify the effect of water 

quality advisories on camping trips. The number of campgrounds with advisories varied across the 

years between 5 and 13, and the total number of days with advisories per year ranged from 89 to 

533, as shown in Table 1. 

2.3. Travel costs calculation 

To calculate travel costs, we use the information on out of pocket travel expenses, the opportunity 

cost of time, and camping costs. Driving distance and time are measured from the centroid of each 

person’s postal code to all available campgrounds using OpenStreetMap data. Driving costs are 

obtained from the Canadian Automobile Association’s driving cost calculator. We use the average 

marginal costs of driving a compact car, sport utility vehicle, and pickup truck. The driving cost 

per km includes fuel use and maintenance costs, but excludes fixed costs such as age-related 

depreciation, registration costs, and insurance costs (Lupi et al., 2020). For fuel costs, we use 

average retail gas prices in Alberta between May and September for each year from Statistics 

Canada. Monetary driving costs are relatively flat over the ten years ranging from $0.22 to $0.32 

per kilometer in nominal dollars.  

For the value of travel time, we use postal code level median annual household income 

from the 2016 Canadian census, as year-specific income levels are unavailable for the ten-year 

study period. The annual income is converted to approximate the hourly wage using 2080 hours 

worked in a year. We use 2/3 of the imputed wage rate as the value of time. Based on previous 

modeling work, using a subset of this data, this assumption is observed to fit the data better than 

the more conventional 1/3 of the wage rate (Lloyd-Smith and Becker, 2020). We conduct 
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a sensitivity analysis using 1/3 of the wage rate for the value of time and these results are presented 

in Appendix C. 

The nightly camping fees for each campground and year are provided by Alberta 

Environment and Parks and range from $18 to $54 during the study period. Moreover, the 

recreationists are charged $12 when making a reservation regardless of the reservation length and 

the party size. A typical camping reservation is for two to three people for a total of two nights. 

The total camping cost defined for individual i recreating at campground j in year y is represented 

in equation (1) and includes the campground fee per night in a given year (𝐶𝐶𝐶𝐶!"), the number of 

nights in the reservation (𝑁𝑁𝑁𝑁#!"), and the flat reservation fee of $12 (R): 

𝐶𝐶𝐶𝐶#!" = 𝐶𝐶𝐶𝐶!" ∗ 𝑁𝑁𝑁𝑁#!" + 𝑅𝑅. 	 (1) 

Equation (2) shows the overall structure of the return-trip travel cost calculation for person i to 

travel to campground j during year y: 

𝑇𝑇𝐶𝐶#!" = 2 ∗ ,-$$!"∗$&#'&&!"#
(&!"

. + 	 /)
*
∗ +,-!
)./.

	0 ∗ 𝐷𝐷𝐷𝐷#!3, 
(2) 

where 𝐷𝐷𝐷𝐷#! 	is the distance in kilometers from individual i’s postal code centroid to campground 

j,	𝐷𝐷𝐶𝐶" is the per kilometer driving cost for each year, 𝐶𝐶𝐶𝐶#!" is the camping cost, 𝑁𝑁𝐶𝐶#! is the number 

of people included in the reservation, )
*
 is the opportunity of time cost ratio, 𝐼𝐼𝐼𝐼𝐼𝐼# is the median 

annual household income in individual i’s postal code area, 2080 is the average number of worked 

hours in a year, and 𝐷𝐷𝐷𝐷#! is the one-way traveling time in hours. All travel costs have been adjusted 

for inflation to 2020 Canadian dollars. 

In the summary statistics in Table 1, we report average travel costs for recreationists for 

the campgrounds actually selected by them and for all provincial campgrounds. As expected, 

people choose lower cost camping trips, among the options available for camping in Alberta. 

2.4. Methods for assessing temporal stability across years 

We model camping demand using a random utility framework (McFadden 1974; Parsons 2017). 

Specifically, we use a multinomial logit site choice model where the utility that person i receives 

from visiting campground j at year y and date d as: 
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𝑈𝑈#!"0 = 𝛽𝛽"12&ASC34 + 𝛽𝛽"5&𝑇𝑇𝐶𝐶#!" + 𝛽𝛽"
67𝑊𝑊𝑊𝑊!"0 + 𝜀𝜀#!"0 ,   (3) 

where an alternative specific constant (ASC34) is equal to one for campground j and zero otherwise; 

𝑇𝑇𝐶𝐶#!" is the year-specific return-trip travel costs as defined in (2) and divided by 100 to help the 

convergence; 𝑊𝑊𝑊𝑊!"0 is a dummy variable equal to one if a water quality advisory is in place at 

campground j during year y and date d; and 𝜀𝜀#!"0 	is the error term.  The parameters to be estimated 

are 𝛽𝛽"12& , 𝛽𝛽"5& , and 𝛽𝛽"
67. Robust standard errors	are clustered at the individual level to account for 

individuals that take multiple trips in a year. 

The site choice model used in the analysis here does not consider the participation decision 

of whether to go camping or stay at home and hence, in this sense, it is not a repeated discrete 

choice model that is often used to model seasonal recreation demand (Lupi et al. 2020). 

Preliminary results using a nested logit repeated discrete choice model on a subset of the data 

showed that the participation and site choice decisions are independent. This finding is perhaps 

not surprising as the vast majority of people take only a single camping trip each year (as seen 

from the comparison of the numbers of individuals and trips in the data summarized in Table 1). 

Adopting a repeated discrete choice modeling framework also raises the issue of how to divide the 

camping season into choice occasions. For the above mentioned preliminary analysis, we divided 

the camping season into seventeen ‘weeks’ from Wednesday to Tuesday, but we recognize the 

arbitrary nature of the choice occasion specification. Taking into account these considerations, we 

opt for the site choice model as a better-grounded modeling framework for our investigation. 

We first estimate equation (3) separately for each of the 2013 to 2022 data years. We then calculate 

MWTP for removing one water quality advisory during a trip in year y, where 𝑦𝑦 =

{2013,… , 2022}, using the negative of the ratio of the model coefficients as following: 

𝑀𝑀𝑊𝑊𝑇𝑇𝑀𝑀" = −𝛽𝛽"
67/𝛽𝛽"5& .   (4) 

To assess the temporal stability of the MWTP estimates across the years, we compare the 

MWTP from each year to the MWTP estimates from every other year, which yields 90 pairwise 

tests (45 unique comparisons). We use a two-sided t-test for assessing statistical differences in 

these comparisons. 
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2.5. Methods for assessing temporal stability within a year 

To assess temporal stability of welfare estimates within a year, we estimate a multi-year site choice 

model with the data from all study years pooled and include water quality advisory variables to 

capture time periods leading up to and since an advisory is issued. We bin our daily data into weeks 

which are defined from Wednesday to Tuesday to take into account long weekends. This setup is 

similar to an event study design where the treatment is the issuance of an advisory and we consider 

both the pre- and post-treatment periods (Marcus and Santa’Anna 2021).  

We estimate the following specification for modeling the utility that person i receives from 

visiting campground j at year y and date (here, week) d: 

𝑈𝑈#!"0 = 𝛽𝛽"12&ASC34 + 𝛽𝛽"5&𝑇𝑇𝐶𝐶#!" + ∑895$
:) 𝛽𝛽8

67𝑊𝑊𝑊𝑊!"0 + ∑89.
5% 𝛽𝛽8

67𝑊𝑊𝑊𝑊!"0 + 𝛽𝛽"(;𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊!" +

𝜀𝜀#!"0 	,	(5) 

where 𝐴𝐴𝐴𝐴𝐶𝐶!", 𝑇𝑇𝐶𝐶#!, and 𝑊𝑊𝑊𝑊!"0 are defined as in (3), but travel costs are assumed not to be year-

specific; 𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊!" is equal to one for campgrounds that did not have an advisory in a specific year 

and zero otherwise; 𝑇𝑇. and 𝑇𝑇< are the lowest and highest number of weekly leads and lags, 

respectively, surrounding the treatment period (that is, the water quality advisory issuance date); 

𝜀𝜀#!"0 	represents the error term; and 𝛽𝛽5&  and 𝛽𝛽8
67 are the main parameters of interest to be 

estimated. We set 𝑇𝑇. to be equal to -5 (five weeks or more than 28 days prior to a water quality 

advisory issuance date) and 𝑇𝑇< to be equal to 5 (five weeks or more than 27 days after a water 

quality advisory issuance date). The selection of the numbers of weeks is guided by insights from 

preliminary analysis and intention to have sufficient numbers of observations per parameter 

estimate. We further set the reference period to be one week before an advisory and fix the 

parameter equal to 0 (i.e., 𝛽𝛽:<
67 = 0), such that the parameters of interest (i.e., 𝛽𝛽8

67for 𝑘𝑘 ≠ −1) 

can be interpreted relative to the week before the advisory. The comparison of the parameter 

estimates of these variables helps us assess the within-year temporal stability.  

 We consider two different model specifications of equation (5) due to some computational 

considerations. First, we specify a model with year-specific ASC variables	(𝐴𝐴𝐴𝐴𝐶𝐶!") for each 

campground to capture time varying changes in unobserved campground quality that might be 

correlated with water quality. This model specification includes 581 parameters, including 570 
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ASCs. We also estimate a model using a single ASC parameter for each site (𝐴𝐴𝐴𝐴𝐶𝐶!) and 68 

parameters overall. 

2.6. Methods for assessing predictability 

To study predictability of recreation demand welfare estimates, we use the same modeling setup 

based on site choice models as the one applied for assessing across-years stability. However, here, 

we employ subsets of the ten-year database selected based on years of data. Specifically, for 

deriving the predicted welfare measures, we consider all unique multi- and single-year subsets of 

the database that allow for the prediction of a future welfare estimate within the study timeframe 

from 2013 through 2022. Separate models are estimated on each data subset, and the parameters 

estimated from each model are used to calculate MWTP for removing one water quality advisory 

and to compare this (predicted) welfare measure to the MWTP estimates from the left-out (i.e., not 

included in the subset) future single-year estimates. In this comparison, the latter MWTP values 

derived from the single-year models are treated as the actual values, which are compared to the 

predicted values obtained from the models estimated on subsets of past-years data. This helps us 

assess whether and how accurately we can predict welfare estimates in a given year based on 

empirical data from other years. The analysis is based on 499 multi-year site choice models and 

the ten year-specific models introduced in Section 2.4. We evaluate the accuracy of the predictions 

based on the absolute difference between the predicted MWTP based on the past-years models and 

the actual MWTP derived from models using that year of data.  

The assessment of the welfare estimate predictability concerns two aspects. First, we assess 

the predictability of MWTP by the number of years of data included in the models used for deriving 

the predicted values. We hypothesize that including more years of data in the prediction models 

improves the prediction accuracy, and we quantitatively evaluate this hypothesis. Second, we 

assess the predictability of MWTP by the time delay between the data used for making the value 

predictions and the actual year for which the prediction is made. For example, if the 2016 and 2018 

years of data are used to predict the 2020-year MWTP, then the average time lag in years is equal 

to |(2020-2016)+(2020-2018)|/2 = 3. We hypothesize that the accuracy of the predicted values 

improves when time lags decrease, and we also quantitatively evaluate this hypothesis.  
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3. Results 

The description of the results is organized according to the three areas of our study. First, we 

examine the temporal stability of the welfare estimates across years. Second, we investigate the 

temporal stability of the welfare estimates within a year. And third, we study changes in the 

accuracy of welfare predictions when using more versus fewer years of data in the analysis and 

when using adjacent versus distant years of data for making the predictions. 

3.1 Across-year temporal stability 

Table 3 presents the results of the multinomial logit site choice model estimated separately for 

each of the ten years considered in the analysis following the model specification defined in 

equation (3). The table focuses on two main parameters of interest: one indicating if a water quality 

advisory for a lake next to a campground is in place during the visit and the other capturing the 

travel cost (in hundreds). The models also include ASCs for all 58 studied campgrounds to control 

for unobserved campground characteristics, and these ASC estimates are reported in Appendix B. 

For all models, the travel cost parameter is negative and precisely estimated as expected given the 

large number of observations. The parameter for the water quality advisory is also negative in all 

models and statistically different from zero for all years except the 2015-year model. Due to 

potential scale differences, the parameter estimates cannot be directly compared across the year-

specific models so we focus the discussion on welfare measures.  

A MWTP value for lifting a water quality advisory can be calculated as a ratio of the 

parameter estimate for water quality advisory and the negative of the parameter estimate for the 

travel cost (following equation (4)). The MTWP values derived from the year-specific models are 

presented graphically in Figure 3, which helps us illustrate the variation of the estimates across the 

study period. 

The marginal willingness-to-pay values to lift a water quality advisory range from $3 to 

$26 per trip, depending on the year considered. There does not appear to be a clear temporal trend 

and the lowest value of $3 is observed for the year 2015 and the highest value of $26 is estimated 

for the year 2014. Six of these year-specific MWTP estimates are between $10 and $20 while the 

estimate for the year 2019 is $6 and for the year 2022, it is $22.  
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We formally test for the statistical significance of the estimated differences in MWTP across the 

different years using a t-test of difference in means. In Figure 4, we illustrate the differences 

between the value estimates from each year to every other year, along with respective confidence 

intervals. The differences are ranked from smallest to largest in the figure. Of the 45 unique 

pairwise comparisons, 23 (51%) suggest statistically indistinguishable values. These results are 

robust to the alternative value of time assumption and inclusion of additional sites.8 As expected 

from the results reported in Figure 3, the estimates for the years 2014 and 2015 are most 

substantially different from the estimates for the other years, which can be easily observed in 

Figure 5. For the years 2014 and 2015, the value estimates are statistically significantly different 

in 15 out of 18 (83%) of year-to-year comparisons). The value estimates from the remaining years 

are more similar and statistically different from each other in only 7 out of 27 (26%) year-to-year 

comparisons.  

We do not observe any systematic pattern that adjacent years generate more similar values 

than non-adjacent years. Although it could be true, for example, for the year 2018, where the value 

estimate is not statistically different from the adjacent values and significantly differs from the 

estimates for 2014 and 2022, no similar relationship holds for other-year value estimates. For 

instance, the estimate for 2019 is statistically indistinguishable from the one for 2018, but is 

different from the one for 2020. 

The data covers the time period during the global pandemic of Covid-19, which was related 

to a substantial change in lives of many people and thus could importantly affect recreation welfare 

estimates. The years 2020, 2021, and 2022 can be categorized as the beginning, middle, and end 

of the pandemic as by spring of 2022 most of Canada’s pandemic restriction policies had been 

lifted using the Oxford Covid-19 Government Response Tracker Stringency Index (Hale 2021). 

We do not observe, however, that these years are related to any different results than other years 

in terms of the value estimates and the temporal stability comparisons. We thus conclude that the 

 
8 Figure C2 in Appendix C presents the comparisons of models that differ from those discussed here only in that 1/3 
of the wage rate is used for the value of time, and the percentage of statistically indistinguishable values is also 51%. 
Figure D2 in Appendix D presents the comparisons of models that differ from those discussed here only in that the 
data for all available sites each year is used in the estimation, and the percentage of statistically indistinguishable 
values is the same at 51% 
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pandemic has not had a significant impact on the recreational demand welfare estimates of lake 

water quality in this case study. 

3.2 Within-year temporal stability 

Figure 6 reports the results from the event study specification to assess how MWTP varies in the 

weeks leading up to and after the issuance of the water quality advisory. Note that the parameter 

for the week directly before the advisory issuance date is fixed to be zero such that all MWTP 

estimates can be interpreted relative to this period. We present the results using a model with year-

specific ASCs (solid line) and a single ASC for each campground (dashed line), and both models 

include all ten years of data. 

The graphical analysis indicates that before an advisory is issued, the value of lifting an 

advisory is not statistically different from zero. This finding is in line with expectations and gives 

more confidence to the identification strategy used as we would not expect people to be willing to 

pay for lifting an advisory before it occurred. Once an advisory is issued, the MWTP is estimated 

to be $6 for the initial week (days 0 to 6) and then ranges from $13 to $19 for the following weeks. 

The lower value in the week of issuing an advisory might reflect that it takes time for people to 

learn about the advisory and adjust travel choices. The MWTP values after the initial week of 

issuing the advisory are not statistically different from each other, providing evidence for temporal 

stability. We note that in our data, once an advisory is issued for a given lake, it typically stays in 

effect till the end of the season (see Figure 2), which justifies the expectation and the finding of 

the within-year MWTP stability. In few cases in the studied period, the advisory was lifted before 

the end of the season. Related research shows that it does not necessarily affect the visitation 

behavior and, thus, may have limited effect on the welfare estimates, as people tend to avoid sites 

with earlier environmental warnings even after the event causing the warning has ended 

(Boudreaux et al. 2023). Based on our model estimates, we conclude that the within-year welfare 

estimates are temporally stable after the initial adjustment period. 

3.3 Predictability of welfare estimates across years 

In this section, we examine how predictable future welfare estimates are using existing data. We 

consider a total of 499 unique MWTP predictions. Each of these values serve as predicted values 

for the future years that are not included in estimation of a given model. At the same time, each of 
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the single-year models provides a MWTP estimate that we consider as the actual MWTP for the 

given year of data on which the model is estimated. In that sense, the single-year models provide 

criterion values for assessing the accuracy of the predicted values. To measure the accuracy of the 

predictions, we use an intuitive measure of an absolute difference between the actual value and the 

predicted value. We evaluate the predictability of the MWTP values along two dimensions: the 

number of years of data used for forming the predictions and the lag between the data used for 

making the prediction and the year for which the prediction is made. 

Figure 7 illustrates the results for the first dimension, namely it shows the magnitude of the 

accuracy improvement in the predictions upon increasing the number of years of data for forming 

the predictions. The figure presents only predictions with eight or less years of data as there is only 

one prediction possible using nine years of data (that is, estimating a model on nine years of data, 

only one year is out for which the value prediction can be made). The left panel shows the 

distribution of absolute differences in predicted versus actual MWTP values using different 

numbers of years of data for the predictions. The shaded area represents the interquartile ranges 

and the solid line is the average absolute difference. We see that the shaded area shrinks as the 

number of years of data increases suggesting that the range of differences in MWTP predictions is 

becoming smaller. The average absolute differences in MWTP also decrease as more years of data 

are taken into account for deriving predictions. 

The right panel of Figure 7 presents the percentage reductions in absolute MWTP 

differences as one more year of data is added to the model used for making the predictions. Moving 

from making the predictions based on one year of data to two years of data, the accuracy of the 

prediction increases by 22%. Further moving from two years of data to three years of data improves 

the accuracy by around 9%. A similar improvement in the prediction accuracy is observed for 

considering four versus three years of data for forming the predictions and for considering five 

versus four years of data. Subsequent extensions of the number of years included in the prediction 

model improve the prediction accuracy to an even smaller degree. These results reveal that the 

largest benefit in terms of improving the prediction accuracy is obtained when extending the range 

of considered data for making the predictions from one to two years. Further extensions of the 

number of the considered years contribute to a much smaller degree to the prediction accuracy. 
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Figure 8 illustrates the results to the question of whether the time delay between the data used for 

deriving the predictions and the prediction year affects the prediction accuracy. The figure is a 

scatter plot representing the average absolute difference in years between the prediction year and 

the years of data used for making the predictions, and the absolute difference between the actual 

and predicted values. A solid line is added to the graph to illustrate the relationship. However, the 

line is nearly horizontal, as well as the scatter plot does not suggest any relationship. These findings 

show that the time delay between the prediction year and the years of data used for making the 

predictions does not affect the accuracy of the prediction in the studied dataset. 

4. Conclusion 

This study uses a large-scale administrative dataset on recreation behavior to shed new insights 

into the temporal stability and predictability of welfare estimates. Our main findings reveal that: 

(i) year-specific welfare estimates of lake water quality are stable across years in around half of 

the comparisons; (ii) the welfare estimates are temporally stable within a year; (iii) the accuracy 

of predicting future welfare estimates can be improved by using two years of data instead of one, 

but additional years of data bring only modest accuracy improvements; and (iv) the time delay 

between the prediction year and the years of data used for making the predictions do not affect the 

accuracy of predicted welfare estimates of lake water quality. The finding that across-years welfare 

estimates are statistically equal in about 50% of the comparisons point to the importance of having 

a large span of data for drawing conclusions on temporal stability of welfare estimates. For 

instance, if the analysis was conducted on only two years of data, the temporal stability assessment 

conclusion could go either way. The range of ten years included in this analysis gives a broader 

and more thorough picture of temporal stability of recreation demand welfare estimates.  

Although a clear explanation of differences across years in the welfare estimates would 

bring an important insight to the scientific discussion on stability of preferences, visitation choices, 

and resulting welfare measures, we argue that a lack of any clear pattern in our year-specific 

findings may be a result of time dependent measurement noise. We have explored various possible 

explanations for the welfare estimate differences across years, but have not found the key drivers 

We have looked at correlations between the welfare estimates with the number of advisories in 

a given year (i.e., year-specific intensity of the water quality problem) and to the number of trips 

in a given year (i.e., demand for campground trips), however, this analysis does not reveal any 
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correlations. We have further considered whether environmental conditions such as weather or 

economic conditions in the province of Alberta could explain the observed differences, however, 

we do not find significant variation in the environmental and economic measures (e.g., change in 

oil prices) that correlates with the welfare estimates differences. However, the lack of possible 

systematic relationships with other factors may be a signal of the differences being driven by time 

dependent measurement noise, where the noise can encompass any unobserved factors, such as 

some changes in the water quality awareness or unobservable variations in conditions in Alberta. 

This explanation reinforces the NOAA’s panel recommendations for stated preference studies to 

average welfare estimates taken from data collected at different points in time to reduce time 

dependent measurement noise.9 Future research should focus on identifying the factors that cause, 

or at least correlate with, temporal stability of recreation demand welfare estimates to improve 

predictions going forward. A broader research perspective would be to identify the conditions for 

preference stability over time and to develop measures of how much preferences change due to 

various factors. 

Our finding that using adjacent years do not necessarily generate more accurate predictions 

of welfare is somewhat in contrast with the suggestions from the benefit transfer literature that 

value transfers generally become less reliable over time (Johnston et al. 2018). Nevertheless, this 

finding mirrors our conclusions from other parts of the analysis including lack of temporal trends 

in the welfare estimates and evidence of lack of significant differences in the welfare effects in 

50% of the comparisons. Although this single set of data does not allow us to draw broader 

conclusions about the reasons underlying the divergence between our finding and the benefit 

transfer literature, we hypothesize that it could be linked to the specific nature of this type of data, 

based on administrative campground records, while the majority of empirical insights in the benefit 

transfer literature is derived from survey-based methods. Again, this provides a valuable avenue 

for future studies whether the degree of similarity of welfare measures from adjacent measures 

could be tied to the type of data used for deriving the welfare estimates.  

We conclude by noting that while there are benefits of using administrative reservation 

data for recreation demand modeling more broadly, and temporal stability evaluations in 

 
9 The full text of the recommendation is “Time dependent measurement noise should be reduced by averaging across 
independently drawn samples taken at different points in time. A clear and substantial time trend in the responses 
would cast doubt on the ‘reliability’ of the finding” (Arrow et al. 1993, p. 33). 
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particular, there are also some potential issues. First, we do not have information on when 

a reservation is made so we cannot control for potential time lags between the reservation and visit 

date (Gellman et al. 2023). Water quality can change between the reservation and travel dates and 

people may stick with their original chosen campground due to commonly observed default effects 

in many human choices (Jachimowicz et al. 2019). A second issue is that popular campgrounds 

are often full on summer weekends and are not available to others making last minute camping 

plans. Since we do not know when people made their reservations, we cannot control for the 

capacity constraints and address issues of latent demand as we assume that all sites are available 

to everyone. Taken together, these two issues suggest that camping reservations may not be as 

responsive to changing water quality conditions as the underlying demand. Consequently, our 

empirical approach likely captures a lower-bound demand response of water advisories, and thus 

a lower-bound welfare estimate, of lifting water advisories. A third issue is the role of cancellations 

and ‘no-shows’. People who cancel a reservation are not included in the database, but we also do 

not know how many people canceled their reservations. Given that the reservations are refundable 

except for the reservation fee, we expect that most people who do not expect to actually show up 

do cancel the trip. People might also not show up for their reservation and these no-shows will still 

appear in the database. To the extent that people do not show up for their reservation and this 

change in plans is driven by a water quality advisory, the estimated results provide a lower bound 

of the willingness-to-pay value for removing an advisory.  
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Tables 

 

Table 1: Summary statistics for recreation and water quality data by year 

    
 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
Number of individuals 55,947 60,063 63,831 61,953 64,760 63,074 62,495 78,275 77,760 66,973 
Number of trips 80,240 87,648 93,875 89,612 93,584 91,067 91,140 127,812 123,369 99,487 
Travel costs for chosen sites $256 $255 $251 $253 $256 $260 $255 $254 $250 $228 
Travel costs for all sites $512 $509 $495 $492 $494 $500 $488 $458 $451 $437 
Number of campgrounds 
with water quality advisories 7 8 8 11 11 5 7 13 12 12 

Number of days with water 
quality advisories (for all 
campgrounds jointly) 

89 305 302 517 411 201 239 533 524 399 
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Table 2: Multinomial logit site choice model parameter estimates for each year 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Water quality 
advisory 

-0.104 -0.213 -0.027 -0.091 -0.128 -0.082 -0.049 -0.148 -0.129 -0.200 

(0.025) (0.021) (0.022) (0.019) (0.019) (0.033) (0.025) (0.015) (0.018) (0.023) 

Travel cost 
($00s) 

-0.797 -0.822 -0.851 -0.815 -0.801 -0.784 -0.796 -0.763 -0.784 -0.909 

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) 

Campground 
ASCs Included Included Included Included Included Included Included Included Included Included 

Log-
likelihood 
value at 

convergence 

-244,860 -267,640 -287,693 -278,507 -292,015 -284,236 -285,233 -420,456 -406,363 -314,673 

Number of 
individuals 

55,947 60,063 63,831 61,953 64,760 63,074 62,495 78,275 77,760 66,973 

Number of 
observations 

80,240 87,648 93,875 89,612 93,584 91,067 91,140 127,812 123,369 99,487 

Notes: This table displays results from ten separate multinomial logit site choice models of recreational demand for the years 2013-
2022 for a balanced panel of 58 campgrounds. All models include travel costs (in $00s), a zero-one-coded variable indicating if a 
water quality advisory was present at the campground for a specific date, and alternative specific constants (ASCs) for each 
campground to control for unobserved campground characteristics. Robust standard errors are clustered at the individual level and 
reported in parentheses. 
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Figures 

Figure 1: Example of a water quality advisory posting 

 
 Source: File photo from CTV News. 
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Figure 2: Water quality advisory timing by campground and year 

 
Notes: The figure presents information only for the studied period between the Victoria Day and Labor Day long 
weekends in Canada (the third Monday in May and the first Monday in September). Campgrounds without a water 
quality advisory in the studied period are omitted in the figure.  
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Figure 3: Marginal willingness to pay (MWTP) per trip for removing one water quality advisory 

 
Notes: The figure reports the average MWTP per trip to reduce one water quality advisory at a campground for each 
of the ten year-specific multinomial logit site choice models. The dots represent average estimates and the capped 
vertical lines represent 95% confidence intervals of the MWTP values. 
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Figure 4: Difference in marginal willingness to pay (MWTP) to reduce one water quality advisory 
across years 

 
Notes: The figure shows pairwise MWTP differences in a given year to each of the other “Test Years” and ranks the 
differences from lowest to highest. The dots represent average estimates and the capped vertical lines represent 95% 
confidence intervals. The MWTP estimates come from the ten year-specific multinomial logit site choice models.  
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Figure 5: Comparison of marginal willingness to pay (MWTP) to reduce one water quality 
advisory across years 

 
Notes: The figure shows pairwise MWTP differences in a given year to each of the other ‘Test Years’. The dots 
represent average estimates and the capped vertical lines represent 95% confidence intervals. The MWTP estimates 
come from the ten year-specific multinomial logit site choice models.  
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Figure 6: Marginal willingness to pay (MWTP) to reduce one water quality advisory by week to 
and since the water quality advisory issuance date 

 
Notes: The MWTP estimates come from two multinomial logit site choice models with all years of data pooled. The 
model with year-specific ASCs is represented by the triangle points and solid lines, and the model with one set of 
ASCs for all years is represented by the circle points and dashed lines. The triangle/circle points indicate average 
estimates and the capped vertical lines are 95% confidence intervals. The reference level for the MWTP estimates is 
the MWTP value in the week (i.e. days -7 to -1) preceding the issuance of a water quality advisory. 
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Figure 7: Changes in the accuracy of predictions of marginal willingness to pay (MWTP) to reduce 
one water quality advisory upon using different numbers of years of data 

 
Notes: The figure illustrates absolute differences between the actual and predicted MWTP values, where the latter are 
calculated based on 499 multi-year site choice models and 10 year-specific models. We omit the comparison of 9 
years of data as that model is only used in a single prediction. In the left panel, the solid black lines represent the 
averages of the absolute differences across all MWTP comparisons for each number of years of data used for making 
predictions; the shaded area represents the interquartile ranges.  
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Figure 8: Changes in the accuracy of predictions of marginal willingness to pay (MWTP) to reduce 
one water quality advisory upon using years of data varying in the time distance to the year for 
which the value is predicted 
 

 
 
Notes: The figure shows (i) the average absolute difference in years between the years of data used for making MWTP 
predictions and the prediction year on the x-axis, and (ii) the absolute difference between the predicted and actual 
MWTP values on the y-axis. For example, if the 2016 and 2018 years of data are used to predict the 2020 year MWTP, 
then the average difference in years is equal to |(2020-2016)+(2020-2018)|/2 = 3. The blue solid line plots the linear 
regression parameters of the difference in MWTP on the years difference and the shaded area is the 95% confidence 
interval. 
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Appendix A. Summary of the existing empirical recreation demand studies assessing 
temporal stability of welfare estimates 
 

 Trips to … Years 
studied 

Number of 
individuals/hous
eholds/zones per 
year 

Number of 
trips per 
year 

Data source 

Cooper and 
Loomis 
(1990) 

Feather River in 
California, US 1981-1985 

zonal; 342 
observations (57 
counties times 6 
destination sites) 

6,478-
13,407 Survey 

Hellerstein 
(1993) 

Boundary Waters 
Canoe Area in 
Minnesota, US 

1980-1986 zonal; 1,396 
counties 

Not 
reported Administrative 

Zandersen et 
al. (2007a, 
2007b) 

Forests in 
selected districts 
in Denmark 

1977, 1997 6,580-6,987 Not 
reported Survey 

Yi and 
Herriges 
(2017) 

Big Creek Lake 
and Saylorville 
Lake in Iowa, US 

2004-2005 2,150 14,534-
15,179a Survey 

Rolfe and 
Dyack 
(2019) 

Estuarine region 
of the Coorong, 
Australia 

2006, 2013 778-783 2,349-
3,306b Survey 

Ji et al. 
(2020)  

Lakes in Iowa, 
US 

2002-2005, 
2009 977 5,862c Survey 

Current 
study 

Campgrounds in 
Alberta, Canada 2013-2022 55,947-78,275 80,240-

127,812 Administrative 

Notes: a  These numbers are calculated based on information on the average numbers of trips reported in Table 1 in Yi 
and Herriges (2017).  b These numbers are calculated based on information presented in Table 2 of Rolfe and Dyack 
(2019). Specifically, 783 people in 2006 took an average of 3 trips for 2,349 total and 778 people in 2013 took 4.25 
trips per year for 3,306 total. c This number is calculated based on information in Ji et al. (2020, p. 665) that the studied 
households took on average about 6 trips per year. 
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Appendix B. Complete set of parameter estimates for each of the year-specific multinomial 
logit site choice models 
 
 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
Aspen Beach ×  Brewer's 0 (fixed) 
Aspen Beach ×  Lakeview -0.051 -0.043 -0.012 -0.043 -0.082 -0.106 -0.048 -0.097 -0.099 -0.169 
 (0.026) (0.026) (0.025) (0.026) (0.025) (0.026) (0.026) (0.026) (0.024) (0.026) 

Beauvais Lake -0.520 -0.502 -0.410 -0.428 -0.545 -0.455 -0.307 0.285 0.235 0.339 

 (0.048) (0.048) (0.044) (0.045) (0.044) (0.044) (0.044) (0.032) (0.031) (0.034) 

Beaver Lake -0.540 -0.670 -0.665 -0.902 -0.693 -0.703 -0.652 -0.481 -0.409 -0.673 

 (0.045) (0.044) (0.044) (0.047) (0.043) (0.045) (0.046) (0.039) (0.038) (0.045) 
Boulton Creek -0.272 0.032 0.060 0.076 0.087 0.147 0.406 0.472 0.287 0.392 

 (0.035) (0.031) (0.030) (0.031) (0.028) (0.029) (0.028) (0.026) (0.026) (0.027) 

Bow Valley -0.019 0.075 0.032 0.083 -0.036 0.067 0.162 0.178 -0.002 0.047 

 (0.029) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.025) (0.025) (0.027) 

Brazeau Res. West Canal -2.455 -2.842 -2.394 -2.359 -2.383 -2.444 -2.420 -2.074 -1.964 -2.041 

 (0.082) (0.094) (0.076) (0.077) (0.075) (0.078) (0.076) (0.063) (0.061) (0.068) 

Brazeau Reservoir -1.673 -1.527 -1.550 -1.495 -1.577 -1.464 -1.494 -0.995 -1.025 -1.106 

 (0.056) (0.053) (0.054) (0.050) (0.051) (0.051) (0.052) (0.041) (0.040) (0.054) 

Chain Lakes -1.509 -1.472 -1.424 -1.384 -1.431 -1.356 -1.212 -0.536 -0.577 -0.703 

 (0.048) (0.045) (0.044) (0.044) (0.044) (0.044) (0.045) (0.032) (0.030) (0.035) 
Cold Lake 0.182 0.369 0.359 0.393 0.378 0.367 0.412 0.570 0.688 0.629 
 (0.042) (0.038) (0.037) (0.037) (0.036) (0.038) (0.040) (0.033) (0.032) (0.036) 

Crimson Lake ×  Twin Lakes -3.033 -2.904 -2.893 -2.666 -2.485 -2.574 -5.495 -1.428 -1.418 -1.402 
 (0.095) (0.092) (0.096) (0.086) (0.071) (0.076) (0.317) (0.043) (0.041) (0.047) 

Cross Lake -0.165 -0.209 -0.167 -0.174 -0.313 -0.309 -0.278 -0.258 -0.243 -0.373 

 (0.034) (0.034) (0.032) (0.034) (0.033) (0.036) (0.034) (0.032) (0.033) (0.039) 

Cypress Hills ×  Battle Creek -2.024 -1.863 -1.909 -1.927 -2.155 -2.023 -1.909 -1.078 -1.250 -1.619 

 (0.137) (0.121) (0.127) (0.129) (0.133) (0.137) (0.131) (0.067) (0.077) (0.102) 
Cypress Hills ×  Beaver Creek -0.626 -0.895 -0.811 -0.698 -0.831 -0.765 -0.631 -0.857 -0.874 -0.752 

 (0.081) (0.091) (0.073) (0.065) (0.073) (0.070) (0.069) (0.071) (0.066) (0.070) 
Cypress Hills ×  Elkwater 0.456 0.566 0.624 0.602 0.467 0.612 0.611 0.402 0.565 0.594 
 (0.040) (0.039) (0.038) (0.038) (0.038) (0.039) (0.040) (0.038) (0.035) (0.039) 

Cypress Hills ×  Ferguson Hill -0.548 -0.496 -0.595 -0.447 -0.548 -0.379 -0.405 -0.104 -0.249 -0.594 

 (0.056) (0.054) (0.054) (0.052) (0.050) (0.058) (0.052) (0.040) (0.042) (0.055) 
Cypress Hills ×  Firerock 0.666 0.721 0.853 0.815 0.656 0.747 0.789 0.954 0.874 0.864 
 (0.036) (0.035) (0.035) (0.035) (0.035) (0.035) (0.036) (0.031) (0.030) (0.034) 

Cypress Hills ×  Lakeview -1.342 -1.265 -1.171 -1.227 -1.218 -0.975 -0.993 -1.186 -1.195 -1.017 

 (0.085) (0.083) (0.079) (0.083) (0.082) (0.071) (0.076) (0.075) (0.072) (0.079) 

Cypress Hills ×  Lodgepole -0.608 -0.609 -0.765 -0.538 -0.702 -0.527 -0.563 -0.121 -0.366 -0.713 
 (0.058) (0.058) (0.060) (0.053) (0.055) (0.063) (0.057) (0.041) (0.045) (0.059) 

Cypress Hills ×  Old Baldy -0.793 -0.790 -0.678 -0.730 -0.805 -0.662 -0.492 -0.916 -0.896 -0.698 

 (0.068) (0.073) (0.066) (0.071) (0.072) (0.065) (0.064) (0.067) (0.063) (0.067) 

Cypress Hills ×  Reesor Lake -0.678 -0.702 -0.571 -0.563 -0.714 -0.492 -0.506 -0.109 -0.265 -0.319 

 (0.064) (0.064) (0.060) (0.061) (0.063) (0.058) (0.063) (0.046) (0.047) (0.056) 
Cypress Hills ×  Spruce Coulee -1.980 -1.713 -1.686 -1.637 -1.805 -1.618 -1.450 -1.324 -1.466 -1.539 

 (0.100) (0.092) (0.093) (0.089) (0.090) (0.086) (0.085) (0.070) (0.075) (0.087) 

Dillberry Lake -1.161 -1.034 -1.022 -0.921 -0.976 -0.927 -0.850 -0.334 -0.302 -0.517 
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 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
 (0.070) (0.065) (0.062) (0.059) (0.059) (0.057) (0.059) (0.044) (0.042) (0.052) 
Dinosaur 0.441 0.495 0.615 0.638 0.496 0.537 0.674 0.703 0.573 0.483 
 (0.032) (0.031) (0.029) (0.029) (0.029) (0.030) (0.029) (0.027) (0.027) (0.030) 

Dunvegan -2.196 -1.958 -2.096 -1.984 -1.887 -1.958 -2.009 -0.143 -0.102 -0.468 

 (0.096) (0.088) (0.090) (0.095) (0.094) (0.095) (0.107) (0.046) (0.046) (0.054) 
Elkwood -0.926 -0.003 0.085 0.088 0.016 0.070 0.161 0.136 -0.029 0.124 

 (0.044) (0.032) (0.031) (0.030) (0.030) (0.030) (0.030) (0.028) (0.027) (0.030) 

Etherington Creek -1.709 -1.374 -1.239 -1.138 -1.270 -1.034 -1.043 -0.768 -1.033 -1.040 

 (0.116) (0.058) (0.049) (0.049) (0.046) (0.044) (0.047) (0.036) (0.038) (0.044) 

Fish Lake -0.746 -0.658 -0.641 -0.622 -0.664 -0.505 -0.414 0.525 0.450 0.474 

 (0.051) (0.050) (0.049) (0.048) (0.046) (0.046) (0.049) (0.029) (0.029) (0.031) 

Franchere Bay -0.536 -0.544 -0.673 -0.795 -0.786 -0.835 -0.880 -0.358 -0.454 -1.117 
 (0.042) (0.043) (0.043) (0.048) (0.047) (0.050) (0.049) (0.040) (0.039) (0.055) 

Garner Lake -0.937 -0.901 -1.003 -1.012 -0.995 -1.037 -1.031 -0.792 -0.829 -0.987 

 (0.045) (0.043) (0.043) (0.046) (0.045) (0.045) (0.046) (0.041) (0.038) (0.048) 
Hilliard's Bay 0.114 0.665 0.672 0.520 0.608 0.499 0.450 0.851 0.889 0.422 
 (0.091) (0.040) (0.039) (0.042) (0.039) (0.039) (0.039) (0.033) (0.033) (0.042) 

Jarvis Bay -0.318 -0.258 -0.253 -0.285 -0.393 -0.320 -0.171 -0.079 -0.026 0.009 

 (0.027) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026) (0.025) (0.024) (0.025) 
Kinbrook Island 0.433 0.454 0.539 0.557 0.618 0.656 0.761 0.687 0.763 0.842 
 (0.031) (0.030) (0.029) (0.029) (0.028) (0.028) (0.028) (0.027) (0.025) (0.027) 

Lac Des Arcs -2.203 -2.038 -1.994 -1.930 -1.856 -1.903 -1.755 -1.607 -1.896 -1.847 

 (0.055) (0.050) (0.049) (0.051) (0.050) (0.048) (0.047) (0.039) (0.042) (0.048) 
Lesser Slave Lake ×  Marten River 0.567 0.501 0.577 0.539 0.594 0.500 0.262 0.637 0.699 0.610 

 (0.037) (0.037) (0.035) (0.038) (0.034) (0.036) (0.038) (0.033) (0.031) (0.036) 
Little Bow 0.409 0.444 0.443 0.466 0.324 0.347 0.432 0.463 0.289 0.359 
 (0.029) (0.029) (0.028) (0.028) (0.027) (0.028) (0.028) (0.026) (0.026) (0.028) 

Little Elbow -2.580 -1.902 -1.813 -1.772 -1.786 -1.690 -1.543 -0.520 -0.801 -0.763 

 (0.062) (0.049) (0.045) (0.046) (0.044) (0.044) (0.043) (0.028) (0.029) (0.032) 
Long Lake 0.246 0.258 0.202 0.156 0.131 0.191 0.196 0.245 0.228 0.172 
 (0.028) (0.030) (0.027) (0.031) (0.027) (0.028) (0.028) (0.026) (0.026) (0.028) 

McLean Creek -0.792 -0.684 -0.677 -0.654 -0.771 -0.638 -0.458 -0.428 -0.775 -0.673 

 (0.036) (0.035) (0.035) (0.034) (0.033) (0.033) (0.032) (0.029) (0.032) (0.033) 

Miquelon Lake -0.238 -0.285 -0.356 -0.384 -0.307 -0.390 -0.293 -0.367 -0.277 -0.400 
 (0.025) (0.025) (0.025) (0.025) (0.027) (0.026) (0.026) (0.026) (0.024) (0.026) 

Moose Lake -1.502 -1.627 -1.735 -1.722 -1.861 -2.155 -1.963 -0.920 -0.900 -1.584 

 (0.068) (0.068) (0.069) (0.076) (0.079) (0.087) (0.078) (0.051) (0.048) (0.069) 

Park Lake -0.401 -0.352 -0.373 -0.315 -0.441 -0.343 -0.233 -0.233 -0.313 -0.204 

 (0.039) (0.037) (0.037) (0.037) (0.037) (0.036) (0.037) (0.034) (0.034) (0.036) 

Pelican Point Park -1.453 -1.495 -1.632 -1.535 -1.599 -1.568 -1.492 -1.367 -1.228 -1.344 

 (0.050) (0.049) (0.051) (0.051) (0.049) (0.049) (0.051) (0.043) (0.040) (0.044) 

Pembina River -0.390 -0.384 -0.440 -0.407 -0.435 -0.410 -0.491 -0.367 -0.298 -0.388 

 (0.029) (0.028) (0.027) (0.028) (0.028) (0.028) (0.029) (0.027) (0.026) (0.028) 

Pigeon Lake -0.274 -0.091 -0.179 -0.126 -0.131 -0.106 -0.033 0.013 -0.029 -0.131 
 (0.027) (0.029) (0.029) (0.027) (0.025) (0.025) (0.026) (0.025) (0.023) (0.025) 

Pigeon Lake ×  Zeiner -1.176 -1.134 -1.223 -1.201 -1.160 -1.150 -1.058 -1.024 -1.044 -1.284 

 (0.038) (0.037) (0.037) (0.037) (0.035) (0.035) (0.035) (0.033) (0.031) (0.037) 

Red Lodge -0.863 -0.948 -0.933 -0.924 -1.009 -0.934 -0.808 -0.985 -0.967 -1.063 

 (0.031) (0.032) (0.031) (0.033) (0.032) (0.031) (0.032) (0.032) (0.030) (0.032) 
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 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
Saskatoon Island -1.567 -1.600 -1.661 -0.450 -0.308 -0.430 -0.492 -0.132 -0.116 -0.288 

 (0.067) (0.062) (0.065) (0.051) (0.049) (0.051) (0.051) (0.043) (0.044) (0.052) 
Sir Winston Churchill 0.015 -0.089 -0.002 -0.044 0.030 -0.073 0.004 -0.015 0.200 0.226 
 (0.038) (0.038) (0.038) (0.039) (0.036) (0.038) (0.040) (0.036) (0.033) (0.040) 

Tillebrook -0.609 -0.574 -0.572 -0.559 -0.625 -0.666 -0.556 -0.558 -0.656 -0.836 

 (0.039) (0.040) (0.039) (0.039) (0.039) (0.041) (0.040) (0.037) (0.037) (0.044) 

Vermilion -0.686 -0.638 -0.746 -0.705 -0.627 -0.700 -0.647 -0.594 -0.548 -0.819 

 (0.043) (0.043) (0.041) (0.040) (0.039) (0.039) (0.038) (0.036) (0.035) (0.042) 
Wabamun Lake -0.120 -0.107 -0.137 -0.143 -0.122 -0.051 -0.001 0.140 0.117 0.072 

 (0.026) (0.025) (0.025) (0.025) (0.024) (0.024) (0.025) (0.023) (0.022) (0.024) 

Whitney Lakes ×  Ross Lake -0.002 0.200 -0.068 -0.106 -0.197 -0.086 0.037 0.337 0.398 0.238 

 (0.043) (0.041) (0.041) (0.041) (0.040) (0.039) (0.048) (0.034) (0.032) (0.037) 

Whitney Lakes ×  Whitney Lake -1.767 -1.236 -1.658 -1.636 -1.576 -1.752 -1.749 -1.063 -1.029 -1.404 

 (0.082) (0.070) (0.081) (0.076) (0.080) (0.091) (0.111) (0.054) (0.053) (0.072) 

William A. Switzer ×  Gregg Lake 0.780 0.783 0.920 0.925 1.009 1.019 1.108 1.368 1.221 1.218 

 (0.037) (0.037) (0.034) (0.033) (0.031) (0.032) (0.032) (0.027) (0.028) (0.032) 

William A. Switzer ×  Jarvis Lake -0.815 -0.929 -0.823 -0.842 -0.784 -0.660 -0.596 -0.362 -0.444 -0.424 

 (0.065) (0.065) (0.062) (0.060) (0.058) (0.054) (0.058) (0.046) (0.048) (0.054) 
Writing-on-Stone 0.960 1.096 0.906 0.944 0.746 0.760 0.886 0.790 0.831 0.847 
 (0.036) (0.037) (0.036) (0.036) (0.035) (0.035) (0.035) (0.032) (0.031) (0.034) 

Young's Point -0.178 -0.242 -0.192 -0.144 0.047 -0.034 -0.095 0.214 0.104 -0.189 

 (0.046) (0.046) (0.043) (0.039) (0.037) (0.039) (0.040) (0.036) (0.038) (0.044) 

Water quality advisory -0.104 -0.213 -0.027 -0.091 -0.128 -0.082 -0.049 -0.148 -0.129 -0.200 
 (0.025) (0.021) (0.022) (0.019) (0.019) (0.033) (0.025) (0.015) (0.018) (0.023) 

Travel cost ($00s) -0.797 -0.822 -0.851 -0.815 -0.801 -0.784 -0.796 -0.763 -0.784 -0.909 

 (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) 
Log-likelihood value at convergence -244,860 -267,640 -287,693 -278,507 -292,015 -284,236 -285,233 -420,456 -406,363 -314,673 
Number of individuals 55,947 60,063 63,831 61,953 64,760 63,074 62,495 78,275 77,760 66,973 
Number of observations 80,240 87,648 93,875 89,612 93,584 91,067 91,140 127,812 123,369 99,487 
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Appendix C. Sensitivity analysis based on 1/3 of the wage rate for the value of time 
 
 
Figure C1: Marginal willingness to pay (MWTP) per trip for removing one water quality advisory 
using alternative value of time assumption.  
 

 
Notes: The figure reports the average MWTP per trip to reduce one water quality advisory at a campground for each 
of the ten year-specific multinomial logit site choice models using 1/3 of the wage rate as the value of time. The dots 
represent average estimates and the capped vertical lines represent 95% confidence intervals of the MWTP values. 

  



Lloyd-Smith, P. and Zawojska, E. /WORKING PAPERS 5/2024 (441)                              36 
 

 
 

Figure C2: Difference in marginal willingness to pay (MWTP) to reduce one water quality 
advisory across years using alternative value of time assumption.  

 
Notes: The figure shows pairwise MWTP differences in a given year to each of the other “Test Years” and ranks the 
differences from lowest to highest. The dots represent average estimates and the capped vertical lines represent 95% 
confidence intervals. The MWTP estimates come from the ten year-specific multinomial logit site choice models using 
1/3 of the wage rate as the value of time.  
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Appendix D. Sensitivity analysis based on all available campgrounds 

 

Figure D1: Marginal willingness to pay (MWTP) per trip for removing one water quality advisory 
using all available sites each year.  

 
Notes: The figure reports the average MWTP per trip to reduce one water quality advisory at a campground for each 
of the ten year-specific multinomial logit site choice models estimated with the 58 sites available in all 10 years (base 
model) and models estimated with all available sites each year. The number of sites for the all sites model ranges from 
62 to 111 between the years. The dots represent average estimates and the capped vertical lines represent 95% 
confidence intervals of the MWTP values. 



Lloyd-Smith, P. and Zawojska, E. /WORKING PAPERS 5/2024 (441)                              38 
 

 
 

Figure D2: Difference in marginal willingness to pay (MWTP) to reduce one water quality 
advisory across years all available sites each year.  

 
Notes: The figure shows pairwise MWTP differences in a given year to each of the other “Test Years” and ranks the 
differences from lowest to highest. The dots represent average estimates and the capped vertical lines represent 95% 
confidence intervals. The MWTP estimates come from the ten year-specific multinomial logit site choice models using 
all available sites each year.  
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