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Introduction

This research focuses on the development of an Algorithmic Investment Strategy (AIS) that

leverages Supervised Autoencoder MLP networks. This strategy aims to utilize high-frequency

price data, a significant shift from traditional methods that primarily rely on daily closing prices.

The study is structured to test and answer three primary research questions:

• RQ1. Does data augmentation and denoising via autoencoders improve the performance

of a strategy?

• RQ2. Does triple barrier labelling improve classifier performance over simple direction

classification?

• RQ3. Does hyperparameter tuning help achieve better performance of the investment

strategy?

The financial instruments under study include the S&P 500 Index (SPX), the EUR/USD

currency pair, and Bitcoin (BTC). Our dataset spans from January 1, 2016, to April 31, 2022,

with the latter period used as out-of-sample data for testing. It is important to note the difference

in trading hours for these assets, with the S&P 500 having restricted hours and Bitcoin being

traded 24/7.

To address our research questions, we employ empirical methods, developing trading

strategies based on various Supervised Autoencoder - Multi Layer Perceptron (SAE-MLP)

model architectures. These models are tested using data collected at one-minute intervals. Our

approach involves using the SAE-MLP model for price prediction, employing a walk-forward

method alongside combinatorial purged cross-validation. This process begins with hyperpa-

rameters sourced from existing literature, followed by fine-tuning through hyperparameter op-

timization. We anticipate that models with algorithm-selected hyperparameters will show supe-

rior performance.

Our methodology also includes transforming the return estimation problem from a regres-

sion model to a classification one, focusing on predicting price direction rather than the exact

price. This shift is expected to be more effective for generating investment signals due to the

more relevant loss function in this context. We subsequently test triple barrier labelling, a novel

technique of estimating maximum and minimum prices from a given period instead of fixed-

horizon close prices. Additionally, we conduct a sensitivity analysis to examine the robustness
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of our findings under different assumptions.

The structure of this paper is as follows: Section 1 provides a literature review, empha-

sizing neural network applications in stock and cryptocurrency price predictions. Section 2

details the data and financial instruments used. Section 3 describes the methodology, including

the SAE-MLP model, walk-forward approach, combinatorial purged cross-validation, equity

line construction, ensemble model, and performance metrics. It also elaborates on the research

approaches. Section 4 presents empirical results, comparing them among each other through

equity line charts and performance metrics tables. Section 5 conducts a sensitivity analysis on

the most promising approach, focusing on variations in hyperparameters. The paper concludes

with Section 6, summarizing the research findings.

1 Literature Review

The exploration of financial market efficiency and the predictability of stock price movements

has long captivated academic interest. This has led to extensive research integrating machine

learning techniques into financial analysis. Central to this discussion is the Efficient Market

Hypothesis (EMH), which posits that stock prices reflect all available information, rendering

them fundamentally unpredictable. This hypothesis is categorized into three forms: weak,

semi-strong, and strong. The weak form challenges the basis of technical analysis by sug-

gesting that stock prices follow a random path. The semi-strong form argues that stock prices

instantaneously incorporate all public information, thereby diminishing the effectiveness of fun-

damental analysis. The strong form extends this argument to include all information, public and

private, in the determination of stock prices (Malkiel, 1973).

Fama (1970) acknowledged the presence of statistically significant patterns in daily re-

turns that could potentially affect profitable trading strategies, yet he also noted that these pat-

terns might not contradict the EMH. Malkiel (2005) further argued that active equity manage-

ment often fails to outperform passive investment strategies, a viewpoint that aligns with the

EMH. However, behavioral finance theorists like Barberis and Thaler (2002) have countered by

suggesting that market inefficiencies can cause stock prices to deviate from their true values.

This perspective challenges the notion that the inability of portfolio managers to consistently

beat market indices is a definitive indicator of market efficiency. Contrary to the EMH, a signif-

icant contingent of technical analysts, or technicians, maintain that historical price data can be
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used to forecast future stock prices (Lo and Hasanhodzic, 2010). Additionally, the existence of

stock market anomalies and serial correlations in economic factors presents further challenges

to the EMH (Abu-Mostafa and Atiya, 1996).

Another prominent model in time series prediction is the Box-Jenkins Model, or ARIMA

(autoregressive integrated moving average), formulated by George Box and Gwilym Jenkins.

This model combines autoregression, differencing, and moving average to predict stock prices.

It has been widely applied in financial forecasting (Box and Jenkins, 1976).

Ariyo et al. (2014) applied the ARIMA model to data from the New York and Nigeria

Stock Exchanges, demonstrating its capability in short-term price prediction and its comparabil-

ity to other techniques like ANNs. Azari (2018) also tested the ARIMA model’s effectiveness in

predicting Bitcoin values over a three-year period. The model showed proficiency in short-term

forecasts, particularly in stable periods, but struggled with sudden price fluctuations and long-

term predictions, especially in volatile periods like the end of 2017. This limitation highlights

the challenges in predicting prices over extended periods or in highly volatile markets.

Given the recent advancements in powerful computers and efficient machine learning al-

gorithms, it is not surprising that many machine learning (ML) techniques have been researched

for forecasting the direction of financial instruments’ prices. Examples of supervised learning

approaches that can be trained to forecast asset prices and trends based on previous data and

provide insightful historical price analysis include Support Vector Machine (SVM), Decision

Trees, and ANNs (Zenkova and Ślepaczuk, 2019).

In a study conducted by Siami et al. (2018), the effectiveness of deep learning-based time

series forecasting algorithms, including LSTM, was compared to that of more established algo-

rithms like ARIMA. The results showed that LSTM and other deep learning-based techniques

outperformed ARIMA with an average error rate reduction of 84 to 87 percent, demonstrat-

ing the superiority of LSTM. The study also found that the trained forecast model behaved

randomly and the number of training cycles (epochs) had no impact on its performance.

In another study by Grudniewicz and Ślepaczuk (2021), various Machine Learning algo-

rithms were applied to technical analysis indicators for the WIG20, DAX, S&P 500, and a few

selected CEE indices. The study concluded that quantitative techniques outperformed passive

strategies in terms of risk-adjusted returns, with the Bayesian Generalized Linear Model and

Naive Bayes being the top models for the investigated indices.

Di Persio and Honchar (2017) conducted an investigation on the performance of three
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recurrent neural network (RNN) models, including a basic RNN, LSTM, and Gated Recurrent

Unit (GRU), using the price of Google stock as input. The study also provided insights into the

hidden dynamics of RNN. Their results showed that the LSTM outperformed the other models

with a 72 percent accuracy on a five-day horizon.

Kijewski and Ślepaczuk (2020) utilized traditional techniques and a recurrent neural net-

work model (LSTM) to implement buy/sell signals for algorithmic investment strategies. Their

study evaluated the effectiveness of investment algorithms on the S&P 500 index time series,

spanning 20 years of data from 2000 to 2020. They employed a rolling training-testing window

for dynamic parameter optimization throughout the backtesting process. The combination of

signals from several methods doubled the returns on the same level of risk of the Buy & Hold

strategy benchmark. The study further found that the LSTM model was significantly less resis-

tant to changes in parameters than conventional techniques, as demonstrated through a thorough

sensitivity study.

Studies have explored the use of ensemble or hybrid techniques with LSTM for improved

performance. Hossain et al. (2018) developed a deep learning-based hybrid model consisting of

LSTM and GRU architectures to predict S&P 500 prices using a dataset spanning 66 years. In

this approach, the input data is passed to the LSTM network to generate a first-level prediction,

and the output of the LSTM layer is then passed to the GRU layer to provide the final prediction.

The proposed model outperformed earlier neural network techniques with a Mean Squared Error

(MSE) of 0.00098 in prediction.

However, many current studies do not consider non-stationarity, which is a significant

challenge in financial time series forecasting. Shah et al. (2018) demonstrated the potential of

LSTM-RNN-based models in predicting non-stationary data. The study shows that the LSTM

model provides excellent results for daily forecasts and satisfactory outcomes for predictions

made seven days in advance using only daily price as a feature. The authors used a larger

training dataset spanning 20 years, including market ups and downs, to train the model. The

study suggests that LSTM RNN has potential for identifying underlying trends and producing

longer-term forecasts with the addition of more features, particularly for volatile stock datasets.

Baranochnikov and Ślepaczuk (2022) propose a walk-forward procedure for cross-validation

of machine learning models in financial time series forecasting. They apply this method to test

algorithms on four financial assets (Bitcoin, Tesla, Brent Oil, and Gold) and conclude that

LSTM outperforms GRU in most cases.



Bieganowski, B. and Ślepaczuk, R./WORKING PAPERS 3/2024 (439) 5

De Prado (2016) presented a method called combinatorial purged cross-validation (CV)

for backtesting time series data that addresses some of the issues with traditional k-fold CV

methods, such as that finance data cannot be expected to be drawn from an independent and

identically distributed (IID) process, causing k-fold CV to fail. Additionally, the testing set is

often used multiple times during model development, leading to selection bias.

In their study, Kamalov et al. (2021) analyze the effectiveness of stock price and return as

input features for directional forecasting models, using data from ten high-cap US corporations

over a ten-year period. They employ four categorization techniques to construct forecasting

models and observe that stock price outperforms return as an independent input feature for

predicting the direction of price movement. However, when technical indicators are added to

the input feature set, the performance difference between the two input features diminishes. The

authors conclude that stock price is a more potent input feature than return value in predicting

the direction of price movement.

Le et al. (2018) propose a novel approach for improving the generalization performance

of neural networks through the use of a supervised auto-encoder. The authors note that regu-

larizing hidden layers in neural networks is not a straightforward task, and existing layer-wise

suggestions lack theoretical guarantees for improved performance. In their work, they analyze

the supervised auto-encoder model, which predicts both inputs (reconstruction error) and tar-

gets jointly. The authors provide a novel generalization result for linear auto-encoders, proving

uniform stability based on the inclusion of the reconstruction error. Their approach is shown to

outperform simplistic regularization methods such as norms, as well as more advanced regular-

ization techniques such as the use of auxiliary tasks.

The use of Machine Learning techniques for predicting highly nonlinear and noisy data

on digital blockchain platforms has become increasingly common due to the notable increase in

cryptocurrency trading. In their study, Suhwan et al. (2019) examined several cutting-edge deep

learning techniques for predicting Bitcoin prices, including deep neural networks (DNN), long

short-term memory (LSTM) models, convolutional neural networks, deep residual networks,

and their combinations. The experimental results showed that DNN-based models outperformed

the other models in predicting the direction of price movement, while LSTM-based models

outperformed the other models in price prediction. Furthermore, the evaluation of profitability

indicated that classification models were superior to regression models in algorithmic trading.

Lahmiri and Bekiros (2020) examine the use of machine learning (ML) models in high-



Bieganowski, B. and Ślepaczuk, R./WORKING PAPERS 3/2024 (439) 6

frequency trading of Bitcoin. They explore three different types of models, including algo-

rithmic models such as regression trees, statistical ML approaches like support vector regres-

sions (SVR), and artificial neural network (ANN) topologies such as feedforward (FFNN) or

Bayesian regularization (BRNN). The study’s results suggest that ANN models outperform

other models in noisy signal environments. The authors argue that the increasing need for un-

derstanding and forecasting variables across shorter time horizons, coupled with technological

advancements and big data processing power, has led to the current developments in high-

frequency data estimation.

Michańków et al. (2022) projected the future values of the Bitcoin and S&P 500 index,

utilizing data from 2013 to the end of 2020 and across daily, hourly, and 15-minute frequency

intervals. They formulated a unique loss function, which amplifies the predictive capabilities

of the LSTM model for algorithmic investment strategies. The researchers determined that the

primary elements dictating the efficacy of LSTM in algorithmic investment tactics include the

approach adopted for hyperparameter tuning, the architecture of the model, and the estimation

process.

In the spot and futures markets for the S&P 500, Schulmeister (2009) examines how tech-

nical trading strategies can use momentum and reversal effects. Based on daily statistics, 2580

technical models’ profitability has continuously decreased from 1960 and has been negative

since the early 1990s. The same models, however, yield an average gross return of 7.2% each

year between 1983 and 2007 when based on 30-minutes-data. This outcome may be the conse-

quence of recent improvements in stock market efficiency or a change in stock price trends from

30-minute prices to higher frequency pricing, a claim later supported by Kryńska and Ślepaczuk

(2022).

To summarize, many studies indicate that the machine learning models outperform other

techniques, particularly statistical approaches (e.g., ARIMA models), especially for nonstation-

ary data. It has been proposed that models perform better when the input value is asset price

rather than return. It has further been suggested that intra-day data-driven strategies should

outperform inter-day data-driven strategies. In our study, we aim to enhance the research by

comparing different types of neural network models to develop successful trading strategies

using prices and other features as input data.
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Figure 1: Log price of SP500 with train/test cutoff.

Source: FirstRateData, S&P 500 index in the period from January 1, 2010 to April 30, 2022; Accessed May 2022.

2 Data

2.1 Traded Assets

The research presented in this paper uses three time series of data for trading, and six more

as features. The first traded time series refers to the Standard and Poor’s 500 (S&P500) index.

Minute-frequency open-high-low-close (OHCL) data is used, which was obtained commercially

from FirstRate Data. The data ranges from January 2010 to April 2022. The data before Jan-

uary 1st, 2020 is used exclusively for training strategies. Using long range for training allows

to test the investment algorithms through a variety of market regimes, with different combina-

tions of trend and volatility. It includes periods of high volatility and downside shocks, such

as financial crisis of 2008, and consecutive uptrend of 2009. Same point can be made for test

data - COVID-related downturn in March of 2020, rebound in the following months, as well as

steady bear market of 2022 make testing environment of trading algorithms quite robust. Figure

1 presents fluctuations of SP500 in the period of our research.

The second traded asset is Bitcoin (Figure 2), cryptocurrency which was released in 2009,

which only years later gained significant popularity as a tradeable asset. The popularity is linked

to rapid growth of the price of Bitcoin in its lifetime, caused mainly by expectations for the Bit-

coin to be a successor of fiat money. The data was also obtained from FirstRate Data in OHLC

format. The testing data for Bitcoin covers two of the major "peaks" in its price, which provides

a way to test algorithms robustness in extreme conditions.
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Figure 2: Log price of BTCUSD with train/test cutoff.

Source: FirstRateData, BTC/USD pair in the period from January 1, 2010 to April 30, 2022; Accessed May 2022.

Figure 3: Price of EURUSD with train/test cutoff.

Source: FirstRateData, EUR/USD pair in the period from January 1, 2010, to April 30, 2022; Accessed May 2022.

The third traded asset is the EUR/USD pair (Figure 3), which shares some characteristics

with both Bitcoin (tradeable 24/7) and SP500 (being one of the most liquid assets in the world).

Although the test period represents mostly downward trend, we view it as a valuable balancing

asset to test as compared to mostly growing S&P500 and BTC/USD.

Each of the three assets varies in terms of fundamental characteristics, such as asset class

and the number of participants in the market, but also in terms of statistical properties of their

returns. The descriptive statistics obtained for the traded financial instruments at selected fre-

quencies are shown in Table 1. We can notice that the average return across all frequencies and

for all three instruments is positive. In terms of volatility, Bitcoin is clearly the most volatile

asset, followed by S&P500 and EURUSD in the last place.
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Table 1: Descriptive statistics for daily returns of the three traded assets, daily data (2010-01-01
to 2022-04-30).

EURUSD BTC SPX

count 3147 4305 3147
mean -0.00352% 0.52245% 0.0481%
std 0.53612% 7.78643% 1.1135%
min -2.90496% -57.20567% -11.9840%
25% -0.31678% -1.35672% -0.3770%
50% 0.00739% 0.16627% 0.0612%
75% 0.30343% 2.13115% 0.5626%
max 3.00608% 336.83900% 9.3827%

Source: Own Elaboration based on FirstRateData, Accessed May 2022

2.2 Feature Time Series

When it comes to the time series used as features in this paper, the first one is the seasonally ad-

justed Initial Claims (ICSA), retrieved from Federal Reserve Bank of St. Louis, FRED. An ini-

tial claim is a claim filed by an unemployed individual after a separation from an employer. The

claim requests a determination of basic eligibility for the Unemployment Insurance program.

This data is released every Thursday by the FRED, and reports the situation of unemployment

on the last Saturday.

West Texas Intermediate (WTI) Light Sweet Crude Oil futures are currently the world’s

most liquid oil contract. The inclusion of this asset as a feature is supported by correlation be-

tween some of the traded assets and oil. A rise in oil prices can indicate strong economic growth

and increased demand for energy, which can influence each of the traded asset. Conversely, a

fall in oil prices can indicate a slow-down in the economy and a decrease in demand for energy.

Henry Hub Natural Gas futures are currently the third most traded physical commodity

in the world, and they are included in features for similar reasons as the crude oil futures - the

price movements are a good approximation of world’s economy energy demand, which in turn

has great effect on the traded assets.

Corn futures are the most traded food-related commodity in the world, and their price

movements provide insight into the state of the economy in several ways. A rise in corn futures

prices can indicate strong demand for corn as a feed grain for livestock, as a key ingredient in

various processed food products and as a biofuel feedstock. This strong demand could be driven

by factors such as population growth, rising incomes, and government policies that support bio-
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fuels. Conversely, a fall in corn futures prices can indicate weaker demand due to factors such

as a slow-down in the economy, a decrease in biofuel production or a good crop yield. Addi-

tionally, changes can also reflect shifts in supply due to weather conditions, pest and disease

outbreak, trade policies and other factors.

Gold is the only precious metal included in the feature space. Historically, a rise in gold

prices indicated uncertainty or instability in the markets, as investors often turned to gold as a

safe haven during times of turmoil. Declines in gold prices often indicated increased confidence

in stability of riskier assets such as stocks. Gold price also reflects mining production, central

banks buying or selling it as a store of value and other factors, making it a good candidate for

informative feature.

Copper and Aluminum are two most demanded industrial metals, and even though their

use is different, they both provide insight into activity levels in construction, transportation and

manufacturing. Growth in prices for these metals generally correlated positively with popula-

tion growth, rising incomes and government infrastructure spending. Decline in these prices

was usually caused by slowdown of industrial activity and government infrastructure spending.

Figure 4 illustrates the varied composition of our feature space, each component repre-

senting a distinct part of the economy. This aim of feature space selection is to reflect what

traders might look at when making their trading decisions. Our goal is to cover a wide range of

economic indicators, providing a clearer and more complete picture of the factors affecting the

market.

Table 2 displays our list of features along with the anticipated effects of their increase and

decrease. These effects are inferred from standard economic literature, as well as the intuitive

understanding of market behaviors. This table aims to provide an overview of how each feature

might influence market conditions, drawing from established economic principles and practical

market insights.

3 Feature Engineering

3.1 Motivation

Financial time series are notorious for their low signal-to-noise ratios, a concept emphasized

by Lopez de Prado (2018). This characteristic is largely due to arbitrage forces in the market.

Standard stationarity transformations, such as integer differentiation, often exacerbate this is-
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Figure 4: Visualization of main features used for the model.

Source: Own Elaboration. Plotted with Matplotlib package.
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Table 2: Presumed impact of prices/values change on the global economy.

Feature Presumed Increase Impact Presumed Decrease Impact

ICSA Negative: Indicates rising unemploy-
ment, potential economic slowdown

Positive: Suggests decreasing unem-
ployment, potential economic growth

Oil Mixed: Benefits oil exporters, in-
creases costs for importers and con-
sumers

Mixed: Lowers costs for importers and
consumers, but may harm oil-exporting
economies

Gas Negative: Increases energy costs, af-
fects consumer spending and produc-
tion costs

Positive: Decreases energy costs,
boosts consumer spending and lowers
production costs

Corn Negative: Raises food and feed prices,
impacts food industry and inflation

Positive: Lowers food and feed prices,
beneficial for food industry and infla-
tion control

Gold Mixed: Often seen as a safe haven, in-
crease may indicate economic uncer-
tainty

Mixed: Decrease may reflect investor
confidence, but could impact gold-
producing economies

Copper Positive: Suggests industrial growth
and demand, often a positive economic
indicator

Negative: May indicate reduced indus-
trial activity and economic slowdown

Aluminium Positive: Indicates industrial demand
and growth, especially in construction
and manufacturing

Negative: Could suggest a slowdown
in key industries like construction and
manufacturing

Source: Own Elaboration.

sue by eliminating valuable historical memory, even though price series inherently depend on

their past. Integer differentiated series, like returns, truncate this history after a limited sample

window. To uncover any residual signal in these transformed series, statisticians then apply

complex mathematical methods, which can lead to false discoveries. In this context, the use of

ARFIMA (Autoregressive Fractionally Integrated Moving Average), models, initially proposed

by Granger and Joyeux (1980), offers an insightful perspective. These models allow for frac-

tional differentiation, providing a more nuanced approach to maintaining data stationarity while

maximizing memory retention.

For inferential analysis, researchers typically transform these series into invariant pro-

cesses such as returns on prices or changes in yield. This achieves stationarity but at the cost

of the series’ memory. While stationarity is crucial for inference, completely erasing memory

is not ideal in signal processing, as memory is a key component of a model’s predictive power.

Stationary models, for instance, depend on some level of memory to assess deviations of the



Bieganowski, B. and Ślepaczuk, R./WORKING PAPERS 3/2024 (439) 13

price process from long-term expectations. The challenge, therefore, is to determine the mini-

mal level of differentiation required to render a price series stationary while retaining as much

memory as possible. Our goal is to extend the concept of returns to include stationary series

where memory is not entirely discarded.

Cointegration methods have been valued for their ability to model series with mem-

ory.However, we view zero differentiation is as arbitrary as 1-step differentiation. The spectrum

between fully differentiated and non-differentiated series presents opportunities for fractional

differentiation, a concept integral to ARFIMA models, to enhance the predictability of ML

models.

Supervised learning requires stationary features because it involves mapping an unseen

observation to labeled examples to predict the observation’s label. Without stationarity, this

mapping becomes unreliable. However, achieving stationarity alone does not ensure predic-

tive accuracy. It is a necessary but not sufficient condition for optimal ML performance. The

challenge lies in finding the right balance between achieving stationarity and retaining memory.

Over-differentiation may increase stationarity but at the expense of memory, which can impair

the forecasting ability of an ML algorithm. This chapter explores a methodology to address this

balance, drawing on the principles of ARFIMA models and the insights of Lopez de Prado, to

optimize feature engineering in financial time series analysis.

3.2 Fractionally Differentiated Features

DePrado(2015) introduces the concept applying ARFIMA assumptions to machine learning

features - fractionally differentiated features. We consider the backshift operator B applied to a

time series of a feature {Xt} such that BkXt =Xt−k. It follows that the difference between current

and last feature’s value can be expressed as (1−B)X
t . For example, (1−B)2 = 1− 2B+B2,

where B2Xt = Xt−2 so that (1−B)2Xt = Xt − 2Xt−1 +Xt−2. For any positive integer n, it also

holds that:

(x+ y)n =
n

∑
k=0

(
n
k

)
xkyn−k =

n

∑
k=0

(
n
k

)
xn−kyk (1)

On the other hand for any real number d:

(1+ x)d =
∞

∑
k=0

(
d
k

)
xk (2)
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Figure 5: ωk as k increases. Each line is associated with different value of d.

Source: Own Elaboration based on: Marcos Lopez de Prado, Advances in Financial Machine Learning, 2018

is the binomial series. In a model where d is allowed to be a real number, the binomial

series can be expanded into a series of weights which can be applied to feature values:

ω =

{
1,−d,

d(d −1)
2!

,
d(d −1)(d −1)

3!
, ...,(−1)k

k−1

∏
i=0

d − i
k!

}
(3)

The essence of fractional differencing of features is that it allows us to generalize the

idea of differentiation to non-integer orders. By applying the binomial series expansion to the

differencing operator, we can compute differences of any real order d. This means we are

not limited to just taking the first, second, or nth difference, but can compute a "fractional"

difference that may lie somewhere between these whole numbers. This fractional differencing

can capture long-term memory in time series data while ensuring stationarity, which is crucial

for many time series analysis and modeling techniques. Figure 5 displays the weights associated

with each lag depending on the value on d. By adjusting the value of d, we can achieve a balance

between removing noise and preserving meaningful information in the series.

As we are looking to implement the concept of fractionally differentiated features, a crit-

ical decision arises: determining the optimal value of d, the order of fractional differentiation.

This value plays a pivotal role in dictating the balance between retaining memory of past values

and ensuring stationarity in the time series data. While memory captures the inherent depen-

dencies and patterns over time, stationarity facilitates robust modeling and prediction.
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3.3 Optimal Fractional Differentiation Order

For each feature Xt using the fixed-width window fractional differentiation (FFD) method al-

lows us to determine the minimum coefficient d that makes the fractionally differentiated series

Xt stationary (i.e. passes the Augmented Dickey-Fuller test). This coefficient d signifies the

memory extent that must be eliminated to attain stationarity. If Xt is already stationary, d = 0.

For a unit root, d < 1, while for explosive behaviors, d > 1. An especially intriguing scenario

is 0 < d < 1, indicating the series is "slightly non-stationary". Here, although differentiation

is essential, a complete integer differentiation might overly eliminate memory and predictive

capability.

Figure 6 visualizes a concept using the ADF statistic computed on E-mini S&P 500 fu-

tures prices, rolled forward and downsampled to daily frequency, spanning back to the contract’s

beginning. The x-axis represents the d value associated with the ADF statistic on the right y-

axis. The original series has an ADF value of −0.3387, while the returns series is at −46.9114.

The ADF statistic surpasses the 95% confidence threshold of −2.8623 around d = 0.35. The

left y-axis indicates the correlation between the original and differentiated series for various d

values. Remarkably, the correlation remains high at 0.995 for d = 0.35, suggesting successful

stationarity achievement without significant memory loss. In contrast, standard integer differ-

entiation results in a meager 0.03 correlation with the original series, almost entirely erasing

memory. Most finance studies lean towards integer differentiation d = 1, significantly higher

than 0.35. This suggests a tendency to over-differentiate, removing more memory than required

by standard econometric assumptions. Table 3 presents the results of applying fractional differ-

entiation across a range of values, d, from 0.00 to 1.00 on the feature space used for the model.

Two metrics are considered for each asset at every d-value: the ADF p-value, which gauges the

degree of stationarity, and the correlation metric, which quantifies how closely the differenti-

ated series resembles the original series (thus serving as an indicator of memory retention). The

majority of the assets achieve stationarity by a differentiation value of d = 0.35. Particularly,

assets like CL and HH hint at stationarity even at d = 0.10. Conversely, more stubborn series

like Bitcoin and SP500 only verge on stationarity for d > 0.30 (at α = 0.01).

Figure 7 offers a more intuitive visualization of how fractional differentiation progres-

sively transitions the Corn price series into a series of price differences. This figure highlights

the need for equilibrium between maintaining stationarity and preserving memory within the

series, which typically occurs in the range between d = 0 and d = 1.0.
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Figure 6: ωk as k increases. Each line is associated with different value of d.

Source: Own Elaboration based on: Marcos Lopez de Prado, Advances in Financial Machine Learning, 2018

3.4 Implementation

Fractional differencing emerges as a pivotal technique that attempts to balance the twin im-

peratives of achieving stationarity and preserving memory. Traditional integer differencing of-

ten overcorrects, eliminating more memory than necessary to meet econometric requirements,

thereby diminishing the predictive power of the series. The fractional differencing method,

on the other hand, enables a more nuanced transformation, allowing the retention of critical

informational components within a series while ensuring its statistical propriety.

Given its advantages, fractional differencing will be applied to the features in this paper.

The nature of the transformation becomes particularly useful given the unique characteristics of

futures data, where long memory might contain essential information for forecasting.

In terms of practical application, a walk-forward validation methodology will be adopted.

This iterative process involves:

• Training Segment: Utilizing an initial segment of the data, the optimal fractional differ-

encing parameter d, will be determined to achieve the balance between memory retention

and stationarity.

• Test Segment: The identified d will then be applied to the succeeding segment (or win-

dow) of the data, allowing for model evaluation.
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Figure 7: Example of different d levels impact on corn time series.

Source: Own Elaboration based on: Marcos Lopez de Prado, Advances in Financial Machine Learning, 2018
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Table 3: Optimal differentiation orders for each feature used.

SPX BTC EURUSD CL HH ZC GC HG ALI
d ADF p corr ADF p corr ADF p corr ADF p corr ADF p corr ADF p corr ADF p corr ADF p corr ADF p corr

0.00 0.97 0.97 0.81 0.79 0.39 1.00 0.26 0.97 0.18 0.94 0.50 0.99 0.09 0.99 0.37 0.99 0.08 0.99
0.05 0.83 0.97 0.89 0.80 0.19 1.00 0.06 0.96 0.07 0.93 0.28 0.98 0.08 0.99 0.17 0.99 0.03 1.00
0.10 0.53 0.97 0.77 0.79 0.08 0.99 0.00 0.94 0.01 0.92 0.17 0.98 0.02 0.98 0.01 0.98 0.10 0.99
0.15 0.39 0.97 0.60 0.79 0.01 0.97 0.00 0.91 0.00 0.89 0.03 0.96 0.00 0.96 0.00 0.96 0.06 0.98
0.20 0.10 0.97 0.37 0.78 0.00 0.94 0.00 0.86 0.00 0.84 0.01 0.93 0.00 0.93 0.00 0.93 0.01 0.97
0.25 0.01 0.95 0.13 0.77 0.00 0.90 0.00 0.82 0.00 0.77 0.00 0.89 0.00 0.89 0.00 0.89 0.00 0.95
0.30 0.00 0.92 0.01 0.76 0.00 0.83 0.00 0.77 0.00 0.71 0.00 0.84 0.00 0.84 0.00 0.83 0.00 0.93
0.35 0.00 0.89 0.00 0.74 0.00 0.77 0.00 0.71 0.00 0.64 0.00 0.79 0.00 0.79 0.00 0.77 0.00 0.90
0.40 0.00 0.86 0.00 0.71 0.00 0.70 0.00 0.65 0.00 0.58 0.00 0.74 0.00 0.73 0.00 0.70 0.00 0.87
0.45 0.00 0.82 0.00 0.67 0.00 0.64 0.00 0.58 0.00 0.51 0.00 0.68 0.00 0.66 0.00 0.64 0.00 0.83
0.50 0.00 0.77 0.00 0.61 0.00 0.58 0.00 0.51 0.00 0.44 0.00 0.61 0.00 0.59 0.00 0.57 0.00 0.78
0.55 0.00 0.70 0.00 0.56 0.00 0.51 0.00 0.43 0.00 0.38 0.00 0.54 0.00 0.52 0.00 0.49 0.00 0.73
0.60 0.00 0.62 0.00 0.51 0.00 0.43 0.00 0.36 0.00 0.31 0.00 0.46 0.00 0.44 0.00 0.42 0.00 0.66
0.65 0.00 0.54 0.00 0.45 0.00 0.37 0.00 0.29 0.00 0.26 0.00 0.39 0.00 0.36 0.00 0.35 0.00 0.58
0.70 0.00 0.45 0.00 0.38 0.00 0.30 0.00 0.24 0.00 0.21 0.00 0.32 0.00 0.28 0.00 0.29 0.00 0.49
0.75 0.00 0.37 0.00 0.32 0.00 0.24 0.00 0.19 0.00 0.18 0.00 0.26 0.00 0.23 0.00 0.23 0.00 0.41
0.80 0.00 0.30 0.00 0.25 0.00 0.20 0.00 0.15 0.00 0.14 0.00 0.21 0.00 0.18 0.00 0.18 0.00 0.33
0.85 0.00 0.23 0.00 0.20 0.00 0.15 0.00 0.11 0.00 0.11 0.00 0.16 0.00 0.13 0.00 0.14 0.00 0.25
0.90 0.00 0.17 0.00 0.14 0.00 0.11 0.00 0.08 0.00 0.09 0.00 0.12 0.00 0.10 0.00 0.11 0.00 0.17
0.95 0.00 0.11 0.00 0.09 0.00 0.08 0.00 0.05 0.00 0.06 0.00 0.08 0.00 0.06 0.00 0.08 0.00 0.10
1.00 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.03 0.00 0.03 0.00 0.01 0.00 0.03 0.00 -0.02

Source: Own Elaboration based on: Marcos Lopez de Prado, Advances in Financial Machine Learning, 2018,
ADF p - p-value for Augmented Dickey-Fuller test. corr - time series autocorrelation coefficient. Asset symbols:
CL - Oil, HH - Natural Gas, ZC - Corn, GC - Gold, HG - Copper, ALI - Aluminium.

Rolling Forward: The window then rolls forward in time, with the process iteratively

repeating—re-calculating and testing—ensuring that the model adapts to the evolving charac-

teristics of the series and remains robust to varying conditions. Through this approach, we not

only ensure that our models are grounded in rigorous statistical techniques, but also that they

are dynamically adaptable, reflecting the evolving nature of financial markets.

In sum, the application of fractional differencing, paired with the walk-forward validation

strategy, presents a robust framework for time series forecasting in futures markets, maximizing

both predictive accuracy and statistical validity.
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Algorithm 1 Fractional Feature Differentiation in Walk-Forward Validation
1: Set a range of possible values for d (e.g., from 0 to 1)
2: Set significance level for ADF test (e.g., 1%)
3: Initiate a dictionary associating each feature with optimal d.
4: for each segment pair (train, test) do
5: for each feature do
6: Apply fractional differencing to train segment of feature at discreet intervals
7: Calculate ADF test statistic and p-value for each d for a feature
8: Choose lowest d such that p-value < significance level.
9: Save feature name and associated optimal d to dictionary

10: Apply optimal d differencing to both train and test set of the feature
11: end for
12: Train the model on train segment, evaluate on test set
13: end for

Source: Own Elaboration

4 Triple Barrier Labelling

4.1 Labelling Methodology

Most modern approaches to algorithmic trading using machine learning consist of formulating

the trading as a classification problem, where the predicted class describes our position (1 - long,

-1 - short, 0 - no position) in the market at a given time. In this paper, we are using the triple

barrier labeling method. For specified window size λ , and maximum trade length n minutes,

triple barrier labelling for a given time t can be expressed as:

Pt =


1, if max(St , ...,St+n)≥ St · (1+λ )

−1, if min(St , ...,St+n)≤ St · (1−λ )

0, otherwise

(4)

Figure 8 represents the three cases visually. In the first case, the upper barrier was ex-

ceeded, therefore we would have preferred to be long at time t. In the second case, none of

the horizontal barrier was exceeded, so to minimize noise in results, we ideally stay out of the

market in this case. In the third case, the lower barrier was exceeded, therefore our preferred

position was short. This methodology also assumes in execution, each trade has take-profit and

stop-loss set at their respective St · (1+λ ) and St · (1−λ ) levels.
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Figure 8: Triple-barrier-labelling visualization.

Source: Own Elaboration based on: Marcos Lopez de Prado, Advances in Financial Machine Learning, 2018

Algorithm 2 Triple-Barrier Labeling - Simple implementation
1: Initialize an empty series labels with the same index as prices
2: for each index idx in prices do
3: Set entry_price to the price at idx
4: Calculate profit_target as entry_price ×(1+profit_taking)
5: Calculate stop_loss_target as entry_price ×(1+ stop_loss)
6: Set time_barrier_idx to the minimum of idx + time_barrier and the last index of prices
7: for each price i from idx to time_barrier_idx do
8: if prices[i] ≥ profit_target then
9: Set labels[idx] to 1

10: break
11: else if prices[i] ≤ stop_loss_target then
12: Set labels[idx] to -1
13: break
14: else if i is equal to time_barrier_idx then
15: Set labels[idx] to 0
16: break
17: end if
18: end for
19: end for
20: return labels

Source: Own Elaboration

It follows from Eq. (4) that on correct (non-zero) prediction, our return on a given trade

will always be λ (before transactional costs). We define such case of taking correct position as

"directly correct" prediction. The "directly incorrect" prediction (Ytrue = −Ypred), on the other

hand, will result in return on the trade of −λ . On "indirectly incorrect" prediction, for example

(Ytrue = 0,Ypred = 1) the return can be either positive or negative, depending on where the price

be at t + n, however will always be within (−λ ,λ ). On predicting class 0 we do not open

any position therefore our return on the trade will always be zero. Table 2 presents the return

distribution for given predicted/true label combinations.
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Table 2. Return on a trade given classification result.

Pred/True 1 0 -1

1 λ (−λ ,λ ) −λ

0 0 0 0

-1 −λ (−λ ,λ ) λ

Source: Own Elaboration

4.2 TBL-Optimized Performance Metric

In order to maximize the trading strategy performance, we must introduce an error preference

mechanism. After all, missing a profitable trade (type 0 error) will have lesser effect on our

portfolio than entering an incorrect trade (type 1 error). To account for that, we cannot use the

accuracy metric in our models. Instead, we have to create a novel, return-maximizing metric.

We define directly correct count as the number of times the model entered correct position

which resulted in return of λ . We can similarly define directly incorrect count as the number of

times the model entered incorrect position:

DCC = |{(Ypred,Ytrue) ∈ S | Ypred ̸= 0 and Ypred = Ytrue}| (5)

DIC = |{(Ypred,Ytrue) ∈ S | Ypred ̸= 0 and Ypred ̸= Ytrue}| (6)

Where |S| is the cardinality of set S. It follows from our execution assumptions that

cumulative return from trades where Ytrue ∈ (−1,1) can be expressed as:

Φ =
DCC

∏
1
(1+λ ) ·

DIC

∏
1
(1−λ ) = (1+λ )DCC · (1−λ )DIC (7)

The above equation looks like a good contender for an optimization metric. However, it

is important to note that the above equation does not take into account situation where we enter

the trade and the vertical, time-based barrier is reached. We define number of such trades as

timed exit count (TEC). We have shown that in these cases the return on the trade will be within

(−λ ,λ ), however we cannot assume the average trade return in these situations to be 0. We can

therefore introduce a preference mechanism that discourages entering such trades, which also

has much lesser "discouragement magnitude" than for directly incorrect trades. We can do that
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by constructing the optimization metric as if these trades on average produce a loss, however

small it may be:

Φ = (1+λ )DCC · (1−λ )DIC ·
(

1− λ

δ

)T EC

(8)

where δ > λ . In our study, we set δ arbitrarily to 20, indicating that twenty timed exits

are considered equally undesirable as one direct incorrect classification. Notably, selecting a

δ value lower than λ tends to favor trades that have historically led to timed exits. Further

research is warranted to explore the potential benefits of this approach for assets characterized

by consistent long-term trends, such as the S&P 500.

5 Model Training Considerations

5.1 Data Augmentation

Data augmentation is a technique that has been pivotal in addressing the issues of overfitting and

underrepresentation in machine learning. Originally, its use was most prominent in computer

vision problems, where it significantly enhanced the performance of neural networks. Figure

9 presents exemplary data augmentation on images. In these applications, data augmentation

involves making alterations to images in the training dataset to create additional training exam-

ples. These alterations can include transformations such as rotating, flipping, scaling, or altering

the color balance of images. The augmented dataset thus generated presents a wider variety of

scenarios for the model to learn from, which improves its ability to generalize to new, unseen

images.

The success of data augmentation in computer vision sparked interest in its potential ap-

plicability to other areas of machine learning. In natural language processing (NLP), for ex-

ample, data augmentation might involve the paraphrasing of sentences or the use of synonyms

to expand the dataset. In audio processing, it could involve varying the pitch or adding back-

ground noise to sound clips. In tabular data, techniques like feature noise injection or synthetic

minority over-sampling are used to enrich the datasets.

Data augmentation has found a valuable place in the domain of time series analysis as

well, which is the foundation for many algorithmic trading strategies. Time series data inher-

ently carries the challenge of being sequential, where each point is temporally related to its
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Figure 9: Data augmentation example for computer vision problems.

Source: Popular techniques to prevent overfitting in neural networks, datahacker.rs, Accessed May 2022

predecessors and successors. In such a context, traditional data augmentation methods used

in computer vision or NLP cannot be directly applied due to the risk of disrupting the time

sequence, which is critical to the predictive nature of the data.

In algorithmic trading, the time series data typically consists of historical price move-

ments, volumes, and other financial indicators that are time-dependent. To augment this type

of data, the introduction of noise to features based on a fraction of historical feature volatility

is an effective technique, and is the basis for data augmentation in this paper. This approach

preserves the temporal structure of the data while expanding the dataset. By adding noise that

is a proportion of the historical volatility, one ensures that the augmented data remains realistic

and within the bounds of potential market scenarios.

The noise added is typically Gaussian or drawn from a similar distribution, scaled ac-

cording to the historical volatility of the feature. For example, if a particular stock has shown

a volatility of 2% over a certain period, augmenting the data by adding noise with a standard

deviation of 0.2% (0.1 noise ratio) of the price feature creates new, plausible price paths for

the model to learn from. This method of data augmentation helps in creating a more robust

algorithmic trading strategy by forcing the model to learn not only from the historical sequence

of prices but also from a range of possible price movements that could occur in real market

conditions.

This technique can also be adapted to cater to multi-feature time series data where each

feature may exhibit different levels of volatility. By scaling the noise for each feature individu-

ally according to its own historical volatility, the augmented data respects the relative variability

of each market indicator.
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The utility of adding noise based on historical feature volatility is twofold. Firstly, it

helps in preventing overfitting by ensuring that the model does not learn to anticipate the exact

historical sequence of events but rather the underlying patterns that govern market movements.

Secondly, it increases the robustness of the algorithmic trading strategy by exposing the model

to a wider variety of market conditions during the training phase, enhancing its ability to per-

form under different market scenarios.

In conclusion, data augmentation in time series problems, particularly for algorithmic

trading, plays a critical role in model training. By judiciously adding noise to the features as a

fraction of their historical volatility, one can generate a more diverse and comprehensive set of

training scenarios. This approach leads to trading algorithms that are less likely to be thrown

off by the inherent noise and unpredictability of financial markets and are better at generalizing

from past data to future events.

5.2 Supervised Autoencoder MLP

An artificial neural network is a machine learning model that is inspired by the structure and

function of the human brain. It is composed of layers of interconnected "neurons," which pro-

cess and transmit information. Each neuron receives input from other neurons, computes dot

product of an input vector, and then sends the output to other neurons in the next layer, often

with a pre-defined activation function in between.

Mathematically, a neural network can be defined as a function that maps inputs to outputs.

The inputs are typically represented by a vector x, and the outputs are represented by a vector,

y. Artificial neural networks are capable of approximating any continuous function, hence they

are widely used in machine learning tasks.

The neural network type which is examined in detail in this paper is an autoencoder, pre-

sented in figure 10. An autoencoder is a type of artificial neural network used to learn efficient

codings of unlabeled data. The encoding is validated and refined by attempting to regenerate

the input from the encoding. The autoencoder learns a representation (encoding) for a set of

data, typically for dimensionality reduction, by training the network to ignore insignificant data,

leading to finding the most efficient ways to compress passed data. An autoencoder consists of

3 parts: encoder, "code" (also called the bottleneck) and decoder. The encoder compresses the

input and produces the code, which is the compressed, denoised data. The decoder then recon-

structs the input only using the code. The metric for autoencoder performance is the similarity
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Figure 10: Supervised autoencoder structure.

Source: Esaú Villatoro-Tello, Shantipriya Parida, Sajit Kumar , Petr Motlicek, Applying Attention-Based Models
for Detecting Cognitive Processes and Mental Health Conditions, 2021, Cognitive Computation

between reconstructed data, and original input.

A supervised autoencoder (SAE) is a variation of autoencoder which can be used for re-

gression and classification tasks. In SAE, the encoded values are concatenated with the original

input, and used to train a supervised prediction model on provided labels. The performance met-

ric of SAE is a combination of accuracy of reconstruction of input data from code (unsupervised

part) and the accuracy of predictions using concatenated original data and the code (supervised

part). SAE models have shown to have improved generalization performance especially if the

data is inherently noisy, which makes it a perfect candidate for a model in algorithmic trading

problems.

5.3 Walk-forward Validation

In traditional validation approaches, the dataset is split into a training set and a testing set,

where the model is trained on the training set and then evaluated on the testing set. However,

this approach does not accurately reflect the real-world scenarios, where models need to be

updated and retrained regularly to adapt to the changing patterns in the data.

Walk-forward validation, presented in figure 11, is a technique that involves dividing the

time series dataset into multiple overlapping windows of a constant, or expanding size. In each

window, a model is trained on the first part of the window (train set) and evaluated on the

second one (validation set). This process continues until the entire dataset has been used for

training and testing the model. The window size can expand as the test size moves forward,

or it can stop expanding and start shifting to ensure the model is frequently updated with the
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Figure 11: Walk-forward validation procedure. Training set, initially expanding, is limited to
3-period length, therefore shifting instead of expanding since split 4.

Source: Own Elaboration. Final implementation in Python 3.10 using NumPy package

most recent data, enhancing its adaptability to new patterns. The choice of expanding versus

constant size window comes down to our assumptions over the correlations in the data - do we

suspect that the correlations converge to final, "population" value, or do we expect them to shift

constantly? Constant window size assumes the latter, and good performance of strategies build

with this method might indicate, that the correlations change steadily enough that they can be

taken advantage of.

The walk-forward validation technique has several advantages over traditional validation

approaches. Firstly, it provides a more accurate estimate of the model’s performance in real-

world scenarios, where models need to be updated and retrained regularly. Secondly, it allows

for the detection of changes in the data patterns over time, as the model is evaluated on each

overlapping window. Thirdly, it ensures that the model is not overfitted to a specific portion of

the dataset, as it is continuously retrained on the latest data. Finally, the constant size window

fosters adaptability by requiring the model to perform well across various segments of data that

reflect potential shifts in the underlying data generating process.

The walk-forward method may also be used to tune hyperparameters. A validate period

follows the in-sample and is before the out-of-sample in this scenario. The walk-forward model

training with the hyperparameter adjustment procedure is analogous to the process described

above, with constant window size adjustments to ensure the model remains responsive to the

latest data trends.

5.4 Combinatorial purged cross-validation

In assessing algorithmic trading strategies, the traditional k-fold CV method fails to account for

the inherent serial correlation that is often present in financial time-series data. Purged k-fold

CV, presented in figure 12, addresses this limitation by removing observations that indirectly
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Figure 12: Visualization of combinatorial purged cross-validation - selecting two validation
folds out of six (combinatorially) allows for fifteen unique backtest splits.

Source: Own Elaboration based on: Marcos Lopez de Prado, Advances in Financial Machine Learning, 2018

appear in both the training and testing sets. This ensures that there is no leakage of information

from the training set to the testing set, which can lead to overfitting and inaccurate performance

estimates.

Additionally, purged k-fold CV incorporates an embargo period, where data is excluded

from the training set before the testing set. This further reduces the possibility of leakage and

improves the accuracy of the performance estimates.

One of the key benefits of purged k-fold CV is that it provides a more accurate estimate of

out-of-sample performance. By eliminating leakage between the training and testing sets, the

method ensures that the performance estimates are truly out-of-sample and not contaminated

by information from the training set. This is particularly important in finance, where the goal is

to evaluate the performance of an investment strategy on future, unseen data.

Another benefit of purged k-fold CV is that it allows for the testing of multiple strategies

and the comparison of their performance. By simulating multiple backtesting paths, the method

provides a more comprehensive assessment of a strategy’s performance under various market

conditions.

In the context of this paper, we found that while combinatorial purged cross-validation

(CPCV) presents a robust method for backtesting in finance, it was not the most suitable for our

needs due to the changing correlations in the financial time series we examined. CPCV assumes

that correlations within the market data may be, on average, constant throughout the time series,
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making it a reasonable choice when this assumption holds. However, our investigation into the

dataset revealed fluctuating correlations, leading us to choose walk-forward validation (WFV)

instead.

5.5 Construction of equity line

In order to show how SAE-MLPs may be used in algorithmic trading, a straightforward buy-sell

trading strategy is chosen based on whether the instrument price is anticipated to rise or fall over

the next time period. For simplicity, we assume that the orders we place will not have an effect

on the market and that they are executed instantly, at the last close price. As both S&P 500

Index and Bitcoin markets are very liquid, this assumption seems not far from the truth. If our

model sends a “buy” signal, the strategy closes out a short position and takes a long position.

If the long position was already taken, it leaves the position open. If the model sends a “sell”

signal the algorithm takes a short position. To calculate the cumulative unrealized P&L the

following assumptions are used:

• The account is opened with $1.000;

• Positions can be opened in any amount, they do not have to be full units;

• Transaction costs are calculated for each opening and closing of the position, which

means changing position from short to long will incur double costs. Transaction cost

for S&P 500 Index and EUR/USD amounts to 0.005%, for Bitcoin it is 0.1%

5.6 Performance Metrics

For each strategy and asset, a number of indicators are computed in order to evaluate profitabil-

ity and performance. When evaluating portfolio performance, it is critical to consider not just

the return but also the risk of the strategy. In the study we utilize performance metrics from

Michańków et al. (2022) and Ryś and Ślepaczuk (2018).

Annualized Return Compounded

The Annualized Return Compounded (ARC), is the constant rate of annual return over

the whole period of investment, so that:

V (tn) =V (t0) · (1+ARC)n (9)
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where:

V (t0) - the initial value of the investment

V (tn) - the value of the investment at the end of the period

tn − t0 - number of years

Annualized Standard Deviation (ASD)

Volatility is a statistical indicator of the variation of returns. Most of the time, a security

is riskier the more volatile it is. Volatility may be expressed as either the standard deviation or

variation between returns from the same securities or market index. Volatility might be easily

switched to annualized values by multiplying the standard deviation of the returns by the square

root of the number of observations in a year (e.g. 252 for daily data of the S&P 500 Index and

365 for daily data of Bitcoin prices). In our research we use Annualized Standard Deviation

(ASD) as a measure of volatility:

ASD =

√
1

N −1

N

∑
t=1

(Rt − R̂)2 ·√nyear (10)

where:

R̂ - the average simple return (e.g. daily for daily data) of the given instrument

Rt - the simple return during period t

nyear - number of observations in a year

Information Ratio

Sharpe ratio, created by Nobel Prize winner William F. Sharpe, aids investors in deter-

mining the return on investment relative to its risk. The ratio is the average return over the

risk-free rate for each unit of volatility or overall risk. Because we assume a zero-rate risk-free

rate, instead of Sharpe Ration we will define IR:

IR =
ARC
ASD

(11)

Max Drawdown (MDD)

A portfolio’s maximum drawdown (MDD) is the largest loss that could be recorded be-
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tween a portfolio’s peak and bottom before a new high is reached. Maximum drawdown serves

as a gauge for the potential loss over a certain time frame. Maximum drawdown (MDD), a

major concern for most investors, is a tool used to compare the relative riskiness of different

investment strategies.

MDD(T ) = max
t∈[0,T ]

( max
t∈[0,T ]

Vt −Vτ) (12)

Max Loss Duration (MLD)

Maximum Loss Duration (MLD) is the worst (the greatest/longest) period of time between

peaks that the investment has experienced. It is expressed in a number of years:

MLD = max
m j −mi

S
(13)

for which Val(m j) > Val(mi) and j > i.Val(m j) and Val(mi) are the values of the local

maximums in days m j and mi respectively. m j and mi are the numbers of days indicating local

maximums of the equity line. The scale parameter S denotes the number of trading sessions in

a year.

Information Ratio**

Kość et al. (2019) in their study use an additional measure to assess the effectiveness of

the strategy, which is a modification of the Information Ratio measure. This measure also takes

into account the sign of the portfolio’s rate of return and the maximum drawdown:

IR∗∗ =
ARC2 · sign(ARC)

ASD ·MDD
(14)

6 Results

6.1 Model Description

The difficulty to optimize the model’s hyperparameters due to its high computational complex-

ity is one of the foremost challenges with neural networks. Our first approach is to choose a

set of hyperparameters using heuristic techniques and existing research, which allows us to refit

the model more than once and execute training on a rolling window. The exact values of hyper-

parameters used are based on the research of Kijewski and Ślepaczuk (2020) and presented in
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Table 4: Comparison of Different Approaches

Approach 1 Approach 2 Approach 3 Approach 4

Activation tanh tanh swish swish
Loss mse log-loss log-loss log-loss
Epochs 50 50 50 50
Learning Rate 0.01 0.01 0.01 0.01
Hidden Layers 1 1 1 1
Gaussian Noise Rate 0.00 0.00 0.05 0.05
Problem Type regression classification classification classification
Model Type Base Model + Classification +SAE/Denoising +SAE/Denoising

+TBL

Source: Own Elaboration

Table 4.

In our study, we have implemented four different approaches to evaluate the performance

of SAE-MLP models in predicting stock prices. Approach #1 uses the walk-forward method to

optimize the hyperparameters in a simple return estimating model. Given that this is a compu-

tationally intensive problem, we have utilized Bayesian Search instead of GridSearch on each

window, performing 15 trials to identify the best set of hyperparameters. We have employed

Mean Squared Error (MSE) as the criterion metric for selecting the best set of hyperparameters

for regression issues. It is important to note that this approach requires a validation period to

fine-tune the hyperparameters, which reduces the total out-of-sample duration.

For Approach #2, we use the same neural network model as in Approach #1, but with a

classification problem where we predict the direction of the stock prices instead of forecasting

returns. This requires modifying the loss function to a suitable binary classification function,

such as the log-loss function.

For Approach #3, we are retraining the model using noise augmentation and denoising

with SAE-MLP model, but keep the simple directional classification labelling.

For Approach #4, we use SAE-MLP noise augmentation and denoising, but this time with

a classification problem where we use aforementioned triple-barrier labelling. We also use the

performance metric Ψ mentioned in labelling section of this paper.

It is worth mentioning that we have applied all 4 approaches for all three assets. More-

over, we have derived results for equally-weighted portfolio for each approach. Thus, for each

approach, we have produced 16 equity lines in total (4 approaches x 3 assets) + 4 "portfolio"

lines.
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6.2 Approach 1 - Regression Next-Close Forecasting

In analyzing the performance of Approach 1 utilizing a 5-minute bar frequency (Figure 13,

Table 5), the results depicted mostly negative performance across assets. For the S&P500, a

modest cumulative return of 0.57% was achieved, with an information ratio of 0.05, suggesting

weak performance per unit of risk. This was contrasted by a significant downturn in Bitcoin,

which experienced a substantial cumulative loss of 41.44%, culminating in an information ratio

of -0.82. The EUR/USD currency pair also underperformed with an 11.08% decrease in value

and an information ratio of -1.04.

The IR∗∗, which adjusts for drawdown depth, was zero for the SP500, suggesting a neutral

performance after accounting for the maximum drawdown of 9.51%. In contrast, Bitcoin and

EUR/USD, as well as the portfolio, showed negative IR∗∗s of -0.3, -0.37, and -0.38, respectively,

underscoring the compounded effect of both underperformance and significant drawdowns, with

the maximum drawdowns reaching over 50% for Bitcoin, 13.30% for EUR/USD, and 21.72%

for the portfolio.

Approach 1 with a 15-minute bar frequency (Figure 14, Table 6) presented a slightly

improved, although still differentiated outcome across the asset classes analyzed. The SP500

yielded a positive cumulative return of 11.00% and an impressive information ratio of 0.96.

This was complemented by a robust IR∗∗ of 0.79 after adjusting for drawdown, which was rela-

tively shallow at 5.42%. Bitcoin’s performance remained in negative territory with a significant

cumulative loss of 25.29%, a negative information ratio of -0.50, and a IR∗∗ of -0.12. The

EUR/USD pair displayed a positive turnaround with a cumulative return of 5.52% and an infor-

mation ratio of 0.45, with a notably low maximum drawdown of 3.74%, resulting in a positive

IR∗∗ of 0.27. The equally-weighted portfolio’s results were mixed, with a small cumulative

loss of -2.92%, a slightly negative information ratio of -0.17, and a IR∗∗ just into the negative

at -0.02, suggesting a neutral performance when accounting for drawdown severity, which was

notably less at 12.72%. The duration of maximum drawdown was significantly reduced across

the assets, particularly for the SP500 and EUR/USD, indicating a more resilient strategy over

this interval.

For approach 1, with 30-minute bars (Figure 15, Table 7), SP500 delivered a minimal

cumulative return of 1.14% with a low information ratio of 0.10. The strategy’s resilience is

weak as the IR∗∗ settled at 0.0 after accounting for drawdown. Bitcoin, however, stood out

with a remarkable cumulative return of 98.85%, translating into a information ratio of 1.41.
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Figure 13: Cumulative returns for Approach 1 with 5-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 5: Performance metrics for Approach 1 with 5-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 1 - 5min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 0.57% -41.44% -11.08% -17.32%
Annual Return 0.23% -19.92% -4.76% -7.59%
Annualized Std 4.65% 24.18% 4.56% 6.98%
Information Ratio 0.05 -0.82 -1.04 -1.09
Max Drawdown 9.51% 54.44% 13.30% 21.72%
Max Drawdown Duration 568 days 596 days 606 days 596 days
Information Ratio** 0.0 -0.3 -0.37 -0.38

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 14: Cumulative returns for Approach 1 with 15-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 6: Performance metrics for Approach 1 with 15-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 1 - 15min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 11.00% -25.29% 5.52% -2.92%
Annual Return 4.43% -11.40% 2.26% -1.22%
Annualized Std 4.61% 22.62% 4.98% 7.40%
Information Ratio 0.96 -0.50 0.45 -0.17
Max Drawdown 5.42% 47.17% 3.74% 12.72%
Max Drawdown Duration 154 days 314 days 155 days 314 days
Information Ratio** 0.79 -0.12 0.27 -0.02

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.



Bieganowski, B. and Ślepaczuk, R./WORKING PAPERS 3/2024 (439) 35

Figure 15: Cumulative returns for Approach 1 with 30-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 7: Performance metrics for Approach 1 with 30-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 1 - 30min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 1.14% 98.85% -3.52% 32.16%
Annual Return 0.47% 33.02% -1.48% 12.27%
Annualized Std 4.69% 23.47% 4.53% 11.43%
Information Ratio 0.10 1.41 -0.33 1.07
Max Drawdown 9.67% 62.65% 8.41% 22.78%
Max Drawdown Duration 265 days 180 days 583 days 144 days
Information Ratio** 0.0 0.74 -0.06 0.58

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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This performance is emphasized by a IR∗∗ of 0.74 after accounting for maximum drawdown

of 62.65%. The EUR/USD pair, contrarily, faced a cumulative return of -3.52% and a negative

information ratio of -0.33. The IR∗∗ of -0.06 indicates a slight underperformance after factoring

in the drawdown extent. The equally-weighted portfolio showcased a strong cumulative return

of 32.16% and an information ratio of 1.07, suggesting effective diversification benefits. The

portfolio’s IR∗∗ of 0.58 highlights its some resilience, even in light of a 22.78% maximum

drawdown. The duration of maximum drawdown showed improvement for Bitcoin at only 180

days, while the portfolio’s drawdown period was notably short at 144 days, signifying a quicker

recovery from losses.

6.3 Approach 2 - Classification Next-Bar Forecasting

For approach 2, 5-minute bars (Figure 16, Table 8), SP500 yielded a cumulative return of 5.41%

on the test set, reflecting an information ratio of 0.46. However, the IR∗∗ falls to 0.1 when

accounting for a maximum drawdown of 10.31%. Bitcoin faced a notable downturn with a

cumulative loss of 21.72% and an information ratio of -0.42, though the IR∗∗ at -0.07 implies

a slightly less negative outlook when considering the drawdown. The EUR/USD pair exhib-

ited a strong performance with a cumulative return of 9.84% and an information ratio of 0.82,

indicating a solid performance per unit of risk. This is reinforced by a high IR∗∗ of 0.58, de-

spite a maximum drawdown of 5.64%, pointing to efficient risk-adjusted returns. The equally-

weighted portfolio, however, resulted in a marginal cumulative loss of -2.16%, an information

ratio of -0.11, and a nearly neutral IR∗∗ of -0.01, reflecting an overall balanced but slightly

negative performance after factoring in the maximum drawdown of 14.06%.

For approach 2 with 15-min bars (Figure 17, Table 9), Bitcoin (BTCUSD) achieved the

highest cumulative return at 19.92%, while the S&P 500 (SP500) experienced a negative cumu-

lative return of -3.08%. In terms of annual return, Bitcoin again outperformed with 7.83%, and

the SP500 remained negative at -1.29%. The annualized standard deviation was the highest for

Bitcoin at 22.99%, suggesting higher volatility, while EUR/USD exhibited the lowest volatility

at 4.79%.

Most crucially, when considering the IR∗∗ — which accounts for drawdown depth — the

EUR/USD pair stands out with a robust score of 0.55, signifying a favorable risk-adjusted return

after accounting for drawdowns. The equally-weighted portfolio had an Information Ratio**

of 0.16, which, while lower than the individual EUR/USD strategy, still indicates a positive
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Figure 16: Cumulative returns for Approach 2 with 5-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 8: Performance metrics for Approach 2 with 5-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 2 - 5min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 5.41% -21.72% 9.84% -2.16%
Annual Return 2.21% -9.67% 3.97% -0.90%
Annualized Std 4.77% 23.22% 4.82% 8.29%
Information Ratio 0.46 -0.42 0.82 -0.11
Max Drawdown 10.31% 56.07% 5.64% 14.06%
Max Drawdown Duration 532 days 422 days 215 days 422 days
Information Ratio** 0.1 -0.07 0.58 -0.01

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 17: Cumulative returns for Approach 2 with 15-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 9: Performance metrics for Approach 2 with 15-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 2 - 15min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return -3.08% 19.92% 11.73% 9.52%
Annual Return -1.29% 7.83% 4.71% 3.85%
Annualized Std 4.73% 22.99% 4.79% 7.32%
Information Ratio -0.27 0.34 0.98 0.53
Max Drawdown 10.72% 41.52% 8.38% 12.60%
Max Drawdown Duration 479 days 505 days 382 days 500 days
Information Ratio** -0.03 0.06 0.55 0.16

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 18: Cumulative returns for Approach 2 with 30-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 10: Performance metrics for Approach 2 with 30-minute bar frequency (top) compared
to buy and hold (bottom).

Approach 2 - 30min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return -3.51% 32.51% 7.15% 12.05%
Annual Return -1.47% 12.40% 2.91% 4.84%
Annualized Std 4.89% 24.53% 4.85% 8.72%
Information Ratio -0.30 0.51 0.60 0.55
Max Drawdown 9.22% 30.44% 5.09% 11.04%
Max Drawdown Duration 455 days 207 days 251 days 206 days
Information Ratio** -0.05 0.21 0.34 0.24

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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risk-adjusted performance. The negative Information Ratio** for the SP500 at -0.03 suggests

an unfavorable return when adjusting for drawdown depth, highlighting the importance of this

metric in evaluating strategy performance.

For Approach 2 with a 30-minute bars (Figure 18, Table 10), Bitcoin leads the cumulative

return at an impressive 32.51%, outshining the SP500 which displayed a negative cumulative re-

turn of -3.51%. The annual return follows a similar pattern, with Bitcoin achieving a substantial

12.40% compared to the SP500’s -1.47%, alongside EURUSD annual return of 2.91%.

Most importantly, when factoring in the drawdown depth with the IR∗∗, Bitcoin and the

equally-weighted portfolio exhibit positive figures of 0.21 and 0.24, indicating a better risk-

adjusted return profile. The EUR/USD also maintains a strong IR∗∗ at 0.34. However, the

SP500 continues to underperform on a risk-adjusted basis, reflected by its negative IR∗∗ of -

0.05, further emphasizing the asset’s challenges within this particular approach and frequency

setting.

6.4 Approach 3 - SAE-MLP Classification Forecasting

Approach 3, employing a 5-minute bar frequency (Figure 19, Table 11), presents a varied per-

formance landscape across different assets and the equally-weighted portfolio. The cumulative

return for Bitcoin is notably high at 41.29%, significantly outperforming the S&P 500 which

shows a marginal gain of 0.29%, and the EUR/USD currency pair that experienced a decline of

-3.18%. Bitcoin’s annual return stands at a compelling 15.43%, while the SP500 and EUR/USD

demonstrate a stark contrast with 0.12% and -1.33% respectively.

When considering the IR∗∗, Bitcoin maintains a positive score of 0.22, and the equally-

weighted portfolio also demonstrates resilience with a score of 0.18. The IR∗∗ for the SP500

breaks even at 0.0. The EUR/USD, however, has a slightly negative IR∗∗ of -0.04, reflecting a

modestly unfavorable risk-adjusted return when taking drawdown depth into account.

Approach 3 with a 15-minute bar frequency (Figure 20, Table 12) reveals significant im-

provements in performance metrics across the S&P 500 (SP500), Bitcoin (BTCUSD), and the

EUR/USD currency pair, as well as the equally-weighted portfolio of these assets. Bitcoin

stands out with an exceptional cumulative return of 115.28%, while the SP500 also reports a ro-

bust 15.36%, and the EUR/USD shows a moderate gain of 8.21%. When annualized, Bitcoin’s

return remains impressive at 37.48%, with the SP500 and EUR/USD yielding 6.11% and 3.33%

respectively.
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Figure 19: Cumulative returns for Approach 3 with 5-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 11: Performance metrics for Approach 3 with 5-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 3 - 5min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 0.29% 41.29% -3.18% 12.80%
Annual Return 0.12% 15.43% -1.33% 5.13%
Annualized Std 4.68% 23.35% 4.66% 9.44%
Information Ratio 0.03 0.66 -0.29 0.54
Max Drawdown 5.21% 45.75% 9.94% 15.74%
Max Drawdown Duration 350 days 269 days 520 days 290 days
Information Ratio** 0.0 0.22 -0.04 0.18

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 20: Cumulative returns for Approach 3 with 15-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 12: Performance metrics for Approach 3 with 15-minute bar frequency (top) compared
to buy and hold (bottom).

Approach 3 - 15min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 15.36% 115.28% 8.21% 46.28%
Annual Return 6.11% 37.48% 3.33% 17.11%
Annualized Std 5.09% 24.45% 4.81% 10.03%
Information Ratio 1.20 1.53 0.69 1.71
Max Drawdown 6.59% 28.65% 5.71% 9.07%
Max Drawdown Duration 199 days 151 days 150 days 151 days
Information Ratio** 1.11 2.01 0.4 3.22

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 21: Cumulative returns for Approach 3 with 30-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 13: Performance metrics for Approach 3 with 30-minute bar frequency (top) compared
to buy and hold (bottom).

Approach 3 - 30min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 12.37% 39.88% 21.78% 24.68%
Annual Return 4.96% 14.95% 8.53% 9.59%
Annualized Std 4.78% 22.11% 4.91% 7.76%
Information Ratio 1.04 0.68 1.74 1.24
Max Drawdown 4.18% 29.18% 5.69% 8.48%
Max Drawdown Duration 240 days 157 days 91 days 136 days
Information Ratio** 1.23 0.35 2.6 1.4

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Bitcoin’s IR∗∗ at 2.01 and the equally-weighted portfolio’s at 3.22 are high, suggesting

an excellent return even when accounting for drawdown severity. The SP500 also maintains

a strong IR∗∗ at 1.11. The EUR/USD exhibits a lower ratio of 0.4, indicating a less favorable

return on risk when drawdowns are considered.

Approach 3 with a 30-minute bar frequency (Figure 21, Table 13) showcases a balanced

performance across the assets. The cumulative return for Bitcoin is notable at 39.88%, with

the SP500 and EUR/USD also posting positive returns of 12.37% and 21.78%, respectively.

The equally-weighted portfolio benefits from the combined performance, yielding a cumulative

return of 24.68%.

Most importantly, when considering the IR∗∗, the EUR/USD achieves an exceptional

score of 2.6, reflecting an outstanding risk-adjusted return considering drawdown depth. The

equally-weighted portfolio also performs impressively with an IR∗∗ of 1.4, further emphasizing

the benefits of diversification. The SP500’s IR∗∗ stands at a solid 1.23, while Bitcoin lags with a

score of 0.35, indicating that its higher returns are accompanied by proportionately higher risks

and drawdowns. This data highlights the strength of the EUR/USD in this particular strategy

and timeframe, outperforming even the robust returns of an equally-weighted portfolio.

6.5 Approach 4 - SAE-MLP + TBL Classification Forecasting

Approach 4 using a 5-minute bar frequency (Figure 22, Table 14) depicts a contrasting perfor-

mance profile across the assets. The SP500 shows a cumulative return of -5.64%, indicating

a decline, whereas Bitcoin and EUR/USD both report positive cumulative returns of 11.78%

and 10.12%, respectively. The equally-weighted portfolio’s cumulative return stands at 5.42%,

reflecting the mixed results of the underlying assets.

When evaluating the IR∗∗, the EUR/USD excels with a robust score of 0.57. The equally-

weighted portfolio and Bitcoin present marginal IR∗∗ scores of 0.04 and 0.02, respectively,

reflecting limited risk-adjusted returns when accounting for drawdowns. The SP500’s negative

IR∗∗ of -0.15 further accentuates its underperformance in this approach. These results high-

light the outperformance of the EUR/USD currency pair within Approach 4, especially when

considering the risk associated with drawdowns.

Approach 4 with a 15-minute bar frequency (Figure 23, Table 15) presents a remarkable

divergence in the performance of the SP500, Bitcoin (BTCUSD), EUR/USD, and an equally-

weighted portfolio. Bitcoin commands the stage with an extraordinary cumulative return of
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Figure 22: Cumulative returns for Approach 4 with 5-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 14: Performance metrics for Approach 4 with 5-minute bar frequency (top) compared to
buy and hold (bottom).

Approach 4 - 5min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return -5.64% 11.78% 10.12% 5.42%
Annual Return -2.38% 4.73% 4.08% 2.22%
Annualized Std 4.59% 22.72% 4.84% 8.47%
Information Ratio -0.52 0.21 0.84 0.26
Max Drawdown 8.13% 39.53% 5.99% 14.37%
Max Drawdown Duration 462 days 149 days 248 days 182 days
Information Ratio** -0.15 0.02 0.57 0.04

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 23: Cumulative returns for Approach 4 with 15-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 15: Performance metrics for Approach 4 with 15-minute bar frequency (top) compared
to buy and hold (bottom).

Approach 4 - 15min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return -0.90% 180.77% 13.80% 64.55%
Annual Return -0.38% 53.51% 5.51% 22.97%
Annualized Std 4.60% 23.56% 4.70% 11.13%
Information Ratio -0.08 2.27 1.17 2.06
Max Drawdown 10.17% 30.09% 4.01% 10.79%
Max Drawdown Duration 222 days 58 days 220 days 103 days
Information Ratio** -0.0 4.04 1.61 4.39

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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Figure 24: Cumulative returns for Approach 4 with 30-minute bar frequency compared to buy
and hold.

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.

Table 16: Performance metrics for Approach 4 with 30-minute bar frequency (top) compared
to buy and hold (bottom).

Approach 4 - 30min SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 8.49% 116.30% 10.82% 45.20%
Annual Return 3.44% 37.75% 4.36% 16.75%
Annualized Std 4.84% 24.42% 4.92% 10.44%
Information Ratio 0.71 1.55 0.89 1.60
Max Drawdown 6.41% 39.74% 7.90% 12.54%
Max Drawdown Duration 383 days 140 days 255 days 130 days
Information Ratio** 0.38 1.47 0.49 2.14

Buy And Hold SP500 BTCUSD EURUSD Eq. Weight Portfolio

Cumulative Return 26.83% 452.57% -5.58% 157.94%
Annual Return 10.76% 108.57% -2.44% 50.30%
Annualized Std 25.58% 69.97% 6.93% 45.38%
Information Ratio 0.42 1.55 -0.35 1.11
Max Drawdown 38.25% 67.04% 15.78% 49.95 %
Max Drawdown Duration 125 days 129 days 331 days 129 days
Information Ratio** 0.12 2.51 -0.05 1.12

Source: Own Elaboration. Out-of-sample performance between 01.01.2020 and 30.04.2022, own backtesting
implementation.
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180.77%, dwarfing the SP500’s slight decline of -0.90% and surpassing the solid performance

of EUR/USD at 13.80%. The equally-weighted portfolio benefits from Bitcoin’s stellar perfor-

mance, achieving a cumulative return of 64.55%.

When considering the Information Ratio with two asterisks, which adjusts for drawdown

depth, Bitcoin exhibits an score of 4.04, and the equally-weighted portfolio surpasses this with

a ratio of 4.39, both indicating high risk-adjusted returns. The EUR/USD also shows a strong

IR∗∗ of 1.61. In contrast, the SP500 breaks even with a ratio of -0.0, suggesting no excess return

after adjusting for drawdowns. These results highlight the potential benefits of combining high-

return assets with diversification strategies.

Approach 4 with a 30-minute bar frequency (Figure 24, Table 16) demonstrates a var-

ied performance among the SP500, Bitcoin (BTCUSD), EUR/USD, and an equally-weighted

portfolio. Bitcoin delivers a striking cumulative return of 116.30%, significantly outshining

the SP500’s return of 8.49% and EUR/USD’s return of 10.82%. The equally-weighted portfo-

lio presents an impressive cumulative return of 45.20%, reflecting the strong performance of

Bitcoin.

When adjusted for drawdown depth with the IR∗∗, Bitcoin’s risk-adjusted performance is

still strong at 1.47, but it is the equally-weighted portfolio that stands out with a ratio of 2.14,

showcasing excellent risk-adjusted returns. The SP500 and EUR/USD have IR∗∗ of 0.38 and

0.49, respectively, which are positive but less remarkable compared to the portfolio’s.

6.6 Summary

Our research has demonstrated that the application of Supervised Autoencoder de-noising in

combination with Triple Barrier labelling significantly improves machine learning performance

in the context of financial time series analysis. Figure 25 demonstrates that Supervised Au-

toencoder allows for effective de-noising of the data, essentially enhancing the signal-to-noise

ratio, and thus leading to better model performance. Table 17 presents p-values for two statisti-

cal tests which evaluate whether the strategy produced statistically better performance than the

buy-and-hold strategies.

The Diebold-Mariano test (Diebold, Mariano, 2002), is specifically designed to evaluate

and compare the relative forecasting accuracy of two competing predictive models. This test

calculates the differences in the predictive errors of the two models and assesses whether these

differences are statistically significant. The test assumes that these differences are normally
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Figure 25: Comparison of information ratios across approaches and bar lengths

Source: Own Elaboration, table produced in Microsoft Excel.

distributed, especially under large sample sizes, in accordance with the central limit theorem.

On the other hand, we also employed a probabilistic t-test to compare the Information

ratios of the two investment strategies. This test utilizes a simplified formula for the standard

error of the Sharpe ratio, expressed as SE =

√
1/n
σ

, where n is the sample size of the returns, and

σ is the standard deviation of the differences in returns between the two investment strategies.

Like the Diebold-Mariano test, the probabilistic t-test assumes that the differences in returns

follow a normal distribution. Both tests, the DM test and the probabilistic t-test, are essential

to assess the effectiveness of our proposed approach. We set a critical value α = 0.01 for these

tests, indicating a strict criterion for statistical significance.

The table indicates that the most tests where the strategy significantly outperformed buy

and hold were trading EUR/USD and SP500, whereas it was particularly difficult to achieve

similar results for BTC/USD, as only one test (Approach 4, 15min) significantly outperformed

said cryptocurrency. In terms of these statistical tests, this approach was also the most successful

one, rejecting the null hypotheses in 5 out of 8 tests.

What is also important to note, is that for equally-weighted portfolio strategies, all ap-

proaches that succeeded in rejecting the null hypotheses involved the use of SAE or triple barrier

labeling. Based on these results, we view that triple barrier labeling provides a robust mech-

anism to label data based on predetermined profit-taking and stop-loss levels, capturing more

realistic and complex market dynamics compared to traditional methods. This amalgamation of

techniques improves model accuracy and predictive power, as well as handles financial market

volatility and noise better.
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Table 17: P-values for statistical tests for comparing performance of strategies over buy & hold.

Source: Own Elaboration, tests conducted with stattests package. DM H0: Classifier accuracy is not greater than
"always-long" accuracy. T-test H0: Information Ratio of the strategy is not greater than buy-and-hold information
ratio. The bold values indicate approaches and assets where a given p-value exceeded the critical value, rejecting
the null hypothesis.

7 Sensitivity Analysis

The sensitivity analysis presented here concerns the approach 4, 15-minute bars. We view

that the sensitivity analysis of this approach demonstrates particularly well the benefits and

challenges of SAE-MLP + TBL method.

For this approach, the information ratio presented in figure 26 increased as the stop-

loss/take-profit levels were expanded up to around 0.18-0.21%, beyond which we note a decline

to 1.3-1.8 levels. This diminishing return could possibly be attributed to overexposure to market

volatility at higher stop-loss/take-profit levels, thus negatively affecting the risk-adjusted return.

Furthermore, it is also evident that augmenting the trade duration up to an optimal point of

approximately 15-20 minutes enhances the strategy performance. However, beyond this point,

a further increase in trade duration does not uniformly enhance the performance, signifying

increased uncertainty or noise over extended trading horizons. The observed variation in the

information ratio underlines the strategy’s sensitivity to these parameters, emphasizing the ne-

cessity for their careful calibration.

From the Figure 27, it can be observed that the Information Ratio appears to be stable

around the point where 5% Gaussian noise is added, whereas the size of the autoencoder’s

bottleneck has much less impact on the overall information ratio. This suggests that a moderate

amount of data augmentation, combined with a considerable reduction of feature size through
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Figure 26: Sensitivity analysis of triple-barrier labelling parameters in Approach 4, 15min bars.

Source: Own Elaboration. X Axis: window length in minutes. Y Axis: window height.

Figure 27: Sensitivity analysis of SAE parameters.

Source: Own Elaboration, Y-axis: Noise rate as a fraction of annualized volatility. X-axis: bottleneck size as a
percentage of original features count.
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Figure 28: Sensitivity analysis of SAE hidden layer count.

Source: Own Elaboration. Y Axis - encoder hidden layer count. X Axis - decoder hidden layer count.

Figure 29: Sensitivity analysis of batch size and learning rate.

Source: Own Elaboration. Y Axis - batch size. X Axis - learning rate.

the autoencoder, optimally improves the strategy’s risk-adjusted return.

As the percentage of Gaussian noise added to features increases beyond 5%, the Informa-

tion Ratio generally decreases, indicating a potential overfitting problem. Too much noise may

be causing the model to learn from this ’noise’, which doesn’t necessarily represent any true

underlying pattern in the market data, leading to degradation of out-of-sample performance.

Similarly, if the size of the autoencoder’s bottleneck is expanded beyond 40% of the

original number of features, the Information Ratio also shows a downward trend, albeit much

less steep than in the case of noise parameter. This could be due to the fact that too many

features may retain more noise than signal, resulting in a less robust model.

When it comes to count of hidden layers in autoencoder, figure 28 shows the optimal

configuration is not uniformly increasing with the number of layers. The performance does not

consistently improve with additional layers, indicating that an increase in model complexity

beyond a certain point does not necessarily translate to better performance and may lead to

overfitting or other inefficiencies. This observation aligns with the principle of parsimony in

model selection, where the simplest model that adequately explains the data is preferred.

Figure 29 presents the sensitivity analysis of batch sizes and learning rates, A notable

pattern is that larger batch sizes tend to achieve higher information ratios at lower learning

rates, with the batch size of 256 at a learning rate of 1e-3 standing out as particularly effective.
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Likewise, the highest learning rates seem to produce on average worse results. This could sug-

gest that smaller learning rates may help in avoiding oscillations around the global minimum,

a phenomenon that can occur at higher learning rates, leading to a potential decrease in the

information ratio.

In conclusion, the results imply that there is an optimal level of complexity for the au-

toencoder architecture that maximizes the Sharpe ratio. Consequently, careful consideration

must be given to the selection of the number of hidden layers when designing such a strategy to

achieve a balance between model expressiveness and performance.

Conclusions and Further Research

This research set out to explore the potential improvements in strategy performance yielded by

the application of supervised autoencoders in the context of financial time series. We further

incorporated noise augmentation and triple barrier labeling to understand the interplay of these

factors in determining the strategy’s risk-adjusted return, quantified by the Sharpe Ratio and the

Information Ratio.

Through rigorous testing and sensitivity analysis, we demonstrated that employing super-

vised autoencoders significantly enhanced the performance metrics of the strategy. Our analysis

suggested an optimal balance between the level of Gaussian noise added to the features and the

size of the autoencoder’s bottleneck.

However, an increase in the level of noise and bottleneck size beyond certain thresholds

led to a decrease in performance, presumably due to overfitting and the inclusion of more noise

than signal, respectively. These findings underline the need for careful calibration of these

parameters to ensure the most effective utilization of supervised autoencoders in this context.

• RQ1. Does data augmentation and denoising via autoencoders improve the performance

of a strategy? - Findings presented in results section (Figure 26) suggest that data aug-

mentation using Gaussian noise and denoising via autoencoders significantly improved

the performance of the strategy. This was evident since Approach 3 outperformed ap-

proaches 1 and 2 across all bar lengths in terms of Information Ratio of equally. weighted

portfolio, under the optimal levels of noise and autoencoder bottleneck size. However,

caution is necessary as the relationship between noise level, bottleneck size, and perfor-

mance was not linear, indicating the need for careful calibration of these parameters.
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• RQ2. Does triple barrier labelling improve classifier performance over simple direction

classification? - Triple barrier labelling generally outperformed simple labelling due to its

ability to handle market noise better (Figure 25), as well as symmetry of rewards which

makes for better optimization metrics, which is demonstrated by approach 4 outperform-

ing approaches 1-3 in 15-minute and 30-minute bars. We note that triple barrier labelling

may not be the best choice for high frequency trading since the 5-minute bar performance

was worse than for approach 3.

• RQ3. Does hyperparameter tuning help achieve better performance of the investment

strategy? - Hyperparameter tuning was shown to be crucial in achieving superior per-

formance in our strategy (Figures 26, 27, 28). The optimal performance was observed

under a specific combination of noise level and autoencoder bottleneck size, emphasiz-

ing the importance of hyperparameter optimization in the application of machine learning

techniques to trading strategies.

Despite the promising results, the study is subject to certain limitations. Firstly, the find-

ings are based on historical data, and as such, their predictive power in relation to future per-

formance should be considered with caution, given the volatile and evolving nature of financial

markets. Secondly, the research does not take into account slippage, which could potentially

diminish the net returns of the strategy, especially if dealing in illiquid markets or with large

capital. The study also assumes that stop-losses and take profits from triple barrier labelling

execute immediately and perfectly, which is not always the case in the markets.

This paper introduces several new approaches to algorithmic trading. First, it appears to

be the first study to apply our specific model architecture in the field of algorithmic trading.

This approach differs notably from the traditional models typically seen in this area. Second,

while the concept of triple barrier labeling has been previously discussed, our research goes a

step further by developing a specialized optimization metric designed explicitly for use with

triple barrier labeling. These contributions are significant steps forward in integrating advanced

machine learning techniques into financial trading strategies.

The empirical evidence indicating that algorithmic models can outperform traditional

buy-and-hold strategies suggests a necessity for their adoption in asset management to enhance

market efficiency and potential investment returns. Consequently, we view it as vital for reg-

ulators to craft policies that facilitate the ethical integration of these models, ensuring market

fairness and stability while mitigating systemic risks. Institutional investors and fund managers



Bieganowski, B. and Ślepaczuk, R./WORKING PAPERS 3/2024 (439) 55

are encouraged to embrace these advanced strategies, necessitating investments in technology

and skilled personnel to maintain competitiveness and uphold their fiduciary responsibilities.

This shift towards algorithmic trading is not only a reflection of the potential for improved

financial performance but also a movement towards the inevitable modernization of financial

market practices.

In terms of further research, we recommend investigating other types of noise and their

impacts on the strategy’s performance. Additionally, the integration of slippage into the model

would provide a more realistic picture of the strategy’s net returns. Exploring different archi-

tectures for the autoencoder or the integration of other deep learning techniques may also yield

interesting insights. The impact of these methods on other types of financial time series data,

beyond the one used in this study, would also be a fruitful avenue for future research.

The findings from this study provide a compelling case for the continued exploration of

machine learning techniques in financial time series analysis and trading strategy development.

As our understanding of these tools deepens, we move closer to unlocking their full potential in

predictive modeling and decision-making within the complex landscape of financial markets.
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