
GAMS READER 

1.1.  Introduction 
GAMS is a software package to solve systems of equations. GAMS stands for General 
Algebraic Modelling System and is constructed by the GAMS Development Corporation. 
GAMS contains different solvers for different purposes.  

The homepage of the GAMS corporation (www.gams.com) contains a lot of useful 
information. From the homepage, a full user guide can be downloaded at 
www.gams.com/docs/document.htm; the user guide contains the syntax for all GAMS 
commands and very helpful as a reference when writing GAMS models. Note that the user 
guide is also available via the Help function in GAMS-IDE. 

There is a free version of GAMS available for installation on your own computer. This is a 
limited version of GAMS, which cannot solve large problems, but it may be handy when 
you are building proto-type models. It is available for download at 
http://www.gams.com/download. 

1.2.  For what type of problems can GAMS be used? 
GAMS has its origins in economic modelling, but this does not mean that the models you 
specify have to be in the field of economics. As you can see the subject index of the GAMS 
model library -  http://www.gams.com/modlib/modlib.htm - GAMS can provide a support 
optimisation program for the several fields.  

Specifying an economic model means that we have to write down one or more equations 
with some economic relationship. This relationship can be between labour demand and 
wages, between demand and supply of a good, et cetera. The geographical scope of the 
model can range from writing an economic model for an individual firm to a model that 
tries to describe the global economy. Many models take the scope of a national economy. 

 

1.3.  GAMS Statement Formats 
GAMS commands follow a simple syntax:  

• Lines with an * (asterisk) in the very first character are comments. For example, an 

initial comment identifies each of the above example files.  

• Lines with a dollar sign in the very first character are GAMS input/output options. 

For example, $include 'filename' copies in the content of filename as if it had been 

typed at this point. Such $-option lines have no end punctuation.  

• All other GAMS statements are coded over one or more lines and end in a 

semicolon, with component items separated by commas.  

 1

http://www.gams.com/
http://www.gams.com/docs/document.htm
http://www.gams.com/download
http://www.gams.com/modlib/modlib.htm


• Line breaks, extra spaces and blank lines may be added for readability without 

effect (i.e. Multiple lines per statement, embedded blank lines, and multiple 

statements per line are allowed) 

• GAMS is not case sensitive. That is, XX, xx and Xx are the same entity.  

• Declaration statements such as free variable(s) and equations(s) may 

contain a few words of double-quoted "explanatory text" elaborating on the 

meaning of each defined item immediately after its name is specified. This 

explanatory text will accompany the item on outputs to make results easier to 

decipher.  

• Names in GAMS consist of up to 9 letters and digits, beginning with a letter. 

Internal commas, spaces and other special characters should not be used, but 

underlines (_) are allowed.  

• All GAMS command words (e.g. variable, table, equation, model) and 

function names (e.g. sum, log, sin) are reserved, and should not be used for 

declared names. Naming entities with some standard computer words such as for, 

if, elseif, else, while, file, and system also causes errors.  

• Subscripts on variables and constraints are enclosed in parentheses, with explicit 

(non-varying) subscripts enclosed in quotes.  

• Numerical constants in statements may have a decimal point, but they may not 

contain commas (i.e. use 20000 not 20,000).  

 

1.4.  Working with GAMS-IDE 
When GAMS-IDE is started, a window will appear with a menu bar along the top and a 
main Edit Window for GAMS applications. As with most such systems, input and output 
operations are controlled by the File pull down menu, with other menu items used in edit 
operations, and in running the GAMS system.  

Users should begin each session by selecting a "project". A project is a system file you save 
but never have to touch. Still, its location is important because the folder (directory) of the 
current project file is where (.gms) input and (.lst) output files are saved by default. This 
allows you to easily keep all the input and output files for any task together in the same 
directory, and use different directories for different projects. The starting project file (if any) 
is shown at the top of the main GAMS window. To select another, or create a new one, use 
the Project item on the File menu.  

 2



The IDE version provides for standard, mouse-driven editing of input files in the main 
GAMS Edit Window. If the appropriate file is not already displayed, use the New or Open 
commands on the File menu to activate one. Then create or correct the file with the mouse 
and tools provided on the Edit and Search menus. The Matching Parenthesis button helps 
with the many parentheses in GAMS by skipping the cursor to the parenthesis that 
corresponds to the one it is now positioned in front of. The Find in file is also a useful tool, 
if you work with a complex model. 

The GAMS-IDE without any open files looks as follows: 

 
Different parts of GAMS are presented in different colours. For example, all text that is 
written as a comment appears in grey, keywords are in blue and set elements are in green (at 
least in the lines where they are defined). 
 
 

1.5.  The general structure of GAMS programs 
The first step in modelling in GAMS is to write an input file. Though it is not strictly 
necessary, normally a GAMS input file has a file-extension .gms. You write the input file, 
run the model in GAMS and look at the output file for the results (the output file has an 
extension .lst). 

 3



The general structure of a simple GAMS input file contains the following elements: 

PARAMETERS 
{gives the data or exogenous constants of the model; these values are fixed} 

VARIABLES 
{indicates the variables that will be determined (calculated) within the model} 

EQUATIONS 
{first, the equations have to be declared, then they are defined} 

MODEL 
{the model is given a name} 

SOLVE 
{the solution mode is specified, as well as a declaration whether the optimand 
should be maximised or minimised} 

Each of these elements can exist more than once in a single GAMS model. 

The restrictions and special meanings of these words are all together called the syntax of a 
model. GAMS is a computer package and will only understand what you want if you write 
your model in the correct syntax. 

The basic portions of GAMS code are now discussed in more detail. 

PARAMETERS 
The first step in writing a GAMS model is to provide the constant elements (also called 
‘exogenous coefficients’). These are data that are not determined within the model, but they 
have a fixed value that you have to provide. 

There are two stages in specifying parameters, first you must declare them by making a list 
of all parameters and closing the list with a semi-colon, and then you define the values and 
close each definition with a semicolon.  ( You can learn more about the use of semicolon at 
the end of this chapter.) 

Suppose you have a parameter A and want to give it a value of 3. Then, the GAMS code is 
PARAMETERS 

A   Explanatory text on the meaning of A; 
A = 3; 

The first line is the ‘code-word’, telling GAMS which part of the model will follow. In this 
case, the ‘code-word’ is PARAMETERS. First give the name of the parameter, then you may 
write some explanatory text on the meaning (though this is not necessary). In a new section 
you define the value of the parameter. 

Note that there is an alternative way of assigning values to parameters (and scalars). In the 
declaration, you can directly specify the value between slashes: 
PARAMETERS 

A   Explanatory text on the meaning of A /3/; 

Constant elements can be specified in several ways: as single parameters called scalars, (if 
applicable) as vector parameters or as tables. GAMS is indifferent to the way the constant 
elements are specified, but you’ll find that all types have their advantages. The following 
rules of thumb apply. First, tables are the most compact, so if you can use tables, do so. But 

 4



only put data together into one table that have some cohesion with each other. Second, use 
parameters for constants with two or more dimensions (the dimensions are given by the 
indices used) and, finally, scalars are used for single values that do not change (the 
constants in the narrow sense). 

Notice that you don’t write a semi-colon after each line, but only after the last line of the 
block with declarations. You can write a block of variables in the same way (see below). 

VARIABLES  
The variables are what you are really interested in as a modeller. These are the things that 
are determined endogenously within the model, and the value of which you cannot calculate 
beforehand. The values of the variables are determined by solving the equations. However, 
declaration of the variables must precede any use of the variable names later in the file.  

In this declaration of the variables, you can also provide an explanatory text to the variable, 
to help you understand what the meaning of the variable is. The GAMS code is: 
VARIABLES 
 X1 Explanatory text on the meaning of X1 
 X2 Explanatory text on the meaning of X2 
 Y Explanatory text on the meaning of Y; 

So just as with the parameters, you first write the ‘code-word’, then provide the variables 
line-by-line. You can provide the explanatory text, but this is not necessary; the value of the 
variables are calculated by the model therefore you do not have to define value here. 

Note that if you want to build more complex models, it becomes important to choose good 
names for your parameters and variables. Using the words “supply” and “demand” instead 
of just “s” and “d” helps you in later stages to read the model code. Try to keep the names 
and structure of the code as logical as possible. 

EQUATIONS declaration (defining objectives and constraints) 
The objective function and main constraints of GAMS mathematical programs are entered 
as "equation(s)".  The thing to remember is that you have to take two steps:  

First, equation(s) statements declare names for the equations of the model:  

equation dem "annual demand";  

(it declares an equation named dem and notes that it corresponds to annual demand) 
Second, you write the equation itself in the equation definition section: 

equationname..  

 (and continuing with left-hand side and right-hand side expressions separated.) 

 

The declaration of the equations is straightforward. You can use any name you want to 
declare the equations. Most people has some standard way of naming the equations. For 
example, a useful way of naming the equations is to take the variable that is determined by 
the equation and put a ‘Q’ in front of the variable name. 

 5



EQUATIONS 
 QX1 Explanatory text on the meaning of the equation for X1 
 QX2 Explanatory text on the meaning of the equation for X2 
 QY Explanatory text on the meaning of the equation for Y; 
 

You may find it easier to you write down the equations themselves first, and then just above 
the equations you write the declarations. 

One equation always sets the objective function equal to the (free) objective value 
variable.  

Any equation can be indexed over one or more subscript sets to define a whole system 
of similar constraints.  

A variety of standard functions may also be included:  

Function Description 

abs() absolute value 

arctan() arctangent 

ceil() integer ceiling 

cos() cosine 

exp() exponential 

floor() integer floor 

log() natural logarithm 

log10() common logarithm

max( ,..., 
)

max of arg1, arg2, 
... 

 

Function Description 

min( ,..., 
) min of arg1, arg2, ... 

mod( , ) arg1 modulo arg2 

power( , ) arg1 to arg2 (integer) power 

round( , )
round arg1 to arg2 (integer) decimal 
places 

sign() +, 0, - sign 

sin() sine 

sqr() square 

sqrt() square root 

uniform( , 
)

random number between arg1 and 
arg2 

 
 

Equations definition 
The core of any model is given by the equations that have to be solved. In GAMS, you can 
write the equations fairly straightforward. You write them one by one in the following way: 
QX1.. X1 =L= A; 
QX2.. X2 =E= 5; 
QY.. Y =E= X1 + X2; 

 

In the example above, the first equation determines the value of X1. The equation is named 
QX1, and states that the value of X1 should be less than A. The second equation tells us that 
X2 should equal 5. In the third equation, the value of Y is determined as the sum of X1 and 
X2. 

 6



You can use three types of equations:  
• the left-hand-side should be less than or equal to (=L=),  
• greater than or equal to (=G=) or  
• equal to (=E=) the right-hand-side.  

This is a very simple model that you could calculate by hand. But the structure of the 
equations is very general, so writing much more complex model will not lead to much more 
complex GAMS code. For example, you can do multiplication, raise a variable or scalar to 
some power, et cetera.  

The MODEL statement 
GAMS can define many models within a single file by collecting different combinations of 
equations under different names. That is why the user is required to give a name to his/her 
model even if there is only one.  

For simple cases this is accomplished with the statement  

model modelname /all/;  

ALL refers to that you use all the equations, you can also specify a submodel here by listing 
all equations you want to include in the model. (Separate the equation names with commas). 
 

In more complicated situations the all can be replaced by a list of relevant equation names 
such as (Separate the equation names with commas). 

model small /obj,demand/; 
model big /obj,demand,detail/;  

 

The SOLVE statement 
he model name, the solution mode, the optimand and whether to maximise or minimise. 

 

The SOLVE statement is to tell GAMS to solve the model. GAMS does not solve any 
problems itself. Instead it translates the model into the input required by one of several 
"solvers" it has available. You provide the ‘code-word’ SOLVE, the model name, the 
solution mode, the optimand (the free variable representing the objective function value) 
and whether to maximise or minimise: 

solve modelname using solvertype maximizing objectivevaluevariable;  

 

For example, if we want to solve model TEST by maximising Y, using DNLP as the solution 
mode, we write: 
SOLVE TEST USING DNLP MAXIMIZING Y; 

The solution mode tells what type of model you have specified:  

GAMS Description 

 7



Type 

CNS constrained nonlinear system 

LP linear programming 

MCP mixed complementarity problem 

MIP mixed integer linear programming 

MINP mixed integer nonlinear programming 

RMIP solution of the LP relaxation of an integer linear program 

MPEC mathematical program with equilibrium constraints 

NLP local optimization of a nonlinear program over smooth functions 

DNLP local optimization of a nonlinear program with nonsmooth functions 

MIDNLP
local optimization of an integer nonlinear program with 
nonlinearities all in the continuous variables 

RMIDNLP
local optimization of the continuous relaxation of an integer 
nonlinear program with nonlinearities all in the continuous variables 

 

Use of the semi-colon 
When you run the input file, GAMS will read the file you wrote line by line. To tell GAMS 
that the end of a line has arrived, use a semi-colon (“;”). The semi-colon is used to tell 
GAMS the end of a command is reached. In principle, you should end all lines with a semi-
colon, except when you declare a list of parameters, variables or equations. Then, this list is 
regarded as a single block and you should end the block with a semi-colon. For example, if 
you want to include a second parameter B, you could write: 
PARAMETERS 
A   Explanatory text on the meaning of A; 

A = 3; 
 
PARAMETERS 
B   Explanatory text on the meaning of B; 

B = 5; 

But it is more convenient to write it as a list of scalars and use a semi-colon only at the end 
of the list: 
PARAMETERS 
A   Explanatory text on the meaning of A 

 8



B   Explanatory text on the meaning of B; 
 A = 3; 
 B = 5; 

The definitions of the equations cannot be treated as a block, so you should write a semi-
colon after each equation definition.  

The correct use of the semi-colon will become rapidly clear to you when you start writing 
your own models, as GAMS will come with an error message if you made a mistake. Still, 
always be careful in the syntax of your models. 

Brief summary: 

USE SEMI-COLON DO NOT USE SEMI-COLON 

- after the end of each declaration block 
(parameters, variables, equations, etc.) 

- after each line within a block (for blocks of 
parameters, variables, etc.) 

- after each defined parameter - after each declared scalar and parameter, only 
at the end of the block 

- after each defined table - after each declared variable 

- after each defined equation - after each declared equation 

 

The complete code 
So, now we have specified a complete model in GAMS code. The full model looks as 
follows: 

 

 9



Note that the order in which the portions of GAMS code can be specified is quite flexible. 
The principle that has to be obeyed is that all elements have to be declared before you can 
use them; so, for instance, an equation declaration must precede the equation specification. 

True, this model is not very exiting and you will not be amazed that GAMS can actually 
compute that the optimal value of Y is 8. But this is just the general structure. Using the 
same syntax, you can specify much more interesting models and solve difficult systems of 
equations that you cannot calculate by hand. 

1.6.  Output 
Once a .gms file is ready to run, the Run item on the main menu bar invokes GAMS. In 
addition, it automatically causes a .lst output to be stored in the current project directory 
(but not displayed).  

Default output begins with an echo of the input like the following (the Process 
Window). If syntax errors were detected, GAMS includes numbered messages within 
the echo output and provides a key at the end of the listing.  

 
   1  * Echo print example with an error 
   2  positive variable x1 "product 1", x2 "product 2"; 
   3  free variable p "profit"; 
   4  equations objective, capacity; 
   5  objective.. z =e= 10*x1 + 20*x2; 
****              $140 
   6  capacity.. x1 + x2 =l= 100; 
   7  model tiny /all/; 
   8  solve tiny using lp maximizing z; 
****                                 $257 
 
Error Messages 
140  Unknown symbol 
257  Solve statement not checked because of previous errors 

Syntax errors in GAMS input show in red in the Process Window. Clicking on any such red 
error message brings up the corresponding .gms file in the main GAMS window and 
positions the cursor at the point where the error was detected.  

Once all errors are corrected, the SOLVE SUMMARY part of the .lst file details results of 
the optimization. The .lst output file can be activated using the Open command on the 
File menu. However, it is usually easier to first survey an IDE run by examining the 
separate Process Window, which is automatically displayed. A brief log of the run 
appears there, and clicking on any of the boldface lines (including run error messages) 
will activate the entire .lst output file and position you on that message. In particular, 
clicking on Reading solution for model will open the .lst and position the window at 
the SOLVE SUMMARY.  

 
               S O L V E      S U M M A R Y 
 
     MODEL   TINY                OBJECTIVE  Z          
     TYPE    LP                  DIRECTION  MAXIMIZE 
     SOLVER  CPLEX               FROM LINE  8 
 
**** SOLVER STATUS     1 NORMAL COMPLETION          

 10



**** MODEL STATUS      1 OPTIMAL                    
**** OBJECTIVE VALUE             2000.0000 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU OBJECTIVE       .         .         .       1.000  
---- EQU CAPACITY       -INF    100.000   100.000    20.000  
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- VAR X1              .         .        +INF    -10.000  
---- VAR X2              .      100.000    +INF       .     
---- VAR Z              -INF   2000.000     +INF       .     
 
  X1          product 1 
  X2          product 2 
  Z           profit 

 

The first main part of each SOLVE SUMMARY reviews results for model equations. Values 
are given for each objective and constraint, with the LEVEL of each constraint providing 
the amount of the associated resource used in the final solution and MARGINAL showing 
the corresponding dual variable (Lagrange multiplier) value. Any value having only a 
decimal point is = 0.  

The second part of each SOLVE SUMMARY details results for all decision variables. These 
reports show the final LEVEL for each variable along with any upper and lower bounds 
and a MARGINAL value corresponding to the variable's reduced cost. Again, values 
having only a decimal point are = 0.  

Errors may also be reported during solving. Such execution errors usually result from an 
infeasible or unbounded model, program limits being exceeded, or improper 
computations such as taking the logarithm of a nonpositive number.  

It is recommended that each .gms file begin with the commands  

$offsymxref offsymlist 
option limrow=0, limcol=0;  

which turn off all output except an echo of the input file and a SOLVE SUMMARY for each 
solve command of the input. These options are the default in the Windows IDE version, 
but not in UNIX or MDOS. 

 

1.7.  Scenarios and sensitivity analysis 
Most model simulations do not stop after one solve of the model. Rather, the first solve is 
used as a reference scenario, that represents the current situation (or, in a dynamic model, 
the baseline projection represents the most likely development of the variables over time). 
Then, a so-called counter-factual analysis is done: some parameter values in the model or 
equation specifications are changed, the changed model is run and the new results are 
compared to the reference results. This can all be done within one GAMS model file. 

 11



The two major types of counter-factual analyses are scenario analysis (sometimes called 
uncertainty analysis) and sensitivity analysis. The basic difference between these types is 
that scenario analysis tries to answer questions of the type ‘what happens if one or more 
elements (or equations) in the model change’, while sensitivity analysis tries to answer 
‘what is the consequence of a misspecification of some parameter value’. 

In a scenario analysis, several alternative model specifications are compared to each other. 
These scenarios may differ due to differences in parameter values, but also due to 
differences in the model equations. In principle, each of the scenarios specified may be 
equally viable (though they not always are). Often, three or four scenarios are calculated to 
show the extremes within which the real value will probably lie (i.e. the scenarios are used 
as ‘corners of the playing field’). The scenarios specified may be used to do policy 
recommendations. For example, if we lower the tax rate on labour with 1%, total 
employment may go up with x%. Of course, these policy recommendations are only valid 
within the boundaries and assumptions that are made in the model. 

A sensitivity analysis has another purpose: an (individual) parameter value is changed to 
analyse the effects of the value chosen on the model results. This gives a clue on the 
robustness of the model with respect to the specification of the model. For example, the 
emissions of phosphor from agriculture in the Netherlands may be estimated at 0.31 grams 
per guilder of agricultural production per year, which results in total phosphorous emissions 
from agriculture of 132 million kilograms per year. To investigate how the total emissions 
will change if the emissions per guilder of production are 1% higher, one can do a 
sensitivity analysis. In this example, the relationship is linear and the result straightforward: 
total emissions will also be 1% higher (133.32 million kilograms). But imagine a more 
complex model where relationships are not all linear. For example, what is the effect of a 
slight misspecification of the phosphor content of animal feed on total deposition of 
phosphor in water? Then, the results of a sensitivity analysis cannot be predicted so easily, 
and you need to simulate the sensitivity analysis in the GAMS program. 

 12


	Introduction
	For what type of problems can GAMS be used?
	GAMS Statement Formats
	Working with GAMS-IDE
	The general structure of GAMS programs
	PARAMETERS
	VARIABLES
	EQUATIONS declaration (defining objectives and constraints)
	Equations definition
	The MODEL statement
	The SOLVE statement
	Use of the semi-colon
	The complete code


	Output
	Scenarios and sensitivity analysis

