
Warsaw 2013

Working Papers
No. 1/2013 (86)

MICHAŁ BRZEZIŃSKI
 

Asymptotic and bootstrap 
inference for top 

income shares



Working Papers contain preliminary research results. 
Please consider this when citing the paper. 

Please contact the authors to give comments or to obtain revised version. 
Any mistakes and the views expressed herein are solely those of the authors. 

 

 
 
 
 
 
 
 
 
 
 

Asymptotic and bootstrap inference for top income shares 
 
 
 
 
 
 

MICHAŁ BRZEZIŃSKI 
Faculty of Economic Sciences 

University of Warsaw 
e-mail: mbrzezinski@wne.uw.edu.pl 

 
 
 
 

 

 

[eAbstract 
We analyse statistical inference for top income shares in finite samples. The asymptotic 
inference performs poorly even in large samples. The standard bootstrap tests give some 
improvement, but can be unreliable. Semi-parametric bootstrap approach is accurate in 

moderate and larger samples. 
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1. Introduction 

 

In recent years, there has been growing interest in economic analysis of top income shares, 

that is, the shares of total income held by the richest x% (e.g., 10%, 5% or 1%) of the 

population. Long-run time series of top income shares for more than twenty countries have 

been constructed (Atkinson and Piketty 2007, 2010; Atkinson et al. 2011), which facilitates 

the study of trends in income distributions that spans decades and, in some cases, the entire 

20th century. Although much of this literature uses income tax data, several contributions are 

also based on household survey data. The latter are used to estimate top income shares when 

tax return data are not available or only available for a limited time span (see, e.g., Leigh and 

Van der Eng 2009; Piketty and Qian 2009) or when one wants to compare results from tax 

returns and survey data (Burkhauser et al. 2012). 

 Income tax data used in the recent literature on top income shares are usually based on 

very large samples, sometimes covering the whole population of taxpayers. On the other 

hand, household survey data often come from samples of moderate or rather small size. In this 

context, the question of sampling variability of top income shares calculated using survey data 

arises naturally. Although asymptotic inference methods for income shares exist since 1980s 

(Beach and Davidson 1983), their performance in finite samples has not been studied. 

Moreover, as shown recently by Davidson and Flachaire (2007) asymptotic and standard 

bootstrap inferences for some popular inequality measures such as the Theil index are 

unreliable even in very large samples.
1
 They argued that the reason for the poor performance 

of asymptotic and standard bootstrap methods is the sensitivity of some inequality indices to 

the exact nature of the upper tail of the income distribution. Since top income shares are 

constructed as ratios of (portions of) upper tails to total income of a population, it may be 

                                                 
1
 See also Cowell and Flachaire (2007), Davidson (2012) and Schluter (2012) for other contributions to this 

literature. 
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expected that the problems observed by Davidson and Flachaire (2007) are equally or even 

more relevant for top income shares. 

 This paper uses Monte Carlo simulations to study the finite-sample performance of 

asymptotic inference for top income shares. We also compare the asymptotic inference with 

the standard bootstrap and a non-standard semi-parametric bootstrap method proposed by 

Davidson and Flachaire (2007). We find that the asymptotic approach fails in providing 

accurate inference, while the performance of standard bootstrap is better but not satisfactory. 

Monte Carlo results suggest that the semi-parametric bootstrap performs well in moderate 

samples.  

 

2. Asymptotic variance estimation for top income shares 

 

The asymptotic approach to variance estimation for quantile shares was introduced by Beach 

and Davidson (1983), who derived the distribution-free asymptotic joint variance-covariance 

structure for income quantile shares and Lorenz curve ordinates (cumulative income shares).
2
 

Let X = (x1, ... xN) be an income distribution with the cumulative distribution function (CDF) 

F, mean income μ and variance λ
2
. An income quantile of order p,   , with 0 < p < 1, is 

defined implicitly by  (  )   . Quantiles divide the sample into n = 1/p quantile groups; pi 

= i/n, i = 1, ..., n – 1, denote the quantile proportions. In the case of deciles, there are K = 9 

quantiles with quantile proportions p1 = 0.1, ..., p9 = 0.9. The top quantile share is defined as 

            , (1) 

where       is a population Lorenz curve ordinate for income quantile K, defined as 

                                                 
2
 See also Beach and Kaliski (1986) for inference for income shares with sample weights. Binder and Kovačević 

(1995) and Verma and Betti (2011) use other approaches to derive asymptotic inference for income shares. 
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where    is the conditional mean of incomes less than or equal to   . The top income share 

(1) can be estimated using a plug-in estimator as 
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Distribution-free asymptotic variance of top quantile shares is derived by Beach and Davidson 

(1983) as 
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where   
  is the conditional variance of incomes less than or equal to   . It can be estimated 

by replacing μ,   ,   ,   
 , and    with their sample estimates. 

 

3. Asymptotic and bootstrap tests 

 

In order to test a hypothesis that      
 , for some value of   

 
, we can use estimate of the 

top income share,  ̂ , given by (3) and estimate of its variance,    ̂( ̂ ) from (4) and 

construct the following asymptotic t-type statistic  

 
  

 ̂    
 

[   ̂( ̂ )]
       (5) 

In our simulations, we use data drawn from the 4-parameter Generalized Beta of the Second 

Kind (GB2) distribution, which is widely used in modelling earnings and income distributions 

and known to fit these distributions very well (McDonald 1984, Kleiber and Kotz 2003, 

Dastrup et al. 2007). See Kleiber and Kotz (2003) for a detailed review of the GB2 properties. 
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The sample sizes in our simulations are n = 500, 1 000, 2 000, 3 000, 4 000, 5 000, and 

10 000.
3
 We use the GB2 parameter estimates from McDonald and Ransom (2008), who have 

shown that the GB2 distribution it the best choice for fitting 2000 family income data for the 

US. For our choice of parameters, the “true” values of the top 10%, 5% and 1% income shares 

that we analyse in our simulations, are 0.345895, 0.231211 and 0.088844, respectively. We 

calculate an asymptotic P value from (5) replacing   
  by an appropriate “true” value and 

using the Student distribution with n degrees of freedom.  

 We compare the performance of asymptotic inference with standard bootstrap method 

known as the percentile-t or bootstrap-t method. The test is constructed as follows. First, we 

compute W statistics as given by (5) from the original sample and then we draw B bootstrap 

samples of the same size as the original sample. We set B to 199 in our simulation. For each 

bootstrap sample j, j = 1, …, 199, we compute   
  statistic in the same way as W was 

computed from the original sample, but with   
  replaced by the index  ̂  estimated from the 

original sample. The bootstrap P value is the proportion of the bootstrap samples for which 

the bootstrap statistic *

jW  is more extreme than W. 

We complement the asymptotic and standard bootstrap tests with a non-standard 

bootstrap test proposed by Davidson and Flachaire (2007) in the context of improving 

inference for the Theil index of inequality. Their semi-parametric bootstrap test combines  

parametric modelling of the upper tail with the standard non-parametric bootstrap for the rest 

of the distribution. The test is implemented as follows. First, the W statistic as defined in (5) is 

computed for the original sample of size n. Second, a Pareto distribution is fitted to the c 

largest incomes with c chosen using a procedure introduced by Dupuis and Victoria-Feser 

(2006). Third, the “true” value of a top quantile share,   
 , is computed for a semi-parametric 

                                                 
3
 We do not provide results for smaller sample sizes because when n < 500 the number of observations needed to 

calculate the top incomes, especially belonging to the top 1%, is too small to allow for a meaningful variance 

estimation of     
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distribution consisting of the estimated Pareto tail and the sample values for the rest of the 

distribution. Fourth, a bootstrap sample is drawn with probability pt = c/n from the Pareto 

distribution and with probability 1 – pt from the n(1 – pt) smallest observations from the 

original sample. Fifth, for the bootstrap sample the bootstrap statistic    is computed using 

(5) with   
  replaced by   

 . The last two steps of this procedure are repeated 199 times. The 

semi-parametric bootstrap P value is the proportion of   
 , j = 1, …, 199, that are more 

extreme than W. 

 

4. Simulation results 

 

The results of our simulations in terms of errors in rejection probability (ERPs), that is, the 

difference between the actual and nominal probabilities of rejection (set to 5%), are shown in 

Figures 13. A test with no size distortion would produce a plot coinciding with the 

horizontal axis. The number of Monte Carlo replications is 10,000. From Figure 1 we see that 

the ERPs for the asymptotic test are large in small and moderate samples and, unsurprisingly, 

the largest for the top 1% income share, which is affected most by the extremely large income 

observations. The ERPs are slowly decreasing as the sample size increases, but even in large 

samples the distortion is unacceptable. For example, the ERP for the top 1% income share and 

n = 10,000 is 0.0542, which means that the actual rejection probability is 10.42% when the 

nominal level is 5%. The ERPs for other top income shares are smaller, but still significant; 

they are 0.0242 and 0.0167 for the top 5% and the top 10% shares, respectively. These results 

suggest that the asymptotic inference for top income shares is unreliable in finite samples.  

 Figure 2 shows results for the standard bootstrap tests. We can see that the ERPs are 

reduced for all top income shares. However, the ERP of the top 1% share is still as much as 
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0.0305 even when n = 10,000. The convergence of the ERPs to 0 for other top income shares 

is slow.  

Figure 1. ERPs for asymptotic tests 

 

Figure 2. ERPs for standard bootstrap tests 
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They remain above 2% in moderate samples and fall below 1.5% only for bigger samples (n  

7,000). The bootstrap test for the top 1% share underrejects when the sample size is small (n ≤ 

1,000). Overall, we conclude that the standard bootstrap inference for top income shares, and 

especially for the top 1% share, can be unreliable even in large samples.  

 

Figure 3. ERPs for semi-parametric bootstrap tests 

 
 

 Finally, the ERPs for the semi-parametric bootstrap tests are given in Figure 3. 

Comparing with results for the standard bootstrap, we see that the ERPs are further reduced. 

The ERPs for all top income shares fall below ±1% already for n = 3,000. We conclude that 

the semi-parametric bootstrap tests provide accurate inference for the standard top income 

shares in moderate samples.  
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5. Conclusions 

 

This paper has used Monte Carlo simulations to study the finite sample performance of 

asymptotic and bootstrap inference for top income shares. We have found that the asymptotic 

inference performs poorly even in large samples. The standard bootstrap tests provide some 

improvement, but can be unreliable, especially in case of the top 1% share. Semi-parametric 

bootstrap tests give accurate inference for moderate and larger samples. The practical 

recommendation is that using the asymptotic approach for variance estimation of top income 

shares, as implemented for example in Jenkins (2006), can lead to serious errors.  
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