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 [eAbstract 
Using multiple choice tasks per respondent in discrete choice experiment studies increase the 
amount of available information. However, treating repeated choice data in the same way as 
cross-sectional data may lead to biased estimates. In particular, respondents’ learning and 
fatigue may lead to changes in observed utility function preference (taste) parameters, as well 
as its error term variance (scale). Substantial body of empirical research offers mixed 
evidence in terms of whether (and which) of these ordering effects are observed. In this study 
we point to a significant component in explaining these differences – we show how 
accounting for unobservable preference and scale heterogeneity can influence the magnitude 
of observed ordering effects, especially if combined with too few choice tasks used for the 
analysis. We do this by utilizing the state-of-the-art modeling methods (H-MNL, S-MNL, H-
RPL, G-MNL) which we modify to accommodate choice task specific scale parameter. In 
addition, we investigate possible bias resulting from not accounting for ordering effects. Our 
empirical study was based in the context of environmental protection – management changes 
in the protection of Polish forests. 
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1. Introduction	

 

One of the characteristics of a discrete choice experiment (DCE) study is that respondents are faced 

with more than one choice task. This may have some significant implications, as concerns for the 

stability of the preference structures become even more pronounced than in other stated preference 

methods. The accuracy of choices observed in a DCE study, as well as underlying decision strategies, 

may change as a respondent proceeds through multiple choice tasks. These phenomena are generally 

known as ordering effects and their manifestations are usually referred to in the literature, as (1) 

institutional learning, (2) value learning, (3) fatigue or boredom, and (4) choice set order dependence. 

These effects are not mutually exclusive and so many studies investigated them jointly.  

Institutional learning relates to the fact that most respondents of a DCE have never participated in a 

stated preference survey before.1 It is typically expected that institutional learning leads to an increase 

in the accuracy of responses – as respondents progress through choice tasks their responses are likely 

to become more accurate, at least until they complete their ‘burn-in’ number of choice tasks.2By more 

accurate (more deterministic) choices we mean lower variance of the utility function error term, i.e. 

higher utility function scale. This is what Swait and Adamowicz (2001a) call “smaller noise to signal 

ratio”.  

Value learning can work in a similar way – as respondents complete more choice tasks they may 

discover or form their preferences, learn which attributes are the most significant, and what trade-offs 

                                                      
1 A number of studies show that respondent’s consistency depends on the complexity of a choice task, such as 

the number of attributes, their levels, ranges, correlations, and the number of alternatives (e.g. Palma et al. 1994; 

Dellaert et al. 1999; Swait & Adamowicz 2001a; Caussade et al. 2005; Hensher 2006a, b; Day & Pinto 2010). 

This observation together with the hypothesis of information processing limitations supports institutional 

learning.  
2 However, as Swait and Adamowicz (2001b) note, if due to perceived high complexity of choice tasks or 

cumulative cognitive burden, respondents may simplify their choice strategies, adopting non-compensatory 

decision rules, one can also expect changes in estimated marginal utilities of the attributes.  
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they are willing to make. Eventually, this simplifies choice tasks for them and so is expected to reduce 

the error term variance. It is also possible that value learning can result in the change in respondents’ 

preferences (tastes) associated with the attributes of choice between choice tasks. It is not clear how 

the effects of value and institutional learning could be told apart – it is usually assumed, however, that 

institutional learning takes place during the first few choice tasks only.  

Fatigue or boredom can be expected to work in the opposite direction – increase the variance of the 

utility function error term. As a result it was postulated that since the effects of learning decrease, 

while effects of fatigue increase with choice task number, a U-shaped relationship between the weight 

for the unobservable part of utility function and the choice task number may hold. 

Finally, ordering effects might occur as a result of path-dependency. In the case anchoring, framing, or 

acting strategically were happening, respondents’ choices could become path-dependent. Theoretical 

analysis shows that these effects could influence decision rules in multiple ways (Carson & Groves 

2007; Day et al. 2012).3 

Empirical studies, discussed in detail in the next section, offer very contradictory conclusions with 

respect to the presence of learning and fatigue. These studies, however, differ significantly with 

respect to the methodology used to observe ordering effects – in particular with respect to the number 

of choice tasks, and whether unobservable preference and scale heterogeneity was accounted for. Our 

study aims at filling this gap.  

In what follows, we show that controlling for the differences in methodology, in particular allowing 

for unobservable preference or scale heterogeneity, as well as using enough choice tasks per 

respondent play a significant role in whether (and which) ordering effects are observed. We argue that 

these differences allow us to explain some of the contradictory evidence presented by earlier studies. 

                                                      
3 Day et al. (2012) distinguish between starting point effect, acting strategically with full recall of the presented 

choice tasks, and acting strategically with imperfect recall, weighted towards more recent choice tasks. This 

distinction does not, however, matter for our analysis.  
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In addition, we propose the most flexible (so far) methods to control for ordering effects, and we 

investigate the possible implications of the bias resulting from not accounting for them.  

The remainder of this paper is structured as follows. Section 2 reviews the results of earlier studies 

devoted to analyzing ordering effects and highlights the differences in methodologies used. In section 

3 we present the new methods used in our study. Section 4 introduces details of empirical study 

designed specifically to investigate the issues of learning and fatigue – a large-scale national 

representative survey in the context of environmental protection – forest management in Poland. 

Section 5 reports the results. Our findings are discussed in section 6, which also offers conclusions 

relevant for future investigation of this research topic, and for the applications of the DCE 

methodology in general.  

 

2. Ordering	effects	in	the	literature	

 

Annex 1 provides a list of empirical studies devoted to investigating ordering effects. Existing 

evidence is mixed. While some studies report preference or scale changes resulting from institutional 

or value learning, others do not find statistically significant effects or observe respondents’ fatigue. 

We note, however, that the studies differ substantially in the number of choice tasks used for the 

analysis – from as few as 4, to as many as 96 or 120 choice tasks per respondent (Brazell & Louviere 

1997). A closer look at these studies, however, reveals tremendous variability not only with respect to 

the number of choice tasks, but also in the design, context, and the methods used to account for 

preference and scale differences.  

There are many reasons why existing studies could observe different results in terms of whether, and 

how ordering effects manifest themselves. These include differences in the context of a study (e.g. 

familiar vs. unfamiliar goods, Oppewal et al. 2010; Day et al. 2012), overall choice complexity (Swait 
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& Adamowicz 2001a; Caussade et al. 2005; Chung et al. 2010), cumulative cognitive burden (Swait & 

Adamowicz 2001b), and administration mode (e.g. mail vs. web survey, Savage & Waldman 2008). 

Anchoring, framing or acting strategically may also lead to changes in respondents’ choices.  

Therefore, it is necessary to control for these sources of ordering effects, if one wishes to isolate the 

effects of learning and fatigue. Many studies did not effectively take this into account. For instance 

using a design in which a sequence of choice tasks is repeated at the end of the series allows one to 

observe possible deviations in choice patterns; researchers are then able to observe changes in 

observed marginal utilities when comparing implicit prices between the subsets of choices, or 

differences in variance of the error term estimated for choices made at different times.4 Utilizing such 

a design, however, makes it impossible to control for path-dependent ordering effects, caused by 

anchoring, framing, or acting strategically, and they might be taken as evidence of learning or fatigue, 

or mask their influence. 

One way to minimize the effects of anchoring, framing or acting strategically is to use a 

counterbalanced design, i.e. present each respondent with a different order of choice tasks, so that a 

potential effect of e.g. starting point (anchoring) is canceled out for the sample. Counterbalancing of a 

DCE design plays an important role in retrieving underlying dynamics of ordering effects (Keppel & 

Wickens 2004). Liechty et al. (2005) show theoretically that without counterbalancing, static models 

fail to capture average preference changes and dynamic models can give relatively poor estimates. 

Some examples of counterbalancing include cyclical design, in which choice tasks are rotated for 

different respondents (i.e. choice sets 1,2,3…T for the 1’st respondent, 2,3,…,T,1 for the 2’nd 

respondent, and so on), and Latin square design, in which the cycling is reversed (Street & Street 

1987). It seems better, however, to randomize the order of choice tasks for each respondent, in which 

case the sequence not only starts in a different point, but also is shuffled, i.e. choice sets do not appear 

in the same order.  

                                                      
4 Alternative treatments focused on observing time the respondents took to complete a choice task (Haaijer et al. 

2000; Rose & Black 2006). 
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We note that the empirical studies listed in Annex 1 used a wide range of econometric models that, as 

we will show, can influence the observed result. Most studies repeated a choice task (or a sequence of 

choice tasks) and observed differences in implicit prices or scale, included interactions of choice 

attributes or scale with the choice task number, included choice task number as a covariate of scale, or 

as an explanatory variable of latent class membership (latent class model). The most common ways 

used to control for scale differences were: the procedure proposed by Ben-Akiva and Morikawa 

(1990), in which observations from separate (groups of) choice tasks are used simultaneously to 

maximize joint likelihood function, the Bradley and Daly (1992); (1994) one-step estimation approach 

of Ben-Akiva and Morikawa, which can be implemented using a nested logit (the logit-based scaling 

approach), the Swait-Louviere procedure (Swait & Louviere 1993) – a sequential scaling approach, 

and the Heteroskedastic Multinomial Logit (H-MNL) model with choice task specific covariates of 

scale (Hensher et al. 1998; Dellaert et al. 1999; Swait & Adamowicz 2001a).  

More importantly, these studies differ substantially in the way unobservable preference or scale 

heterogeneity was treated. In the recent years, much research effort has been devoted to the issue of 

consumers’ unobservable preference heterogeneity (e.g. McFadden & Train 2000). Another research 

stream aiming at accounting for consumers’ heterogeneity has focused on modeling unobservable 

scale differences (e.g. Louviere et al. 2002). In what follows, we show that allowing for unobservable 

preference or scale heterogeneity may significantly influence the strength of observed learning and 

fatigue effects. Therefore, using a different model specification is an important factor that allows one 

to explain the mixed evidence presented by empirical studies investigating ordering effects.  
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3. Methods	for	modeling	ordering	effects	

 

In this section we review the methods for accounting for unobservable preference and scale 

heterogeneity in discrete choice models. We later apply these methods to investigate how different 

model specifications may influence ordering effects.  

 

3.1 Heteroscedastic	Multinomial	Logit	Model	(H‐MNL)	

 

The modeling of discrete choice data is built on random utility theory developed most notably by 

McFadden (1986). It assumes that the utility associated with any state (choice) can be divided into a 

sum of contributions that can be observed by a researcher, and a component that cannot, and hence is 

assumed random. This formulation of utility function and choice-specific alternatives leads to the 

multinomial logit model that allows using observed choices of an individual to compare their utility 

levels associated with the choice alternatives.  

Formalizing, let individual i  choose among J  alternatives, each characterized by a vector of observed 

attributes ijx . The utility associated with alternative j  is given by: 

  i ij ij ijU Alternative j U    β x  (1) 

where β  is a parameter vector of marginal utilities of the attributes. By introducing the error term it is 

assumed that utility levels are random variables, as it is otherwise impossible to explain why 

apparently equal individuals (equal in all attributes which can be observed) may choose different 

options.  

Random utility theory is transformed into different classes of choice models by making different 

assumptions about random term. In order for the random component to represent the necessary amount 
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of randomness into respondents’ choices, its variance needs to be sufficiently large or, since utility 

function has no scale, assumptions with respect to the random term variance may be expressed by 

scaling the utility function in the following way: 

 ij ij ijU   β x , (2) 

where the random component of the utility function is conveniently assumed to be independently and 

identically (iid) distributed across individuals and alternatives – Extreme Value Type 1 distribution. 

The scale coefficient   and β  cannot both be identified. The multinomial logit model (MNL) is 

derived, with the following closed-form expression of the probability of choosing alternative j  from a 

set of J  available alternatives: 

    
 

1

exp
|

exp

ij

J

ik
k

P j J










β x

β x
. (3) 

The heteroscedastic MNL model allows the scale for some observations to systematically differ from 

the others. The utility specification of the H-MNL, with covariates of scale entering linearly (Dellaert 

et al. 1999) is: 

  1ij i ij ijU     θ k β x , (4) 

while by assuming an exponential formulation for the multiplicative scale (Swait & Adamowicz 

2001a) it is possible to drop the 1 and there is no need to assume the scale is strictly positive: 

  expij i ij ijU    θ k β x . (5) 

In both cases, the ‘effective’ scale is a function of ik  – vector of respondent- or choice-specific and 

observable variables. The scale is still normalized, but with respect to the reference group and so it can 

differ for selected observations (e.g. choice tasks occurring later in the sequence). 
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3.2 Scale	heterogeneity	model	(S‐MNL)	

 

The MNL model implausibly assumes that the random term is independent and identical for all 

choices, i.e. the scale coefficient is the same for every respondent, every choice task and every 

alternative. This results in assuming that every respondent makes his choices with the same degree of 

randomness. On way to relax this assumption is allowing the (unobservable) scale coefficient to be 

individual-specific, through making it a random variable following a particular (usually log-normal) 

distribution. The new utility specification becomes: 

 ij ij ij iU   β x , (6) 

where  1,i LN   or  0expi i     with  0 0,1i N  . Note that the scale coefficient is 

now respondent-specific. Since it is still convenient to normalize scale to 1, we want 

 2exp 2iE    . This may be achieved by assuming 2 2   . This way the scale is no 

longer fixed; instead it is assumed to follow a lognormal distribution, with the new parameter   

reflecting the level of scale heterogeneity in the sample. The resulting model is a scale heterogeneity 

model (S-MNL, Fiebig et al. 2010). 

In order to use this model to observe scale changes between choice tasks, we introduced additional 

explanatory variables of scale k , such that  0expi i it      θ k . These may be e.g. choice task 

specific variables, provided that one of the choice tasks is used as a reference level.  

 

3.3 Heteroscedastic	Random	Parameters	Logit	model	(H‐RPL)	

 

Another implausible assumption of the MNL model is that all respondents have the same preferences 

(and so the same coefficients in their utility functions, β ). The state-of-practice methods of relaxing 
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these assumptions, i.e. allowing for some level of (unobservable) preference heterogeneity and 

possibly correlations between the alternatives and choice tasks, include the Random Parameters Model  

(RPL, McFadden & Train 2000; Hensher & Greene 2003).  

In RPL the utility function becomes: 

 itj i itj itjU   β x . (7) 

Note that parameters of utility functions are now respondent-specific. It is assumed that they follow 

distributions specified by a modeller:  ,i i if β b Δ z Σ , with means b  and variance-covariance 

matrix Σ . In addition, it is possible to make means and variances of the distributions a function of 

observable respondent or choice-specific characteristics z . 

In this paper we refer to the Heteroscedastic RPL (H-RPL) as the RPL model in which scale is allowed 

to systematically differ for some observations. This is a natural extension of a H-MNL model, 

although to our knowledge it has never been used before.  

The utility specification in H-RPL model becomes: 

  expitj it i itj itjU    θ k β x , (8) 

where the scale is a function of observable explanatory variables k  – in our case choice task specific, 

but generally any observable variables, as long as the scale may be normalized for some reference 

level observations.  

 

3.4 Generalized	Multinomial	Logit	Model	(G‐MNL)	

 

A method which allows to control for both preference and scale heterogeneity of respondents at the 

same time is the Generalized Multinomial Logit Model (G-MNL, Fiebig et al. 2010). In this model, 

the utility function takes the form: 
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  1itj i i i i itj itjU           b υ υ x . (9) 

Similarly to the RPL model, the coefficients in the utility function are individual-specific ( b  

represents the population means of the parameters, while υ  – individual-specific deviations from 

these means). Unlike in the RPL, however, the scale coefficient is also individual-specific. The new 

coefficient    0,1 5 controls how the variance of residual taste heterogeneity varies with scale. If 

  0  the individual coefficients become  i i iβ b υ , while if 1   they are   i i iβ b υ . These 

are the two extreme cases of scaling (or not scaling) residual taste heterogeneity in the G-MNL model 

(type I and type II respectively), however, all intermittent solutions are possible. 

In estimation, the individual scale is normalized in the same way as in the S-MNL model. In addition, 

in this paper we extend the G-MNL model by making the individual scale parameter a function of 

observable (choice task specific) characteristics k : 

       0expi i itθ k . (10) 

This way we are able to investigate learning and fatigue effects while allowing for both preference and 

scale heterogeneity across respondents.  

 

4. Empirical	study	

 

Our empirical study was based in the context of environmental protection – management changes in 

the protection of Polish forests. We were interested in the attributes of the Polish forests that are the 

most significant for the general public in terms of recreation and biodiversity conservation. Through 

                                                      

5 To assure    0,1  it is usually modeled as 
 
 












exp

1 exp
, and it is    that is estimated. 
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the extensive qualitative studies we discovered that the forest attributes that Poles would like to see 

changed the most were: (1) protection of the most ecologically valuable forests, (2) less litter in 

forests, and (3) an increasing the amount of recreational infrastructure. These were the attributes that 

we used for the hypothetical scenario of our DCE study.  

Of the 90 000 km2 Polish forests about 3% are forests which are the most ecologically valuable in 

terms of having many of the characteristics of natural forests, such as age and structure of trees, the 

presence of natural environmental processes, large amounts of dead wood, rare species of fauna and 

flora and high biodiversity in general (see Annex 2a for illustration). About 50% of these forests are 

currently properly protected, usually in the form of national parks and nature reserves. The rest is 

under much human pressure and often is treated as regular economic forests. Annex 3 provides a map 

of locations and areas of the most ecologically valuable forests in Poland. Therefore, the first attribute 

in our CE scenario was the area change of ecologically valuable forests that could be protected. The 

possible levels of this attribute were: 

 

 

Status quo 
Passive protection of 50% of the most ecologically valuable forests 

(1,5% of all the forests) 

 

Partial improvement 
Passive protection of 75% of the most ecologically valuable forests 

(2,25% of all the forests, 50% increase) 

 

Substantial improvement 
Passive protection of 100% of the most ecologically valuable forests 

(3% of all the forests, 100% increase) 

 

 

The second attribute used in the final study was the amount of litter that was present in the forest. This 

could be left in forests by tourists or as illegal trash-dump sites (see Annex 2b for illustration). Litter 

obviously decreases recreational value of a forest, may leak dangerous substances, and constitutes a 
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hazard for animal life and health. In our hypothetical scenario it was proposed to reduce the amount of 

litter by 50% or by 90%, though tougher law enforcement and increasing forest cleaning services. The 

available levels of this attribute were: 

 

 

Status quo 
No change in the amount of litter in the forests 

 

Partial improvement 
Decrease the amount of litter in the forests by half  

(50% reduction) 

 

Substantial improvement 
Litter found in the forests only occasionally 

(90% reduction) 

 

 

Qualitative pretesting also showed that for the recreational value of forests it was important that 

enough tourist infrastructure was available. This could include local roads allowing easier access to a 

forest, parking places, paths and trails for tourists, organized resting areas (e.g. picnic sites) or toilets. 

Our scenario proposed and described two levels of increased amount and quality of infrastructure. It 

was explained that such infrastructure would be built only where necessary and only in a way that 

does not influence the environment. In short, these were: 

 

 

Status quo 
No change in tourist infrastructure 

 

Partial improvement 
Appropriate tourist infrastructure in a half more forests 

(50% increase) 

 

Substantial improvement 
Appropriate tourist infrastructure available in twice more forests  

(100% increase) 
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The last attribute was monetary – additional annual cost per household, in the form of increased 

income taxes. 

The final survey was conducted on a representative sample of 1001 Poles. We hired a professional 

polling agency that collected the questionnaires using high-quality, face-to-face computer-assisted 

surveying techniques. The choice sets utilized in our study were prepared using Bayesian d-efficient 

design optimized for the RPL model (Sándor & Wedel 2001; Ferrini & Scarpa 2007; Bliemer et al. 

2008; Scarpa & Rose 2008). To obtain initial estimates (priors) and to verify the qualitative properties 

of the questionnaire itself we conducted a pilot study on a sample of 50 respondents. 

Each respondent was faced with 26 choice tasks, each consisting of 4 alternatives. Each alternative 

was described with the 4 attributes specified above. An example of a choice card shown to 

respondents is given in Figure 1.  

 

Figure 1. Example of a choice card 
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A significant contribution of our empirical work comes from the fact that our design was 

counterbalanced. This allowed us to control for the ordering effects occurring as a result of anchoring, 

framing or acting strategically. We achieved this by randomizing the order of 26 choice tasks 

presented to each respondent. In addition, we randomized the order of the 3 non-status-quo 

alternatives for each choice task and each respondent. This treatment allows us to focus on the effects 

of learning and fatigue, while potential effect of starting point (anchoring) is canceled out. 

 

5. Results	

 

5.1. Preference	(taste)	dynamics	

 

We start the analysis by testing if there are systematic changes in respondents’ preferences associated 

with the attributes of choice. We do this by estimating a separate MNL model for each choice task, as 

this approach allows utility function coefficients and scale to be fully choice task specific. However, 

since the parameters of each choice task specific model are confounded with a different scale, it is not 

possible to directly compare their values between the models. Instead, we calculated implicit prices for 

each of the choice attributes and each choice task – this way model specific scale is canceled out and 

we are able to observe potential dynamics of implicit prices. 

Even though in the following analysis we applied other, more sophisticated models, we argue that for 

the task of analyzing dynamics of implicit prices based on choice task specific models using MNL 

model is appropriate. There are two main reasons for this. First of all, estimating choice task specific 

models that allow for scale heterogeneity (S-MNL), preference heterogeneity (RPL), or both (G-MNL) 

proves difficult, as with only a single observation for each respondent it is difficult to distinguish 

between random heterogeneity and the IID extreme value term in the model (Ruud 1996; Revelt & 
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Train 1998; Fosgerau & Nielsen 2010; Hess & Train 2011). Secondly, standard errors associated with 

implicit prices derived from MNL model are the narrowest and so allow for the most conservative 

comparison criterions. The models allowing for heterogeneity with respect to attribute coefficients 

result in much wider confidence intervals of implicit prices, as they result from not only standard 

errors associated with coefficients, but also from standard deviations of empirical distributions of 

random coefficients (as well as standard errors associated with their means and standard deviations). 

Therefore, using confidence intervals derived from a simple MNL model seems the most conservative 

way of the analysis of statistical differences between choice task specific implicit prices.  

The 6 panels of Figure 2 present the dynamics of choice task specific implicit prices associated with 

the choice attributes (IP) along with 95% confidence intervals, and implicit prices derived from MNL 

models estimated for all choice tasks (IP-all). The qualitative attributes were dummy coded with status 

quo as a reference level, and so the presented implicit prices are: 

 1NAT , 2NAT  – partial (50%) and substantial (100%) improvement in the area of passively 

protected ecologically valuable forests, 

 1TRA , 2TRA  – partial (50%) and substantial (90%) reduction of litter in the forests, 

 1INF , 2INF  – partial (50%) and substantial (100%) increase of forests with tourist 

infrastructure present. 

The analysis of implicit prices dynamics shows that there is a considerable amount of variation 

between choice tasks. However, no systematic patterns are visible and implicit prices are not 

statistically different between choice tasks, as indicated by overlapping confidence intervals. This 

finding is supported by a similar analysis based on the results of other models mentioned above – 

taking preference and scale heterogeneity into account results in substantially wider confidence 

intervals of implicit prices and even less significant differences between choice task specific implicit 

prices.  
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Figure 2. Dynamics of choice task specific implicit prices 
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In conclusion, we do not find significant preference changes between choice tasks. This result is in 

line with many earlier empirical studies which do not observe statistically significant differences in 

preferences (tastes) between choice tasks (see Annex 1 for details). We note, however, that the mixed 

evidence provided by some of these studies is related to problems with identifying intra-respondent 

taste heterogeneity, as discussed by Hess and Train (2011). In particular low statistical power of the 

tests may result in the taste dynamics rarely being statistically significant.  

Based on the findings reported in this section, in what follows, we assumed that individual preference 

(taste) parameters are constant throughout the choice experiment and focused on analyzing scale 

dynamics and potential bias resulting from not accounting for them.  

 

5.2. Scale	dynamics	

 

In order to investigate scale dynamics under different methodological assumptions, we estimated  

H-MNL, S-MNL, H-RPL and G-MNL models (the last two with and without allowing for correlations 

of random parameters)6 in which dummy coded choice task numbers ( 2CS - 26CS ) entered as 

explanatory variables of scale (the first choice task was used as a reference level). All random 

parameters associated with the choice attributes were assumed to be normally distributed. Where 

applicable, we accounted for the panel structure of our dataset (since each respondent faced 26 choice 

tasks) by introducing random effects type of treatment – additional random term for all observations 

from the same individual. All models were estimated using 26,026 choice observations and 1000 

random draws. 

The results are presented in Table 1. Panel 1 presents coefficients associated with choice attributes or 

their means for models that assume they are random. In addition to the variable names used earlier, we 

                                                      
6 In what follows we used suffix ‘_d’ for RPL and G-MNL models in which only elements on the diagonal of the 

Cholesky matrix are estimated (no correlations are allowed), and no suffix otherwise. 
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provide estimates for FEE  – the cost coefficient – and SQ  – alternative specific constant associated 

with the status quo (no action) alternative. In Panel 2 we present standard deviations of normally 

distributed parameters. Panel 3 contains coefficients of parameters associated with scale, i.e.   and   

(where applicable), and 25 choice task specific covariates of scale. The estimates of below-diagonal 

elements of Cholesky matrices were omitted for brevity but are available from the authors upon 

request.  

We begin the analysis by noting that all explanatory variables turn out to be significant determinants 

of choices and are of expected sign. The statistical significance of the coefficients associated with the 

standard deviations of the random parameters distributions indicates that they are significantly 

different from zero, and hence that the variables should indeed be modeled as random. This is strong 

evidence of unobservable preference heterogeneity. On the other hand, in S-MNL and both G-MNL 

models the   coefficient representing dispersion of individual scale coefficients is significantly 

different from 0 that indicates considerable (unobservable) heterogeneity in individual scale 

coefficients. Finally, as expected, models that allow for unobservable preference and scale 

heterogeneity generally perform better than models that do not; the same holds for the models that 

allow for correlations between random parameters vs. the ones that do not.  

In order to facilitate the examination of scale dynamics Figure 3 presents choice task specific scale 

parameters of each model, along with their 95% confidence intervals. A general pattern becomes 

apparent – irrespectively of the model used, the scale appears to increase until about 8’th choice task 

and then stabilizes – even though some degree of variability is present, the scale does not seem to 

decrease. This corresponds to respondents’ learning – their choices become more deterministic – and 

at the same time we do not observe effects of fatigue that would lead to increased randomness in later 

choice tasks of our study.  

Secondly, we note that the more sophisticated model is used, in terms of allowing for unobservable 

preference and scale heterogeneity, the higher an increase in choice task specific scale parameter. The 

magnitude of this increase grows from allowing for scale heterogeneity only (S-MNL) through 
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allowing for preference heterogeneity (H-RPL) to allowing for both (G-MNL). Interestingly, the 

choice task specific scale coefficients for H-RPL_d model (without correlations) are lower than those 

for H-RPL (with correlations). This is in line with our general findings, as allowing for random 

parameters correlations introduces some degree of specific scale heterogeneity. 

Accounting for preference and scale heterogeneity may change the conclusions on whether effects of 

learning or fatigue are observed in a study, especially if relatively few choice tasks are used. In our 

case, the results for H-MNL show that scale does not become statistically different from 1 until choice 

task 10. This is not the case in S-MNL, H-RPL or G-MNL where the scale increase is faster. 

Therefore, depending on what model specification was used in the analysis, different conclusions 

could be drawn. This is one of the main conclusions resulting from our analysis.  

Finally, we note that even for studies that do allow for preference and scale heterogeneity, using too 

few choice tasks results in confidence intervals of choice task specific scale being wider. We illustrate 

this in Figure 4, where choice task specific scale and its 95% confidence intervals were presented for 

only the first 4 choice tasks. Using the models estimated on data from only the first 4 or all 26 choice 

tasks influences the ability to identify preference and scale heterogeneity, and as a result influences the 

confidence intervals of choice task specific scale. This effect is not present for H-MNL, since in this 

case no unobservable preference or scale heterogeneity is allowed. However, for other models, using 

too few choice tasks could lead to wider confidence intervals, and as a result, different conclusions in 

terms of whether learning of fatigue effects are present.  
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Table 1. Scale dynamics under different model specifications (standard errors given in parentheses) 

 H-MNL S-MNL H-RPL_d H-RPL G-MNL_d G-MNL 

(1) Location parameters 

1NAT  
0.6761 

(0.0422) 
2.0561 

(0.4780) 
0.8703 

(0.0483) 
0.9614 

(0.0561) 
1.1756 

(0.0719) 
1.2133 

(0.0789) 

2NAT  
0.9944 

(0.0584) 
2.8274 

(0.6586) 
1.2806 

(0.0687) 
1.2891 

(0.0770) 
1.6752 

(0.1009) 
1.6342 

(0.1090) 

1TRA  
1.2154 

(0.0695) 
2.6301 

(0.6088) 
1.2203 

(0.0622) 
1.1409 

(0.0636) 
1.5324 

(0.0887) 
1.4382 

(0.0891) 

2TRA  
1.6229 

(0.0912) 
3.9680 

(0.9212) 
1.7811 

(0.0921) 
1.6978 

(0.0937) 
2.2691 

(0.1327) 
2.0891 

(0.1306) 

1INF  
0.5488 

(0.0365) 
1.3039 

(0.3087) 
0.6032 

(0.0341) 
0.5981 

(0.0402) 
0.7822 

(0.0498) 
0.7350 

(0.0541) 

2INF  
0.8867 

(0.0520) 
1.9245 

(0.4481) 
0.8842 

(0.0489) 
0.8364 

(0.0503) 
1.1119 

(0.0695) 
1.0388 

(0.0705) 

FEE  
-1.1333 
(0.0683) 

-3.7883 
(0.8865) 

-2.8402 
(0.1568) 

-3.0452 
(0.1684) 

-3.6242 
(0.2227) 

-4.1801 
(0.2557) 

SQ  1.7000 
(0.0979) 

-0.4687 
(0.1414) 

-1.0375 
(0.1085) 

-1.5779 
(0.1237) 

-2.7315 
(0.2208) 

-1.5874 
(0.1445) 

(2) Standard deviations 

1NAT  – – 
0.3840 

(0.0320) 
0.7905 

(0.0456) 
0.4852 

(0.0368) 
2.1058 

(0.1435) 

2NAT  – – 
0.7118 

(0.0413) 
0.1374 

(0.0299) 
0.7149 

(0.0483) 
4.4034 

(0.2942) 

1TRA  – – 
0.3304 

(0.0317) 
0.5612 

(0.0444) 
0.0804 

(0.0382) 
0.8569 

(0.0608) 

2TRA  – – 
0.6989 

(0.0417) 
0.3903 

(0.0313) 
0.6266 

(0.0431) 
0.1091 

(0.0353) 

1INF  – – 
0.1224 

(0.0388) 
0.2691 

(0.0357) 
0.1373 

(0.0410) 
0.4619 

(0.0455) 

2INF  – – 
0.4124 

(0.0303) 
0.1533 

(0.0378) 
0.4447 

(0.0348) 
0.5217 

(0.0409) 

FEE  – – 
2.7742 

(0.1500) 
1.6153 

(0.1113) 
3.1858 

(0.1920) 
0.1146 

(0.0564) 

SQ  – – 
4.7041 

(0.2637) 
3.5832 

(0.2223) 
6.6775 

(0.4273) 
0.2286 

(0.0409) 

(3) Scale parameters 

  – 
1.9004 

(0.0776) 
– – 

0.6477 
(0.0202) 

0.6876 
(0.0235) 

 
 – – – – 

-1.5218 
(0.1385) 

-1.6900 
(0.1546) 
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2CS  
0.0702 

(0.0781) 
0.0962 

(0.0807) 
0.1811 

(0.0740) 
0.1987 

(0.0769) 
0.1580 

(0.0777) 
0.2237 

(0.0802) 

3CS  
0.0565 

(0.0776) 
0.1563 

(0.0845) 
0.1673 

(0.0725) 
0.2447 

(0.0747) 
0.2033 

(0.0790) 
0.2331 

(0.0786) 

4CS  
0.0699 

(0.0782) 
0.2017 

(0.0826) 
0.2023 

(0.0761) 
0.2970 

(0.0801) 
0.2695 

(0.0817) 
0.3338 

(0.0818) 

5CS  
0.2414 

(0.0739) 
0.3721 

(0.0800) 
0.3577 

(0.0695) 
0.4368 

(0.0724) 
0.4104 

(0.0734) 
0.4766 

(0.0732) 

6CS  
0.0861 

(0.0764) 
0.2028 

(0.0801) 
0.3478 

(0.0774) 
0.4121 

(0.0775) 
0.3755 

(0.0805) 
0.4542 

(0.0823) 

7CS  
0.1624 

(0.0749) 
0.2435 

(0.0791) 
0.3562 

(0.0703) 
0.4508 

(0.0750) 
0.4226 

(0.0757) 
0.4974 

(0.0779) 

8CS  
0.0407 

(0.0812) 
0.2475 

(0.0827) 
0.4959 

(0.0749) 
0.5483 

(0.0794) 
0.5021 

(0.0785) 
0.5790 

(0.0801) 

9CS  
0.1100 

(0.0793) 
0.2800 

(0.0795) 
0.4136 

(0.0746) 
0.4746 

(0.0752) 
0.4939 

(0.0787) 
0.5232 

(0.0778) 

10CS  
0.1875 

(0.0733) 
0.3156 

(0.0779) 
0.4378 

(0.0740) 
0.5255 

(0.0768) 
0.4966 

(0.0795) 
0.5623 

(0.0804) 

11CS  
0.1690 

(0.0755) 
0.4209 

(0.0799) 
0.5654 

(0.0807) 
0.6521 

(0.0851) 
0.6277 

(0.0848) 
0.7346 

(0.0874) 

12CS  
0.2078 

(0.0736) 
0.3232 

(0.0789) 
0.5424 

(0.0777) 
0.6369 

(0.0789) 
0.6322 

(0.0834) 
0.6600 

(0.0836) 

13CS  
0.0882 

(0.0756) 
0.3740 

(0.0783) 
0.4759 

(0.0748) 
0.5510 

(0.0747) 
0.5520 

(0.0818) 
0.6271 

(0.0789) 

14CS  
0.1722 

(0.0739) 
0.3304 

(0.0778) 
0.5082 

(0.0805) 
0.6344 

(0.0806) 
0.5544 

(0.0846) 
0.6768 

(0.0851) 

15CS  
0.1296 

(0.0778) 
0.3541 

(0.0822) 
0.5099 

(0.0741) 
0.5821 

(0.0784) 
0.5012 

(0.0783) 
0.6018 

(0.0785) 

16CS  
0.2083 

(0.0724) 
0.4173 

(0.0805) 
0.4877 

(0.0727) 
0.6310 

(0.0743) 
0.5844 

(0.0763) 
0.6790 

(0.0779) 

17CS  
0.3057 

(0.0719) 
0.4143 

(0.0791) 
0.5135 

(0.0772) 
0.6547 

(0.0771) 
0.6383 

(0.0833) 
0.6510 

(0.0819) 

18CS  
0.2220 

(0.0726) 
0.3725 

(0.0833) 
0.5763 

(0.0740) 
0.6595 

(0.0773) 
0.6629 

(0.0811) 
0.7068 

(0.0818) 

19CS  
0.2894 

(0.0723) 
0.4594 

(0.0814) 
0.5716 

(0.0793) 
0.6037 

(0.0823) 
0.6639 

(0.0834) 
0.6598 

(0.0854) 

20CS  
0.1190 

(0.0738) 
0.3012 

(0.0755) 
0.4155 

(0.0720) 
0.5325 

(0.0744) 
0.4978 

(0.0752) 
0.5597 

(0.0751) 

21CS  
0.3328 

(0.0727) 
0.4708 

(0.0784) 
0.6300 

(0.0749) 
0.6551 

(0.0791) 
0.6630 
0.0817) 

0.7130 
(0.0850) 

22CS  
0.2435 

(0.0732) 
0.3575 

(0.0794) 
0.4839 

(0.0692) 
0.5662 

(0.0735) 
0.5327 

(0.0754) 
0.6373 

(0.0777) 

23CS  
0.2329 

(0.0742) 
0.3434 

(0.0792) 
0.4567 

(0.0725) 
0.4929 

(0.0743) 
0.4986 

(0.0765) 
0.5244 

(0.0788) 

24CS  
0.2043 

(0.0718) 
0.4283 

(0.0794) 
0.4852 

(0.0717) 
0.6850 

(0.0734) 
0.6242 

(0.0797) 
0.6817 

(0.0792) 

25CS  
0.2136 

(0.0718) 
0.3757 

(0.0785) 
0.4713 

(0.0724) 
0.5873 

(0.0757) 
0.5718 

(0.0791) 
0.6722 

(0.0807) 

26CS  
0.1691 

(0.0733) 
0.4021 

(0.0810) 
0.4914 

(0.0782) 
0.6029 

(0.0789) 
0.5643 

(0.0841) 
0.6556 

(0.0855) 

Log-likelihood -29675.4509 -26299.3682 -17938.5982 -16823.9430 -17423.4417 -16782.5229 

Parameters 33           35           41           69           43           71           
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Figure 3. Scale dynamics under different model specifications 
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Figure 4. The influence of the number of choice tasks on confidence intervals of choice task specific 
scale parameters under different model specifications 
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5.3. Bias	resulting	from	not	accounting	for	ordering	effects	

 

Allowing for scale differences between choice tasks can substantially improve model fit, in addition to 

improvements resulting from allowing for unobservable preference and scale heterogeneity. We 

illustrate this with the results presented in Table 2. Every model used in our analysis was estimated 

with (panel 1) and without (panel 2) allowing for choice task specific scale. In the case of models 

allowing for preference or scale heterogeneity, allowing for scale dynamics by introducing 25 choice 

task specific dummy variables as covariates of scale significantly improves model performance, as 

represented by a statistically significant increase in model fit. This is not the case, however, for H-

MNL model, where the increase in fit is not significant. This result is in line with our overall findings 

– not accounting for unobservable preference and scale heterogeneity may lead to underestimating 

scale dynamics and so controlling for them does not provide substantial improvement in the case too 

restrictive model is used (e.g. H-MNL).  

 

Table 2. The influence of accounting for scale dynamics on model performance 

 H-MNL S-MNL H-RPL_d H-RPL G-MNL_d G-MNL 

(1) With choice task specific scale 

No. of parameters 33 35 41 69 43 71 
Log-likelihood -29 675.45 -26 299.37 -17 938.60 -16 823.94 -17 423.44 -16 782.52 

(2) Without choice task specific scale 

No. of parameters 8 10 17 44 18 46 
Log-likelihood -29 708.28 -26 349.26 -18 003.07 -16 949.04 -17 502.96 -16 853.54 
 

Not accounting for differences in error term variance (scale) between choice tasks can result in biased 

estimates in a similar way as not accounting for panel structure of the dataset (Ortúzar & Willumsen 

2001). One might think that since implicit prices are derived from the ratio of two parameters, scale 

cancels out and implicit prices are invariant to scale. This is not the case. Since the entire utility 

function (including scale) is used in estimation, and derived probabilities enter maximized log-



 

28 

likelihood function, incorrect accounting for scale will influence parameter estimates, just as if the 

observations for different choice tasks were weighted in an arbitrary way.  

In order to investigate the influence of this bias on implicit prices we used all the models discussed 

above to derive marginal WTP for changes in choice attributes. These results are presented in Table 3. 

The results show that even though there are some differences between implicit prices derived from 

different model specifications they are reasonably close. More importantly, it seems that not 

accounting for choice task specific scale does not lead to significant differences in implicit prices – 

they are well within confidence intervals. This result, however, may be specific to our dataset. Since 

we did not observe significant preference (taste) dynamics between choice tasks, not accounting for 

scale differences, and so effectively using an arbitrary weighting of data from different choice tasks, 

does not lead to changes in calculated implicit prices.  

 

Table 3. Implicit prices under different model specifications [PLN] 

 H-MNL S-MNL H-RPL_d H-RPL G-MNL_d G-MNL 

(1) With choice task specific scale 

1NAT   59.66 54.28 30.65 31.57 32.44 29.03 
2NAT   87.75 74.63 45.09 42.33 46.22 39.10 

1TRA   107.25 69.43 42.97 37.47 42.28 34.41 
2TRA   143.20 104.74 62.71 55.75 62.61 49.98 
1INF   48.43 34.42 21.24 19.64 21.58 17.58 
2INF   78.24 50.80 31.13 27.47 30.68 24.85 

(2) Without choice task specific scale 

1NAT   59.32 53.88 32.54 33.79 30.78 32.96 
2NAT   87.28 74.24 46.84 46.27 44.70 44.62 

1TRA   106.68 69.15 45.51 40.79 41.57 38.28 
2TRA   142.71 104.53 65.82 60.27 60.66 56.53 
1INF   48.56 34.76 22.63 21.39 20.92 19.69 
2INF   78.24 50.87 32.77 30.66 30.86 27.68 
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6. Discussion	and	conclusions	

 

In this study we investigated the dynamics of utility function parameters and its random component 

variance (scale), which may arise in repeated choice tasks of discrete choice experiments. Our study 

demonstrates that allowing for unobservable preference and scale heterogeneity substantially increases 

the magnitude of scale changes. We show how overly restrictive specifications of the model, 

especially when combined with not enough choice tasks to conduct meaningful analysis, may lead to 

drawing incorrect conclusions in terms of whether scale dynamics are observed. We argue that this is 

an important factor that allows to explain some of the contradicting evidence presented in existing 

empirical studies. 

Our analysis utilized the state-of-the-art methods to control for unobservable preference and scale 

heterogeneity. We proposed extensions of these methods to allow the scale to be choice task specific. 

We find that the more sophisticated model is used, in terms of allowing for unobservable preference 

and scale heterogeneity, the higher observed increase in choice task specific scale parameter is. Using 

H-MNL model as a reference, we show that the magnitude of this increase grows from allowing for 

unobservable scale heterogeneity only (S-MNL) through allowing for unobservable preference 

heterogeneity (H-RPL) to allowing for both (G-MNL). 

Empirically, we do not find evidence of statistically significant preference (taste) dynamics. However, 

we observe significant dynamics of scale – the scale appears to increase until about 8’th choice task 

and then stabilizes. Therefore, as our respondents’ choices became more deterministic with the 

number of completed choice tasks, we can conclude that we found evidence of learning. On the 

contrary, there are no signs of scale decrease, at least for the 26 choice tasks used in our study. This 

might be interpreted as no evidence of fatigue. 

Our results do not support the inverted U-shaped relationship between scale and choice task number. 

In our case choice task specific scale was increasing at a decreasing rate, until after about 8’th choice 

tasks it became relatively stable (with some natural variability). We note, however, that virtually all 
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studies that reported the inverted U-shaped relationship between scale and choice task number 

assumed a quadratic relationship rather than allowing scale to be choice task specific. As a result, their 

finding of scale reaching its maximum at 10 (Caussade et al. 2005) or 6 (Chung et al. 2010) choice 

tasks may be a result of assumed functional form of the relationship, combined with not enough choice 

tasks used in the studies.  

Investigating the presence of fatigue is not straightforward, however. Swait and Adamowicz (2001b) 

note, that  due to perceived high complexity of the first few choice-situations, or cumulative cognitive 

burden, respondents may simplify their choice strategies adopting noncompensatory decision rules. As 

a result one would observe increase (not decrease) in scale as choices would become more 

deterministic. Our dataset does not allow to verify this hypothesis. However, such a change in decision 

strategies would likely lead to the changes in estimated choice task specific preference (taste) 

parameters. Since in our case there was no evidence of such preference changes, we take it as an 

indication that such a change in decision strategies did not take place.  

The economic theory of value maximization assumes that consumers have constant utility functions 

that are revealed when elicited (von Neumann & Morgenstern 1944). However, there are at least three 

streams of research which indicate that this might not be the case – both in terms of parameters of 

utility functions and in terms of its scale.  

Following Simon’s (1955) questioning of full rationality of human behavior, Heiner (1983) 

incorporated the notion of information processing limitations in the consumer’s ability of making 

rational choices. These limitations could cause the respondents’ decisions to change as they become 

more familiar with the ‘institution’ of DCE choice tasks (institutional learning; Braga & Starmer 

2005). Respondents may also be expected to make errors, possibly increasingly as they become 

fatigued or bored in later choice tasks. Finally, if the choice tasks are complex, respondents may 

engage in simplification strategies, and change the choice strategies they use as fatigue or boredom 

sets in. 

The second stream of research indicating problems with consumer’ utility functions stability comes 

from the research of human decision making. There is some evidence that preferences may be 



 

31 

constructed, rather than revealed (Payne et al. 1992; Slovic 1995). This may mean that consumers 

could be learning about their true preferences throughout the course of a DCE study (value learning; 

Plott 1999) or that after a period of ‘burn-in’ choice-situations individuals evolve a systematic 

approach to evaluating alternatives (Luce & Tukey 1964), in either case resulting in changes in their 

underlying decision rules from one choice task to another. One other manifestation of constructed 

preferences would be that choices may be influenced by a number of ‘external’ stimuli, such as 

changes in the task environment (Payne et al. 1993). This is a yet another manifestation of the well-

known framing effect (Kahneman & Tversky 2000). Finally, the constructed preference hypothesis 

may also cause path-dependence of respondent’s choices. For instance, constructed preferences may 

depend on the attribute levels seen in the opening or all previous choice tasks, possibly with 

decreasing strength. These may also be seen as a form of the anchoring effect (Kahneman et al. 1982). 

Even if individual’s choices are internally coherent, they may still be anchored to some reference 

point, such as the first choice task (coherent arbitrariness; Ariely et al. 2003). 

Thirdly, in addition to behavioral reservations, there may be economic-theoretic reasons to why the 

choice outcomes may change with the progress of DCE study. Carson and Groves (2007) show that 

the conditions under which the single-bounded referendum format elicitation questions of contingent 

valuation studies are incentive compatible (take-it-or-leave it form of the question, respondents’ 

perception of consequentiality of their responses, possibility of introducing compelling payments at 

the stated price) may not hold under the DCE studies, in particular ones with repeated choice tasks. 

Since respondents may be aware in advance of having multiple choice tasks, and as they go they can 

exploit information about previous choice tasks and decisions, it remains unknown if the mechanism is 

incentive incompatible, and hence if there is the same decision mechanism underlying choices in all 

choice tasks. Evidence of such lag effects is provided by e.g. Holmes and Boyle (2005).   

In the case of our study, using counterbalanced design allows to rule out systematic effect of many of 

the choice set specific effects discussed above, such as anchoring, framing or acting strategically. 

Since the order in which the 26 choice sets of our design were presented to different respondents was 

random, even if such effects as starting point bias or anchoring to a previous choice task attribute 
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levels were present, our approach causes these effects to cancel out between respondents. This allows 

us to focus on the effects of learning and fatigue in different choice tasks. 

From the statistical point of view, it has long been recognized that treating repeated choice data in the 

same way as cross-sectional data may not be appropriate, and may lead to, among others, biased 

standard errors of the estimated parameters (Ortúzar & Willumsen 2001). Theoretically, the same 

holds if choice task specific scale differences are not accounted for. We investigated the magnitude of 

this bias on implicit prices under different model specifications. In the case of our study, even though 

accounting for choice task specific scale proved to significantly improve models fit, we did not 

observe any statistically significant differences in implicit prices if this was not accounted for. We 

note, however, that this effect can be specific to our study, as we did not observe significant changes 

in preference (taste) dynamics between choice tasks.   

We acknowledge that our empirical results relate to a single dataset. We used data from a large-scale, 

high-quality national representative study conducted using face-to-face computer-assisted surveying 

techniques. It seems that, at least in the case of our study, the scale stabilized after about 8 choice tasks 

and remained on this level until the last, 26’th choice task. This result can depend on many study-

specific factors, however, such as context of the study, number of alternatives, number of attributes, 

and so on. There is also some evidence that other surveying techniques, such as internet-based 

surveys, might result in weaker learning effects and much stronger fatigue effects (Savage & 

Waldman 2008).  

In conclusion, our study lays foundations for future research on ordering effects. Our analysis shows 

that investigating ordering effects requires assuring correct model specification, in particular allowing 

for unobserved preference and scale heterogeneity, as well as using enough choice tasks to provide 

meaningful conclusions. We illustrate how overly restrictive specification of the model, as well as 

using not enough choice tasks may lead to drawing incorrect conclusions in terms of whether scale 

dynamics are observed. This may prove an important factor in explaining some of the contradicting 

evidence presented in existing empirical studies. Finally, we show that accounting for choice task 
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specific scale dynamics can significantly improve model fit and urge other researchers to take it into 

account in their applications. 
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Annex	1.	Review	of	empirical	studies	investigating	ordering	effects	
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Bjornstad et al. 
(1997) 

– – 1,3 x 
CVM 

609 no lab nature 
conservation 

Non-parametric  no no learning, reduction in 
hypothetical bias 

– 

Hensher (2001) 6 2 16 198 yes CAPI transport 
(travel choice) 

Compared WTP for 1-4, 8, 
12, 16 CT and 1-4, 5-8, 9-
12, 13-16 CT 

yes some no effect 
– 

Swait and 
Adamowicz 
(2001a) 

5 4 16 280 no n/a food choice Latent class model with CT 
number (and cumulative 
complexity) as class 
membership variables 

no no Respondents simplify 
strategies – adopt simpler 
decision rules (especially after 
CT 8) 

– 

Hanley et al. 
(2002) 

6 3 4, 8 367 no mail climbing route Separate multinomial logit 
and nested logit models for 
4 and 8 CTs 

no no no effect 
– 

DeSarbo et al. 
(2004) 

10 – 27+3 162 yes studen
ts 

students’ 
apartments 

ratings dependent on order no no Adaptation /  evolution of 
utility function as respondents 
progress through CTs 

– 

Bateman et al. 
(2008a) 

n/a n/a 1,4 x 
CVM 

400 no FTF animal welfare DB, compare WTP based on 
1 and 2 bid answer 

no no experience reduces SB/DB 
differences (institutional 
learning) and reduces 
anchoring to the first bid 
(value learning, no coherent 
arbitrariness) 

– 

Ladenburg and 
Olsen (2008) 

5 3 6 294+285 no CAWI nature 
protection 

Swait-Louviere procedure 
for 3+3CTs 

no no Some learning (gender 
specific); starting point bias 
(decaying effect)  

– 
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Rose et al. 
(2009) 

3-6 3-5 6-15 501 no CAPI transport 
(route choice) 

implicit prices a function of 
no of choice tasks in the 
design 

yes no Evidence mixed, country 
specific 

– 
Caussade et al. 
(2005) 

259 

Hensher (2004, 
2006b, a) 
 

427 

Bradley and 
Daly (1994) 

4 2 10-16 243 yes CAPI transport 
(route choice) 

Logit scaling approach no no – fatigue 

Brazell and 
Louviere 
(1997) 

10 3 12-96 553 yes mail holiday 
activities 

Swait-Louviere procedure, 
between and within surveys 
with different number of 
CTs 

no no – No effect 

7 3 16-120 224 n/a mail canned soup 
choice 

Carlsson and 
Martinsson 
(2001) 

3 2 16+16 35 No lab donations to 
WWF 

Swait-Louviere procedure no no Mixed, Non-constant n/a 

Arentze et al. 
(2003) 

3,5 2,3 8+8 344 yes n/a transport 
(route choice) 

Logit scaling approach no no No effect No effect 

Caussade et al. 
(2005) 

3-6 3-5 6-15 403 no CAPI transport 
(route choice) 

Heteroskedastic (covariance 
heterogeneity)logit, scale 
modeled as a function of 
design dimensions 

no no – U-shaped 
ralationship, max 
scale for 10’th CT 

Holmes and 
Boyle (2005) 

7 2 4 926 no mail forest 
management 

Swait-Louviere procedure no some Structural change between 1-3 
and 4 CT 

n/a 

Savage and 
Waldman 
(2008) 

5 2 8 357+325 yes Mail + 
CAWI 

internet 
provider 
service 

Error components model no yes – mail – no effect 
CAWI – fatigue 

Bateman et al. 
(2008b) 

3 2 16 864 yes FTF drinking water 
quality 

1’st CT repeated at the end 
– compare choices and 
WTP; 
include interaction of price 
with log-order 

yes some Implicit prices decreasing 
with CT number; 
differences between the 1’st 
and the 16’th (repeated 1’st) 
CT not statistically significant 

Effect not 
statistically 
significant  

Oppewal et al. 
(2010) 

8 3 4+4+4 400 no CAWI marketing 
(DVD 

recorders) 

Heteroscedastic logit model, 
compare scale between CT 
5-8 and CT 9-12 

no no n/a No effect 

Scheufele and 
Bennett (2010) 

3 2 1,4 1444+367+
371+ 

369+376 

no CAWI nature 
conservation 

Swait-Louviere procedure, 
multinomial logit model 

no no 1 CT questionnaire yields 
significantly higher implicit 
prices than 4 CT 

Learning 

Brouwer et al. 
(2010) 

3 3 6 300 yes FTF water scarcity Swait-Louviere, random 
parameters logit model 

yes some No effect No effect 
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Carlsson et al. 
(2010) 

5 2 8+8 389 no CAWI food choice Swait-Louviere procedure yes no Mixed No effect if CT 2-9 
vs. 9-16 compared, 
when CT 1 
included – learning 

Chung et al. 
(2010) 
 
 
 
 

7 3-12 1-20 1000 yes FTF food choice Heteroskedastic (covariance 
heterogeneity) logit, scale 
modeled as a function of 
design dimensions 

no no – U-shaped 
ralationship, max 
scale for 6’th CT 

Hess et al. 
(2012) 

2 3 8 1563+1146
+1110 

Yes CAWI transport 
(route choice) 

Logit scaling approach, 
MNL and RPL model 

yes no mixed mixed, some 
learning, no 
evidence of fatigue 
 

Orr et al. 
(2010) 

2 2 5+5+5 397 Yes CAPI transport 
safety 

Fosgerau 
(2006) 

2 2 8 472+1725 Yes CAPI transport 
(route choice) 

Hensher and 
Rose (2005) 

5 3 16 237+205 Yes CAPI transport 
(route choice) 

Hess et al. 
(2010) 

5 3 16 304 yes CAPI transport 
(route choice) 

Day et al. 
(2012) 

3 2 17 864 yes FTF tap water 
quality 

Non parametric + random 
effects probit with random 
scale 

some yes precedent-dependent order 
effects 

no effect 
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Annex	 2a	 –	 the	 illustration	 of	 economic	 forest	 and	 close‐
to‐natural	forest	
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Annex	2b	–	the	illustration	of	litter	in	the	forests	
 

 

 

 

 

 

 

Annex	2c	–	the	illustration	of	tourist	infrastructure	
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Annex	 3	 –	 The	 most	 ecologically	 valuable	 forests	 in	
Poland	
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