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 [eAbstract 
We present a class of decomposable inequality indices for ordinal data (e.g. self-reported 

health survey). It is characterized by well-known inequality axioms (e.g. scale invariance) and 

a decomposability axiom which states that an index can be represented as a function of 

inequality values in subgroups and subgroup sizes. The only decomposable indices are strictly 

monotonic transformations of the weighted average of frequencies in categories. Among the 
indices proposed in the literature only the absolute value index (Abul Naga and Yalcin, 2008; 
Apouey, 2007) is decomposable. As an empirical illustration we calculate regional 
contributions to overall health inequality in Switzerland. 
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Introduction

In measuring inequality we are typically interested in the dispersion of inequality

values with respect to sex, race, gender, age, education level and other character-

istics. Disaggregated analysis of the causes of inequality is of tremendous impor-

tance for policy because it enables policy makers to target particular inequalities

most e�ectively. Therefore decomposition by population subgroups is considered

a highly desired property of inequality indices. This paper presents the class of

decomposable indices for ordinal data.1

Health surveys in which individuals are asked to choose their health status

out of several options are an example of ordinal data that are frequently used in

policy and theoretical analyses. In fact, many well-being dimensions, along which

inequality can be measured, are of qualitative nature (e.g. happiness, educational

attainment). With this type of variables numerical values are assigned to each

option and they constitute a scale. A distinctive feature of qualitative data is that

order is the only relevant information. Formally, since increasing transformations

of a given scale all re�ect the same ordering of categories, it does not matter which

particular transformation is chosen; they are all equivalent. Therefore an index

should be invariant to rescalings of variables which preserve the order of categories.

It is well-known that conventional inequality indices do not have this property

(Zheng, 2011; Allison and Foster, 2004). The formulas of the Gini coe�cient,

the Atkinson index, the Theil index all depend on the mean which is sensitive to

rescalings. An example will clarify.

Suppose the distributions of self-reported health status among men and women

are, respectively, π = (0.2, 0.2, 0.2, 0.2, 0.2) and ω = (0.3, 0.2, 0.1, 0.1, 0.3). That is,

there are twenty percent men in each health category, thirty percent women in the

�rst category etc. By assumption, higher category number indicates better health

status. We consider two scales: c = (1, 2, 3, 4, 5) and c̃ = (1, 2, 3, 4, 100); note that

both correspond to the same order of health categories. Then, under scale c the

1We use the following names interchangeably: ordinal data, ordered response data, qualitative

data.
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Gini index for the men's distribution is GINI(π, c) = 0.26 whereas for women's

distribution we get GINI(ω, c) = 0.31, hence health inequality is lower among

men than women.2 However, under scale c̃ the ranking is reversed; GINI(π, c̃) =

0.72 > GINI(ω, c̃) = 0.66. Clearly, conventional inequality measures are not well-

suited for ordinal data. Accordingly, unidimensional indices for ordered response

data were introduced by Blair and Lacy (2000), Allison and Foster (2004), Abul

Naga and Yalcin (2008), Apouey (2007) and Zheng (2010). Yet these authors did

not study decomposability. This paper �lls this void.

We characterize decomposable indices in terms of standard inequality axioms

(e.g. scale invariance and normalization).3 The axiom that is similar in spirit

to Pigou-Dalton Transfer axiom is called EQUAL and was de�ned by Allison

and Foster (2004). They postulate that a cumulative distribution P re�ects more

inequality than a cumulative distribution Q if P is obtained from Q via a sequence

of median preserving spreads. The intuition is that P is less concentrated around

the median than Q.

Following the classic article in the study of inequality decomposition by Shorrocks

(1984), we call an index decomposable if it can be represented as some function of

subgroups inequality values and sizes.4 In addition, an index potentially depends

on the scale; unless it ful�lls scale independence, which is one of the postulated

axioms. As the main result (Theorem 3) we provide the functional form for the

indices which are decomposable and ful�ll scale independence, normalization, con-

tinuity and EQUAL. These indices belong to the class of continuous and strictly

increasing (decreasing) transformations of an index which is the weighted average

of frequencies in particular categories. In addition, weights increase (decrease)

2We calculated the Gini index by assuming there are two men in each health category, three

women in the �rst health category, two women in the second health category and the like. This

is valid since the Gini index is replication invariant.
3Appropriate modi�cations to account for the ordinal nature of the data were proposed by

Abul Naga and Yalcin (2008).
4To be precise, in the de�nition of the decomposability in the sense of Shorrocks (1984) the

function can also depend on subgroups means, however, as already noted such requirement would

not make much sense in the current setting.
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with the distance from the median category. Replacing scale independence with

a weaker requirement which is scale invariance (the ordering of the distributions

induced by an index is invariant with respect to scale, but the value of an index

depends on the scale) adds only the dependence on the scale (Theorem 2). If we do

not require that EQUAL holds, then the class of decomposable indices is of course

wider but not signi�cantly. That is, decomposable indices are continuous and

strictly monotonic transformations of the weighted average of frequencies (Theo-

rem 1). Similarly to conventional indices, where only monotonic transformations

of Generalized Entropy indices are decomposable (Shorrocks, 1984), decompos-

ability turns out to be particularly e�ective in �ltering out inequality measures

for qualitative data. Moreover, for the class of decomposable indices listed in the

main result (Theorem 3) we show that the function that aggregates inequality val-

ues in subgroups is necessarily the generalized mean, which in case of the weighted

average index reduces to the arithmetical mean (Remark 2).

Among the indices proposed in the literature, we �nd that the only decom-

posable index is an index which is called the absolute value index in Abul Naga

and Yalcin (2008) and which is also Apouey index with linear function (Apouey

2007). Although Apouey (2007) studies polarization, the proposed indices ful�ll

the postulated inequality axioms, therefore decomposability can be considered.

The Allison and Foster (2004) index is not decomposable and we did not study

the decomposability of an inequality measure proposed by Zheng (2010) since it

involves socioeconomic inequalities (strictly speaking, there are two relevant di-

mensions, namely health and socioeconomic status) whereas we deal with pure

inequalities in health only. The measures proposed by Blair and Lacy (2000)

do not ful�ll our de�nitions of decomposability either. Zheng (2008) points that

the measures of Blair and Lacy (2000) and Allison and Foster (2004) should be

considered as polarization not inequality indices since they measure only how con-

centrated the data are around the two ends. Altough the relationship between the

concepts of inequality and polarization in case of ordinal data is not the subject

of this paper, we notice that Theorems 1 and 2 do not make any use of inequality
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axioms and hence these decomposability results are independent on this discussion.

Next, we use the Swiss SHRS to calculate the contribution of health inequality

of seven Swiss regions to the overall health inequality in Switzerland. We use the

absolute value index and the weighted absolute value index for which weights are

such that either more weight is attached to below median dispersion or more weight

is attached to above median dispersion. Leman is by any measure the most unequal

region in Switzerland and Ticino is the least by two measures. However, relatively

low variation in SHRS data makes contributions look similar to population sizes,

with Middle-Land and Leman contributing the most (respectively, 0.243 and 0.211

by the absolute value index) to overall health inequality.

The paper is organized as follows. In Section 1 we present notation and de�ne

axioms. In Section 2 we state characterization theorems that provide explicit

functional forms for the class of decomposable indices. In Section 3 we check for

the decomposability of the indices already existing in the literature. In Section

4 we present the analysis of health inequality decomposition in Switzerland by

population groups which are seven statistical regions. Finally, we conclude.5

1 Notation and axioms

Following Abul Naga and Yalcin (2008) we call a vector of n categories c =

(c1, . . . , ci, . . . , cn) a scale whenever c1 < . . . < ci < . . . < cn. Let C denote the set

of all such ordered increasing scales. It makes sense to work with scales which have

at least two categories and consequently in what follows it is assumed that n ≥ 2.

For instance, we have ordered responses to health status and c = (1, 2, 3, 4, 5)

means that the �rst health category is assigned number 1, the second health

category is assigned number 2 and the third, the fourth and the �fth categories

are assigned, respectively, numbers 3, 4, 5. Let pi denote the proportion of in-

dividuals in the class ci. Obviously we require pi ∈ [0, 1] and
∑n

i=1 pi = 1. A

5Proofs of the main theorems are available upon request or can be downloaded from

http://coin.wne.uw.edu.pl/mkobus/Inequality decomposition by population subgroups for or-

dinal data.pdf.
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frequency distribution and an associated cumulative distribution are, respectively,

π := (p1, . . . , pn) and Π := (Π(c1), . . . ,Π(cn)). A cumulative distribution can be

also identi�ed with Π = (P1, . . . , Pn), where Pi :=
∑i

k=1 pk = Π(ci); further π is

an element of λ and Π is an element of Λ, which denote, respectively, the set of

all distributions and cumulative distributions de�ned over n discrete states. We

let state m be the median of Π if Pm−1 ≤ 0.5 and Pm ≥ 0.5. Please note that the

median does not have to be unique. Let I : Λ×C 7→ R be an inequality index for

qualitative data.

As we mentioned in the Introduction we will make use of the Allison-Foster

(AF forthwith) ordering for evaluating the equality present in the distribution.

Formally, ≺AF denotes the partial ordering of the distributions. Let Π,Ω :=

(Q1, . . . , Qn) be two elements of Λ. We say that Π ≺AF Ω if and only if the

following three conditions are met:

(AF1) Π,Ω have identical median states m,

(AF2) Pi ≤ Qi for any i < m,

(AF3) Pi ≥ Qi for any i ≥ m.

The intuition behind Allison-Foster ordering is that Π is more concentrated around

the median state than Ω. As Abul Naga and Yalcin (2008) point out AF order-

ing essentially requires that a transfer in the spirit of the Pigou-Dalton trans-

fer, namely from a person initially above the median to a person below the

median and moving both individuals into direction of the median induces a de-

crease of the inequality index. For example, the cumulative distributions cor-

responding to distributions π and ω presented in the Introduction are, respec-

tively, Π = (0.2, 0.4, 0.6, 0.8, 1) and Ω = (0.3, 0.5, 0.6, 0.7, 1). The median state

of Π is the third category, whereas Ω has two median states: the second and the

third category, hence the third category is the common median state. As we see

0.2 < 0.3; 0.4 < 0.5 and 0.8 > 0.7, therefore Π ≺AF Ω.

Following Abul Naga and Yalcin (2008) we introduce the most equal π̂ and

the most unequal π̌ distribution which are, respectively, the distribution in which
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all probability mass is concentrated in one category and the distribution in which

half of probability mass is concentrated in the lowest category and the other half

in the highest category.

The following axioms will be imposed on inequality indices.

CON I : λ× C 7→ R is a continuous function.

SCALINV (I(π, c1) ≤ I(ω, c1)) ⇔ (I(π, c2) ≤ I(ω, c2)) for any c1, c2 ∈ C and

any π, ω ∈ λ.

SCALINDEP (I(π, c1) = I(π, c2)) for any c1, c2 ∈ C and any π ∈ λ.

NORM I(π, c) ≥ 0 with I(π̂, c) = 0 and I(π̌, c) = 1 for any c ∈ C.

EQUAL (π ≺AF ω)⇒ (I(π, c) ≤ I(ω, c)) for any c ∈ C.

These axioms parallel standard axioms used in inequality measurement. CON

states that an index is continuous, whereas SCALINV requires that the ordering

of distributions established by an index is invariant to scale changes. In other

words, SCALINV ensures that the situation described in the example given in

the Introduction cannot happen; that is, whether one distribution exhibits more

inequality than the other does not change with the way the numbers are assigned

to particular categories. SCALINDEP is even stronger since it makes the index

independent of the scale, thus we write I(π). Obviously if SCALINDEP holds,

then so does SCALINV. NORM requires that the index be normalized i.e. zero is

assigned to the most equal distribution and one is assigned to the most unequal

distribution. EQUAL states that the index is consistent with the Allison-Foster

equality ordering.

Decomposability is de�ned as follows.

DECOMP There exists a f : Ran(I)×Ran(I)×(0, 1)×C 7→ R that is continuous

and strictly increasing with respect to the �rst two coordinates such that for

any π, ω ∈ λ, α ∈ (0, 1)

I(απ + (1− α)ω, c) = f(I(π, c), I(ω, c), α, c), (1)
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where απ + (1 − α)ω is a weighted sum of probability distributions (i.e. π

assigns mass pi to category ci ∈ c and ω assigns mass qi, then the probability

mass attributed to ci in απ+ (1−α)ω is αpi + (1−α)qi). If an index ful�lls

SCALINDEP then (1) becomes

I(απ + (1− α)ω) = f(I(π), I(ω), α). (2)

DECOMP requires that an index be presented as some function of inequality

values in subgroups and subgroup sizes expressed in percentages. In order to bet-

ter understand how DECOMP works we consider the following example. Let

π := (0.25, 0.25, 0.50);ω := (0.30, 0.40, 0.30) and α = 0.5. The distribution

0.5π + 0.5ω := (0.275, 0.325, 0.40) can be viewed as two population subgroups

of equal size α = 0.5 that correspond to distributions π and ω. Then, if the

inequality index ful�lls DECOMP the inequality value associated with the distri-

bution (0.275, 0.325, 0.40) can be decomposed into inequality values in groups π

and ω.

Alternatively, one can consider a more general de�nition of decomposability

such that, for certain �xed k ≥ 2 equation (2) becomes

I

(
k∑
i=1

αiπi

)
= f(I(π1), . . . , I(πk), α1, . . . , αk), (3)

where
∑k

i=1 αi = 1.6. Therefore, this de�nition is stronger than DECOMP. Yet in

our setting it proves to be equivalent. The same is the case if we require that (3)

holds for every k. This is explained in Remark 1 below.

2 Characterization theorems

In this section we characterize indices by the axioms introduced in the previous

section.

6We would like to thank a referee for this alternative de�nition.
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Theorem 1. I ful�lls CON, NORM, SCALINDEP, DECOMP if and only if I is

of the form

I(π) = G

(
n∑
i=1

aipi

)
, (4)

where (a1, a2, . . . , an) ∈ Rn, G : R 7→ [0, 1] is a continuous strictly monotonic

function. Moreover

G(x̂) = 0 and G(x̌) = 1,

where x̂ =
∑n

i=1 aip̂i, x̌ =
∑n

i=1 aip̌i and, p̂i and p̌i correspond to π̂ and π̌ respec-

tively.

The four properties stated in Theorem 1 are su�cient to reduce the class of con-

sidered indices only to continuous and normalized transformations of a weighted

average of frequencies. In obtaining functional form (4) DECOMP and SCALIN-

DEP play a crucial role. Although (4) is a natural conjecture, the proof turned

out to be quite involved.

Remark 1. Theorem 1 holds true if we use the alternative de�nitions of DECOMP

e.g. such as condition (3).

Proof. We start with the �if� part. As we noticed alternative de�nitions imply

DECOMP hence (3) plus the other axioms implies that (4) is the only possible

functional form. Now we check the �only if� part. Let π1, . . . , πk be distributions

such that πl = (pl1, . . . , p
l
n). We put π =

∑n
l=1 αlπl and

pi =
k∑
l=1

αlp
l
i.

We have

I

(
k∑
l=1

αlπl

)
= I(π) = G

(
n∑
i=1

aipi

)
= G

(
n∑
i=1

ai

k∑
l=1

αlp
l
i

)

= G

(
k∑
l=1

αl

n∑
i=1

aip
l
i

)
= f (I(π1), . . . , I(πk), α1, . . . , αk) ,

where f(x1, . . . , xk, α1, . . . , αk) = G
(∑k

l=1 αlG
−1(xl)

)
.
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To require that the inequality index for ordinal data does not depend on the

scale may be considered as too strong a condition and consequently SCALINDEP

may appear as too strong an axiom. What is important is that an index does

not change arbitrarily with the scale and for this to hold one does not need to

impose independence on the scale. As already mentioned the SCALINV axiom

ensures the required invariance property of an inequality measure. Therefore, a

closely related result to Theorem 1 emerges when we replace SCALINDEP with

SCALINV.

Theorem 2. The index I ful�lls CON, SCALINV, NORM and DECOMP if and

only if I is of the form

I(π, c) = G

(
n∑
i=1

aipi, c

)
, (5)

for some (a1, a2, . . . , an) ∈ Rn and G : R × C 7→ [0, 1] is a continuous strictly

monotonic (with respect to the �rst coordinate) function. Moreover

G(x̂, c) = 0 and G(x̌, c) = 1, for any c ∈ C,

where x̂ =
∑n

i=1 aip̂i, x̌ =
∑n

i=1 aip̌i and p̂i and p̌i correspond to π̂ and π̌ respec-

tively.

Relaxing SCALINDEP by replacing it with SCALINV adds dependence of the

index on the scale. Also, for each scale c function G(·, c) is increasing (or, equiva-

lently, we could demand it to be decreasing) with respect to the �rst coordinate.

This is quite intuitive given that SCALINV requires that the ordering imposed by

an index is invariant to scale changes.

So far we have not considered EQUAL axiom, which gives us a criterion by

which we judge whether one distribution is more equal than the other. Thus the

question now to answer is what additional structure is added by this axiom.

Theorem 3. Let I be an index which can be decomposed according to (4). Then,

I ful�lls EQUAL if and only if there exist G which ful�lls conditions listed in

Theorem 1 and (a1, a2, . . . , an) ∈ Rn, such that

I(π) = G

(
n∑
i=1

aipi

)
. (6)
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Moreover, either G is a strictly increasing function and ai ≥ ai+1 when i < m and

ai ≤ ai+1 when i ≥ m or G is a strictly decreasing function and ai ≤ ai+1 when

i < m and ai ≥ ai+1 when i ≥ m.

EQUAL axiom states that the distribution that is more concentrated around

its median state is more equal, or equivalently, the less concentration around

the median state, the more inequality. Hence, index (6) assigns more weight to

categories which are further from the median.

Knowing that an index has the form (6), we may write decomposition (1)

explicitly.

Remark 2. Let I be given by (6). We denote Ĩ(π) :=
∑n

i=1 aipi which is an index

for which (1) writes as

Ĩ(απ1 + (1− α)π2) = αĨ(π1) + (1− α)Ĩ(π2), (7)

i.e. f is the arithmetical mean given by f(i1, i2, α) = αi1 + (1− α)i2.

By de�nition I = G ◦ Ĩ, therefore we have

I(απ1 + (1− α)π2) = G(αĨ(π1) + (1− α)Ĩ(π2))

= G
(
α(G−1 ◦ I)(π1) + (1− α)(G−1 ◦ I)(π2)

)
.

i.e. f is the generalized mean

f(i1, i2, α) = G
(
αG−1(i1) + (1− α)G−1(i2)

)
which in case of G(π) = π reduces to the arithmetical mean.

3 Decomposability of speci�c indices

Based on Theorems 1-3 we now check which of the indices proposed in the litera-

ture are decomposable.

• Absolute value index
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This index was proposed by Abul Naga and Yalcin (2008):7

I1,1 =

∑
i<m Pi −

∑
i≥m Pi + (n+ 1−m)

(n− 1)/2
(8)

We will now present I1,1 in the form given by Theorem 3. We have

∑
i<m

Pi −
∑
i≥m

Pi =
m−1∑
i=1

(
i∑

j=1

pj

)
−

n∑
i=m

(
i∑

j=1

pj

)

=
m−1∑
i=1

(m− i)pi − (n−m+ 1)
m−1∑
i=1

pi −
n∑

i=m

(n− i+ 1)pi

=
m−1∑
i=1

(2m− n− i− 1)pi +
n∑

i=m

(−n+ i− 1)pi.

Clearly, for i < m weights are decreasing with i while for i ≥ m they are

increasing hence I1,1 is of the form (6). Absolute value index is a member of

the family of indices Iα,β (Abul Naga and Yalcin, 2008) for which α = β = 1;

however in general the indices that belong to Iα,β are not decomposable.

One can think of the following generalization which gives us the weighted

absolute value index.

Ia,b =
a
∑

i<m Pi − b
∑

i≥m Pi + b(n+ 1−m)

(a(m− 1) + b(n−m)) /2
; a, b ≥ 0. (9)

If a = 1 and b = 1, then obviously we get I1,1 and it is evident that adding

these weights does not change decomposability property. There is a nice

interpretation related to the weighted absolute value index. When a > b the

index is more sensitive to inequality below the median, whereas the opposite

is true if a < b and more weight is attached to inequality above the median.

• Allison-Foster index

The following index was proposed by Allison and Foster (2004):

IAF =

∑n
i=m cipi∑n
i=m pi

−
∑m−1

i=1 cipi∑m−1
i=1 pi

Because of changing weights it is neither of the form (6) nor (5).

7This is an index denoted as I1,1 in Abul Naga and Yalcin (2008), however here the subscript

{1, 1} means that weights are equal to one (see the weighted index de�ned later in the text).
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• Apouey index

This is the index of Apouey (2007):

IA := C1

n∑
i=1

g

(∣∣∣∣Pi − 1

2

∣∣∣∣)+ C2,

where g is a continuous decreasing function and C1 > 0. Obviously, IA

ful�lls CON, by Proposition 1 in Apouey (2007) it is consistent with EQUAL.

Applying NORM when g(x) = x we know that IA = I1,1. For g(x) = x using

the properties of the modulus function we have

IA = C1

(∑
i≥m

Pi −
∑
i<m

Pi +m− n

2
− 1

)
+ C2

The values of IA calculated for, respectively, the best and the worst distri-

butions give us the following system of equations

C1
n

2
+ C2 = 0 and C1

1

2
+ C2 = 1,

thus we get

C1 =
2

1− n
= − 2

n− 1
, C2 =

n

n− 1

Substituting C1, C2 into the expression for IA after simple calculations we

get I1,1. Let us also notice that any other linear function g(x) = ax+b, a > 0

will also induce I1,1 (obviously with di�erent C1, C2).

The above is the only case when the index is decomposable. We will now

present a sketch of the proof of this fact. Let us assume that IA can be

decomposed, i.e.

n∑
i=1

g

(∣∣∣∣Pi − 1

2

∣∣∣∣) = G

(
n∑
i=1

aipi

)
, (10)

for some G and ai's (we skip C1 and C2 for notational convenience). This

resembles a little bit the Pexider equation. Following this path, we notice

that making a few simple calculations we can �nd ãi's such that
∑n

i=1 aipi =∑n
i=1 ãiPi. We also denote hi(x) = g(|x/ai− 1/2|). Let us �x P2, P3, . . . , Pn.

We could write (10) as

h1(x1) + h2(x2) = G̃(x1 + x2),

12



where one should think about xi as ãiPi and G̃ is de�ned in an obvious way.

By (Aczel, 1966, Theorem 1 p. 142) and assumption of continuity of g (and

consequently of hi's) we obtain that hi's have to be linear. This proves the

linearity of g, potentially only on some subset of [0, 1/2]. Varying P2 we

could extend it to the whole [0, 1/2] (we note that the behavior outside of

[0, 1/2] does not in�uence IA). The details are left to the reader.

• Blair and Lacy index

The indices of Blair and Lacy (2000) are the following:

IBL := 1−
∑n−1

i=1 (Pi − 0.5)2

(n− 1)/4

and

ÎBL := 1−

(∑n−1
i=1 (Pi − 0.5)2

(n− 1)/4

) 1
2

These indices ful�ll CON, NORM and SCALINDEP but they are not de-

composable. To see this let us assume that I in (4) is di�erentiable and let

us calculate its gradient

∇I(π) =

(
∂I(π)

∂p1
,
∂I(π)

∂p2
, . . . ,

∂I(π)

∂pn

)
= G′

(
n∑
i=1

aipi

)
(a1, a2, . . . , an) .

One easily notices that gradients for any two points are collinear. We will

check that the gradient of IBL does not have this property. Indeed,

∂IBL
∂pj

= − 8

n− 1

n−1∑
i=j

(Pi − 0.5).

Now it is obvious that gradient of IBL does not have the above property. For

example, one can take two cdf's (0.1, 0.2, 0.3, 1, . . . , 1) and (0.1, 0.1, 0.4, 1, 1, . . . , 1).

Calculation of the gradient of ÎBL is substantially harder so instead we notice

that ÎBL = H ◦ IBL, where H(x) = 1 − (1 − x)1/2. Moreover DECOMP is

invariant with respect to the monotonic transformations (which H is). Since

IBL is not decomposable using Theorem 1 we notice that the only axiom

that is not ful�lled is DECOMP. Hence ÎBL cannot ful�ll DECOMP either.
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Table 1: Distribution of SHRS in the seven statistical regions of Switzerland

Area Population SHRS distribution

% Very bad Bad So so Good Very good

Leman 18 0.01 0.05 0.16 0.72 1

North-West 14 0.01 0.05 0.18 0.81 1

Central 9 0.00 0.02 0.13 0.76 1

Middle-Land 23 0.01 0.04 0.17 0.77 1

East 15 0.00 0.03 0.14 0.78 1

Ticino 4 0.01 0.06 0.17 0.87 1

Zurich 17 0.00 0.03 0.13 0.78 1
Source: Abul Naga and Yalcin (2008) and Eurostat database.

4 Empirical application

Based on the data concerning 2002 wave of Swiss health survey provided in Abul

Naga and Yalcin (2008) we evaluate the impact of health inequality in seven sta-

tistical regions of Switzerland on the overall inequality in Switzerland. Table 1

presents distribution of SHRS and population contributions for the year 2002 for

seven Swiss regions.

We need to calculate the impact of inequality in seven subgroups on the total

inequality. Clearly, for k subgroups, by induction, (7) reads as follows

I(α1π1 + α2π2 + . . .+ αkπk) = α1I(π1) + α2I(π2) + . . .+ αkI(πk). (11)

and the same holds if Ĩ depends on Pi instead of πi. Here k = 7 and α′s are

regions' population sizes (percentages). The median of the SHRS distribution in

every region is category fourth labeled �good�. As inequality indices we use the

absolute value index and its weighted version. For m = 4 and n = 5 these indices

are the following

I1,1 =

∑
i<m Pi −

∑
i≥m Pi + 2

2
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Table 2: Inequality decomposition by population subgroups in Swiss regions

Area I2,1 Contribution I1,1 Contribution I1,2 Contribution

Leman 0.205 0.207 0.250 0.211 0.312 0.215

North-West 0.191 0.149 0.215 0.141 0.248 0.133

Central 0.154 0.078 0.195 0.082 0.252 0.087

Middle-Land 0.191 0.246 0.225 0.243 0.272 0.239

East 0.160 0.134 0.195 0.137 0.244 0.140

Ticino 0.174 0.039 0.185 0.035 0.200 0.030

Zurich 0.154 0.147 0.190 0.151 0.240 0.156

and

Ia,b =
a
∑

i<m Pi − b
∑

i≥m Pi + 2b

(3a+ b) /2
.

In what follows we admit the following weights: a = 2, b = 1; a = 1, b = 1 and

a = 1, b = 2. Obviously, a = 1, b = 1 gives us the absolute value index. Total

inequality as measured by these three di�erent indices is the following: I2,1 =

0.178943, I2,1 = 0.21335, I2,1 = 0.26152.

Let us now study regions' contributions to overall inequality (Table 2). The

contribution of region k is calculated according to αkI(πk)
I(π)

, where αk is region k's

population size (or more precisely, percentage of the overall population attributed

to region k) and I(πk), I(π) are inequality values in, respectively, region k's SHRS

distribution and overall distribution. Three inequality rankings (beginning from

the highest inequality) are the following:

Leman >I2,1 North-West =I2,1 Middle-Land >I2,1 Ticino >I2,1

>I2,1 East >I2,1 Central =I2,1 Zurich.

Leman >I1,1 Middle-Land >I1,1 North-West >I1,1 Central =I1,1

=I1,1 East >I1,1 Zurich >I1,1 Ticino.
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Leman >I1,2 Middle-Land >I1,2 Central >I1,2 North-West >I1,2

>I1,2 East >I1,2 Zurich >I1,2 Ticino.

By any measure Leman is the most unequal region. As to the least unequal

region the three indices are not fully consistent, however. It appears that when

weight is shifted away from below median inequality, Ticino emerges as having

the lowest health inequality. On the other hand, Ticino is the fourth most un-

equal region according to I2,1, which suggests that most inequality in Ticino (in

comparison to other regions) occurs at the bottom of the distribution. As we

increase the sensitivity of an index to above median categories, the dispersion of

inequality values increases; that is, the dispersion for I2,1 is 0.051 and for I1,2 the

dispersion equals 0.112. This implies that health distributions di�er at most in

higher categories, which is consistent with the �ndings of Abul Naga and Yalcin

(2008).

The contribution rankings are the following:

Middle-Land >I2,1 Leman =I2,1 North-West >I2,1 Zurich >I2,1

>I2,1 East >I2,1 Central =I2,1 Ticino.

Middle-Land >I1,1 Leman >I1,1 Zurich >I1,1 North-West =I1,1

=I1,1 East >I1,1 Central >I1,1 Ticino.

Middle-Land >I1,2 Leman >I1,2 Zurich >I1,2 East >I1,2

>I1,2 North-West >I1,2 Central >I1,2 Ticino.

The highest contribution to total health inequality in Switzerland is attributed

to the Middle Land and the second highest is attributed to Leman, irrespectively

of the inequality measure. Thus judging inequality contribution only on the basis

of inequality value would be misleading. Ticino is the region that contributes the

least and this is caused by its smallest population size as well as its low inequal-

ity score. The last two rankings are identical to the ordering of population sizes,
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which indicates that apparently variation in health response data is suppressed by

relatively large di�erences in populations sizes. In the �rst ranking, when more

weight is put at the lower end of the distribution (relatively small) di�erence in

population sizes between North West, East and Zurich is not enough to compen-

sate for higher percentage of individuals with bad health status in North West and

consequently the contribution of North West is greater than the contributions of

both East and Zurich.

Conclusions

This paper addresses the problem of inequality decomposition by population sub-

groups for qualitative data such as health surveys. Conventional inequality mea-

sures are not well-suited to handle qualitative data. As the main result we derived

an explicit functional form for inequality indices that satisfy decomposability along

with other standard inequality axioms. We applied our methodology to the study

of health inequality decomposition in Switzerland by groups that consist of seven

statistical regions. Inequality decomposition into groups de�ned by race, sex, gen-

der can be carried out in the same manner. Our empirical example focused on

health data, yet other outcome variables can also be considered. Although decom-

posability itself is a desired property of inequality measures, it turns out that it

implies a severe restriction on the form of inequality indices. Namely, decompos-

able indices are necessarily non-decreasing transformations of an index which is a

weighted average of frequencies in considered categories.

17



References

1. Allison R A, Foster J E. Measuring health inequality using qualitative data,

Journal of Health Economics 2004;23(3); 505-524.

2. Abul Naga R H, Yalcin T. Inequality measurement for ordered response health

data, Journal of Health Economics 2008;27(6); 1614-1625.

3. Aczel J. Lectures on functional equations and their applications. Academic

Press: New York; 1966. 4. Apouey B. Measuring health polarization with self-

assessed health data, Health Economics 2007;16; 875-894.

5. Blair J, Lacy M G. Statistics of ordinal variation, Sociological Methods and

Research 2000; 28(251);251-280.

6. Shorrocks A F. Inequality decomposition by population subgroups, Economet-

rica 1984;52(6); 1369-85.

7. Zheng B. A new approach to measure socioeconomic inequality in health, Jour-

nal of Economic Inequality 2011:555-577.

8. Zheng B. Measuring inequality with ordinal data: a note, Research on Economic

Inequality 2008; 16:177-188.

18




	WNE WP 24/2011 (64)
	Introduction
	Notation and axioms
	Characterization theorems
	Decomposability of speci˝c indices
	Empirical application
	Conclusions
	References

