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Abstract 

This paper examines how including latent variables can benefit propensity score matching. A 
researcher can estimate, based on theoretical presumptions, the latent variable from the observed 
manifest variables and can use this estimate in propensity score matching. This paper demonstrates 
the benefits of such an approach and compares it with a method more common in econometrics, 
where the manifest variables are directly used in matching. We intuit that estimating the propensity 
score on the manifest variables introduces a measurement error that can be limited when estimating 
the propensity score on the estimated latent variable. We use Monte Carlo simulations to test how 
various matching methods behave under distinct circumstances found in practice. Also, we apply 
this approach to real data. Using the estimated latent variable in the propensity score matching 
increases the efficiency of treatment effect estimators. The benefits are larger for small samples, for 
non-linear processes, and for a large number of the manifest variables available, especially if they 
are highly correlated with the latent variable. 
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I. Introduction 

This paper demonstrates how incorporating the latent variable modeling into the propensity 

score matching can limit measurement error in the propensity score and, in effect, can 

increase precision of the estimates of treatment effects. The idea behind this paper comes 

from the popularity of propensity score matching in empirical research and from economists’ 

distrust of latent variable modeling. In fact, in econometrics and economics the latent variable 

modeling is unpopular, unlike its status in sociology, psychology and psychometrics. We 

show that if the latent variable modeling has valid theoretical and empirical foundations, it 

can strongly benefit the propensity score matching.  

 This is not the first paper to introduce latent variable modeling into propensity score 

matching. The seminal work of James Heckman and others was helpful when developing the 

framework we present (see Abbring and Heckman, 2007, Section 2.7 for discussion and 

further references). However, our approach differs in one important aspect. Heckman, and 

others, modeled residuals from outcome equations across quasi-experimental groups 

assuming that there are latent traits behind them. We assume, instead, that values of the latent 

variable are associated with values of the manifest variables that are observable and can be 

used to estimate the latent variable. We present the benefits of using the estimated latent 

variable in the propensity score matching. The procedure we describe can notably lower the 

variance of treatment estimators, which we demonstrate with Monte Carlo simulations and 

real data examples. 

 The paper is organized as follows. Section II shows how the latent variables 

modeling can be introduced into the propensity score matching using the measurement error 

model of the relation between the latent trait and the manifest variables. Section III provides 

evidence from the Monte Carlo study on how the proposed approach increases efficiency of 

the matching estimators of the treatment effects. Section IV empirically applies this approach 

to data. Section V concludes. Appendices A and B contain additional results and a Stata 

software code we used to obtain results. 

 

 

II. Modeling Latent Variables in Propensity Score Matching 

 

Modeling Latent Variables 

Latent variables can reflect either hypothetical constructs or existing phenomena that cannot 

be directly measured but are often reflected in observed variables that are proxies of 

measured phenomena. These observable manifestations are correlated with latent variables 

but also contain an independent component. Manifest variables contain a signal about the 

latent variable and the random component (often called the “measurement error”) that is 

uncorrelated with this variable.  
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A relation between the latent variable and the manifest variables can be presented using the 

one-factor model or the congeneric measurement error model (Joreskog, 1971; Skrondal and 

Rabe-Hesketh, 2004). We assume that the observed j-th variable is measured with error and 

on a scale specific to that variable. Values for a set of such manifest variables is observed for 

each i-th individual. This is modeled through the following equation: 

 ijijjij eY ++= ηλδ  (1)  

Where η  is the latent variable or common factor and Yij are observed realizations of manifest 

variables or items. We assume that error terms eij are independent and ),0( jN σ . This model 

can be also interpreted as a measurement error model where true scores η  are reflected in 

each j-th variable with random error on the scale defined by jδ  and jλ . In the factor analysis, 

jλ  are called factor loadings and jδ  are called intercepts. To identify this model some 

restrictions are needed, for example, that 11 =λ  or that the Var(η )=1. This model assumes 

that there is only one latent variable behind the manifest variables; however, dealing with 

several latent variables is quite straightforward within this framework. 

 If the model we present above is true, the latent variable can be estimated from the 

manifest variables using factor analysis approach. Specification of a latent variable factor 

model has to be driven by theoretical considerations and carefully tested empirically. Usually, 

models assuming different numbers of common factors are estimated and compared on how 

they fit the data. A problem arises when such models all seem to be plausible. In this case, 

theoretical considerations can play an important role. In this paper, we abstract from these 

issues, assuming that a latent variable model properly reflects the latent structure behind the 

data. Moreover, we assume there is only one latent variable behind each set of manifest 

variables. Our approach can be easily extended to more complex situations, for example, 

involving more latent variables and allowing for correlations with other variables in a model. 

However, simple scenarios considered in this paper illustrate the main benefits of 

incorporating latent variables in matching. Our general findings should also hold under more 

complex circumstances. 

  We are not aware of any other study, other than the efforts of James Heckman 

and his colleagues described in the introduction, that attempts to model latent traits in the 

propensity score matching. The use of latent variables models is rare in economics or 

econometrics, for several reasons. First, the latent variables theory was developed outside the 

economics and econometrics field. Economists are not aware of modern approaches in latent 

variables modeling and are suspicious about assuming the existence of latent traits when 

modeling economic phenomena. Second, typical datasets used by economists do not contain 

information that can be used to estimate latent variables. In labor market studies, where 

propensity score matching is relatively widely used, questions about attitudes or opinions are 

rarely available. In administrative data such information is never present, while in labor force 

surveys these types of questions are infrequent and are usually limited to one or two direct 

questions instead of a set of questions that can be used to estimate the latent attitude.  
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 The usefulness of latent variable modeling in economic research can be reconsidered 

when taking into account modern developments in statistics. Recent work demonstrates that 

current approaches are much more reliable, are theory driven and are more adverse to ad hoc 

interpretations (see Skrondal and Rabe-Hesketh, 2004, for an extensive discussion and 

unifying framework). Moreover, in many circumstances, such as evaluating labor market 

training or school programmes, latent traits like attitudes play an important role in the choices 

of participants and non-participants. In educational studies, numerous works demonstrate 

how important for student performance are attitudes or latent family characteristics (OECD, 

2009; Jakubowski and Pokropek, 2009). In labor market studies, it was shown that job 

satisfaction, even if measured through a single simple question, significantly changes quasi-

experimental estimates (White and Killeen, 2002).  

 Usually, instead of modeling latent traits directly, economists use survey responses 

that reflect these traits.  In studies of anti-poverty programmes direct responses about 

household possessions are typically used (see Jalan and Ravallion, 2003), although they could 

be modeled as latent traits reflecting household wealth and socio-economic position (we use a 

similar example in this paper). In a well-known paper by Agodini and Dynarski (2004) on 

propensity score matching, student responses to questions about time use and attitudes 

towards learning were added to the list of matching covariates instead of being used to model 

the latent characteristics behind them. While similar examples are rare in economic literature, 

this is not because information on latent traits is useless or impossible to obtain. It seems that 

economists simply do not make attempts to use such information. We hope that this paper 

will contribute to changing this situation. 

 We propose an approach where the latent variable is estimated from the manifest 

variables and directly used in the propensity score matching. A similar approach is widely 

used in educational research or psychology where latent constructs are estimated and then 

used in regression or other statistical models. Our paper presents benefits of using the 

estimated latent variable instead of a set of manifest variables in the propensity score 

matching. Simulation results and empirical examples demonstrate that modeling latent 

variable increases precision of propensity score matching estimates of treatment effects.  

 

Propensity Score Matching with Latent Variables 

Consider a situation where we want to compare outcomes between two groups where the 

latent variable is unbalanced. One of these quasi-experimental groups is affected by a 

treatment, while the other remains unaffected and serves as a baseline reference group. We 

call subjects in the first group the “treated” and subjects in the latter group the “controls.” We 

assume that the latent variable affects outcomes in both groups, and that the unbalance in the 

latent variable creates bias when comparing group outcomes. 

 For observational studies, a matching approach was proposed to balance covariates 

among groups of treated and controls (Rubin, 1973). Propensity score matching is currently 

the most popular version of this approach and is based on balancing covariates through 
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matching conducted on a propensity score (Rosenbaum and Rubin, 1983). Propensity score is 

usually estimated by logit or probit and reflects the probability of being selected to the group 

of treated. Matching based on the propensity score instead of matching on all covariates 

solves the so-called curse of dimensionality that makes normal matching inadvisable or even 

impossible in smaller samples. After balancing covariates by using matching, simple outcome 

comparisons provide unbiased estimates of treatment effects, assuming that all differences 

between the two groups are observed and taken into account when estimating the propensity 

score (see Heckman et al., 1998, for detailed assumptions). 

 Consider that not only the unbalance of the observed covariates, but also the 

unbalance of the latent variable, poses a potential barrier to estimate treatment effects. In this 

case, a researcher would like to include the latent variable in matching, however, that is not 

observed. Instead, matching has to be conducted on the observed variables, including the 

manifest variables that are only proxies of the latent trait. By assumption, the manifest 

variables reflect the latent variable with a random error. Estimating the propensity score on 

the manifest variables introduces additional noise into matching. Intuitively, the greater the 

error, the more often are subjects mismatched, which affects the quality of matching 

estimators. The smaller the error is or the stronger a signal from the latent variable reflected 

in the manifest variables is, the more negligible is the fact that matching is not conducted 

directly on the latent variable. 

 This paper discusses how estimating the latent variable, and conducting matching on 

this estimate rather than on a set of manifest variables, can increase the quality of matching in 

some situations, especially in smaller samples or with a relatively weak signal about the 

latent variable available in the manifest variables. Compared to the observable proxies, the 

estimated latent variable should reflect the latent variable with more precision if the latent 

variable model is correct. This will benefit matching, as less error is introduced. 

 More formally, consider first a hypothetical situation where the latent variable is 

directly observed and can be used for matching. In this case, a propensity score is given by: 

 εδηαη +++= XβX 0),(P  (2) 

Where η is the latent variable that has to be balanced together with other covariates contained 

in the vector X. After successful matching, which balances the latent variable and other 

covariates among quasi-experimental groups, the average treatment effects can be estimated 

through simple comparisons of outcomes in a group of treated and matched controls. 

 ATT = Y[P(X,η),D=1] - Y[(P(X,η),D=0] (3) 

Where Y is an outcome and D=0,1 denotes the treatment status (D=1 for treated).  

 In practice, the latent variable is never observed. One way to overcome that is to 

estimate the propensity score using information on the latent variable reflected in a set of 

manifest variables: 

 εα +++= MδXβMX 0

* ),(P  (4) 
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 This introduces a measurement error to the propensity score, because manifest 

variables are imperfect reflections of the latent variable. If the manifest variables are 

generated from the latent variable by adding a random noise, then the measurement error in 

the propensity score is also random. The average treatment effects can be calculated using 

equation (3) by substituting ),( ηXP  with ),(*
MXP . 

 We propose a different approach that is not discussed in the matching literature. In 

this approach the latent variable is estimated from the manifest variables. We assume that the 

latent structure and the model to estimate it follow the one described by the set of equations 

(1), that one latent factor is reflected in the observed manifest variables. In this case, the 

latent variable can be estimated by the factor analysis model, and this latent-variable estimate 

can be used to obtain the propensity score: 

 εηαη +++= ˆ)ˆ,( 0

* δP βxX  (5) 

where η̂  is the estimated latent variable. The average treatment effects can be calculated 

using equation (3) by substituting )ˆ,(* ηXP  for ),( ηXP . 

 We describe, above, three propensity scores that can be used for balancing the latent 

variable and covariates through the propensity score matching: the hypothetical propensity 

score ),( ηXP  estimated on the unobservable latent variable, the typically used propensity 

score ),(*
MXP  that is estimated from the observed manifest variables, and finally the 

propensity score )ˆ,(* ηXP  obtained by first estimating the latent variable from the manifest 

variables and then by using this estimate to obtain the propensity score. This paper addresses 

the question of how using a quality of matching differs when using the three different 

propensity scores. We address this through a simulation study where matching is conducted 

under various circumstances commonly found in practice of empirical research. In 

simulation, we can compare the results obtained with the hypothetical propensity score 

estimated using the unobserved latent variable with results obtained with error-prone 

propensity scores used in practice. In Section III, we also give a real-life example of applying 

the strategy suggested by simulation results to data from educational study. 

 

 

III. Simulation Study 

We conducted our simulation study in two parts. In the first part, we studied a simple linear 

data generating process with random treatment assignment and balanced covariates. This 

gave us an overall idea of how modeling latent variables in the propensity score matching can 

affect standard errors of the average treatment effects. In the second part, we studied a more 

complicated data generating process, with non-random selection and highly non-linear 

relations between the latent variable and an outcome. This case provides more insights into 

how modeling latent variables affects bias and the precision of matching estimators under 

differing circumstances. In all simulations, 10,000 random draws were studied. 
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Simulation A: No Selection, Normally Distributed Latent Variable with Linear Relation to 

Outcome 

Assume that the outcome generating process can be described by this simple equation: 

 εη +++−= Ty 3510  (6) 

The outcome depends linearly on the normally distributed latent variable η (with mean 0 and 

standard deviation 1), and the treatment effect is equal to 3 for all treated subjects, who are 

indicated by T=1. Selection to quasi-experimental groups is purely random, with a third of 

the subjects assigned to the treated group. Although values of the latent variable are observed 

in our simulation, we assume that a researcher observes only manifest variables that are 

generated by a set of equations: 

 jj kM εη += , (7) 

where Mj denotes the j-th manifest variable constructed from the latent variable η by adding a 

random noise εj specific to each manifest variable. Correlation between the latent variable 

and the manifest variables depends on a signal-to-noise ratio captured in a parameter k that is 

studied in the simulation. For example, with k=2 the signal-to-noise ratio equals 1:2, which 

means that correlation between the latent variable and a manifest variable is close to 0.45. We 

studied also the results for values of k equal to 1 and 5 where correlation between the latent 

variable and a manifest variable is close to 0.7 and 0.2 respectively. This gives a typical range 

found in empirical research. In practice, when correlation of manifest variables (commonly 

called “items”) is weaker than 0.3-0.4, that is usually taken as a sign that this variable has no 

relation to the latent construct. In such a case, the variable is usually dropped and other 

manifest variables are used. 

 We also varied the number of manifest variables from which a researcher can 

estimate the latent variable. Usually, the higher the number of manifest variables is, the better 

an estimate of the latent variable is. We simulated data with 5, 10, 20 and 50 manifest 

variables, the range that covers typical situations. The quality of the estimated latent variable 

depends also on the sample size. We studied sample sizes with 100, 500, 1,000 and 5,000 

observations that cover a range typically found in practice. 

 For each simulated sample, the propensity score matching was conducted three 

times. First, matching was conducted on the latent variable that is normally unobserved. That 

gives a proper baseline for further comparisons. Second, matching was conducted on the set 

of manifest variables. Finally, matching was conducted on the estimated latent variable using 

information reflected in the manifest variables. We estimated the latent variable through a 

basic one-dimensional factor model using a standard procedure in Stata software (see Stata 

documentation on the -factor- command; see Appendix B with Stata code for details). This 

model reflects the process in which manifest variables were generated. This assumes that the 

model used for the latent variable estimation was correctly specified. Obviously, that is not 

always the case in empirical research. But, we do not study how mistakes in estimation of the 
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latent variable can affect the quality of matching, we simply assume this step was conducted 

properly. 

 Finally, each propensity score was employed in two types of propensity score 

matching: 1-to-1 nearest neighbor matching, and local linear regression (llr) matching. Those 

were compared with results from a simple linear regression model. The nearest neighbor 

1-to-1 matching assigns, for each treated subject, one control subject that has the closest 

value of the propensity score. The llr matching estimates, for each treated subject, a predicted 

outcome among those controls that are close in values of the propensity score, weighting 

observations by proximity in the propensity score (see Smith and Todd, 2005, for a 

description of different matching methods). 

 We hypothesize that distinct matching methods will be affected differently by the 

measurement error present in the propensity score. We expect that distinct matching 

estimators will behave differently when matching is conducted on the latent variable, on the 

set of observed manifest variables, or on the estimated latent variable. The intuition behind 

this presumption is that, in the 1-to-1 method, the quality of matching depends more on the 

quality of the propensity score because only one subject is identified for each treated. 

Mistakenly assigning a wrong subject from a pool of controls can be costly in this method. 

The llr method uses all information available for subjects with similar propensity score 

values, which can limit the impact of measurement error according to our expectations. 

 Results for the simulation A study are presented in Tables 1 and 2. These 

demonstrate how using the manifest variables instead of the latent variable lowers the quality 

of matching estimates and how matching based on the estimated latent variable can help. 

Generally, results presented in Table 1 demonstrate that all methods are able to properly 

recover the value of treatment effect. For only the sample of 100 observations, mean 

estimates are slightly lower than the true value of 3, but only when matching is not conducted 

on the latent variable. 

 

Table 1. Mean estimate of the average treatment effect in simulation A 
 

Sample 
size 

Regression 
Propensity Score Matching 

nearest neighbor (1-to-1) local linear regression (llr) 

latent manifest 
estimated 
latent 

latent manifest 
estimated 
latent 

latent manifest 
estimated 
latent 

100 2.998 2.999 2.997 3.000 2.997 2.997 3.000 2.996 2.997 

500 3.000 3.000 3.000 3.000 2.999 3.000 3.000 3.000 3.000 

1000 3.000 3.000 3.000 3.000 3.001 3.000 3.000 3.000 3.000 

5000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 

 

 Table 2 shows results on a variance of the analyzed estimators. Mostly, regression 

outperforms matching for sample sizes smaller than 5,000, which is not surprising as we 

simulated data generated by a simple linear process. From a practical point of view, more 

intriguing are comparisons between two matching methods with a crucial distinction between 

matching on the set of manifest variables and matching on the estimated latent variable. 
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Matching on the estimated latent variable clearly outperforms matching on the set of manifest 

variables. However, the difference diminishes according to sample size and is smaller for the 

llr matching than for the 1-to-1 matching. The 1-to-1 method provides estimates with higher 

variance than does the llr method. Note also that for a sample size of 1,000 the difference 

between matching on the estimated latent variable and the set of manifest variables in case of 

the llr matching is slight, while there is still substantial difference for the 1-to-1 matching. 

For a sample size of 5,000, the llr matching provides estimates of similar quality to those 

obtained through a simple linear regression, with no difference between matching on the 

estimated latent variable or on the set of manifest variables. This difference is still substantial 

for the 1-to-1 matching.  

 

Table 2. Standard deviation of the average treatment effect estimates in simulation A 
 

Sample 
size 

Regression 
Propensity Score Matching 

nearest neighbor (1-to-1) local linear regression (llr) 

latent manifest 
estimated 
latent 

latent manifest 
estimated 
latent 

latent manifest 
estimated 
latent 

100 0.215 0.628 0.596 0.305 2.611 0.803 0.304 2.608 0.798 

500 0.096 0.255 0.255 0.131 0.516 0.344 0.101 0.308 0.264 

1000 0.067 0.177 0.177 0.091 0.355 0.240 0.069 0.195 0.181 

5000 0.030 0.079 0.079 0.041 0.157 0.107 0.030 0.081 0.079 

 

 Table 3 presents more results on the variance of estimators for the two propensity 

score matching methods, separately for different numbers of manifest variables and for 

different signal-to-noise ratios. Generally, the results confirm that for the simple linear data, 

generating process matching on the estimated latent variable noticeably reduces the variance 

of estimators in comparison to matching on the set of manifest variables. The results confirm 

also that in this baseline case the llr matching clearly outperforms the 1-to-1 matching for 

samples bigger than 100. For example, with the 1-to-1 method in the case of 10 manifest 

variables, a sample size of 500 and a signal-to-noise ratio 1:1, the standard deviation of the 

average treatment effects when matching on the manifest variables is equal to 0.47; it goes 

down to 0.24 when matching on the estimated latent variable. Similar numbers for the llr 

method are 0.23 and 0.18, which suggests that this method provides more efficient 

estimators. 

 Detailed results in Table 3 show how the number of manifest variables affects 

variance of the estimators. Looking again at results for a sample size of 500 and a signal-to-

noise ratio of 1:1, we see that in matching on the estimated latent variable, variance of the 

estimators goes down with the number of manifest variables, but it remains the same when 

matching directly on the manifest variables. This is less true for bigger sample sizes where 

matching on the estimated latent variable still outperforms matching on the manifest 

variables, but both methods benefit from the higher number of manifest variables available.  

 Results for the smallest sample of 100 observations reveal intriguing patterns. In this 

case, introducing more manifest variables noticeably increases the variance for matching 
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estimators based on the full set of manifest variables; while for matching on the estimated 

latent variable, the variance decreases with the number of manifest variables. It seems that in 

smaller samples, estimation of the propensity score is too demanding when too many 

manifest variables are considered; in this case increasing the number of these variables does 

not help. These results clearly show that, in small samples, researchers should never match 

directly on the manifest variables if there are too many of them in relation to a sample size. 

Matching on the estimated latent variable is clearly preferred in this case.  

 The results for moderately large samples and different signal-to-noise ratios 

demonstrate how important it is to base matching on a larger set of manifest variables, 

especially when they are highly correlated with the unobservable latent variable. For 

matching on the estimated latent variable and a signal-to-noise ratio of 1:1, even with a 

sample size of 1,000 and 20 or 50 manifest variables, both matching methods have variance 

quite close to the one obtained with matching directly on the latent variable. That is not the 

case for higher signal-to-noise ratios, for example, with a ratio of 1:5 even with a sample of 

5,000 observations and 50 manifest variables, variances of matching estimators are two or 

more times higher than the variances for estimators based on matching on the latent variable. 

 Higher noise in the manifest variables reduces the relative benefits of matching on 

the estimated latent variable instead of matching on the set of manifest variables, especially 

for situations with a higher number of observed manifest variables. While the first method 

still outperforms the latter, it is clear that the benefits of using the estimated latent variable in 

matching are much higher when the manifest variables strongly correlate with the latent 

variable, especially if the number of these variables observed to the researcher is relatively 

high. For example, with 5 manifest variables, a signal-to-noise ratio equal to 1:1 and a sample 

size of 500, the standard deviation of the 1-to-1 matching estimators is equal to 0.47 when 

matching on the manifest variables and 0.29 when matching on the estimated latent variable. 

With 50 manifest variables available, the difference is much bigger with respective standard 

deviations equal to 0.50 and 0.16. However, with 5 noisy manifest variables with a signal-to-

noise ratio of 1:5, the same difference is much smaller with respective numbers of 0.54 and 

0.45, and it grows only moderately if 50 manifest variables are available, giving a standard 

deviations equal to 0.54 and 0.30, respectively. 
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Table 3. Standard deviation of the average treatment effect estimates  
 

Sample 
size 

Matching on the: 

Nearest Neighbor Matching (1-to-1) Local Linear Regression Matching (llr) 

number of manifest variables number of manifest variables 

5 10 20 50 5 10 20 50 

Signal-to-noise ratio 1:1 

100 

latent 0.31 0.31 0.30 0.30 0.31 0.30 0.30 0.30 

manifest 1.06 1.13 1.28 4.71 1.05 1.12 1.27 4.71 

estimated latent 0.67 0.53 0.44 0.37 0.66 0.53 0.43 0.37 

500 

latent 0.13 0.13 0.13 0.13 0.10 0.10 0.10 0.10 

manifest 0.47 0.47 0.47 0.50 0.25 0.23 0.22 0.26 

estimated latent 0.29 0.24 0.19 0.16 0.22 0.18 0.15 0.12 

1000 

latent 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 

manifest 0.32 0.33 0.32 0.34 0.16 0.14 0.13 0.13 

estimated latent 0.21 0.16 0.13 0.11 0.15 0.12 0.10 0.08 

5000 

latent 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 

manifest 0.15 0.14 0.14 0.14 0.07 0.06 0.05 0.04 

estimated latent 0.09 0.07 0.06 0.05 0.07 0.05 0.04 0.04 

Signal-to-noise ratio 1:2 

100 

latent 0.31 0.31 0.30 0.30 0.31 0.30 0.30 0.30 

manifest 1.23 1.23 1.34 4.80 1.22 1.22 1.33 4.80 

estimated latent 1.00 0.84 0.68 0.50 0.99 0.83 0.67 0.50 

500 

latent 0.13 0.13 0.13 0.13 0.10 0.10 0.10 0.10 

manifest 0.53 0.51 0.50 0.52 0.36 0.31 0.28 0.29 

estimated latent 0.45 0.37 0.29 0.22 0.35 0.28 0.23 0.17 

1000 

latent 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 

manifest 0.37 0.36 0.35 0.34 0.24 0.20 0.17 0.16 

estimated latent 0.32 0.26 0.21 0.15 0.24 0.19 0.15 0.12 

5000 

latent 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 

manifest 0.17 0.16 0.15 0.15 0.11 0.09 0.07 0.06 

estimated latent 0.14 0.11 0.09 0.07 0.10 0.08 0.07 0.05 

Signal-to-noise ratio 1:5 

100 

latent 0.31 0.31 0.30 0.30 0.31 0.30 0.30 0.30 

manifest 1.23 1.27 1.40 4.74 1.22 1.26 1.40 4.74 

estimated latent 1.03 1.00 0.91 0.72 1.03 0.99 0.91 0.72 

500 

latent 0.13 0.13 0.13 0.13 0.10 0.10 0.10 0.10 

manifest 0.54 0.53 0.53 0.54 0.36 0.34 0.32 0.32 

estimated latent 0.45 0.42 0.37 0.30 0.35 0.32 0.29 0.23 

1000 

latent 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 

manifest 0.37 0.37 0.37 0.36 0.24 0.23 0.21 0.19 

estimated latent 0.32 0.29 0.26 0.21 0.24 0.22 0.19 0.16 

5000 

latent 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 

manifest 0.17 0.17 0.16 0.15 0.10 0.10 0.09 0.07 

estimated latent 0.14 0.13 0.12 0.09 0.10 0.10 0.09 0.07 
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Simulation B: Selection, Skewed Distribution of the Latent Variable and Non-Linear Relation 

with an Outcome 

Simulation A assumes that the data generating process was linear in the randomly distributed 

latent variable. Not surprisingly, linear regression behaves better than matching in such 

circumstances. However, matching can outperform regression if the data generating process 

is non-linear and when matching covariates are highly unbalanced across quasi-experimental 

groups. Simulation B models similar conditions, namely, that the latent variable is 

unbalanced across the two groups and its relation with an outcome is non-linear. Our 

simulation strategy follows the one proposed by Frölich (2004). However, we model 

distributions of the latent variable while Frölich studied various distributions of the 

propensity score.  

 We assume that the latent variable has a Johnson SB distribution, which is 

unbalanced across randomly assigned treatment and control groups. We study two cases. In 

the first, distribution of the latent variable in one of the groups mirrors distribution in the 

other one. In the second, the latent variable is symmetrically distributed while distribution for 

the treated subjects is highly skewed. Figure 1 gives an example of the latent variable 

distribution in both scenarios. 

 The advantage of using the Johnson SB distribution for our application is that it has 

big probability mass in the tails so that, for each value of the latent variable of the treated, 

there are always possible matches among controls. In other words, the common support 

requirement is always fulfilled. However, with an outcome non-linearly dependent on the 

latent variable, comparisons for subjects at the tails of distribution can be demanding. Details 

on how we obtained these distributions are available in the Stata code in Appendix B. 

 

Figure 1. Latent variable distribution for the simulation with symmetric and non-symmetric 

designs 
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 As in the previous simulations, we construct the manifest variables by adding 

random noise to the latent variable with different signal-to-noise ratios. Random noise 

variables were scaled to have the same standard deviation as the latent variable with Johnson 

SB distribution. This allows signal-to-noise ratio comparisons with the results from 

Simulation A. 

 Finally, we studied three data generating processes: the one studied in Simulation A 

and given by equation (6) and two additional processes that are given by the following 

equations: 

 εηη +++−= Ty 33^)exp(510   (8) 

 εηη +++−= Ty 3)30cos(1010  (9) 

The equations differ in the form of relation between an outcome and the latent variable. 

While equation (6) mirrors the linear process studied in Simulation A, equation (8) models a 

curvilinear relation of the latent variable and an outcome. Equation (9) gives a highly non-

linear process. Figure 2 provides graphical examples of the relation between the latent 

variable and an outcome across two quasi-experimental groups and for three data-generating 

processes. 

 

Figure 2. Three outcome equations from Simulation B 
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As previously, we studied scenarios reflecting circumstances typically found in 

empirical research. As we compared the results for outcome equations and symmetric or non-

symmetric distributions, we limited the number of simulation parameters. We considered 

only two values of signal-to-noise ratio (for k equal to 1 and 2, not for 5), three numbers of 

manifest variables (5, 10 and 50, not for 20), and two sample sizes (only 500 and 5,000). 

Again, for each simulated sample, we conducted the propensity score matching three times: 

once with the normally unobserved latent variable, once with a set of observed manifest 

variables, and once with the latent variable estimated using the simple one-factor model. As 

previously, we studied two types of matching estimators, namely, the 1-to-1 nearest neighbor 

matching and the local linear regression matching. We compared those with the results from 

a simple linear regression. 

 Tables 4 and 5 present detailed results for the two matching methods:  for the design 

with symmetrically distributed latent variable; and for different sample sizes, numbers of 

manifest variables and signal-to-noise ratios. In Appendix A, we present the overall mean 

results, which make a distinction for sample size only (Tables A3 and A4). We also present 

the results for the non-symmetric design in Appendix A (Tables A5 and A6). Generally, they 

resemble the results for the symmetric case.  

 

Table 4. Mean estimates of average treatment effect for the symmetric design 
 

Sample 
size 
 and 

equation 
number 

Matching 
on the: 

Signal-to-noise 1:1 Signal-to-noise 1:2 

nearest neighbor local linear regression nearest neighbor local linear regression 

Number of manifest variables 

5 10 50 5 10 50 5 10 50 5 10 50 

500 
Eq. (6) 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.89 2.94 2.97 2.89 2.94 2.97 2.72 2.82 2.94 2.72 2.82 2.94 

est.latent 2.89 2.94 2.98 2.89 2.94 2.98 2.72 2.82 2.95 2.72 2.82 2.95 

5000 
Eq. (6) 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.89 2.94 2.98 2.89 2.94 2.98 2.72 2.82 2.95 2.72 2.82 2.95 

est.latent 2.89 2.94 2.99 2.89 2.94 2.99 2.72 2.82 2.95 2.72 2.82 2.95 

500 
Eq. (8) 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.82 2.90 2.97 2.82 2.90 2.97 2.50 2.69 2.91 2.50 2.69 2.91 

est.latent 2.82 2.90 2.98 2.82 2.90 2.97 2.50 2.69 2.91 2.50 2.69 2.92 

5000 
Eq. (8) 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.82 2.90 2.98 2.82 2.90 2.97 2.51 2.69 2.92 2.51 2.69 2.92 

est.latent 2.82 2.90 2.98 2.82 2.90 2.98 2.51 2.69 2.92 2.51 2.69 2.92 

500 
Eq. (9) 

latent 3.00 3.00 3.00 3.01 3.01 3.01 3.00 3.00 3.00 3.01 3.01 3.01 

manifest 2.99 3.00 3.00 2.99 3.00 3.00 2.99 3.00 3.00 2.99 2.99 3.00 

est.latent 2.99 3.00 3.00 2.99 3.01 3.01 2.99 3.00 2.99 2.98 3.00 3.00 

5000 
Eq. (9) 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 3.00 3.00 3.00 3.00 3.01 3.01 2.99 2.99 3.00 2.99 3.00 3.00 

est.latent 3.00 3.00 3.00 3.00 3.01 3.01 2.99 2.99 3.00 2.99 3.00 3.01 
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 The results in Table 4 clearly demonstrate that bias in the average treatment effect 

estimates is similar for matching on the set of manifest variables and matching on the 

estimated latent variable. In both cases, the results are slightly biased. They approach the true 

value for the higher number of the manifest variables and for a stronger signal from the latent 

variable. There is also no difference between the 1-to-1 method and the llr method in terms of 

estimates bias. Both methods provide very similar results that replicate the true value when 

the unobservable latent variable is used in matching or in the most favorable circumstances 

(large sample, high number of manifest variables and strong signal from the latent variable). 

 The bias is noticeably high when only a low number of noisy manifest variables is 

available. Sample size plays a less important role here. The bias also visibly increases in non-

linear designs. With only 5 manifest variables and signal-to-noise ratio of 1:2, the bias is 

relatively high for an outcome simulated by equation (8). In many cases, simulated 

circumstances are not far from those encountered in practice. The results suggest that having 

a large pool of informative manifest variables is needed to limit bias in treatment estimates. 

 We now turn to discussing the variance of these estimators, for which standard 

deviations across 10,000 replications are presented in Table 5. Generally, the variance of the 

estimators decreases with the sample size and is smaller when the manifest variables contain 

a stronger signal about the latent variable. Compared to the linear outcome relation in 

equation (6), the variance increases for the exponential relation under equation (8) and is 

noticeably higher in a demanding, highly non-linear setting under equation (9). Variance is 

always smaller for the llr method than for the 1-to-1 method.  

 

Table 5. Standard deviation of the average treatment effect estimates in the symmetric design 
 

Sample 
size and 
equation 
number 

Matching 
on the: 

Signal-to-noise 1:1 Signal-to-noise 1:2 

nearest neighbor local linear regression nearest neighbor local linear regression 

Number of manifest variables 

5 10 50 5 10 50 5 10 50 5 10 50 

500 
Eq. (6) 

latent 0.136 0.134 0.135 0.106 0.106 0.105 0.136 0.134 0.135 0.106 0.106 0.105 

manifest 0.150 0.150 0.171 0.114 0.114 0.130 0.165 0.158 0.176 0.126 0.121 0.132 

est.latent 0.145 0.141 0.135 0.113 0.110 0.106 0.163 0.151 0.140 0.125 0.118 0.109 

5000 
Eq. (6) 

latent 0.043 0.043 0.043 0.032 0.032 0.032 0.043 0.043 0.043 0.032 0.032 0.032 

manifest 0.046 0.045 0.045 0.034 0.034 0.033 0.051 0.049 0.046 0.038 0.036 0.034 

est.latent 0.046 0.045 0.044 0.034 0.034 0.033 0.051 0.049 0.045 0.038 0.036 0.033 

500 
Eq. (8) 

latent 0.136 0.134 0.135 0.106 0.106 0.105 0.136 0.134 0.135 0.106 0.106 0.105 

manifest 0.190 0.185 0.216 0.140 0.134 0.148 0.245 0.219 0.229 0.176 0.159 0.156 

est.latent 0.178 0.159 0.140 0.135 0.123 0.110 0.236 0.203 0.156 0.174 0.154 0.121 

5000 
Eq. (8) 

latent 0.043 0.043 0.043 0.032 0.032 0.032 0.043 0.043 0.043 0.032 0.032 0.032 

manifest 0.058 0.052 0.051 0.042 0.038 0.036 0.075 0.066 0.054 0.054 0.047 0.039 

est.latent 0.056 0.051 0.045 0.042 0.038 0.034 0.075 0.065 0.049 0.054 0.047 0.037 

500 
Eq. (9) 

latent 0.137 0.135 0.136 0.112 0.111 0.111 0.137 0.135 0.136 0.112 0.111 0.111 

manifest 0.463 0.467 0.495 0.354 0.353 0.385 0.486 0.474 0.498 0.367 0.363 0.389 

est.latent 0.465 0.455 0.346 0.354 0.343 0.265 0.487 0.473 0.449 0.362 0.356 0.339 

5000 
Eq. (9) 

latent 0.043 0.043 0.043 0.034 0.034 0.034 0.043 0.043 0.043 0.034 0.034 0.034 

manifest 0.148 0.145 0.143 0.108 0.107 0.106 0.153 0.151 0.144 0.111 0.109 0.107 

est.latent 0.147 0.145 0.110 0.108 0.106 0.081 0.154 0.148 0.141 0.111 0.109 0.103 
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 The most instructive results are for comparisons between matching on the set of 

manifest variables and matching on the estimated latent variable. Generally, the latter method 

outperforms the first. The benefits of matching on the estimated latent variable are greater for 

smaller sample sizes, with a high number of manifest variables observed, for non-linear data 

generating processes, and for the 1-to-1 matching. The difference is relatively small for 

samples of 5,000, but clearly visible with only 500 observations available. Under this 

simulation design, even with a moderate sample size of 500 the variance of estimators 

increases with the number of manifest variables when matching is conducted directly on them 

and when the manifest variables contain a relatively strong signal. This is more evident for 

the 1-to-1 matching and less true with noisy manifest variables. This result seems to be 

intuitive, with a trade-off between using more information and estimating the propensity 

score on a relatively small sample size and with a relatively large set of covariates. We 

suggest that, for moderate sample sizes, researchers should never match directly on the 

manifest variables. In smaller samples with a high number of informative manifest variables, 

estimating the latent variable and matching based on this estimate is preferable. 

 In the linear setting with larger samples, the benefits of having more manifest 

variables and matching on the estimated latent variable instead of matching directly on the 

manifest variables are not evident. However, the benefits of using the estimated latent 

variable are quite clear for non-linear processes. For non-linear cases, the variance decreases 

with the number of manifest variables, especially when matching on the estimated latent 

variable. Interestingly, with a strong signal contained in the manifest variables when the 

outcome is generated non-linearly, as with equation (9), even in large samples, having more 

manifest variables of high quality does not help. The variance stays at the same relatively 

high level even with 50 manifest variables and 5,000 observations. Under the same 

circumstances, the variance diminishes when matching is conducted on the estimated latent 

variable. For a moderate sample size of 500, variance can even increase when matching on a 

higher number of manifest variables with the outcome generated through a highly non-linear 

process. However, when using information from manifest variables to estimate the latent 

variable in the first step and then to use it in matching, having more manifest variables helps 

to reduce variance, especially if the manifest variables contain a strong signal about the latent 

trait and a low level of random noise. 

 

IV. Empirical Application to Educational Research 

Simulation results suggest that estimating the latent variable from the manifest variables 

instead of using these variables directly in matching can increase the precision of the 

treatment estimates, especially with moderate sample sizes and several manifest variables 

available in a dataset. The suggested procedure has three steps. In the first step, a researcher 

has to estimate the latent variable from the observed manifest variables. This step is crucial 

and has to be based on theoretically and empirically sound theory that relates observed 

manifest variables to the latent variable. In the next steps, the usual propensity score 

matching approach is applied. The propensity score is estimated on a set of matching 
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covariates that includes the estimated latent variable. Matching is conducted on this 

propensity score, and the average treatment effect is calculated. 

 In this section, we apply this approach to educational research, using a subset of data 

collected in the PISA survey. The PISA study is conducted by the OECD every three years 

and measures the achievement of 15-year-olds across all OECD countries and other countries 

that join the project (see OECD, 2007, 2009, for a detailed description of the PISA 2006 

study). We use data for Poland from the PISA 2006 national study that extended the sample 

to cover 16- and 17-year-olds (10
th

 and 11
th

 grade in the Polish school system). Another 

unique feature of the Polish dataset is supplementary information on student scores in 

national exams. This extends significantly the possibilities of evaluating school policies, as 

prior scores can be used to control for student ability or for intake levels of skills and 

knowledge. 

 We apply the approach proposed in this paper to evaluate differences in the 

magnitude of student progress across two types of upper secondary education: general-

vocational and vocational. We use data for 16- and 17-year-olds only, as 15-year-olds are in 

comprehensive lower secondary schools. In 2006, there were four types of upper secondary 

educational programmes: general, technical, general-vocational and vocational. The general-

vocational schools were introduced by the reform of 2000, to replace some vocational schools 

with more comprehensive education (Jakubowski et al., 2010). The following empirical 

example studies whether, in fact, these schools equip students with a set of comprehensive 

skills not taught in purely vocational schools. In the PISA sample, we have slightly more than 

1,000 observations of 16- and 17-year-olds attending these two types of upper secondary 

schools. 

 The PISA tests are perfect instruments to capture the extent to which different 

schools teach comprehensive skills. They aim at testing general student literacy in 

mathematics, reading and science, using a general framework that defines the internationally 

comparable measures of literacy. PISA tries to capture skills and knowledge needed in adult 

life, rather than those simply reflecting schools’ curricula. This makes comparisons between 

schools more objective, and internationally developed instruments assure that they are not 

biased towards curriculum used in one type of Polish school.  

 To compare the impact of distinct types of schools on student outcomes one needs to 

control for student selection into these schools. This selection is probably based on previous 

student skills and knowledge, but also on other important student and family characteristics. 

The unique feature of the Polish PISA dataset is that students’ prior scores on national exams 

are linked to data obtained through internationally comparable instruments. These are scores 

from the obligatory national exam conducted at the end of lower secondary school (at age 15) 

that contains two parts, one for mathematics and science, and one for humanities. We 

combine both scores in one measure reflecting the level of student intake knowledge and 

skills across disciplines.  

 We also use detailed data on student and family characteristics. In PISA, student 

background information is available in two types of indicators. In the first type, variables 
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directly reflect student responses about their observable and easy-to-define characteristics. 

Among those, we use dummies denoting student gender and school grade level, parents’ 

highest level of education measured on the ISCED scale and parents’ highest occupation 

status measured on the ISEI scale The other type of variables summarizes responses to 

several questions (so-called items) that reflect a common latent characteristic (OECD, 2009, 

pp. 303-349).  Here, we use student responses about more than 20 types of home possessions, 

including consumption, educational, and cultural goods. The original PISA dataset contains 

four indices that summarize information on household goods: homepos for all home 

possessions, wealth for consumption goods (e.g., TV, DVD player, number of cars), cultpos 

for cultural possessions (e.g., poetry books), and hedres for educational resources (e.g., study 

desk). These indices are available in the international dataset, however, we re-estimated them 

using additional information relevant in the Polish case. Therefore, we took one item from the 

wealth index (“having a microscope”) and added it to educational resources under cultpos. 

We also estimated the cultpos index including a question about the number of books at home 

that was originally not considered.  

 Details on scaling models are available in the Stata code presented in Appendix B. 

The estimated indices have relatively high reliabilities in a range from 0.6 to 0.8 that are 

higher for Poland than in most of the OECD countries (OECD, 2009, pp. 317). Correlations 

between items used in the same index were from 0.3 to 0.5, which is the range modeled in 

our simulation study. Correlation between cultpos, wealth, and hedres indices were slightly 

higher, but still far from the level that could suggest that they capture one instead of three 

separate latent constructs. Responses within each index were also more strongly correlated 

with each other than with responses from other indices. This confirms that they represent 

different constructs (see Jakubowski and Pokropek, 2009, for additional information on these 

indices).  

 We conducted the propensity score matching three times, to see how results are 

affected by including the estimated latent variable instead of a set of manifest variables. First, 

we included all the manifest variables in the list of matching covariates. More precisely, we 

included all dummy variables denoting household items. Second, we included three indices 

estimated from the manifest variables and reflecting three latent variables: household wealth, 

household cultural possessions and household educational resources. Finally, we estimated 

only one latent variable using all manifest variables and reflecting all possible home 

possessions. We expected that the first approach would differ from the second in terms of 

precision of the estimates of the average treatment effect. More precisely, we expected that 

the second approach would provide estimates with smaller standard errors, in line with the 

theory and simulation results presented above. Furthermore, we expected that the third 

approach, based on only one latent variable instead of three, could be less efficient, as 

restricting a latent dimension to one limits the amount of relevant information provided in 

matching if there are, in fact, three distinct latent variables behind the values of the manifest 

variables. This example demonstrates typical problems that arise in empirical research:  first, 

whether to estimate the latent trait instead of using manifest variables directly in matching; 

and second, how many latent variables should be estimated.  
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 Table 6 presents results for this empirical exercise. First, note that the differences in 

outcomes go down after matching. We expected that, as differences in outcomes between 

different types of schools are driven mainly by differences in student characteristics. 

However, the outcomes differences remain quite large and in favor of general-vocational 

schools, even after adjusting for intake scores, gender, parents’ education and occupation, and 

family resources. The average treatment effects vary across the sets of results, with the 

biggest gap being found in reading and slight differences across matching methods, but we 

are mainly interested in the magnitude of standard errors. More precisely, we want to see how 

standard errors change when matching is conducted directly on manifest variables and when 

matching uses the estimated indices.  

 

Table 6. Empirical example: achievement difference between general-vocational and 

vocational schools 
 

Outcome Latent Variables Included as 

Outcome Difference  

before 
matching 

After matching  

(average treatment effect) 

Standard 
error 

Mathematics 

All manifest variables (household 
items) 

71.0 53.0 (12.0) 

Reading 107.1 62.9 (19.9) 

Science 76.8 56.9 (12.7) 

Mathematics Three estimated indices:  

household wealth, cultural 
possessions, and educational 

resources 

71.0 54.6 (10.1) 

Reading 107.1 66.4 (14.4) 

Science 76.8 51.7 (9.9) 

Mathematics 
One estimated index: 

home possessions 

71.0 56.1 (10.7) 

Reading 107.1 70.9 (14.8) 

Science 76.8 55.3 (10.1) 

Notes: Number of treated: 461; Number of controls: 607; Standard errors obtained by bootstrapping and 

adjusted for clustering at the school level 

 

 The results demonstrate the benefits of using the estimated latent variables in 

matching. While the average treatment effects are reasonably similar across matching 

methods, the standard errors are 20–40% higher for matching conducted on the manifest 

variables. The results are quite similar for matching on the three estimated latent variables 

and for matching on the one estimated variable. Standard errors are slightly higher when 

matching on only one instead of on three latent variables, which suggests that our data have 

three-dimensional latent structure. However, standard errors are also much lower in this case, 

compared to matching directly on all manifest variables. 

 This example confirms our main findings from the simulation study. Clear benefits 

are gained from matching on the estimated latent variables rather than on the set of manifest 

variables, at least with moderate sample sizes and a well-developed latent variables 

framework. Matching on the three estimated latent variables substantially lowered standard 
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errors of the treatment effects. Matching on the one latent variable gave similar results, which 

were still clearly better than those obtained with matching directly on the manifest variables. 

 

V. Summary 

This paper demonstrates how modeling and including the latent variable in the propensity 

score matching can improve the quality of the treatment estimates in comparison to the more 

standard approach when matching is conducted directly on the set of manifest variables, even 

if they reflect the same latent trait. Our simple theory explains how including the estimated 

latent variable can limit the measurement error in estimating the propensity score that is 

introduced by a noisy signal contained in the manifest variables. We present simulation 

studies demonstrating the range of efficiency gains from incorporating the latent variable in 

matching. And, we apply these to real educational data, showing the importance of our 

findings through this empirical example. 

 We find, generally, that estimating the latent variable and using this estimate for 

propensity score matching lowers the variance of the average treatment estimators. The 

variance is seemingly smaller with small and moderate sample sizes, but the benefits are still 

visible even for large samples. Using the estimated latent variable rather than matching 

directly on a set of manifest variables is always preferable in small sample sizes with a large 

number of manifest variables available, with manifest variables containing a strong signal 

about the latent variable and when outcome-generating process is non-linear in the latent 

variable. Efficiency increases much more for the nearest neighbor matching than for the local 

linear regression matching. We argue that, in the latter case, using many control variables to 

estimate the control outcome for each treated limits the deteriorating impact of measurement 

error. However, with this method the variance is also visibly lower when matching on the 

estimated latent variable. 

 Our final advice is to follow our three-step strategy: estimate the latent variable 

using observed manifest variables; use this estimate to estimate the propensity score; and 

match on this propensity score to estimate the average treatment effects. However, this is 

advisable only in cases where we have a strong theory on how the observed manifest 

variables relate to each other and to the latent construct, and how the latent construct relates 

to outcomes and to the selection process. Without a sound theory, such an approach could be 

misleading, as the estimated latent variables can contain irrelevant information and can even 

bias the average treatment effects. If such a theory exists and can be confirmed empirically, 

applying our approach to observational data is usually highly desirable. 
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Appendix A. Additional Results for Simulation Study 

 

 

Table A1. Basic Statistics: random sample from Simulation A*  
 

Quasi-
experimental 
group 

Stats 
Latent 
Variable 

Manifest Variables Estimated 
Latent Score 

Outcome 
m1 m2 m3 m4 m5 

Controls 
mean -0.003 -0.025 -0.462 0.075 0.065 -0.109 -0.003 -10.113 

SD 1.032 5.244 4.997 5.082 5.000 5.081 0.360 5.238 

Treated 
mean -0.029 -0.061 0.291 0.071 -0.231 0.261 0.006 -7.113 

SD 0.888 4.441 4.846 5.068 5.274 4.787 0.362 4.620 

*Note: (500 observations, 5 manifest variables, signal-to-noise ratio 1:1) 

 
 

 

 

Table A2. Basic statistics: random sample from simulation B* 
 

Quasi-
experimental 
group 

Stats 
Latent 
Variable 

Manifest variables Estimated 
Latent Score 

Outcomes 

m1 m2 m3 m4 m5 eq. 1 eq. 2 eq. 3 

Symmetric distribution of latent variable across quasi-experimental groups 

Controls mean 0.562 0.559 0.555 0.563 0.566 0.562 0.157 -7.203 -7.454 -10.056 

 SD 0.205 0.298 0.295 0.288 0.292 0.296 0.878 1.415 2.705 4.286 

Treated mean 0.442 0.443 0.450 0.440 0.438 0.443 -0.303 -4.789 -5.623 -6.928 

 SD 0.201 0.293 0.283 0.285 0.297 0.291 0.841 1.417 2.062 3.536 

Non-symmetric distribution of latent variable across quasi-experimental groups 

Controls mean 0.500 0.497 0.494 0.501 0.504 0.500 0.131 -7.513 -8.095 -9.998 

 SD 0.207 0.291 0.288 0.296 0.285 0.293 0.887 1.445 2.497 3.936 

Treated mean 0.401 0.403 0.409 0.399 0.397 0.402 -0.253 -4.993 -5.919 -6.998 

 SD 0.197 0.288 0.278 0.281 0.292 0.287 0.841 1.403 1.856 3.308 

*Note: (500 observations, 5 manifest variables, signal-to-noise ratio 1:1) 
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Table A3. Mean estimate of the average treatment effect  
 

Regression 
Propensity Score Matching 

 nearest neighbor local linear regression 

Sample 
size 

latent manifest estimated latent latent manifest estimated latent latent manifest estimated latent 

Symmetric distributions of latent variables 

Equation 1 

500 3.000 2.883 2.882 2.998 2.879 2.882 2.998 2.878 2.882 

5000 3.000 2.882 2.882 3.000 2.883 2.884 3.000 2.882 2.883 

Equation 2 

500 3.057 2.819 2.817 3.000 2.800 2.801 2.998 2.799 2.800 

5000 3.058 2.819 2.819 3.000 2.802 2.802 2.997 2.801 2.801 

Equation 3 

500 3.005 2.997 2.997 3.003 2.994 2.994 3.014 2.994 2.999 

5000 3.008 3.000 3.001 3.000 2.996 2.997 3.002 3.001 3.003 

Non-symmetric distributions of latent variables 

Equation 1 

500 3.000 2.905 2.904 2.998 2.900 2.904 2.999 2.899 2.903 

5000 3.000 2.904 2.904 3.000 2.904 2.905 3.000 2.903 2.904 

Equation 2 

500 3.054 2.888 2.887 3.000 2.870 2.868 2.998 2.869 2.866 

5000 3.054 2.888 2.888 3.000 2.869 2.868 2.998 2.868 2.867 

Equation 3 

500 3.000 2.993 2.994 3.002 2.988 2.992 3.005 2.989 2.994 

5000 3.002 2.995 2.995 3.000 2.991 2.992 2.997 2.994 2.995 

 

Table A4. Standard deviation of the estimates of average treatment effect 
 

Regression 
Propensity Score Matching 

 nearest neighbor local linear regression 

Sample 
size 

latent manifest estimated latent latent manifest estimated latent latent manifest estimated latent 

Symmetric distributions of latent variables 

Equation 1 

500 0.099 0.143 0.142 0.135 0.184 0.172 0.106 0.151 0.146 

5000 0.031 0.099 0.099 0.043 0.102 0.102 0.032 0.096 0.097 

Equation 2 

500 0.139 0.249 0.248 0.135 0.268 0.243 0.106 0.221 0.212 

5000 0.044 0.196 0.196 0.043 0.171 0.170 0.032 0.165 0.166 

Equation 3 

500 0.377 0.385 0.375 0.136 0.481 0.448 0.111 0.369 0.338 

5000 0.120 0.119 0.119 0.043 0.147 0.142 0.034 0.108 0.104 

Non-symmetric distributions of latent variables 

Equation 1 

500 0.098 0.132 0.131 0.133 0.175 0.162 0.104 0.139 0.134 

5000 0.031 0.083 0.083 0.042 0.086 0.087 0.032 0.081 0.082 

Equation 2 

500 0.131 0.199 0.198 0.133 0.230 0.201 0.104 0.181 0.168 

5000 0.041 0.140 0.140 0.042 0.122 0.121 0.032 0.116 0.115 

Equation 3 

500 0.343 0.350 0.341 0.134 0.442 0.411 0.108 0.339 0.311 

5000 0.108 0.108 0.108 0.042 0.135 0.130 0.033 0.099 0.096 
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Table A5. Mean estimates of average treatment effect in the non-symmetric design 
 

Sample 
size and 
equation 
number 

estimator 

Signal-to-noise 1:1 Signal-to-noise 1:2 

nearest neighbor local linear regression nearest neighbor local linear regression 

Number of manifest variables 

5 10 50 5 10 50 5 10 50 5 10 50 

500 
Eq. 1 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.91 2.95 2.98 2.91 2.95 2.97 2.77 2.85 2.95 2.77 2.85 2.95 

est. latent 2.91 2.95 2.99 2.91 2.95 2.99 2.77 2.85 2.96 2.77 2.85 2.96 

5000 
Eq. 1 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.91 2.95 2.98 2.91 2.95 2.98 2.77 2.85 2.96 2.77 2.85 2.96 

est. latent 2.91 2.95 2.99 2.91 2.95 2.99 2.77 2.85 2.96 2.77 2.85 2.96 

500 
Eq. 2 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.89 2.94 2.99 2.88 2.94 2.99 2.66 2.79 2.95 2.66 2.79 2.95 

est. latent 2.88 2.94 2.98 2.88 2.93 2.98 2.66 2.80 2.95 2.66 2.79 2.94 

5000 
Eq. 2 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.88 2.94 2.99 2.88 2.93 2.99 2.67 2.79 2.95 2.67 2.79 2.95 

est. latent 2.88 2.93 2.99 2.88 2.93 2.98 2.67 2.79 2.95 2.67 2.79 2.95 

500 
Eq. 3 

latent 3.00 3.00 3.00 3.01 3.01 3.00 3.00 3.00 3.00 3.01 3.01 3.00 

manifest 2.99 2.99 2.99 2.99 2.99 2.99 2.98 2.99 2.99 2.98 2.99 2.99 

est. latent 2.99 2.99 3.00 2.99 3.00 3.00 2.99 2.99 2.99 2.99 2.99 2.99 

5000 
Eq. 3 

latent 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

manifest 2.99 2.99 2.99 3.00 3.00 3.00 2.99 2.99 2.99 2.99 2.99 3.00 

est. latent 2.99 2.99 3.00 3.00 3.00 3.00 2.99 2.99 3.00 2.99 2.99 3.00 

 

Table A6. Standard deviation of the average treatment effect estimates in the non-symmetric 

design 
 

Sample 
size and 
equation 
number 

estimator 

Signal-to-noise 1:1 Signal-to-noise 1:2 

nearest neighbor local linear regression nearest neighbor local linear regression 

Number of manifest variables 

5 10 50 5 10 50 5 10 50 5 10 50 

500 
Eq. 1 

latent 0.134 0.133 0.132 0.105 0.103 0.103 0.134 0.133 0.132 0.105 0.103 0.103 

manifest 0.147 0.150 0.168 0.112 0.111 0.124 0.164 0.159 0.170 0.124 0.118 0.126 

est. latent 0.142 0.140 0.134 0.111 0.107 0.104 0.160 0.150 0.136 0.123 0.116 0.106 

5000 
Eq. 1 

latent 0.042 0.042 0.042 0.032 0.032 0.032 0.042 0.042 0.042 0.032 0.032 0.032 

manifest 0.045 0.044 0.045 0.034 0.033 0.033 0.051 0.048 0.045 0.037 0.036 0.034 

est. latent 0.046 0.044 0.043 0.034 0.033 0.032 0.050 0.047 0.044 0.037 0.036 0.033 

500 
Eq. 2 

latent 0.134 0.133 0.132 0.105 0.103 0.103 0.134 0.133 0.132 0.105 0.103 0.103 

manifest 0.179 0.180 0.207 0.133 0.128 0.141 0.224 0.207 0.211 0.162 0.148 0.146 

est. latent 0.165 0.152 0.138 0.128 0.117 0.107 0.213 0.185 0.148 0.160 0.140 0.115 

5000 
Eq. 2 

latent 0.042 0.042 0.042 0.032 0.032 0.032 0.042 0.042 0.042 0.032 0.032 0.032 

manifest 0.052 0.049 0.051 0.039 0.036 0.036 0.067 0.059 0.052 0.048 0.043 0.038 

est. latent 0.052 0.048 0.044 0.039 0.036 0.033 0.067 0.059 0.047 0.048 0.043 0.035 

500 
Eq. 3 

latent 0.135 0.134 0.133 0.109 0.108 0.108 0.135 0.134 0.133 0.109 0.108 0.108 

manifest 0.422 0.429 0.457 0.321 0.326 0.358 0.444 0.438 0.463 0.330 0.332 0.362 

est. latent 0.426 0.419 0.325 0.321 0.315 0.249 0.441 0.433 0.414 0.331 0.327 0.316 

5000 
Eq. 3 

latent 0.042 0.042 0.042 0.033 0.033 0.033 0.042 0.042 0.042 0.033 0.033 0.033 

manifest 0.135 0.134 0.132 0.099 0.099 0.097 0.140 0.138 0.133 0.102 0.101 0.098 

est. latent 0.134 0.130 0.102 0.099 0.098 0.075 0.139 0.138 0.129 0.102 0.101 0.095 
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Appendix B. Stata Code for Simulations. 

 

Simulation A 
 
* define sample size and signal-to-noise ratio in the arguments 
* define number of manifest variables by global $cov 
 
program define simulation_A, rclass 
 args obs noise 
 set obs `obs' 
 
 * drawing the latent variable 
 drawnorm latent 
  
 * random selection of one third observations into treatment  
 drawnorm selection 
 gen treated=0 if selection>=invnormal(0.33333) 
 replace treated=1 if selection<invnormal(0.33333) 
 
 *creating the manifest variables from the latent variable by adding a random noise 
 
 forvalues i=1(1)$icov { 
  drawnorm e 
  gen d`i'_`noise'=latent+`noise'*e 
  drop e 
  } 
   
 * estimating the latent variable (score) 
 factor d1-d$icov, factors(1) 
 predict score 
 
 * generating outcome 
 drawnorm e 
 gen y=-10+5*latent+3*treated+e 
 
 * Matching on the latent variable 
 reg y treated latent 
 local br_latent=_b[treated] 
  
 psmatch2 treated latent, outcome(y) 
 local bpsm_latent=r(att) 
  
 psmatch2 treated latent, outcome(y) llr 
 local bllr_latent=r(att) 
    
 * Matching on a set of the manifest variables 
 reg y treated d1-d$icov 
 local br_dummies=_b[treated] 
   
 cap psmatch2 treated d1-d$icov, outcome(y) 
 local bpsm_dummies=r(att) 
 
 cap psmatch2 treated d1-d$icov, outcome(y) llr 
 local bllr_dummies=r(att) 
  
 * Matching on the estimated latent variable 
 reg y treated score 
 local br_score=_b[treated] 
  
 cap psmatch2 treated score, outcome(y) 
 local bpsm_score=r(att) 
 
 cap psmatch2 treated score, outcome(y) llr 
 local bllr_score=r(att) 
   
 return scalar (…) 
 
end 
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Simulation B: Symmetric Case 
 
* define sample size and signal-to-noise ratio in the arguments 
* define number of manifest variables by global $cov 
 
program define simulation_B_symmetric, rclass 
 args obs noise 
 set obs `obs' 
 
 * random selection 
 drawnorm selection 
 gen treated=0 if selection>=invnormal(0.33333) 
 replace treated=1 if selection<invnormal(0.33333) 
 
 * drawing a latent variable from the Johnson SB distribution 
 * mirror distribution for the other group 
 drawnorm x 
 ajv x, distr(SB) gen(john1) gamma(0.3) delta(1)  
 gen john0=abs(1-john1) 
 gen latent=john0 if treated==0 
 replace latent=john1 if treated==1 
  
 * creating manifest variables as in simulation A 
 * but standardizing the noise to have similar distribution as the latent variable 
 sum latent 
 local sd_latent=r(sd) 
 forvalues i=1(1)$icov { 
  drawnorm e, sds(`sd_latent') 
  gen m`i'=latent+`noise'*e 
  drop e 
  } 
 
 * estimate the latent variable (score) 
 factor m1-m$icov, factors(1) 
 predict score 
 
 * generating outcomes under three different processes 
 drawnorm e 
 gen y1 = -10 + 5*latent + 3*treated + e 
 gen y2 = -10 +5*exp(latent)*latent^3 + 3*treated + e 
 gen y3 = -10 +10*latent*cos(30*latent)+ 3*treated + e 
  
 * regression and matching using two methods, separately for each outcome  
 foreach outcome in y1 y2 y3 {   
  foreach var in latent score { 
   reg `outcome' treated `var' 
   local r`outcome'_`var'=_b[treated] 
   psmatch2 treated `var', outcome(`outcome') 
   local p`outcome'_`var'=r(att) 
   psmatch2 treated `var', outcome(`outcome') llr 
   local l`outcome'_`var'=r(att) 
   } 
  } 
   
 foreach outcome in y1 y2 y3 {   
   reg `outcome' treated m1-m$icov 
   local r`outcome'_mani=_b[treated] 
   psmatch2 treated m1-m$icov, outcome(`outcome') 
   local p`outcome'_mani=r(att) 
   psmatch2 treated m1-m$icov, outcome(`outcome') llr 
   local l`outcome'_mani=r(att) 
   } 
   
 foreach method in r p l { 
  foreach outcome in y1 y2 y3 {   
   foreach var in latent score mani { 
    return scalar `method'`outcome'_`var'=``method'`outcome'_`var'' 
    } 
   } 
  } 
end 
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Simulation B, non-symmetric case 
 
* define sample size and signal-to-noise ratio in the arguments;  
* define number of manifest variables by global $cov 
 
program define simulation_B_non-symmetric, rclass 
 args obs noise 
 set obs `obs' 
 
 * random selection 
 drawnorm selection 
 gen treated=0 if selection>=invnormal(0.33333) 
 replace treated=1 if selection<invnormal(0.33333) 
 
 * drawing a latent variable from the Johnson SB distribution 
 * mirror distribution for the other group 
 drawnorm x 
 ajv x, distr(SB) gen(john0) gamma(0) delta(1)  
 ajv x, distr(SB) gen(john1) gamma(0.5) delta(1)  
 gen latent=john0 if treated==0 
 replace latent=john1 if treated==1 
  
 * creating manifest variables as in simulation A 
 * but standardizing the noise to have similar distribution as the latent variable 
 sum latent 
 local sd_latent=r(sd) 
 forvalues i=1(1)$icov { 
  drawnorm e, sds(`sd_latent') 
  gen m`i'=latent+`noise'*e 
  drop e 
  } 
 
 * estimate the latent variable (score) 
 factor m1-m$icov, factors(1) 
 predict score 
 
 * generating outcomes under three different processes 
 drawnorm e 
 gen y1 = -10 + 5*latent + 3*treated + e 
 gen y2 = -10 +5*exp(latent)*latent^3 + 3*treated + e 
 gen y3 = -10 +10*latent*cos(30*latent)+ 3*treated + e 
  
 * regression and matching using two methods, separately for each outcome  
 foreach outcome in y1 y2 y3 {   
  foreach var in latent score { 
   reg `outcome' treated `var' 
   local r`outcome'_`var'=_b[treated] 
   psmatch2 treated `var', outcome(`outcome') 
   local p`outcome'_`var'=r(att) 
   psmatch2 treated `var', outcome(`outcome') llr 
   local l`outcome'_`var'=r(att) 
   } 
  } 
   
 foreach outcome in y1 y2 y3 {   
   reg `outcome' treated m1-m$icov 
   local r`outcome'_mani=_b[treated] 
   psmatch2 treated m1-m$icov, outcome(`outcome') 
   local p`outcome'_mani=r(att) 
   psmatch2 treated m1-m$icov, outcome(`outcome') llr 
   local l`outcome'_mani=r(att) 
   } 
   
 foreach method in r p l { 
  foreach outcome in y1 y2 y3 {   
   foreach var in latent score mani { 
    return scalar `method'`outcome'_`var'=``method'`outcome'_`var'' 
    } 
   } 
  } 
end 
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