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[e-Abstract 
This paper focuses on volatility of financial markets, which is one of the most important issues in finance, 
especially with regard to modeling high-frequency data. Risk management, asset pricing and option valuation 
techniques are the areas where the concept of volatility estimators (consistent, unbiased and the most 
efficient) is of crucial concern. Our intention was to find the best estimator of true volatility taking into 
account the latest investigations in finance literature. Basing on the methodology presented in Parkinson 
(1980), Garman and Klass (1980), Rogers and Satchell (1991), Yang and Zhang (2000), Andersen et al. 
(1997, 1998, 1999a, 199b), Hansen and Lunde (2005, 2006b) and Martens (2007), we computed the various 
model-free volatility estimators and compared them with classical volatility estimator, most often used in 
financial models. In order to reveal the information set hidden in high-frequency data, we utilized the concept 
of realized volatility and realized range. Calculating our estimator, we carefully focused on Δ (the interval 
used in calculation), n (the memory of the process) and q (scaling factor for scaled estimators). Our results 
revealed that the appropriate selection of Δ and n plays a crucial role when we try to answer the question 
concerning the estimator efficiency, as well as its accuracy. Having nine estimators of volatility, we found 
that for optimal n (measured in days) and Δ (in minutes) we obtain the most efficient estimator. Our findings 
confirmed that the best estimator should include information contained not only in closing prices but in the 
price range as well (range estimators). What is more important, we focused on the properties of the formula 
itself, independently of the interval used, comparing the estimator with the same Δ, n and q parameter. We 
observed that the formula of volatility estimator is not as important as the process of selection of the optimal 
parameter n or Δ. Finally, we focused on the asymmetry between market turmoil and adjustments of 
volatility. Next, we put stress on the implications of our results for well-known financial models which 
utilize classical volatility estimator as the main input variable. 
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1. Introduction 

 

Almost everyone who works within financial markets, no matter if we mean their 

practical or theoretical aspects, is concerned about the volatility issue. The concept of 

volatility, especially predicting its future levels and managing the risk coming from its 

fluctuations, is of crucial importance for a number of reasons.
1
 The knowledge of true 

volatility is necessary when we compute all asset pricing models (CAPM, APT, multi-

factor asset pricing models) and when we try to optimize mean-variance interrelation. It 

also has to be estimated in all kinds of VaR models including stress-testing and worst case 

scenarios, which try to predict the portfolio loss taking into account given significance level 

and the distribution of the returns. When we consider the option pricing techniques, 

volatility is the main input variable, the levels of which affect the final theoretical value the 

most, no matter which option valuation model we choose. Of course we cannot forget about 

implied volatility derived from option pricing models, which in practice is traded on the 

market instead of the value of the underlying contract; and the management of Vega, which 

is the most sophisticated issue when we consider the risk of actively managed option 

portfolio. Finally, we have to emphasize the management of portfolios of derivatives 

(futures, options or swaps), where what matters is not only the direction of the market but 

also, and most of all, an accurate prediction of future volatility (especially in the case of 

volatile market with high unexpected jumps between close and open), which is even more 

important for proper portfolio risk management. We should add here that volatility risk, 

highly correlated with liquidity risk, especially in the time of market turmoils, is nowadays 

the main source of risk in financial system, where the hedge funds managing billions of 

dollars use the financial leverage in almost each trade. This subject is particurarly important 

in the globalized financial markets, where significant turmoils happen more often (May-

June 2006, March, August, November 2007 or January 2008) and, what is more important, 

spread all over the world with ultra-fast speed. Therefore, the observation of modern capital 

markets prompts us to design the research that pays crucial attention to the ways of risk 

quantifying.  

Contemporary state-of–the–art is that the classical volatility estimator (standard deviation 

of daily log returns) or implied volatility (used in option modelling) are the measures of 

volatility most often used in models, whenever we need the true measure of volatility. 

However, as the latest research revealed (Andersen et al. (2001), Yang and Zhang (2000), 

Shu and Zhang (2006), Martens and Dijk (2007)) we can find other, more efficient and yet 

unbiased estimators of true volatility. Among other things, we want to verify this notion in 

our paper. 

Taking into consideration all the above-mentioned issues and trying to find better 

estimators of true volatility by studying the properties and merits of realized range
2
 and 

realized volatility
3
, we calculated the following measures of volatility: 

1. classical volatility estimator ( nstdannual SD

_ ) 

2. realized volatility (
nstdannual RV

_
) 

3. realized range ( nstdannual RR

_ ) 

                                                 
1 Investors who did not consider these issues as key factors were taught a very expensive and painful lesson. One 

of  numerous examples is the collapse of prestigious Long Term Capital Management in 1998, which almost 

destabilized global financial system (Lowenstein, 2000). 
2 The measure of daily volatility computed by summing high-low ranges for intra-day intervals. 
3 The measure of daily volatility computed by summing squared returns for intra-day intervals. 
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4. Garman-Klass volatility estimator ( nstdannual GK

_ ) 

5. Rogers-Satchell volatility estimator ( nstdannual RS

_ ) 

6. Yang-Zhang volatility estimator ( nstdannual YZ

_ ) 

7. realized volatility with autocovariance correction ( nstdannual RV
AC 

_

1

) 

8. scaled realized volatility  (
nstda n n u a l

q RV

_
) 

9. scaled realized range ( nstdann ua l

q RR

_ ) 

After obtaining given estimators of volatility, we compared their distribution with the 

classical volatility estimator to find out all the details concerning the information content of 

each of them and specify the main differences between them. Next, we focused on several 

aspects concerning the way of its measuring, i.e.: number of days for scaling factor (q=?), 

the optimal sampling frequency (Δ=?), and the length of the memory (n=?), so as to ensure 

the extraction of appropriate information from todays and previous quotations. The detailed 

discussion of parameter n constitutes the important contribution of our paper to volatility 

literature. Much as the issue is often omitted, we show it to play a crucial role in the 

performance of volatility estimators, stability of fluctuations of annualized and averaged 

estimators and the set of information incorporated in their calculation formula. 

We noticed the necessity of using high, low, open and close prices instead of only close 

prices in the process of estimation. It is clearly observed that a substantial part of daily 

volatility can be revealed only when we base our calculations on the intraday range, 

revealing its intra-interval fluctuations, as well (Slepaczuk and Zakrzewski, 2008). Not 

including this information in the close-to-close estimators was the reason, while we added 

the various concepts of realized range estimators to our comparison (RR, GK, RS, YZ, 

etc.). 

One of our main goals was to find the most efficient estimator, which would take us 

closer to the true volatility estimator. In order to accomplish this goal, we calculated several 

statistics describing relative performance of our volatility estimators (the variance 

efficiency ratio, the modified variance efficiency ratio, and the relative variance efficiency 

ratio). We also discussed the issue of accuracy, however, we leave the detailed 

investigation of that subject for the future research. 

The consecutive idea of this paper was to show that computing volatility on high-

frequency data could provide us with valuable information about fluctuations of the market 

which is not revealed in the data on the daily basis, especially when the market is volatile 

during the day. That was the reason for calculating our estimators on various sampling 

frequencies (from 5-minute to daily interval). 

Finally, we have to stress that the main objective of this work, which was to find the best 

estimator of true volatility, was only the step into further investigations, which concern 

forecasting future volatility levels. What we have to do first in the process of selecting the 

best econometric models for forecasting is to choose the most appropriate input data (one 

of the proposed volatility estimators) which significantly influence accurate volatility 

forecasts. 

Taking into account all the above mentioned, we formulated several hypotheses, which 

will be verified further in this paper: 

1. Computing volatility on high-frequency data will provide us with valuable information 

about fluctuations of the market, which is not revealed in the data on the daily basis. It is 
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indirectly connected with greater efficiency of estimators calculated on the basis of HF 

data. 

2. During the estimation process we should utilize information included in price range 

(high, low, open and close prices), in order to obtain the most efficient estimators.  

3. The efficiency of volatility estimator is closely connected with the length of the memory 

(parameter n) used in the process of calculation.  

4. The efficiency of the estimator concerning its formula is only revealed when compared 

to the other estimator calculated on the basis of the same interval delta and parameter n. 

5. Various concepts of volatility estimators could over or under-estimate the actual level of 

volatility depending on their calculation formula. 

To accomplish described goals we planned the structure of our paper as follows. Next 

section describes the recent literature and some stylized facts about volatility. Theoretical 

background, formulas and the overall context of presented research are in the third part. 

Fourth section contains the description of data used in the process of analysis. The process 

of selection of q, Δ and n is described in the fifth section. The consecutive part contains the 

comparison of distributions of volatility estimators. The seventh part focuses on the 

connection between market turmoil and the behaviour of different volatility estimators. In 

this section we also describe implications of the results for financial models. The last 

section concludes and defines paths for further researches. 

 

2. Literature review 

 

The concept of volatility estimators is widely researched in financial literature. Scientists 

try to find the best estimator of true volatility, which is not observed/rather latent process, 

through numerous researches on daily, weekly or high frequency financial data.  

Contemporarily, the most frequently used estimator is still classical volatility estimator 

(the sum of squared differences of ith return and the mean return over the analyzed period of 

time) which is the part of many kinds of financial models (Black-Scholes model, CAPM, 

APT, input variable in various GARCH and ARCH models, as well as stochastic volatility 

models, etc.) and which is frequently treated as sufficient estimator of true volatility 

process. Although this estimation is to a large extend successful, we are aware of the fact 

that it is possible to find better, more efficient, still unbiased and consistent estimators. The 

most important disadvantage of SD is that it is calculated on the daily basis, not revealing 

intraday fluctuations and that it is supposed to have low efficiency in comparison with 

other volatility estimators (e.g. Martens and Dijk, 2007, Yang and Zhang, 2000, Shu and 

Zhang, 2006). 

Since the concept of volatility has grown in importance through the last forty years, many 

new concepts of volatility estimators focused on gaining on efficiency and being robust to 

all existing microstructure biases (bid-ask spread, the opening jump effect, non-trading 

bounce, etc.) have been invented. Therefore we have thoroughly and chronologically 

studied the most influential works concerning the issue of volatility estimators and their 

properties, in order to place our research as the natural consequence of the contemporary 

state-of-the-art and focus on the most important details which were not sufficiently 

explained in the previous works. 

Merton (1980), who was the first to propose realized volatility concept (the sum of 

squared returns over the analyzed period of time measured in equidistant periods) as the 

unbiased and consistent estimator of daily variance 2

t  on condition that the returns have a 

zero mean and are uncorrelated. He agreed that RV is the true volatility estimator when 
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returns are sampled as often as possible. This concept was later heavily researched by 

Taylor and Xu (1997) and Andersen et al. (1998, 2000, 2001a and 2001b) as well as others, 

who additionally paid close attention to microstructure bias which unfortunately grows in 

importance as the sampling frequency increases. 

In 1980, Parkinson introduced the new concept, which utilized price range (high price - 

low price, or consequently their logs) in order to reveal all the information set included in 

the price fluctuations. This improvement led to range-based volatility estimator which was 

still unbiased if the mean was equal zero and almost 5 times more efficient than the 

classical volatility estimator.   

Next concept of Garman and Klass (1980) improved Parkinson’s estimation by including 

not only high and low prices but open and close prices, as well. They defined the minimum-

variance unbiased estimator for Brownian motion with zero-drift. Moreover, they proved 

that their range based volatility estimator is eight time more efficient than the classical 

volatility estimator.  

Following the discoveries described above, Rogers and Satchell (1991) proposed a new 

approach to volatility estimation. Suggested concept was unbiased and independent of the 

drift term. Their estimator improved the main drawback of Garman-Klass estimator which 

was biased if used in the case of non-zero drift. However, Rogers-Satchell estimator still 

assumed no opening jump effect and was unbiased only under this assumption. 

The next step into increasing volatility literature, where successive researchers attempted 

to find the unbiased estimators, which would be independent of both opening jump and the 

drift term, was Yang and Zhang (2000) with their multiperiod volatility estimator based on 

high, low, open and close prices. The Yang-Zhang estimator had the following properties: 

(a) unbiased, (b) independent of the drift, (c) consistent in dealing with the opening jump 

and (d) smallest variance among all the estimators with similar properties (the typical 

biweekly Yang-Zhang variance estimation was over 7 times more efficient than the 

classical variance estimator). 

Andersen and Bollerslev started to popularize the notion of realized volatility and 

correlation in 90s having written the numerous research papers (Andersen and Bollerslev, 

1998, 1999a, 1999b) devoted to the techniques focusing on many possible aspects and 

dimensions of that issue, especially the properties of such estimator calculated on the high 

frequency data. They noticed that the realized volatility is a more efficient and unbiased 

estimator of volatility than the popular daily classical volatility estimator. Moreover, it 

converges to the true underlying integrated variance when the length of the intraday interval 

goes to zero (Andersen et al. 2001a, 2001b). They found that the efficiency of the daily 

high-low range is between that of the realized variance computed using 3- and 6- hour 

returns. Estimating realized volatility of stock returns they noticed that the sampling 

frequency of 5- and 30-minute intervals strike a balance between the increasing accuracy of 

higher frequencies and the adverse effects of market microstructure frictions (Andersen et 

al., 2001a, 2003). 

The discussion of the volatility estimation techniques was enriched by the description of 

distribution of volatility during the normal stock session which we can name daily patterns 

of volatility (Taylor and Areal, 2000). Basing on five-minute returns they presented the 

distribution of the volatility of FTSE-100 index focusing on significant jumps of volatility 

during the day, caused by the announcement of US or UK macro data. They also revealed 

that the patterns of volatility are considerably diverse through consecutive days of the 

week. Studying the distribution of the logarithm of volatility and that of returns 

standardized by realized volatility they confirmed that it is almost exactly normal. 



 5 

Zhang et al. (2005) went one step further and developed the estimator which combined 

realized variance estimator obtained from returns sampled at two different frequencies. The 

realized variance estimator obtained using a certain (low) frequency was corrected for bias 

due to microstructure noise using the realized variance obtained with the highest available 

sampling frequency. 

Ait-Sahalia et al. (2005) and Hansen and Lunde (2006b) revealed that returns at very 

high frequencies are distorted such that the realized variance becomes biased and 

inconsistent. Deriving the theoretical properties for realized range in a world with no 

market microstructure noise and with continuous trading, Christensen and Podolskij (2005) 

stated that this estimator is five times more efficient than the realized variance sampled 

with the same frequency and converges to the integrated variance with the same rate. 

When testing the relative performance of various historical volatility estimators that 

incorporate daily trading range Shu and Zhang (2006) found that the range estimators 

perform very well when asset price follows a continuous geometric Brownian motion. 

However, significant differences among various range estimators are detected if the asset 

return distribution involves an opening jump or large drift. Nonetheless, the empirical result 

is supportive of the use of range estimators in estimating historical volatility. 

Martens and Dijk (2007) tried to develop the concept of realized range by introducing 

scaled realized range which was additionally robust to microstructure noise. They noticed 

that realized range with their bias-adjustment procedure was more efficient than realized 

variance when using the same sampling frequency.  

Discussing the issue of volatility estimators we cannot forget about implied volatility 

derived from the market prices of options with help of adequate theoretical model. The 

concept, which has been developing successfully from the mid 70s, got the inspiring 

injection of new theoretical thought after publication of Derman et al. (1999), who explain 

the properties and the theory of both variance and volatility swaps, deriving volatility 

directly from option prices basing on model-free and non-parametric approach to volatility 

estimation. They also design the framework for hedging Vega, showing how a variance 

swap can be theoretically replicated by a hedged portfolio of the strip of out of the money 

options (Call and Put) with adequate weights. Assuming that the fair value of the variance 

swap is the cost of the replicating portfolio, they derive analytic formulas for theoretical 

fair value in the presence of realistic volatility skew. Nowadays, the above concept lies 

behind the theoretical formulas designed for VIX and many other volatility indexes (VXO, 

VXN, VDAX, VDAX-NEW, VSMI, and recently computed VIW20
4
). Moreover, VIX 

index is even the basis instrument, for derivatives (futures and options) quoted on the 

CBOE and this issue will be important in the discussion presented in the sections seven and 

eight. 

Before we go to the main part of this paper let us look at some stylized facts established 

between theoreticians and practitioners dealing with the issue of volatility: 

 Volatility time series are mean-reverting; Moreover, analyzing the behaviour of VIX we 

can even say that it is “minimum reverting process” (Slepaczuk and Zakrzewski, 2007). 

 Long memory phenomenon or the persistence effect in the volatility time-series, i.e. after 

negative or positive shock in volatility, the shock dies out very slowly (Baillie et al., 1999 – 

fractionally integrated time series). 

                                                 
4 VIW20 is the volatility index for WIG20 index, the main equity index for the Polish stock market (Slepaczuk and 

Zakrzewski, 2007). 
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 Volatility clustering, i.e. we observe distinct periods when volatility clusters on the high 

or low level for the long period of time (Andersen et al., 2001a). This effect is closely 

related to long memory effect, described above. 

 The leverage effect revealing asymmetric volatility reaction on the shocks in the basis 

stock market index, i.e. sudden jumps of volatility connected with the sharp downward 

movement and moderate increase or even decrease in the time of upward movement (Black, 

1976; Ebens, 1999; Andersen et al., 2001a). Additionally, Andersen et al. (2001a) showed 

that this effect is stronger on the aggregated level (market stock indexes) than for individual 

stocks. 

 Strong negative correlation with the basis index, which additionally strengthens in the 

time of market turmoils, contrary to the correlation between normal instruments (stocks, 

bonds, etc) where initially defined negative correlation disappears when the market is on 

the edge of crash (Slepaczuk and Zakrzewski, 2007). 

 Volatility is time varying and predictable to a certain extent (Giot and Laurent (2004) and 

Martens and Dijk (2007), 

 The distribution of variance is characterized by high kurtosis, positive skewness and non-

normality, but the logarithm of volatility (realized volatility) is approximately normal (Giot 

and Laurent (2004), Andersen et al. (2001a and 2001b). 

 Volatility-in-correlation effect, the strong positive relations between individual stock 

volatilities and the corresponding strong positive relations between contemporaneous stock 

correlations (Andersen et al., 2001a). There is a systematic tendency for the variances to 

move together and for the correlations among the different stocks to be high/low when the 

variances for the underlying stocks are high/low, and when the correlations among the other 

stocks are also high/low. 

 Upward and downward sloping term structure of volatility, especially when we consider 

implied volatility, which can be easily explained by the mean reverting process. When the 

short-term implied volatility is relatively high/low then the term structure is 

downward/upward sloping. 

While conducting our research we will compare our results with stylized facts mentioned 

above.  

 

3. Theoretical background, and the notion behind each formula 

 

On the ground of presented literature we assumed that volatility estimators calculated on 

the basis of high-frequency data including information about intraday range should be the 

most efficient ones. Choosing the set of estimator for our research we took this notion into 

account. 

The definitions of our estimators are presented below. First, we present the formula to 

calculate classical volatility estimator (standard deviation of log returns) which gives us, 

the average variance over the period of n-days: 

)1()(
1)*(

1

1 1

2

,
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N

i
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nN

VAR  

where: 
nVOL

 – variance of log returns calculated on high frequency data on the basis of last n-

days, 
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tir ,  – log return for ith interval on day t with sampling frequency equal Δ, which is 

calculated in the following way: 

)2(loglog ,1,, tititi CCr   

tiC ,
 – close price for ith interval on day t with sampling frequency equal Δ, 

r  – average of log returns for ith interval on the basis of last n-days with sampling 

frequency equal Δ, which is calculated in the following way: 

)3(
*
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1 1

,
 




n

t

N

i

tir
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r  

NΔ – the amount of Δ intervals during the stock market session, 

n – the memory of the process measured in days, used in the calculation of adequate 

estimators and averages. 

One of the first estimators which we choose in our study is the Parkinson estimator 

(Parkinson, 1980). Initially it was calculated on the basis of daily intervals, but after 

Martens and Dijk (2007) we decided to use intraday prices, in order to obtain so called 

realized range. We aggregate high-low ranges for intraday intervals to obtain daily realized 

range: 
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where: 

tRR ,
 – daily realized range calculated for day t with sampling frequency equal Δ, 

til ,  – log of minimum price (
tiL ,log ) for ith interval on day t with sampling frequency 

equal Δ, 

tih ,  – log of maximum price ( tiH ,log ) for ith interval on day t with sampling 

frequency equal Δ, 

Next, after Andersen et al. (2001), Taylor and Areal (2000) and Martens and Dijk (2007) 

we shortly explain the theoretical background behind the concept of realized volatility 

estimator. Realized volatility computed from high-frequency intraday data is an effective 

error-free and model-free volatility measure, considering that we choose the optimal 

sampling frequency. Furthermore, construction of realized volatility is trivial as one simply 

sums intra-period high-frequency squared log returns (or cross products, for realized 

covariance
5
), period by period. For example, for a 7-hour market (420 minutes), daily 

realized volatility based on Δ-minute underlying returns is defined as the sum of the NΔ 

intra-day squared Δ-minute returns, taken day by day
6
: 

)5(2
1 1

,

1

,

2

,,  
  

 





 
N

i

N

i

tij

N

ij

tjtit rrrRV  

where Ci,t denotes the close price of ith interval on day t and ri,t denotes the log-return of ith 

interval on day t. Assuming that the returns have zero mean and are uncorrelated, and 

following the discoveries of Andersen, Bollerslev, Diebold and Labys (2001), we can treat 

                                                 
5 Having known the big importance of the correlation of returns we decided to leave this subject for consideration 
in forthcoming papers. 
6 Andersen, Bollerslev, Diebold and Labys (1999a). 
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The Garman-Klass volatility estimator (Garman-Klass, 1980) which utilizes the open and 

close price in addition to the high and low prices is calculated as: 
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Next, we calculated Rogers-Satchell volatility estimator (Rogers and Satchell, 1991): 
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where: 

tio ,  – log of open price  (
tiO ,log ) for ith interval on day t with sampling frequency 

equal Δ, 

tic ,  – log of maximum price (
tiC ,log ) for ith interval on day t with sampling 

frequency equal Δ, 

Consecutive estimator, presented by Yang and Zhang (2000) improved the most 

important imperfections connected with the previous ones. The formula for Yang-Zhang 

volatility estimator is as follows: 
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and the constant k chosen to minimize the variance of this estimator is given by: 
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Alternate formula for volatility estimator was presented in Hansen and Lunde (2006b). 

Their kernel-based estimator tried to remove the bid-ask bounce by adding autocovariances 

to the realized variance. In our research we included n

AC RV1
, which incorporates the first-

order autocovariance: 
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Two last estimators which were taken into account in our study were the concepts of 

scaled realized range and scaled realized volatility proposed by Martens and Dijk (2007). 

They suggested a bias correcting procedure based on scaling the realized range/volatility 
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with the ratio of the average level of daily range/volatility and the average level of the 

realized range/volatility over the q previous days: 
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where: 

tRV ,
  - daily realized volatility calculated for day t with sampling frequency 

equal Δ, 

atdailyRV ,
 - daily realized volatility calculated for day t based on daily data, 

tRR ,
  - daily realized range calculated for day t with sampling frequency equal 

Δ, 

atdailyRR ,  - daily realized range calculated for day t based on daily data, 

The process of scaling was based upon the idea that daily realized range is (almost)  

uncontaminated by microstructure noise, and thus provides a good indication of the true 

level of volatility. While implementing this bias adjustment we have to choose the proper 

number of trading days q used to compute the scaling factor. Martens and Dijk (2007) 

suggest that if the trading intensity and the spread do not change for the asset under 

consideration, q may be set as large as possible to gain accuracy. Naturally, in practice both 

features tend to vary over time, which suggests that only the recent price history should be 

used and q should not be set too large. When we consider the data for WIG20 index futures 

utilized in our research, we see that the spread is relatively small (1 point), but the trading 

intensity varies significantly over time. This variation in the average spread suggests that 

the ratio of the average level of the daily realized range relative to the average level of 

realized range changes over time. Therefore, we decided to compute the scaling factor 

using the previous q trading days, where q was equal: q= {5, 10, 15, 21, 42, 63, 84, 105, 

and 126}. Then we choose the most appropriate scaling factor on the base of the estimator 

efficiency. 

Looking at the formulas presented, we can distinguish multi- and one-period estimators, 

computed in many different ways, thus in the next step we implement two different 

methods of averaging. Next, we will annualize these estimators assuming that there is 252 

working days in a year and we will take the square root of our estimator to obtain standard 

deviation as a measure of volatility instead of variance. 
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where: 

]_[ estvol        - RR, RV, GK, RS, RVAC1
, RVq , RRq , 

nstdannual estvol ]_[_ - annualized volatility estimator: 
nstdannual RR

_
, 

nstdannual RV

_
, 

nstdannua l GK

_
,

nstdannual RS

_
,

nstdannual

AC RV

_

1 .
nstdannua l

q RV

_
,

nstdannua l

q RV

_
, 

Naturally, everywhere we use log we mean natural logarithm. After the presentation of 

all the formulas for volatility estimators we come to the point of choosing the most 

adequate n, Δ, and q in order to select the best estimator of true volatility (section six). 

However, let us describe our data sets first. 

 

4. Data and descriptive statistics 

 

Our empirical analysis is based on high-frequency financial data for WIG20 index 

futures
7
. WIG20 consists of 20 largest companies quoted on WSE and is computed as a 

weighted measure of the prices of its components. The 5-minute data, supplied by 

Information Products Section from WSE
8
, cover the period from June 2, 2003 to July 7, 

2007. The number of 5-minute returns for a trading day depends on the trading hours for 

futures contracts but this have been changed once during our research period. The trading 

took place from 9:00 a.m. to 4:00 p.m. for the time period from June 2, 2003 until 

September 30, 2005 and from 9:00 until 4:30 p.m. 
9
 for the next two years from October 3, 

2005 until July 7, 2007. Thus, we had 84 or 90 five-minute returns for a day in the research 

period, but in order to conveniently define delta-minute returns, we removed all prices 

recorded after 4:00 p.m., and as a result we were left with 84 five-minute returns during the 

day.
10

 All returns were computed as the first difference in the regularly time-spaced log 

prices of WIG20 index futures, with the overnight return included in the first intraday 

return. After correction for outliers (three on the basis of five-minute intervals and two on 

the daily basis) we get a total of 1031 trading days and a total of 86414 five-minute 

intervals. The intraday intervals for different delta (taking daily prices into consideration as 

well) were obtained from the basic five-minute data set. 

Table 4.1 summarizes the descriptive statistics for five-minute data interval divided into 

two subsets: the original data (returns-I) and the data after modification (returns-II) 

described above. We include this comparison in order to show that our modification does 

not significantly change the properties of the data set used in our research. Analyzing both 

returns, we can see high kurtosis and negative, but small skewness. The average returns are 

small and are not significantly different from zero. The distribution of the returns is 

                                                 
7 We based our study on the continuous time series for futures, where expiring futures contract was replaced by the 

next series, where the number of open positions achieved the higher value. Described mechanism is one of the 
most common ways of creating continuous time series for futures. We do not have enough data for the longer 

period of time because of the short time to expiration of individual future contract, for that reason we had to create 

continuous futures index. 
8 Warsaw Stock Exchange. 
9 In practice, the continuous trading finished at 4:10 p.m., then the close price was settled between 4:10 p.m. and 

4:20 p.m., and next investors could trade until 4:30 p.m. only on the basis of close price. Therefore, we could say 
that we have 86 instead of 90 intervals in the second period. 
10 We adjusted high, low and close price in the last 5-minute interval (from 3:55 p.m. to 4:00 p.m.) with the 

information included in the intervals from 4:00 p.m. to 4:10 p.m. and the daily close price. Table 4.1 presents the 
descriptive statistics for our data set (five-minute returns) with and without this restriction as to confirm that this 

transformation did not influence its properties. 
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leptokurtic, i.e. it is almost symmetric and has fat tails and a substantial peak at zero. 

Testing for normality we get the same results for both data sets, i.e. the statistics reveal 

non-normality of the data sets tested. The most important is that the descriptive statistics for 

both data sets do not differ significantly, which allows us to use modified data set (returns-

II) in the research. 

 

Table 4.1. The descriptive statistics for log returns of analyzed index futures returns for the 

period from June 2, 2003 to July 7, 2007.
a
 

 returns-I b returns-II c 

N 86414 84818 

Mean 0.000013534 0.000012834 

Median 0 0 

Variance 2.3131977E-6 2.3085858E-6 

Std Dev 0.0015209 0.0015194 

Minimum -0.0305313 -0.0305313 

Maximum 0.0279413 0.0279413 

Kurtosis 24.2092143 23.9819602 

Skewness -0.1556275 -0.1774762 

P1 -0.0041335 -0.0041140 

P5 -0.0021031 -0.0021224 

P10 -0.0014276 -0.0014461 

P90 0.0014535 0.0014724 

P95 0.0021146 0.0021330 

P99 0.0042061 0.0041754 

Test for Normality 

Kolmogorov-Smirnov 
Statistic 0.105333 0.105758 

p-value <0.0100 <0.0100 

Cramer-von Mises 
Statistic 379.7725 356.5796 

p-value <0.0050 <0.0050 

Anderson-Darling 
Statistic 2122.372 1988.245 

p-value <0.0050 <0.0050 
a The table contains the descriptive statistics for five-minute returns for original data and the data with prices 

recorded between 9:00 and 16:00 only. The statistics presented above are: number of observation, mean, median, 

variance, standard deviation, minimum, maximum, kurtosis, skewness and normality tests. b the original data. c the 
modified data with prices recorded between 9:00 and 16:00 only. 

 

Following the discoveries of Ait-Sahalia et al. (2005) we wanted to answer the question 

if we really need the data sampled as often as possible or 5-, 10-, 15- or even 30-minute 

intervals are enough. Therefore, we tried to choose the optimal sampling frequency (Δ 

parameter), i.e. the best interval when we consider maximizing the efficiency and 

minimizing the microstructure bias (bid-ask bounce and infrequent trading bias) combined 

with autocovariance bias. Areal and Taylor (2000) agreed that five-minute returns are the 

highest that avoid distortions from microstructure effect such as bid-ask bounce. On the 

other hand, Oomen (2001) suggests that the use of equally-spaced thirty-minute returns 

strikes satisfactory balance between the accuracy of the continuous-record and the market 

microstructure frictions. We wanted to answer the same question on the basis of the data 

being researched. Finally, we decided to choose a range of sampling frequencies in the 

process of calculating the various volatility estimators and leave the moment of selecting it 

for the next section, where we focus on the efficiency of the estimator. 



 12 

The point of our interest in the next sections will be to find the most efficient estimator 

with regard to the estimation parameters: q, n and delta. In the process of calculation we 

used delta which are divisors of 420 (the number of minutes during the normal stock 

market session), i.e. delta = {5, 10, 15, 30, 60, 105, 210, 420}. As for the memory 

parameter (n) and the scaling factor for scaled estimator (q) we establish our set of 

possibilities basing on the time intervals, i.e. equivalent of one day, week, month, etc., 

naturally taking into account only working days. Therefore, we calculated volatility 

estimators for the following parameters: n = {1, 5, 10, 15, 21, 42, 63, and 126} and q = {5, 

10, 15, 21, 42, 63, 84, 105, and 126}. 

 

5. The optimal sampling selection and the length of the memory of the process. 

 

In order to solve the problem of optimal sampling selection, we had to calculate the 

volatility estimators for all values of q, n, and delta parameters. Given that we used 9 

different possible values of q and 8 different possible values of n and delta, in result we got 

a quite substantial number of combinations for each volatility estimator: 

1. 64 possible values for:
nstdannual RR

_
, 

nstdannual RV

_
, nstdannual GK

_ , 
nstdannual RS

_
, 

nstdannual

AC RV

_

1 , 
nstdannual YZ

_
, 

nstdannual SD

_
, which depend on n and delta parameters 

(8x8 possibilities). 

2. 576 possible values for scaled estimators: 
nstda n n u a l

q RR

_
,

nstdannua l

q RV

_
, which depend 

on n, q and delta parameters (8x9x8 possibilities), 

which totaled in 1600 volatility estimators. 

Having calculated these estimators, we had to choose the adequate methodology for 

measuring the efficiency of the estimator. We agreed with Yang and Zhang (2000) that the 

variance/standard deviation of an estimator measures the uncertainty of the estimation, i.e. 

the smaller the variance/standard deviation, the more efficient the estimation. They 

concluded that, from the point of view of both theoretical consideration and practical 

application, it is desirable to find the minimum variance/standard deviation unbiased 

estimator. Garman and Klass (1980) who defined the efficiency of a variance estimator to 

be the ratio of the variance of the classical daily volatility estimator to that of current 

estimator, claimed that the higher the ratio, the more efficient the estimator for a given 

number of periods. Primal formula for variance efficiency ratio was: 

 

)19(
)]([var_

)(
n

n

daily

estVar

VARVar
Eff



  

where: 

Eff  - variance efficiency ratio, 

)( n

da ilyVARVar  - variance of the classical variance estimator, 

)]([var_ nestVar 
- variance of the specific variance estimator, 

The puzzling thing in the above formula was that it compared the estimators calculated 

on the basis of different intervals (delta parameter) and various price histories (parameter 

n), what could be misunderstandable in the process of parameters selection. When we use 

different n or delta, as a result we do not get the most efficient estimator with regard to its 

formula but the outcome efficiency is conditional on parameter n and parameter delta. We 
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tried to avoid this imperfection while estimating the efficiency of our estimators. Therefore, 

basing on the definition of Garman and Klass we define new indicator:  modified volatility 

efficiency ratio (mEff) as the ratio of standard deviation of annualized SD (calculated on 

the basis of specific interval delta for the last n days) to the standard deviation of the 

specific volatility estimator (calculated on the basis of the same delta and n parameters): 

)20(
)]_[(

)(
_

_

nstdannual

nstdannual

estvolstd

SDstd
mEff



  

where: 

mEff - modified volatility efficiency ratio, 

)( _ nstdannual SDstd 
   - standard deviation of annualized classical volatility estimator, 

)]_[( _ nstdannual estvolstd  - standard deviation of annualized volatility estimator, 

We utilized mEff to choose the optimal parameter q, with regard to the efficiency of 

scaled estimators (table 5.1-5.2 and figure 5.1-5.2 contained the results for RR and table 

5.3-5.4 and figure 5.3-5.4 present the results for RV). Unfortunately, the construction of 

mEff makes it relatively difficult to compare our estimators with respect to different delta 

and n, independently of their absolute values. Therefore, we decided to calculate the 

relative volatility efficiency ratio (rEff) where numerator and denominator were divided by 

mean of adequate volatility estimator in order to correct imperfection mentioned above. We 

used rEff in the process of choosing the optimal frequency delta and the most appropriate 

price history (parameter n). Naturally, line of reasoning remained the same. The higher 

ratio indicated the more efficient the estimator. 

 

)21(
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/
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_
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nstdannual

nstdannual

nstdannual

nstdannual
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where: 

rEff    - relative volatility efficiency ratio, 

)( _ nstdannual SDmean 
  - mean of annualized classical volatility estimator, 

)]_[( _ nstdannual estvolmean 
- mean of annualized classical volatility estimator, 

We were not able to present the results for all possible combinations of delta parameter, 

so we chose delta equal 5- and 30-minute interval, as the ones most often chosen in the 

literature. As for the lack of free place we present here only the results for two deltas but all 

the remaining lead us to the same conclusion concerning the selection of q. The figures 5.1-

5.2 and tables 5.1-5.2 present the results for scaled RR with delta equal 5 and 30 minute for 

all n and all q.  

 

The efficiency ratios for volatility estimators presented in this section were calculated for 

the period from June 3, 2004 to July 7, 2007. We have to leave 252 daily data (from June 3, 

2003 to July 7, 2007) because such amount is required to calculate the first value of  
126_

126 RRstdannual  and  126_

126 RVstdannual  (126 daily data for scaled parameter and 126 in the 

process of averaging and annualizing). 
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Table 5.1.  The modified volatility efficiency ratio (mEff) for 
nstda n n u a l

q RR5

_
 for all n 

under investigations.
a
 

 n 1 5 10 15 21 42 63 126 

q          

5  0.886 1.038 1.089 1.116 1.132 1.146 1.146 1.147 

10  0.935 1.060 1.090 1.113 1.128 1.144 1.144 1.145 

15  0.958 1.083 1.105 1.120 1.135 1.152 1.151 1.151 

21  0.961 1.083 1.102 1.114 1.124 1.140 1.140 1.140 

42  0.974 1.096 1.113 1.123 1.129 1.132 1.130 1.129 

63  0.981 1.104 1.119 1.128 1.133 1.132 1.125 1.121 

84  0.978 1.100 1.115 1.123 1.128 1.124 1.115 1.108 

105  0.972 1.091 1.105 1.112 1.116 1.111 1.101 1.092 

126  0.969 1.087 1.100 1.106 1.109 1.102 1.090 1.081 
a  scaled RR is computed according to formula (18) for the data covering all period under investigation (from June 

2, 2003 to July 7, 2007) for delta = 5-minute interval. 

 

Figure 5.1. The modified volatility efficiency ratio (mEff) for 
nstda n n u a l

q RR5

_
 for all n 

under investigations.
a
 

 
a  scaled RR is computed according to formula (18) for the data covering all period under investigation (from June 
2, 2003 to July 7, 2007)  for delta = 5-minute interval. 
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Figure 5.2.  The modified volatility efficiency ratio (mEff) for 
nstdann ua l

q RR30

_
 for all n 

under investigations.
 a
  

 
a   scaled RR is computed according to formula (18) for the data covering all period under investigation (from June 
2, 2003 to July 7, 2007)  for 30-minute interval. 

 

Table 5.2.  The modified volatility efficiency ratio (mEff) for 
nstdann ua l

q RR30

_
 for all n 

under investigations.
 a
 

 n 1 5 10 15 21 42 63 126 

q          

5  1.001 1.115 1.161 1.185 1.197 1.208 1.206 1.210 

10  1.051 1.141 1.168 1.189 1.201 1.214 1.211 1.215 

15  1.072 1.162 1.182 1.197 1.208 1.223 1.220 1.222 

21  1.076 1.162 1.180 1.193 1.201 1.214 1.211 1.213 

42  1.088 1.176 1.192 1.202 1.207 1.211 1.206 1.207 

63  1.092 1.180 1.194 1.204 1.208 1.210 1.202 1.200 

84  1.087 1.173 1.187 1.197 1.200 1.200 1.191 1.187 

105  1.082 1.166 1.179 1.188 1.190 1.189 1.179 1.175 

126  1.080 1.162 1.174 1.182 1.184 1.180 1.170 1.166 
a  scaled RR is computed according to formula (18) for the data covering all period under investigation (from June 

2, 2003 to July 7, 2007) for delta = 30-minute interval. 

 

Analyzing figures 5.1-5.2 and tables 5.1-5.2 we choose q=63 days as the parameter 

maximizing the modified variance efficiency ratio (for the largest number of parameter n) 

what implies minimizing the variance of the estimator with chosen q. 
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Figure 5.3.  The modified volatility efficiency ratio (mEff) for 
nstdannua l

q RV5

_
 for all n 

under investigations.
a
 

 
a scaled RV is computed according to formula (18) for the data covering all period under investigation (from June 
2, 2003 to July 7, 2007)  for delta = 5-minute interval. 

 

Table 5.3. The modified volatility efficiency ratio (mEff) for 
nstdannua l

q RV5

_
 for all n under 

investigations.
a
 

 N 1 5 10 15 21 42 63 126 

q          

5  0.596 0.743 0.809 0.844 0.872 0.916 0.930 0.953 

10  0.664 0.774 0.808 0.839 0.867 0.912 0.924 0.945 

15  0.691 0.801 0.822 0.845 0.871 0.916 0.931 0.954 

21  0.709 0.820 0.838 0.854 0.873 0.917 0.936 0.965 

42  0.749 0.876 0.892 0.903 0.913 0.936 0.953 0.981 

63  0.758 0.890 0.905 0.915 0.924 0.943 0.956 0.982 

84  0.754 0.886 0.901 0.910 0.918 0.935 0.946 0.965 

105  0.759 0.893 0.907 0.915 0.923 0.936 0.943 0.956 

126  0.763 0.898 0.912 0.920 0.926 0.937 0.940 0.948 
a scaled RV is computed according to formula (18) for the data covering all period under investigation (from June 

2, 2003 to July 7, 2007)  for delta = 5-minute interval. 

 

The figures 5.3-5.4 and tables 5.3-5.4 present the results for scaled RV with delta equals 

5 and 30 minute for all n and all q. The selection of parameter q for scaled RV is the same 

as for scaled RR, i.e. q=63, what additionally confirms our previous selection. 
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Figure 5.4. The modified volatility efficiency ratio (mEff) for 
nstdann ua l

q RV30

_
 for all n 

under investigations. 

 
a scaled RV is computed according to formula (18) for the data covering all period under investigation (from June 
2, 2003 to July 7, 2007)  for delta=30-minute interval. 

 

Table 5.4. The modified volatility efficiency ratio (mEff) for 
nstdann ua l

q RV30

_
 for all n 

under investigations. 

 n 1 5 10 15 21 42 63 126 

q          

5  0.648 0.790 0.857 0.891 0.917 0.958 0.971 0.997 

10  0.701 0.823 0.861 0.892 0.919 0.963 0.974 0.998 

15  0.723 0.848 0.873 0.896 0.922 0.969 0.984 1.012 

21  0.737 0.865 0.889 0.907 0.926 0.972 0.992 1.027 

42  0.768 0.918 0.940 0.952 0.963 0.992 1.016 1.053 

63  0.771 0.925 0.947 0.958 0.968 0.995 1.016 1.053 

84  0.769 0.924 0.947 0.958 0.966 0.988 1.006 1.036 

105  0.772 0.929 0.951 0.961 0.969 0.989 1.002 1.027 

126  0.774 0.935 0.956 0.966 0.972 0.988 0.998 1.017 
a scaled RV is computed according to formula (18) for the data covering all period under investigation (from June 

2, 2003 to July 7, 2007)  for delta = 30-minute interval. 

 

After selecting q we focused on parameter n which was responsible for the length of the 

memory of the process. We had to solve some kind of the optimizing problem between 

long memory (high n) - smoothed volatility estimators with hardly any noise but low 

accuracy and short memory (low n) - volatile estimators which were highly infected by the 

noise factor but additionally characterized with high accuracy. We introduce the relative 

volatility efficiency ratio (rEff - formula (21)) in order to choose the best n maximizing the 

efficiency of the estimator regardless of delta parameter.  

We base the process of selecting of parameter n on interval data equal 5- and 30-minute, 

which were found in the theoretical literature as the best compromise between: 
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1. maximizing the frequency of the data in order to get the best estimator of true 

volatility, 

2. controlling the microstructure bias which increases significantly when we base our 

calculation on the interval sampled with the frequency which is too high. 

We base the process of selection of n on the rEff instead of mEff because we want to make 

the comparison robust to the absolute values of standard deviation of our estimators. 

 

Table 5.5. The relative volatility efficiency ratio (rEff) for volatility estimators for delta = 

5-minute interval and for all n under investigations.
a
 

 n 1 5 10 15 21 42 63 126 

vol_est          

nstda n n u a l RR5

_
 1.006 1.007 1.005 1.005 1.003 0.989 0.976 0.958 

nstdannua l RV5

_
 0.925 0.983 0.986 0.989 0.992 0.996 0.995 0.995 

nstdann ua l GK5

_
 0.912 0.964 0.977 0.985 0.985 0.968 0.948 0.926 

nstdann ua l RS5

_
 1.035 1.042 1.041 1.042 1.042 1.031 1.019 1.003 

nstda n n u a l YZ 5

_
 1.130 1.056 1.056 1.054 1.057 1.064 1.070 1.083 

nstdannual

AC RV5

_

1  0.925 0.983 0.986 0.989 0.992 0.996 0.995 0.995 

nstdannual RR5

_

63
 0.958 1.218 1.250 1.264 1.271 1.269 1.260 1.226 

nstdannual RV5

_

63  0.621 0.817 0.840 0.851 0.860 0.878 0.890 0.908 

a
 rEff is computed for volatility estimators according to formula (21) for the data covering all period 

under investigation (from June 2, 2003 to July 7, 2007)  for delta = 5-minute interval. 

 

Figure 5.5. The relative volatility efficiency ratio (rEff) for volatility estimators for delta = 

5-minute interval and for all n under investigations.
a
  

 
a rEff is computed from volatility estimators according to formula (21) for the data covering all period under 

investigation (from June 2, 2003 to July 7, 2007) for delta = 5-minute interval. 
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Tables 5.5-5.6 and figures 5.5-5.6 present the comparison criteria (rEff) necessary to 

select the most adequate n parameter. Basing on the same notion as before, for the 

consecutive comparisons, we chose n=42 and n=63 as the parameters maximizing the rEff 

and therefore minimizing standard deviation of our estimators. 

 

Table 5.6. The relative volatility efficiency ratio (rEff) for volatility estimators for delta = 

30-minute interval and for all n under investigations.
a
 

 n 1 5 10 15 21 42 63 126 

vol_est          
nstdann ua l RR30

_
 1.193 1.070 1.060 1.058 1.054 1.041 1.027 1.008 

nstdann ua l RV30

_
 0.968 0.990 0.992 0.991 0.992 0.995 0.993 0.994 

nstdannua l GK30

_
 1.128 1.046 1.056 1.064 1.063 1.048 1.031 1.005 

nstdann ua l RS30

_
 1.230 1.080 1.069 1.066 1.061 1.047 1.035 1.019 

nstda n n u a l YZ 3 0

_
 1.260 1.063 1.047 1.041 1.040 1.042 1.042 1.046 

nstdannual

AC RV30

_

1  0.968 0.990 0.991 0.991 0.992 0.995 0.993 0.994 

nstdannual RR30

_

63  1.005 1.291 1.329 1.347 1.355 1.357 1.346 1.295 

nstdannual RV30

_

63  0.602 0.840 0.872 0.887 0.898 0.922 0.940 0.961 
a rEff is computed for volatility estimators according to formula (21) for the data covering all period under 

investigation (from June 2, 2003 to July 7, 2007)  for delta = 5-minute interval. 

 

Figure 5.6. The relative volatility efficiency ratio (rEff) for volatility estimators for 

delta=30-minute interval and for all n under investigations.
a
  

 
a rEff is computed for volatility estimators according to formula (21) for the data covering all period under 
investigation (from June 2, 2003 to July 7, 2007)  for delta = 30-minute interval. 
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Having selected n and q parameters, finally, we came to the last step, i.e. the optimal 

sampling frequency selection (delta parameter). We based this step on the volatility 

estimators calculated for n=42 and n=63 (chosen in the last stage). The tables 5.8-5.9 and 

figures 5.8-5.9 present the relative volatility efficiency ratio (rEff) for n=42 and n=63 for all 

delta intervals under investigations. 

 

Table 5.8.  The relative volatility efficiency ratio (rEff) for volatility estimators for n=42 

and for all delta interval under investigations.
a
  

 delta 5 10 15 30 60 105 210 420 

vol_est           
42_

RRstdannua l
 0.989 0.998 1.018 1.041 0.979 1.024 1.020 1.049 

42_

RVstdannua l
 0.996 0.993 0.997 0.995 1.001 1.006 1.016 1.032 

42_

GKstdannua l
 0.968 0.984 1.019 1.048 0.948 1.008 1.001 1.027 

42_

RSstdannua l
 1.031 1.004 1.036 1.047 0.958 1.036 1.063 1.039 

42_

YZstdann ua l
 1.064 1.017 1.032 1.042 0.950 1.012 1.032 1.005 

42_

1 RVstdannual

AC  0.996 0.993 0.997 0.995 1.001 1.006 1.015 1.032 

42_

63 RRstdannual
 1.009 1.014 1.048 1.071 0.987 1.026 1.057 1.049 

42_

63 RVstdannual
 1.002 1.007 1.045 1.053 0.986 1.041 1.062 1.032 

a rEff is computed for volatility estimators according to formula (21) for the data covering all period under 

investigation (from June 2, 2003 to July 7, 2007)  for n=42. 

 

Figure 5.8. The relative volatility efficiency ratio (rEff) for volatility estimators for n=42 

and for all delta interval under investigations.
a
  

 
a rEff is computed for volatility estimators according to formula (21) for the data covering all period under 
investigation (from June 2, 2003 to July 7, 2007)  for n=42. 
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Table 5.9.  The relative volatility efficiency ratio (rEff) for volatility estimators for n=63 

and for all delta interval under investigations.
a
  

 delta 5 10 15 30 60 105 210 420 

vol_est          
63_

RRstdannua l
 0.976 0.984 1.007 1.027 0.960 1.014 1.002 1.010 

63_

RVstdannua l
 0.995 0.994 0.996 0.993 0.997 1.000 1.004 1.013 

63_

GKstdannua l
 0.948 0.964 1.003 1.031 0.924 1.000 0.985 0.985 

63_

RSstdann ua l
 1.019 0.990 1.026 1.035 0.936 1.030 1.050 0.997 

63_

YZstdannua l
 1.070 1.017 1.037 1.042 0.941 1.016 1.030 0.976 

63_

1 RVstdannual

AC  0.995 0.994 0.996 0.993 0.997 1.000 1.004 1.013 

63_

63 RRstdannual
 1.002 1.005 1.042 1.062 0.971 1.017 1.041 1.010 

63_

63 RVstdannual
 1.018 1.024 1.064 1.076 0.993 1.051 1.065 1.013 

a rEff is computed for volatility estimators according to formula (21) for the data covering all period under 

investigation (from June 2, 2003 to July 7, 2007)  for n=63. 

 

Figure 5.9. The relative volatility efficiency ratio (rEff) for volatility estimators for n=63 

and for all delta interval under investigations.
a
  

 
a rEff is computed for volatility estimators according to formula (21) for the data covering all period under 
investigation (from June 2, 2003 to July 7, 2007)  for n=63. 

 

We chose delta = 30 (the parameter which maximizes rEff) as the best periodicity for the 

last stage of our research, i.e. the selection of the best estimator of true volatility. We 

noticed that the differences between efficiencies of consecutive estimators are not as 
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significant as it was presented in the previous papers (Martens and Dijk, 2007, Yang and 

Zhang, 2000, Garman-Klass, 1980, etc.) which introduced the new concepts of volatility 

estimators. The reason for this is that we compare the estimators with the same n, q and 

delta focusing only on their formulas. 

We are also aware of the fact that the results show the relative efficiency in relation to 

standard deviation of annualized SD. Taking into account that we have the same benchmark 

(numerator in formula for mEff and rEff) while comparing our volatility estimators, such 

comparison should present stable results with respect only to the calculation formula 

employed. 

After detailed process of selection we got nine estimators with two different values of n 

(42 and 63, which in practice does not influence significantly the properties of final 

estimator, see Tables 6.1-6.2 in the next section) and two different sampling frequencies 

(delta = 5, 30), which were let for consecutive comparison in order to accomplish our 

superior aim. 

Before we come to the next section we have to stress a few interesting conclusions 

coming from the analysis presented above: 

1. There is only a slight difference between the values of comparison criteria, which is 

in contrast to the results obtained in the process of previous researches indicating 

significant influence on efficiency of the estimator. 

2. The amplitude of fluctuations of each comparison criterion differs significantly when 

we consider the selection of optimal n, q or delta, which additionally reveals the 

influence of each parameter on the final efficiency of the estimator. 

3. We identified parameter n and delta as the most important for the final level of 

volatility. 

Our results confirm the ones presented in financial literature where 5- to 30- minute 

intervals turn out to be the optimal sampling frequency. What is more important, the 

selection of parameter q (q=63) was similar to the presumptions of Martens and Dijk 

(2007). However, the most important value added of our research is the discussion of the 

optimal length of the memory of the process (parameter n), the issue which was not 

examined in the previous papers. This importance is even confirmed by the range of 

fluctuations of our comparison criteria when we try to choose the most appropriate n. 

 

6. The distribution of different volatility measures 

 

After the process of selection of essential parameter in the previous chapter we will 

carefully describe the properties of distribution of nine selected volatility measures, 

calculated on the ground of different theoretical notions, with respect to two different n and 

Δ. Moreover, we added the results for SD daily in order to reference our results to the 

benchmark widely used in volatility literature. 

Tables 6.1-6.6 present the standard statistics of distributions, only for the parameters 

selected in the previous chapter. Additionally, we compare the results for delta=5, being the 

higher available frequency, which is the most connected to the true volatility which is 

instantaneous process. 

The descriptive statistics for volatility estimators presented in this section were calculated 

for the period from November 28, 2003 to July 7, 2007. We have to leave 126 daily data 

(from June 3, 2003 to November 27, 2003) because such amount is required to calculate the 

first value of  nstdannual RR

_

63
 and  nstdannual RV

_

63
 (63 daily data for scaled parameter and 63 in 

the process of averaging and annualizing). 
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Table 6.1. The descriptive statistics for nine different volatility estimators calculated for n=63 and delta=5.
a
  

 RRb RV GK RS YZ ARV qRR qRV SD SDd 

N 905 905 905 905 905 905 905 905 905 905 

Mean 0,1689 0,21 0,1499 0,1678 0,1905 0,21 0,1886 0,2248 0,2103 0,22 

Median 0,1642 0,2056 0,1429 0,1641 0,1867 0,2056 0,1799 0,2232 0,2058 0,2165 

Variance 0,0021 0,003 0,0018 0,0019 0,0021 0,003 0,0025 0,0033 0,003 0,0031 

Std Dev 0,0458 0,0547 0,0423 0,0437 0,046 0,0547 0,0503 0,0575 0,0546 0,0554 

Minimum 0,111 0,1366 0,0987 0,1119 0,1268 0,1366 0,1225 0,1375 0,1374 0,1408 

Maximum 0,2965 0,3686 0,2635 0,2879 0,3235 0,3686 0,3275 0,3824 0,3686 0,3714 

Range 0,1967 0,2394 0,1796 0,1971 0,2161 0,2394 0,2005 0,244 0,2389 0,2306 

Kurtosis 0,293 0,5467 0,1034 0,1892 0,4028 0,5468 0,3126 0,2576 0,5409 -0,1633 

Skewness 0,9757 0,9829 0,9676 0,9287 0,9076 0,9829 0,9908 0,7539 0,987 0,6789 

P1 0,1134 0,1393 0,1002 0,114 0,1286 0,1393 0,1254 0,1397 0,1406 0,1448 

P5 0,1167 0,1467 0,1025 0,1174 0,1362 0,1467 0,1305 0,147 0,1473 0,1513 

P95 0,27 0,3302 0,242 0,2634 0,2887 0,3302 0,2975 0,3476 0,3306 0,3305 

P99 0,2926 0,3644 0,2594 0,2838 0,3195 0,3644 0,3234 0,3778 0,3644 0,3644 

CV 0,2712 0,2605 0,2822 0,2604 0,2415 0,2605 0,2667 0,2558 0,2596 0,2518 

Test for Normality 

Kolmogorov

-Smirnov 

Statistic 0,901 0,916 0,892 0,904 0,906 0,916 0,926 0,935 0,920 0,926 

p-value <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 

Cramer-von 

Mises 

Statistic 0,117 0,093 0,115 0,121 0,143 0,093 0,142 0,130 0,141 0,129 

p-value <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 

a The table contains the statistics on the daily basis (for the period from November 28, 2003 to July 7, 2007) calculated for delta and n already selected: number of observation, mean, 

median, variance, standard deviation, minimum, maximum, range, kurtosis, skewness, CV and normality tests. b RR stands for 
nstdann ua l RR

_
, then RV - 

nstda n n u a l RV

_
, GK - 

nstdannua l GK

_
, RS- 

nstda n n u a l RS

_
, YZ - 

nstda n n u a l YZ

_
, ARV - 

nstdannual

AC RV

_

1
, qRR - 

nstdannual RR

_

63
, qRV - nstdannual RV

_

63
, SD -

nstdann ua l SD

_
, SDd - 

n

daily

stdannual SD_
. CV – coefficient of variation is defined as the ratio of the standard deviation to the mean. 
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Presented tables (6.1 and 6.2) enable us to describe the properties of the distributions of 

selected volatility estimators, compare them with SD daily and formulate below mentioned 

conclusions. 

First of all, focusing on mean and median values, we observe significant differences (up to 

50%, setting GK and qRV on two opposite extremes). Obviously, mean or median values enable 

us to reference the concept of efficiency and accuracy, which were not discussed in details in 

this paper. However, significant differences between tested volatility estimators suggest to us 

that this subject cannot be omitted in the future research. 

Secondly, the analysis of variance and std reveals similar patterns to the previous statistics 

(the difference in volatility is up to 50% with GK and qRV on two opposite extremes). On the 

other hand, the coefficient of variation (CV): 

)22(
Mean

StdDev
CV   

which relates to the relative volatility, is more appropriate for comparison. The comparison of 

efficiency based on this criterion (CV) informs us that differences in relative efficiency are not 

significant (less than 10%) and, what is more important, the results have changed, moving GK 

on the last and qRV on the first position with respect to relative efficiency. Additionally, our 

results show that referencing to relative efficiency, SD daily has similar efficiency to the 

remaining volatility estimators. Given observations do not confirm the results of Garman and 

Klass (1980), Yang and Zhang (2000) or Martens and Dijk (2007). 

Thirdly, analysing minimum, maximum and range we noticed that extremes are strictly 

connected with the previous observation for mean values (i.e. for GK and qRV). 

Fourthly, kurtosis, skewness and tests for normality indicate departure from normality, which 

brings our results closer to the previous papers (e.g. Andersen et al. 2001a, 2001b). 

Results for different delta (Δ=30 in Table 6.2) and different n (n=42, not presented in this 

paper) confirm and additionally strengthen our conclusions. 

 

In the next step we visualized the fluctuations of volatility estimators in order to refer not only 

to their efficiency but accuracy as well. Figures 6.1, 6.3 and 6.5 presenting the comparison of 

RR, RV, GK, YZ and SDd with n=63, 21 and delta=5, 30 add additional observation to the 

discussion of accuracy of our estimators. Figures 6.2, 6.4 and 6.6 presenting the fluctuations of 

RS, qRR, qRV, SD and SDd refer to the same issue. Taking into account that the fluctuations of 

RVAC1 do not differ significantly from RV, we presented only RV on the figures below. 

Detailed comparison of Figures 6.1-6.6 informs us about significant differences between 

tested volatility estimators and enables us to formulate the following conclusions: 

1. SDd together with YZ (Figures 6.1 and 6.3) and scaled RV (Figures 6.2 and 6.4) are 

characterized by maximum fluctuations while GK and RR (Figures 6.1 and 6.2) or RS and 

scaled RR (Figures 6.2 and 6.4) are characterized by minimum fluctuations. This observation 

has crucial importance when we consider the appropriateness of specific volatility estimator 

from the point of view of the over- or under-estimation of actual volatility. 

2. The reaction to the volatility jump (especially considering its different magnitude) varies 

significantly between tested volatility estimators (March 2005 or February and March 2007), 

which is especially important considering the speed of response of specific volatility estimator 

to volatility shock. 

3. Stability of observed fluctuations changes significantly with respect to different parameter n 

(Figures 6.1 and 6.5 or 6.2 and 6.6). On the other hand, we observe only slight differences in 

stability of fluctuations with respect to different parameter delta (Figures 6.1 and 6.3 or 6.2 and 

6.4). These observations are additionally confirmed by the statistics presented in Tables 6.1-6.2. 
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Table 6.2. The descriptive statistics for nine different volatility estimators calculated for n=63 and delta=30.
a
  

 RRb RV GK RS YZ ARV qRR qRV SD SDd 

N 905 905 905 905 905 905 905 905 905 905 

Mean 0,1799 0,2095 0,1668 0,1814 0,1957 0,2095 0,188 0,2246 0,2097 0,22 

Median 0,1742 0,2077 0,1566 0,1755 0,1914 0,2077 0,1797 0,2239 0,208 0,2165 

Variance 0,0023 0,0031 0,0021 0,0023 0,0025 0,0031 0,0024 0,0031 0,0031 0,0031 

Std Dev 0,0481 0,0558 0,0456 0,0483 0,0503 0,0558 0,0492 0,0561 0,0556 0,0554 

Minimum 0,1186 0,1329 0,1108 0,1202 0,1256 0,1329 0,1222 0,132 0,1332 0,1408 

Maximum 0,3153 0,3723 0,2904 0,3173 0,3417 0,3723 0,3227 0,376 0,3721 0,3714 

Range 0,1855 0,232 0,1648 0,176 0,1967 0,232 0,205 0,2449 0,2312 0,2306 

Kurtosis 0,3467 0,5977 0,1856 0,3665 0,5285 0,5979 0,2307 0,1422 0,5844 -0,1633 

Skewness 0,9859 0,9141 1,0204 1,0116 0,9404 0,9142 0,9505 0,6295 0,9096 0,6789 

P1 0,1216 0,134 0,112 0,1224 0,1284 0,134 0,1266 0,1336 0,135 0,1448 

P5 0,1245 0,1394 0,1154 0,1258 0,1363 0,1394 0,1302 0,1445 0,14 0,1513 

P95 0,2832 0,3336 0,2631 0,2876 0,3054 0,3336 0,292 0,3409 0,3329 0,3305 

P99 0,3111 0,3672 0,2868 0,3139 0,3388 0,3672 0,3179 0,3705 0,3671 0,3644 

CV 0,2674 0,2663 0,2734 0,2663 0,257 0,2663 0,2617 0,2498 0,2651 0,2518 

Test for Normality 

Kolmogorov

-Smirnov 

Statistic 0,904 0,935 0,887 0,900 0,919 0,935 0,927 0,937 0,928 0,926 

p-value <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 <0,0001 

Cramer-von 

Mises 

Statistic 0,119 0,0907 0,1268 0,1294 0,1374 0,0907 0,146 0,1254 0,1232 0,1295 

p-value <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 

a The table contains the statistics on the daily basis (for the period from November 28, 2003 to July 7, 2007) calculated for delta and n already selected: number of observation, mean, 

median, variance, standard deviation, minimum, maximum, range, kurtosis, skewness, CV and normality tests. b RR stands for 
nstdann ua l RR

_
, then RV - 

nstda n n u a l RV

_
, GK - 

nstdannua l GK

_
, RS- 

nstda n n u a l RS

_
, YZ - 

nstda n n u a l YZ

_
, ARV - 

nstdannual

AC RV

_

1
, qRR - 

nstdannual RR

_

63
, qRV - nstdannual RV

_

63
, SD -

nstdann ua l SD

_
, SDd - 

n

daily

stdannual SD_
. CV – coefficient of variation is defined as the ratio of the standard deviation to the mean. 
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Taking into account conclusions mentioned above and the fact that values of analyzed volatility 

estimators could differ from 1 to even more than 10 b.p., we regarded the question of accuracy as 

a very important but sophisticated issue. Therefore, we decided to leave detailed investigation of 

that subject for consecutive research. 

 

Figure 6.1. The fluctuations of various volatility estimators calculated for n=63 and delta=5, 

compared with SDdaily.
a
 

 
a The above chart presents volatility estimators: RR, RV, GK and YZ, calculated for the period from January 1, 2004 to 

July 7, 2007 and SDdaily  for comparison. The calculations were made for delta=5 and n=63. 

 

Figure 6.2. The fluctuations of various volatility estimators calculated for n=63 and delta=5, 

compared with SDdaily.
a
 

 
a The above chart presents volatility estimators: RS, scaled RR, scaled RV and SD, calculated for the period from January 

1, 2004 to July 7, 2007 and SDdaily  for comparison . The calculations were made for delta=5 and n=63. 
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Figure 6.3. The fluctuations of various volatility estimators calculated for n=63 and delta=30, 

compared with SDdaily.
a
 

 
a The above chart presents volatility estimators: RR, RV, GK and YZ, calculated for the period from January 1, 2004 to 
July 7, 2007 and SDdaily  for comparison. The calculations were made for delta=30 and n=63. 

 

Figure 6.4. The fluctuations of various volatility estimators calculated for n=63 and delta=30, 

compared with SDdaily.
a 

 
a The above chart presents volatility estimators: RS, scaled RR, scaled RV and SD, calculated for the period from January 

1, 2004 to July 7, 2007 and SDdaily  for comparison . The calculations were made for delta=5 and n=63. 
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Figure 6.5. The fluctuations of various volatility estimators calculated for n=21 and delta=5, 

compared with SDdaily.
a 

 
a The above chart presents volatility estimators: RR, RV, GK and YZ, calculated for the period from January 1, 2004 to 
July 7, 2007 and SDdaily  for comparison. The calculations were made for delta=5 and n=21. 

 

Figure 6.6. The fluctuations of various volatility estimators calculated for n=21 and delta=5, 

compared with SDdaily.
a 

 
a The above chart presents volatility estimators: RR, RV, GK and YZ, calculated for the period from January 1, 2004 to 

July 7, 2007 and SDdaily for comparison. The calculations were made for delta=5 and n=21 
 

One could argue that at this stage we should also calculate various statistical measures 

evaluating estimation error (e.g. ME, MSE, RMSE, MAE, MAPE or any other additionally 

penalizing for over- or under-estimation) in order to accomplish our task which focuses on 

selecting the best estimator of volatility. We decided to leave the issue of accuracy for 

consecutive researches since such statistics are biased by definition because we do not know the 

true volatility also called actual volatility. Naturally, we can assume e.g. realized volatility 
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(Andersen et al. 2001a, 2001b) or daily squared returns as the benchmark for actual volatility but 

than we even do not know the error included in our final statistics. For this reason, we base the 

process of selection only on the relative comparison, leaving absolute one for future 

investigation. 

 

7. Market turmoils versus volatility estimators and the implications of the results for 

financial models 

 

At the end we would like to focus on the interdependence between the turmoils of the market 

and the level and fluctuations of the volatility. After previous research (Slepaczuk and 

Zakrzewski, 2007) revealing strong negative dependence between volatility and index futures, 

we considered the issue of volatility indexes revealing the actual level of risk associated with 

equity investment as very important subject of future investigations. Analysing the behaviour of 

volatility indexes (strictly connected with implied volatility concept) we noticed that every 

downward movement of the market is associated with big jump in volatility. Results for volatility 

indexes from our previous work show also significant decrease in volatility during upward 

movement of the market. The phenomenon described, which is called the leverage effect, is 

distinctly revealed in volatility estimator based on implied volatility rather than various volatility 

estimators tested in this paper. Emphasized remark, concerning the characteristics of volatility 

estimators as an input data in different financial models, could be responsible for various results 

of prediction and consecutive over- or under-prediction of actual volatility, which was deeply 

investigated by Poon and Granger (2003). 

Assuming that this phenomenon exists in all capital, emerging and developed markets we came 

to the important question: do emerging markets really need sophisticated volatility measures in 

order to develop further? If yes, then how can we use different concepts of volatility estimators in 

order to create the benchmark volatility index (possibly similar to existing VIX
11

 index) robust to 

existing microstructure biases, enabling to estimate the actual risk of investment on HF data 

during the stock market session? VIX is one of the best instruments to hedge volatility risk not 

considering the changes in market price, however, its formula makes it impossible to calculate it 

for the emerging markets, which do not have liquid and sufficiently developed derivatives 

market. Therefore, the question arises: can we use any other measure of volatility in order to 

reflect the fluctuations of actual volatility? Much as the opportunity and the possibility of 

hedging many different investment strategies with use of the instruments based on volatility 

index which is negatively correlated with market index prone us to focus on that subject, we 

consider that this issue requires additional and more detailed investigations.  

Focusing on the type of estimator from the point of view of data required in the process of 

calculation, we can distinguish two main estimator types: periodical (i.e. volatility estimators 

presented in this paper (RV, RR, GK, etc.) and imminent estimator (volatility index based on 

implied volatility concept). Periodical estimator requires the data from n last days in order to 

calculate its value, while volatility indexes require only the information from one point in time, 

calculating the volatility from the actual prices of options. Discussing the properties of different 

estimators of volatility but focusing on the cost-benefit analysis, we have to stress that although 

their fluctuations do not differ significantly, we cannot forget that we need much less data to 

calculate volatility index in comparison to any other volatility estimator tested in this paper. 

The issue of appropriate estimation of actual volatility is of crucial importance to many 

financial models, so we can directly or indirectly reference our results to: 

                                                 
11 Volatility index for American equity market based on S&P500 index option calculated by CBOE. CBOE introduced 

volatility derivatives (futures in 2004 and options in 2006), which are heavily traded by market participants. It informs us 
that there exists a distinctive need to introduce financial instruments which enable to hedge volatility risk independently 

from market price risk. 
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- Asset pricing models (CAPM, APT, etc.); where appropriate estimation of actual volatility and 

its future values has crucial impact on the validity of the results. Over- or under-estimation of 

volatility results in significant errors in the process of pricing. 

- VaR models; the main input variable is volatility no matter which type of VaR estimation 

techniques we choose; inappropriate selection of volatility estimator results in misspecification of 

risk of actual investments. 

- Option valuation techniques; in this case the proper estimates and prediction of volatility are so 

important, that in practice we often say we trade the volatility not the option price. 

- Volatility risk -> Vega hedging -> Risk management; the importance of true volatility 

measures as the basis instruments for volatility derivatives, essential in further development of 

option markets and option based strategies (e.g. structured products). 

- Financial stability, often taken into account in establishing and designing monetary policy, 

where contemporary financial markets play crucial role, especially when we consider recent 

turmoils (e.g. subprime mortgage crisis), which are always associated with significant moves in 

volatility of equity markets. 

- Forecasting volatility, as the main important subject concerning the volatility issue. Various 

types of econometric models are used in order to produce the best forecast of future volatility. 

However, in order to accomplish this task and predict volatility on the basis of any type of 

GARCH model or historical volatility models, we should first choose the proper volatility 

estimator as an input variable. Poteshman (2000) indicates the crucial importance of such 

selection for the final result of the process of forecasting. 

 

8. Conclusions 

 

After detailed comparison of volatility estimators calculated on high-frequency data we 

verified our initial hypotheses and now we can formulate the following conclusions: 

1. The efficiency of volatility estimators, regarding its calculation formula, especially when we 

consider the relative comparison, does not differ significantly. This is contrary to the previous 

researches described in the third section. Obviously, we observed some differences resulting in 

the selection of optimal n=63, delta=5 or 30 and q=63 for the most efficient estimator but we did 

not regard the improvement in efficiency as very significant.  

2. The appropriate selection of data interval (parameter delta) and what is even more important 

the memory of the process (parameter n) plays crucial role in final estimates of actual volatility 

(described in section 6). 

3. The selection of adequate formula for volatility estimator is of crucial importance for the issue 

of accuracy of actual volatility estimates (Tables 6.1-6.2 and Figures 6.1-6.6), which results in 

over- or under-estimation. 

4. The careful selection of parameter n significantly influences the stability of fluctuations of the 

final level of volatility. 

Presented characteristics of distribution of tested volatility estimators in conjunction with 

conclusions concerning the issue of accuracy of various volatility estimates should enable to 

build the benchmark volatility index for emerging equity market. 

Our value added to this paper concentrates on the discussion of the length of the memory 

process (parameter n) and the observation that the formula of volatility estimator is not as 

important in comparison of efficiency as the process of selection of the optimal parameter n and 

delta. 

Consecutive research of this subject should concentrate on higher frequencies (1, 2 minutes and 

tick data) in order to thoroughly explain the conjunction between gaining on efficiency and 

increasing various microstructure biases. Moreover, cost-benefit analysis requires detailed 

investigation (e.g. the degree of improvement in portfolio optimization process when one uses 

more efficient measure of risk than standard deviation of daily returns). Furthermore, in future 



 31 

research we will focus on the issue of estimator accuracy, paying special attention to the results 

of over- or under-estimation of actual level of volatility for different types of investors interested 

in unbiased estimates and prediction of volatility. Finally, all the issues mentioned above will 

bring us closer to the main important issue of volatility forecasting, which we will investigate in 

consecutive papers with respect to accuracy and efficiency of volatility estimator (used as an 

input variable) influenced by its formula as well as optimal selection of intraday interval and 

memory of the process (parameter n). 
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