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Abstract 
The Pareto distribution is often used in many areas of economics to model the right tail of heavy-
tailed distributions. However, the standard method of estimating the shape parameter (the Pareto 
index) of this distribution– the maximum likelihood estimator (MLE) – is non-robust, in the sense 
that it is very sensitive to extreme observations, data contamination or model deviation. In recent 
years, a number of robust estimators for the Pareto index have been proposed, which correct the 
deficiency of the MLE. However, little is known about the performance of these estimators in 
small-sample setting, which often occurs in practice. This paper investigates the small-sample 
properties of the most popular robust estimators for the Pareto index, including the optimal B-robust 
estimator (OBRE) (Victoria-Feser and Ronchetti, 1994, The Canadian Journal of Statistics 22: 
247–258), the weighted maximum likelihood estimator (WMLE) (Dupuis and Victoria-Feser, 2006, 
Canadian Journal of Statistics 34: 639–658), the generalized median estimator (GME) (Brazauskas 
and Serfling, 2001a, Extremes 3, 231–249), the partial density component estimator (PDCE) 
(Vandewalle et al., 2007, Computational Statistics & Data Analysis 51: 6252–6268), and the 
probability integral transform statistic estimator (PITSE) (Finkelstein et al., 2006, North American 
Actuarial Journal 10, 1–10). Monte Carlo simulations show that the PITSE offers the desired 
compromise between ease of use and power to protect against outliers in the small-sample setting.  
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1. Introduction 

 

Distributions of many economic variables are characterized by heavy right tails. Such tails are 

often modelled in economics and other fields of science using Pareto distribution, which was 

originally introduced late in the 19th century by Vilfredo Pareto in the context of modelling 

income and wealth distributions (Pareto 1897). Since then, the Pareto distribution has become 

the most popular model to describe top income and wealth values (see, e.g., Drăgulescu and 

Yakovenko 2001, Kleiber and Kotz 2003, Clementi and Gallegati 2005, Klass 2006, Cowell 

and Flachaire 2007, Cowell and Victoria-Feser 2007, Ogwang 2011, Alfons et al. 2013).
1
 

However, the model is also heavily used in several other areas of economics to model the 

right-hand tails of fluctuations in stock prices (Gabaix et al. 2003, 2006, Balakrishnan et al. 

2008), firm sizes (Axtell 2001, Luttmer 2007), city sizes (Soo 2005), countries’ interactions in 

international trade (Hinloopen and Marrewijk 2012), CEO compensation (Gabaix and Landier 

2008), supply of regulations (Mulligan and Shleifer 2005), tourist visits (Ulubaşoğlu and 

Hazari 2004), claims in actuarial problems (Ramsay 2003), macroeconomic disasters (Barro 

and Jin 2011), and macroeconomic fluctuations (Gaffeo et al. 2003). In addition, Pareto dis-

tribution appears widely in physics, biology, earth and planetary sciences, computer science, 

and in other disciplines (Newman 2005). 

The maximum likelihood estimator (MLE) for the shape parameter of the Pareto dis-

tribution (also known as the Pareto tail index or the Pareto exponent) was introduced by Hill 

(1975) and is referred to as the Hill’s estimator.
2
 If the Pareto distribution is the true model for 

a given sample, then one can safely estimate the Pareto index using MLE, which has the op-

timal asymptotic variance. However, in presence of data contamination or when the sample 

deviates from the Pareto model, the MLE is not robust and becomes severely biased (Victoria-

Feser and Ronchetti 1994, Finkelstein et al. 2006). To make matters worse, even small errors 

in estimation of the Pareto exponent can produce large errors in estimation of quantities based 

on estimates of the exponent such as extreme quantiles, upper tail probabilities and mean ex-

cess functions (Brazauskas and Serfling 2000). Similarly, inequality measures computed for 

the data simulated from the Pareto model are largely affected by even small or moderate data 

contamination (Cowell and Victoria-Feser 1996). 

In recent years, a number of appealing robust estimators for the Pareto exponent have 

been proposed. These estimators perform better than the MLE in presence of outliers, while 

retaining high asymptotic relative efficiency (ARE) with respect to the MLE. Although as-

ymptotic properties of most of these estimators are well-known, their performance in the 

small-sample setting is less clear. However, as observed recently by Beran and Schell (2012), 

researchers and practitioners studying problems such as operational risk assessment, reinsur-

ance and natural disasters often have to fit heavy-tailed models to sparse samples with the 

number of observations ranging from 20 to at most 50. In another context, Barro and Jin 

(2011) have estimated the upper-tail exponent of the distribution of macroeconomic disasters 

using samples of only 21-22 observations. Soo (2005) applied the Pareto model to the distri-

bution of cities for a number of countries; in case of 22 countries the number of observations 

was less than 50 and it was even less than 20 in four cases. A recent study of Ogwang’s 

(2011), which analyses the Pareto behaviour of the top Canadian wealth distribution is based 

                                                           
1
 The Pareto distribution is also known as power-law distribution and Zipf’s law, see Newman (2005). 

2
 Other non-robust methods of estimation the Pareto index, including regression estimators, Bayesian estimators, 

methods based on moments or order statistics, are discussed in Arnold (1983), Johnson, Kotz, and Balakrishnan 

(1994, cha. 20), and Kleiber and Kotz (2003, cha. 3). See also Gabaix and Ibragimov (2011) for a recent regres-

sion-based estimator, which has a reduced bias in small samples.  



2 

 

on a rather small sample of about one hundred observations. Therefore, it seems that in practi-

cal applications the Pareto index is indeed quite often estimated using sparse data.  

The existing literature that examines the small-sample performance of alternative ro-

bust estimators for the Pareto exponent is fairly small (see Brazauskas and Serfling 2001b; 

Huisman et al. 2001; Wagner and Marsh 2004; Finkelsteein et al. 2006; Alfons et al. 2010).
3
 

In addition, none of the existing studies compares all of the most popular robust estimators for 

the Pareto index. The present paper fills the gap in the literature by providing an extensive 

comparison of the small-sample properties of the most popular robust estimators for the Pare-

to index. We investigate the properties of the estimators by Monte Carlo simulations under 

various data contaminations and model deviations, which produce outliers that can be found 

in real data sets. In particular, the paper compares the optimal bias-robust estimator (OBRE) 

(Hampel et al. 1986, Victoria-Feser and Ronchetti 1994), the weighted maximum likelihood 

estimator (WMLE) (Dupuis and Morgenthaler 2002, Dupuis and Victoria-Feser 2006), the 

generalized median estimator (GME) (Brazauskas and Serfling, 2000, 2001a), the partial den-

sity component estimator (PDCE) (Vandewalle et al., 2007) and the probability integral trans-

form statistic estimator (PITSE) (Finkelstein et al., 2006).
4
 The OBRE, WMLE and PDCE 

have been applied in robust modelling of income distribution (Cowell and Victoria-Feser 

2007, 2008, Alfons 2013). The OBRE has been also recently applied to study the distribution 

of large macroeconomic contractions (Brzezinski 2013).  

 The remainder of the paper is organized as follows. Alternative robust estimators for 

the Pareto index, as well as the MLE treated as the benchmark in our study, are described in 

Section 2. Section 3 presents the Monte Carlo design and discusses the results of our Monte 

Carlo simulations, while section 4 concludes and gives recommendations for practice. 

 

2. Alternative estimators for the Pareto index 

2.1. The MLE 

 

The classical (or type I) Pareto distribution P(x0, α) is defined in terms of its cumulative dis-

tribution function as follows 

 0 0( ) 1 ( / ) , 0

    F x x x x x , (1) 

where x0 is a scale parameter and α > 0 is the Pareto index describing the shape of the distri-

bution. It is a heavy-tailed distribution with the right tail becoming heavier for smaller values 

of the Pareto index. The literature offers various methods to estimate the value of the cut-off 

x0, above which the Pareto model can be fitted to data. However, as Gabaix (2009) observes, 

in practice x0 is set usually using visual goodness of fit or by assuming that a fixed proportion 

of top observations (e.g., 5%) in a given data set follow a Pareto model. A robust statistical 

procedure for choosing x0, based on the robust prediction error criterion, was proposed by 

Dupuis and Victoria-Feser (2006). In this paper, x0 is estimated as the first order statistic of 

the sample drawn from the Pareto model. 

 The simulation study presented in this paper uses the MLE for the Pareto index as a 

non-robust benchmark, which allows to evaluate better the properties of robust estimators. We 

also use the MLE as a starting value in numerical procedures used to compute some of the 

robust estimators compared in this study. 

                                                           
3
 See also Ruckdeschel and Horbenko (2013) for a comparison of robust estimators for a generalized Pareto 

model, which is a three-parameter variant of the classical two-parameter Pareto distribution. 
4
 In this paper, we are concerned with mainly with outliers at high quantiles in the right tail of the distribution. 

Some of the robust estimators of the Pareto index are designed to provide protection against departures in the 

lower quantiles (see, e.g., Beran and Schell 2012). They are not included in our comparison, since this type of 

outliers is rather unusual.  
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For a random sample of n observations, x1, ..., xn, the MLE for parameter α in (1) is 

given by 

 

1

01

1
ˆ

log log









MLE n

ii
n x x

. (2) 

Actually, the paper uses the unbiased (and asymptotically equivalent) version of MLE, 

which is defined as (Kleiber and Kotz 2003, p. 84) 

 2
ˆ ˆ1MLU ML

n
 

 
  
 

. (3) 

The reminder of this section briefly introduces the most popular robust estimators for 

α. Detailed discussions of these estimators, which include presentation of their asymptotic 

properties, are offered in the original papers that introduced the estimators. For all estimators 

under discussion, except for the PDCE, the trade-off between robustness and efficiency is 

regulated by the estimator’s asymptotic properties. A comparison of the OBRE, GME and 

PITSE in terms of the upper breakdown point (UBP) and gross error sensitivity (GES) is pre-

sented in Finkelstein et al. (2006). 

 

2.2. Optimal B-robust estimator 

 

In the context of robust measurement of income inequality, Victoria-Feser and Ronchetti 

(1994) introduced the optimal B-robust estimator (OBRE) for the Pareto model, which is an 

M-estimator with minimal asymptotic covariance matrix. The class of OBREs was defined by 

Hampel et al. (1986) in terms of the influence function (IF), which allows for assessing the 

robustness of an estimator for a parametric model. IF can be defined in the following way.  

 Let Fθ be a parametric model with density fθ, where the unknown parameters belong to 

some parameter space Θ  
p
. For a sample of n observations, x1, ..., xn, the empirical distri-

bution function Fn(x) is  

 

1

1
( ) ( )

i

n

n x

i

F x x
n




  , (4) 

where i denotes a point mass in x. For a parametric model Fθ, θ ∈ Θ  
p
, and estimators of 

θ, Tn, treated as functional of the empirical distribution function, i.e.  T(Fn) = Tn(x1, …,xn), the 

IF is defined as  

 

0

[(1 ) ] ( )
IF( ; ; ) lim  




 



  
 xT F T F

x T F . (5) 

The IF describes the effect of a small contamination (εx) at a point x on the estimate of Tn, 

standardized by the mass of the contamination. Linear approximation εIF(x; T; Fθ) measures 

therefore the asymptotic bias of the estimator caused by the contamination. In case of the 

MLE, the IF is proportional to the score function ( ; ) log ( )






s x f x , which for the Pareto 

distribution is 0( ; ) 1/ log logs x x x    . Since this function is unbounded in x, the MLE 

for α is not robust. A robust estimator possessing a bounded IF is called B-robust (or biased-

robust).  

 The OBRE is the solution Tn of the system of equations 

 

1

( ; ) 0



n

i n

i

x T  (6) 

for some function ψ. The OBRE is optimal M-estimator with minimum asymptotic covariance 

matrix under the constraint that it has a bounded IF. Victoria-Feser and Ronchetti (1994) use 
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the so-called standardized version of OBRE, which for a given bound c on IF is defined im-

plicitly by the solution ̂  in  

  
1 1

( ; ) ( ; ) ( ) ( ; ) 0    
 

   
n n

i i c i

i i

x s x a W x  (7) 

with 

 

 
( ; ) min 1; ,

( ) ( ; ) ( )


  

  
  

  
c

c
W x

A s x a
 (8) 

where   denotes the Euclidean norm, and the matrix A(θ) and vector a(θ) are defined implic-

itly by  

 1

( ; ) ( ; ) ( ) ( ) ,     


      
T T

i iE x x A A  

 

(9) 

  ( ; ) 0.  iE x  (10) 

For efficiency reasons, OBRE uses the score as the ψ function for the bulk of the data and 

truncates the score only if a robustness constant c is exceeded. The robustness weights Wc 

given in equation (8) are attributed to each observation to downweight observations deviating 

from the assumed model. The matrix A(θ) and vector a(θ) can be considered as Lagrange 

multipliers for the constraints due to a bounded IF and the condition of Fisher consistency, 

T(Fθ) = θ. Bound c is a regulator between efficiency and robustness – for small c an OBRE is 

more robust but less efficient, and vice versa for large c. If c = , then OBRE is equivalent to 

the MLE. Simulations in this paper were performed using c = (1.63, 2.73), which, for the Pa-

reto model, gives a more robust but only moderately efficient OBRE (78% ARE) in the case 

of smaller c and an efficient (94% of ARE) but less robust estimator in the case of higher c.
5
  

 The OBRE is computationally complex as one has to solve (7) under (9) and (10). An 

iterative algorithm to compute OBRE was proposed by Victoria-Feser and Ronchetti (1994); 

see also Bellio (2007). 

 

2.3. Weighted maximum likelihood estimator 

 

Dupuis and Victoria-Feser (2006) introduced another robust M-estimator for the Pareto index, 

which belongs to the class of weighted maximum likelihood estimators (WMLE) of Dupuis 

and Morgenthaler (2002). For a parametric model Fθ with density fθ, where for simplicity  is 

assumed to be one-dimensional, and a random sample of n observations, x1, ..., xn, the WMLE 

is defined as the solution ̂  in  of  

 

1 1

( ; ) ( ; ) log ( ) 0
n n

i i i

i i

x w x f x  
 


 


  , (11) 

where w(x; θ) is a weight function with values in [0,1]. Dupuis and Victoria-Feser (2006) 

propose to use a weighting scheme based on the Pareto quantile plot (see, e.g, Beirlant et al. 

1996). The Pareto quantile plot shows that for the Pareto model (1) with tail index α and for  

x > x0, there is a linear relationship between the log of the x and the log of the survival func-

tion 

                                                           
5
 Since all robust estimators considered in this paper, except the PDCE, allow for the trade-off between efficien-

cy and robustness, the regulating parameters for these estimators were adjusted to match the assumed common 

levels of ARE. The levels of 78% and 94% were chosen because the regulating parameter for the GME (see 

Section 2.4) takes only integer values, which restricts the range of admissible values of ARE. 
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0

0

1
log log(1 ( )),



 
    

 

x
F x x x

x
. (12) 

Let *

[ ]ix , i = 1,…, k, be the ordered largest k observations and *

[ ] 0log( / )i iY x x  be logarithms 

of relative excesses. For the Pareto model, the Yi may be predicted by 

ˆ ˆ1/ log[( 1 ) / ( 1)]iY k i k     , where ̂  is an estimator of α. The variance of Yi may be 

estimated by 2 2 2

1
ˆˆ 1/ [ ( ) ] 


  

i

i j
k i j . Using the standardized residuals defined as 

ˆ( ) /i i i ir Y Y   , Dupuis and Victoria-Feser (2006) propose Huber-type weight function in 

(11), which downweights observations deviating from the Pareto model in terms of the size of 

the residuals, ri, i.e. 

 
*

[ ]

1, ,
( ; )

/ , ,



 



i

i

i i

if r c
w x

c r if r c
 (13) 

with α estimated by the WMLE and where c is a constant regulating the robustness-efficiency 

trade-off.   

The WMLE is not in general unbiased, but the first-order bias-corrected WMLE with 

weights defined by (13) is derived by Dupuis and Victoria-Feser (2006) as ˆ ˆ( )B    , 

where ̂  is the WMLE as defined in (11) and  

 
 

 

* * * *

ˆ ˆ ˆ[ ] [ ] [ ] [ 1]

1

* * * 2 * 2 * *

ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ] [ 1]

1

( ; ) log ( ; ) ( ( ) ( ))

ˆ( )

( ; ) log ( ; ) ( ; ) log ( ; ) ( ( ) ( ))

k

i i i i

i

k

i i i i i i

i

w x f x F x F x

B

w x f x w x f x F x F x

  

  

  



      









   



       




, (14) 

with *

[0]x  set to x0. 

 Dupuis and Victoria-Feser (2006) have shown in simulations that in the small-sample 

setting the WMLE does not achieve high relative efficiency. For example, the relative effi-

ciency of the WMLE for samples of 100 observations is at most 81%. Other estimators that 

we compare in this paper do not suffer from this problem. For this reason, we include the 

WMLE in our comparison only for the case of ARE = 78%, while other robust estimators for 

the Pareto index are compared also for the case of ARE = 94%. The constant c that regulates 

the trade-off between efficiency and robustness was estimated for the WMLE by simulation 

performed independently for each sample size used in our Monte Carlo comparison. 

 

2.4. Generalized median estimators 

 

Another class of robust estimators for the Pareto index was developed by Brazauskas and 

Serfling (2000, 2001a). Consider a sample x1, . . . , xn drawn from P(x0 , α). The generalized 

median estimators (GME) are, for a sample of size n and for a given choice of integer k ≥ 1, 

defined as the median of the evaluations 
1

( ,..., )
ki ih x x , where {i1, …, ik} is a set of distinct 

indices from {1, …, n}, of a given kernel h(X1, …, Xk) over all  n
k

 subsets of observations 

taken k at a time. In particular, Brazauskas and Serfling (2000, 2001a) define the GME for the 

Pareto index as 

 
1

ˆ { ( ,..., )} 
kGM i iMedian h x x , (15) 

with two choices of kernel h(X1, …, Xk): 
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 (1)

1 1

11

1 1
( ,..., )

log logmin{ ,..., }






k k

k j kj

h X X
C k X X X

 (16) 

and 

 (2)

1 [1] 1
, [1]1

1 1
( ,..., ; )

log log






k k

n k jj

h X X x
C k X x

, (17) 

where Ck and Cn,k are multiplicative median-unbiasing factors. The choice of these kernels is 

motivated by relative efficiency considerations – h
(1)

 is the MLE based on a particular sub-

sample, while h
(2)

 is a modification of the MLE that always uses the minimum of the full 

sample instead of the minimum of the particular subsample. The estimators corresponding to  

h
(1) 

and h
(2)

 are denoted, respectively, by (1)̂GME
and (2)̂GME

. Brazauskas and Serfling (2001a, 

2001b) show that in the case of contamination at high quantiles (2)̂GME
 significantly outper-

forms (1)̂GME
with respect to asymptotic efficiency even in the small-sample setting. Since this 

paper focuses on upper contamination, only (2)̂GME  will be examined in our experiments.
6
 The 

multiplicative median-unbiased factor for (2)̂GME is defined as 

 2 2

2 2
,

((1 / ) ( / ) ( 1))

2

k
n k

Median k n k n k
C

k

   
 , (18) 

where 2

d  is chi-squared distribution with d degrees of freedom. In our Monte Carlo simula-

tions, we use (2)̂GME with k = 2 and k = 5, which correspond, respectively, to the ARE = 78% 

and ARE = 94%. 

 

2.5. Probability integral transform statistic 

 

Finkelstein et al. (2006) noticed that since the distribution function of the Pareto model (1) is 

continuous and strictly increasing, the random variables 1( ), , ( )  nF x F x  form a random 

sample on the uniform distribution on the interval (0,1). They observed that even an infinite 

contamination has a bounded effect on data transformed this way. The new robust estimator 

of Pareto index was defined with the help of the following statistic 

 
1 0

,

1

( )

t
n

n t

j i

x
G n

x



 



 
  

 
 , (19) 

where t > 0 is the parameter regulating the trade-off between efficiency and robustness. When 

β = α and t = 1, 0( / ) 1 ( )

 i ix x F x  is a random variable with the uniform distribution. De-

noting a random sample from the uniform distribution by u1,…,un, and knowing that 
1

1
Pr(lim ) 1/ ( 1)

n t

jjn
n u t


  , the probability integral transform statistic estimator (PITSE), 

̂PITSE ,  is defined as the solution of the equation 

 
,

1
( )

1
n tG

t
 


. (20) 

                                                           
6
 Brazauskas and Serfling (2001b) have also compared their generalized median estimators with some well-

established robust and non-robust estimators including method of moments estimators, trimmed mean estima-

tors, regression estimators, least squares estimators, and quantile-based estimators. They concluded that among 

these estimators the GMEs perform best with respect to the efficiency versus robustness trade-off.  
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The balance between efficiency and robustness can be regulated by setting the appro-

priate value of the parameter t. By taking t close to 0, ARE of PITSE can be made arbitrarily 

close to 1; for higher values of t, PITSE gains robustness but loses relative efficiency. Simula-

tions in this paper use t = 0.324 and t = 0.883, which correspond, respectively, to 78% and 

94% of ARE. 

 As stressed by Finkelstein et al. (2006), the PITSE is both conceptually and computa-

tionally simpler that other robust estimators for the Pareto index. Its computation requires 

only solving equation (20), which for a given data set and the value of t has exactly one solu-

tion. This relative computational simplicity of the PITSE can be considered as an argument in 

its favour, especially if the results of our comparison would suggest that it delivers a satisfac-

tory degree of protection against data contamination and model deviation. 

 

2.6. Partial density component estimator 

 

Vandewalle et al. (2007) introduced a robust estimator for the tail index of Pareto-type distri-

butions based on the so-called partial density component estimation, which extends the inte-

grated squared error approach (Scott 2001, 2004). In general, the approach of Vandewalle et 

al. (2007) uses a minimum distance criterion based on integrated squared error as a measure 

of discrepancy between the estimated density function and the true but unknown density. 

More specifically, they use the approach of Scott (2001, 2004), who considered estimation of 

mixture models by this method. Given the unknown true density f, and a model fθ, the goal is 

to find a fully data-based estimate of the distance between the two densities using the inte-

grated squared error criterion. Therefore, the estimated parameter ̂  is given by 

 2ˆ argmin ( ( ) ( ))f x f x dx


   
  . (21) 

For a sample of size n drawn from a model with density fθ, the criterion can be shown to be 

equivalent to  

 
2

1

2ˆ arg min ( ) ( )
n

i

i

f x dx f x
n

 





 
  

 
 . (22) 

Following Scott (2004), Vandewalle et al. (2007) make use of the fact that in derivation of 

(22) it is assumed that only f is a real density function, but not necessarily the model fθ. 

Hence, also an incomplete mixture model wfθ can be considered 

 
2 2

,
1

2ˆ arg min ( ) ( )
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 
 , (23) 

where the parameter w may be interpreted, with some restrictions, as a measure of the uncon-

taminated proportion of the sample. It is estimated by 
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For the strict Pareto model with density ( 1)

0( ) 

   f x x x , the integral 
0

2 ( )
x

f x dx



  can be 

calculated easily in closed form as 2

0/ [(2 1) ]x   . Therefore, the so-called partial density 

component estimator (PDCE) for the Pareto model is defined as 
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2

10

ˆ2
ˆ ˆargmin ( )

(2 1)







 

 
  

 


n

PDCE i

i

w
w f x

x n
. (25) 

 

 



8 

 

3. Monte Carlo comparison 

 

3.1. Simulation design 

 

For sample sizes ranging from 20 to 200, we have simulated data from P(1 , α) with α = 1, 2, 

3. This range of α covers most of the Pareto exponents found in the empirical literature. The 

simulated data sets are contaminated in two ways. First, following Brazauskas and Serfling 

(2001b), we have drawn contaminated data from the following model 

 (1 ) (1, ) (1000, ),     F P P    (26) 

where ε = 0.05, 0.1 is the proportion of contamination. This way of introducing “outliers” to 

the data allows to study how compared estimators are affected by model deviation. Second, 

we multiply by 10 a fixed proportion (1%, 2%, 5% and 10%) of randomly selected observa-

tions simulated from P(1, α). This corresponds to the “decimal point error” – a situation, when 

a person coding or cleaning the data inadvertently puts the decimal point in the wrong place 

and thus multiplies an observation by a factor of 10 (Cowell and Victoria-Feser 1996). We 

compare the performance of the estimators in two cases with respect to the ARE – setting it to 

78% and 94%.
7
 The former case gives more protection against outliers at the cost of an effi-

ciency loss; the latter gives more preference to efficiency, but offers only moderate robust-

ness. The number of Monte Carlo simulations is 2,500 for each combination of parameters, 

sample sizes, contamination types and AREs. This number was chosen on the basis of the 

trade-off between the need to reduce simulation variability and the required computation time, 

which is longer for some of the more complex estimators such as the OBRE. 

 The performance of compared estimators is assessed in terms of the percentage rela-

tive bias (RB) and the percentage relative root mean square error (RRMSE). For a given true 

value of the Pareto exponent, α, the relative bias of an estimator is given by 

 m

i

i 1

100 1
ˆRB ( ),

m
 

 

   (27) 

 where ˆ
i  is the estimated value of the Pareto index for the i-th (i = 1, ... m) simulated sample 

and m is the number of simulations. The relative root mean square error is defined as  

 m
2

i

i 1

100 1
ˆRRMSE ( ) .

m
 

 

    (28) 

Both measures are routinely used to assess the accuracy and precision of an estimator; 

the smaller the values of each measure in absolute terms, the better the estimator. The RB 

measures the extent of the bias of an estimator, while the RRMSE takes into account both the 

bias and the dispersion of an estimator.  

 

3.2. Monte Carlo results 

 

Tables 1-2 give results for the uncontaminated Pareto distribution, with estimators computed 

for ARE = 94% (Table 1) and ARE = 78% (Table 2). We do not present results for the PDCE 

with very small samples (20 and 40 observations, and in some cases even more), because in 

this setting the minimization procedure used to compute the estimator did not converge (or 

diverged) in a significant number of replications. However, the performance of the PDCE is 

much worse than that of other estimators even in larger samples (100, 200). The bias of the 

PDCE in uncontaminated samples decreases very slowly with increasing sample size and it is 

                                                           
7
 The only exception is PDCE, which does not have a tuning parameter regulating the efficiency vs. robustness 

trade-off. 
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Table 1. Simulation results for the Pareto index with data drawn from an uncontaminated Pareto distribution (1, )P  , ARE = 94%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -0.2 23.8 0.0 16.2 0.0 13.4 -0.1 11.4 0.2 10.0 -0.1 7.0 

OBRE 9.6 28.8 4.7 18.3 3.0 14.5 2.1 12.3 1.9 10.7 0.8 7.4 

PITSE 11.9 30.2 5.8 18.7 3.8 14.8 2.7 12.4 2.4 10.9 1.1 7.5 

PDCE – – – – 51.1 360.9 25.8 117.2 17.8 48.3 7.6 25.2 

GME -2.7 24.1 -0.4 16.7 -0.3 13.8 -0.3 11.8 0.0 10.3 -0.2 7.3 

α = 2             

MLE -0.2 24.2 0.3 16.6 0.0 13.3 -0.1 11.3 0.1 10.1 -0.2 7.0 

OBRE 9.7 29.4 4.9 18.6 2.9 14.3 2.2 12.2 1.9 10.8 0.6 7.3 

PITSE 12.0 30.6 6.0 19.1 3.7 14.7 2.7 12.4 2.4 11.0 0.9 7.3 

PDCE – – – – 35.6 271.7 – – 14.3 73.1 4.4 18.2 

GME -2.6 24.4 -0.3 17.0 -0.4 13.6 -0.2 11.7 -0.1 10.4 -0.3 7.1 

α = 3             

MLE 0.0 24.5 0.1 16.8 0.0 13.3 0.5 11.5 0.3 10.0 0.1 7.2 

OBRE 9.8 29.3 4.8 18.9 3.0 14.4 2.6 12.4 2.0 10.6 0.9 7.6 

PITSE 12.1 30.7 5.8 19.2 3.7 14.7 3.2 12.5 2.4 10.7 1.1 7.6 

PDCE – – – – 24.6 129.7 14.5 44.1 9.9 28.6 4.1 16.6 

GME -2.5 24.4 -0.4 17.3 -0.3 13.6 0.2 11.8 0.1 10.3 0.0 7.4 
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Table 2. Simulation results for the Pareto index with data drawn from an uncontaminated Pareto distribution (1, )P  , ARE = 78%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE 0.2 24.4 0.3 16.8 -0.2 12.8 0.3 11.6 0.3 10.4 -0.1 7.2 

OBRE 12.9 34.0 5.8 20.8 3.5 15.5 2.8 13.5 2.5 12.6 0.9 8.4 

WMLE 19.0 37.9 8.8 21.3 6.0 16.8 4.4 13.6 3.4 12.0 1.5 8.0 

PITSE 15.8 36.6 7.5 21.7 4.8 16.1 3.7 13.8 3.2 12.9 1.3 8.5 

PDCE – – – – – – 58.6 1072.0 16.6 46.2 7.6 25.9 

GME 4.6 29.9 2.1 19.6 1.1 14.9 1.1 13.1 1.2 12.3 0.3 8.3 

α = 2             

MLE 0.2 25.1 0.3 16.6 0.1 13.2 0.1 11.2 0.0 9.9 -0.1 7.2 

OBRE 12.7 34.2 5.8 20.3 3.6 15.6 2.6 13.4 2.1 11.6 1.0 8.3 

WMLE 18.1 37.5 8.9 22.0 5.8 16.6 4.5 14.0 3.8 12.4 1.4 8.0 

PITSE 15.6 36.7 7.6 21.6 4.7 16.1 3.5 13.8 2.9 12.0 1.4 8.4 

PDCE – – – – 50.5 861.9 15.6 54.5 11.2 31.3 5.4 18.8 

GME 4.1 30.0 2.1 19.0 1.3 15.0 0.9 13.0 0.7 11.3 0.3 8.1 

α = 3             

MLE 0.7 24.9 0.1 16.6 0.3 13.2 -0.2 11.3 0.1 10.2 0.0 7.3 

OBRE 13.1 34.3 5.6 20.4 4.0 15.9 2.5 13.5 2.2 12.2 1.2 8.5 

WMLE 18.8 37.3 9.8 23.2 5.7 16.9 3.9 13.4 3.5 12.5 1.9 8.7 

PITSE 15.9 36.5 7.3 21.5 5.2 16.5 3.4 13.9 2.9 12.5 1.5 8.5 

PDCE – – – – 19.4 50.1 12.9 34.8 10.2 32.0 4.8 17.6 

GME 4.5 30.4 1.9 19.2 1.7 15.3 0.7 13.0 0.8 11.9 0.5 8.4 
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still noticeable (in the range from 4% to 8%) even in samples of 200 observations. In the case 

of contaminated samples, the PDCE displays acceptable properties only for the biggest sam-

ple size studied (200 observations). Thus, the first recommendation of our study is to avoid 

the PDCE in practical small-sample settings (n < 200), when alternative robust estimators can 

be used.
8
 

 The GME has the smallest bias in the uncontaminated case, but its performance in 

terms of the RRMSE is similar to that of other robust estimators, especially for larger sam-

ples. Other compared estimators – the OBRE, WMLE and PITSE – have significant biases in 

very small samples, which disappear only in samples of 100-200 observations. The ranking of 

the estimators is similar for both levels of the ARE studied. 

Results for the contaminated Pareto models (1 ) (1, ) (1000, ),     F P P  with ε = 

0.05, 0.1 are presented in Tables 3-6. We first discuss results for the smaller degree of con-

tamination (Tables 3-4). We can observe that the MLE for all sample sizes performs bad ac-

cording to both evaluation criteria, reaching (in absolute terms) more than 50% for α = 3. In-

terestingly, the performance of the MLE deteriorates significantly with the rise in α. All ro-

bust estimators provide at least some protection against contamination, which seems to be 

independent of the value of α. For this reason, the biggest gains from using robust estimators 

are observed for α = 3. In the case of higher ARE (Table 3), the OBRE, PITSE and GME per-

form similarly for all sample sizes. For higher robustness and lower ARE (Table 4), when the 

WMLE is also included in the comparison, we can observe that the WMLE performs worse 

than the alternatives, especially in terms of RRMSE. In this case, the OBRE, PITSE and GME 

provide similar and higher level of protection than the WMLE. For the former estimators, 

moving from higher efficiency and lower robustness to lower efficiency and higher robustness 

reduces RRMSE from about 17-20% to about 11-12% (for samples size of 200). 

The results for higher degree of contamination (ε = 0.1) are shown in Tables 5-6. This 

type of contamination is rather extreme and not surprisingly it makes the MLE useless. For 

example, the values of both evaluative criteria exceed 65% for α = 3. The performance of the 

OBRE, PITSE and GME is again roughly similar in case of the higher ARE. Results for the 

case of lower ARE and higher robustness reveal an interesting behaviour of the WMLE. For 

small sample sizes (n < 100), the WMLE performs substantially worse than the alternatives, 

for n = 100 it performs comparably, while for n = 200 it gives slightly better results than other 

robust estimators. This behaviour is likely caused by the first-order bias correction term (14), 

which works poorly in small samples, but does much better job in samples of at least 100 ob-

servations. The results from Table 6 provide the strongest evidence for the power of robust 

estimators. Using them instead of the MLE allows to reduce the RRMSE from more than 67% 

to about 18-20% in case of α = 3 and n = 200. 

Tables 7-14 presents results for Pareto distributions contaminated with multiplying by 

10 randomly chosen 1% (Tables 7-8), 2% (Tables 9-10), 5% (Tables 11-12) and 10% (Tables 

13-14) of observations. In the case of the smallest degree of data contamination, we can ob-

serve that all robust estimators, with the exception of PDCE, perform slightly better than the 

MLE, but only for α = 3 and n = 200. Bigger advantage of robust estimators is visible for the 

moderate (2%) degree of contamination. In this case (Tables 9-10), the OBRE, PITSE and 

GME perform similarly and significantly better than the MLE, but only for bigger sample 

sizes (100, 200) and α > 1. For these values of n and α, the WMLE, which is included only in 

the comparison of estimators with ARE = 78%, has significantly higher RRMSE than other 

robust alternatives (beside the PDCE).  

                                                           
8
 For this reason, we do not discuss the performance of the PDCE further in this section. 
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Table 3. Simulation results for the Pareto index with data drawn from a contaminated Pareto distribution 0.95 (1, ) 0.05 (1000, ),  F P P ARE 

= 94%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -28.0 30.6 -27.1 28.4 -26.7 27.6 -26.3 27.0 -26.2 26.7 -26.0 26.3 

OBRE -7.1 24.5 -12.6 19.4 -14.0 18.2 -14.3 17.6 -14.9 17.2 -15.7 16.9 

PITSE -6.9 23.5 -12.9 19.0 -14.5 18.2 -15.0 17.9 -15.6 17.5 -16.5 17.4 

PDCE – – – – – – 26.1 174.8 25.4 278.7 6.9 24.4 

GME -17.6 27.4 -16.1 21.5 -15.9 19.6 -15.5 18.6 -15.7 17.9 -15.7 16.8 

α = 2             

MLE -44.1 44.8 -42.5 42.8 -41.8 42.0 -41.6 41.8 -41.4 41.6 -41.2 41.3 

OBRE -8.0 24.6 -12.7 19.4 -13.8 18.3 -14.7 17.8 -15.0 17.5 -15.9 17.0 

PITSE -9.9 25.1 -15.4 20.8 -16.7 20.3 -17.7 20.1 -18.0 19.9 -19.0 19.9 

PDCE – – – – 30.1 205.7 – – 12.6 45.6 5.6 19.8 

GME -18.1 27.7 -16.0 21.4 -15.5 19.5 -15.7 18.6 -15.5 17.9 -15.6 16.7 

α = 3             

MLE -54.0 54.2 -52.4 52.5 -52.0 52.0 -51.7 51.7 -51.5 51.5 -51.2 51.2 

OBRE -7.8 25.0 -12.6 19.4 -14.3 18.5 -14.9 18.0 -15.1 17.5 -16.1 17.3 

PITSE -9.8 25.5 -15.4 21.1 -17.4 20.8 -18.1 20.6 -18.4 20.4 -19.6 20.4 

PDCE – – – – 43.5 503.5 14.6 52.3 9.9 34.4 4.4 17.1 

GME -17.6 27.8 -15.6 21.3 -15.9 19.6 -15.7 18.7 -15.4 17.9 -15.6 16.8 
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Table 4. Simulation results for the Pareto index with data drawn from a contaminated Pareto distribution 0.95 (1, ) 0.05 (1000, ),  F P P ARE 

= 78%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -28.3 30.9 -26.9 28.3 -26.7 27.6 -26.5 27.2 -26.2 26.8 -26.0 26.3 

OBRE 0.9 28.4 -4.4 18.0 -6.8 15.7 -8.0 14.2 -8.0 13.4 -9.0 11.6 

WMLE 9.0 31.6 -5.9 21.3 -10.1 19.1 -13.8 17.6 -8.9 20.1 5.6 19.0 

PITSE 4.2 30.6 -3.3 18.5 -6.5 15.8 -7.9 14.4 -8.1 13.6 -9.4 12.0 

PDCE – – – – – – 31.4 209.0 23.6 225.3 8.0 26.4 

GME -5.7 27.6 -7.6 18.8 -8.7 16.5 -9.4 15.1 -9.1 14.1 -9.4 11.9 

α = 2             

MLE -44.3 44.8 -42.5 42.8 -41.9 42.2 -41.6 41.8 -41.5 41.7 -41.2 41.3 

OBRE -0.2 26.4 -4.9 18.5 -6.7 15.5 -7.7 14.3 -8.0 13.2 -9.2 11.7 

WMLE -10.1 36.7 -4.8 21.4 -13.6 19.5 -10.1 15.3 -3.1 20.4 10.7 20.2 

PITSE 2.9 28.4 -3.8 19.0 -6.1 15.8 -7.6 14.5 -8.0 13.4 -9.5 12.0 

PDCE – – – – 41.5 388.8 22.7 327.9 12.8 38.8 5.8 20.4 

GME -6.6 26.2 -7.8 19.3 -8.4 16.3 -8.9 15.0 -8.9 13.8 -9.5 11.9 

α = 3             

MLE -54.2 54.4 -52.5 52.6 -52.0 52.1 -51.7 51.8 -51.5 51.5 -51.2 51.3 

OBRE -0.5 26.3 -5.6 18.0 -7.2 15.7 -8.0 14.4 -7.9 13.2 -9.3 11.9 

WMLE -3.7 38.3 -3.8 20.5 -12.7 18.6 -9.1 14.4 -1.5 20.8 12.1 20.9 

PITSE 2.6 28.4 -4.3 18.5 -6.7 15.8 -7.8 14.6 -7.8 13.4 -9.6 12.2 

PDCE – – – – 28.8 209.9 14.4 68.0 10.8 30.3 4.4 17.7 

GME -6.6 26.3 -8.5 18.9 -8.9 16.5 -9.1 15.1 -8.7 13.8 -9.5 12.1 
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Table 5. Simulation results for the Pareto index with data drawn from a contaminated Pareto distribution 0.9 (1, ) 0.1 (1000, ),  F P P ARE = 

94%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -44.0 44.7 -42.5 42.8 -41.7 42.0 -41.6 41.8 -41.4 41.5 -41.2 41.2 

OBRE -33.0 36.5 -37.1 38.1 -37.9 38.5 -38.8 39.1 -38.9 39.2 -39.6 39.7 

PITSE -24.9 30.1 -28.7 30.5 -29.6 30.7 -30.4 31.2 -30.5 31.1 -31.3 31.6 

PDCE – – – – – – 38.0 283.9 35.2 702.4 8.5 26.9 

GME -37.6 41.0 -35.3 37.0 -35.0 36.1 -35.3 36.1 -35.1 35.8 -35.3 35.6 

α = 2             

MLE -60.9 61.0 -59.4 59.5 -59.0 59.1 -58.7 58.8 -58.6 58.6 -58.3 58.3 

OBRE -36.1 39.6 -40.1 41.5 -41.7 42.6 -42.1 42.8 -42.4 42.9 -43.1 43.3 

PITSE -30.4 34.8 -34.7 36.3 -36.1 37.0 -36.5 37.2 -37.0 37.5 -37.6 37.8 

PDCE – – – – 50.0 911.2 27.3 329.6 13.3 38.7 6.8 21.4 

GME -38.0 41.6 -35.3 37.1 -35.6 36.8 -35.4 36.3 -35.4 36.1 -35.4 35.7 

α = 3             

MLE -70.0 70.1 -68.7 68.7 -68.3 68.3 -68.1 68.1 -67.9 67.9 -67.7 67.7 

OBRE -39.5 41.4 -41.7 42.7 -42.3 43.0 -42.9 43.5 -42.9 43.3 -43.6 43.8 

PITSE -32.3 36.7 -36.4 38.0 -37.7 38.6 -38.3 39.0 -38.5 39.0 -39.5 39.7 

PDCE – – – – 35.7 394.6 18.2 71.2 12.4 52.1 4.8 18.2 

GME -38.2 41.8 -35.4 37.2 -35.2 36.4 -35.4 36.3 -35.1 35.9 -35.3 35.7 
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Table 6. Simulation results for the Pareto index with data drawn from a contaminated Pareto distribution 0.9 (1, ) 0.1 (1000, ),  F P P ARE = 

78%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -44.0 44.6 -42.3 42.6 -41.9 42.1 -41.6 41.7 -41.5 41.6 -41.1 41.2 

OBRE -11.4 26.5 -15.6 22.1 -17.7 21.3 -18.0 20.7 -18.5 20.7 -19.2 20.2 

WMLE -18.7 28.8 -26.5 31.5 -28.0 30.7 -29.4 31.1 -9.9 23.2 3.8 16.3 

PITSE -8.3 27.3 -15.0 22.1 -17.7 21.5 -18.2 21.1 -18.9 21.2 -19.9 21.0 

PDCE – – – – – – 34.3 166.9 21.7 134.3 8.6 26.9 

GME -17.1 29.0 -17.9 23.8 -19.0 22.6 -18.9 21.6 -19.1 21.3 -19.3 20.4 

α = 2             

MLE -60.9 61.0 -59.4 59.5 -59.0 59.0 -58.7 58.7 -58.6 58.7 -58.3 58.3 

OBRE -10.6 27.0 -16.1 22.2 -17.8 21.4 -18.1 20.9 -19.0 21.1 -19.7 20.7 

WMLE -55.2 60.3 -29.6 34.4 -34.6 36.5 -23.5 25.6 -1.3 19.3 8.7 17.7 

PITSE -7.8 28.1 -15.3 22.2 -17.5 21.6 -18.3 21.3 -19.3 21.5 -20.3 21.4 

PDCE – – – – – – 19.1 79.3 13.0 37.4 5.6 20.0 

GME -15.7 29.3 -18.2 23.9 -18.9 22.4 -18.7 21.5 -19.4 21.6 -19.5 20.6 

α = 3             

MLE -70.1 70.1 -68.7 68.8 -68.3 68.3 -68.1 68.1 -68.0 68.0 -67.7 67.7 

OBRE -12.6 25.7 -16.7 22.5 -17.9 21.5 -18.7 21.3 -19.0 21.0 -19.7 20.6 

WMLE -46.4 54.4 -28.1 32.3 -31.3 33.4 -22.0 24.2 0.1 19.0 9.8 18.3 

PITSE -9.3 27.4 -15.8 22.4 -17.7 21.6 -18.7 21.5 -19.1 21.4 -20.2 21.2 

PDCE – – – – – – 15.8 78.2 11.3 33.0 4.7 18.2 

GME -16.8 28.9 -18.6 24.2 -18.9 22.5 -19.2 21.9 -19.2 21.4 -19.3 20.3 
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Table 7. Simulation results for the Pareto index with data drawn from a Pareto distribution 

(1, )P  with randomly chosen 1% of observations multiplied by 10, ARE = 94%. 

 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE 

α = 1     

MLE -2.1 10.0 -2.5 7.0 

OBRE -0.3 10.4 -1.8 7.1 

PITSE 0.4 10.5 -1.3 7.0 

PDCE 17.8 59.4 6.8 24.0 

GME -2.2 10.4 -2.6 7.3 

α = 2     

MLE -4.9 10.3 -4.4 8.0 

OBRE -1.6 10.2 -2.0 7.6 

PITSE -1.4 10.1 -2.0 7.5 

PDCE 11.3 33.1 5.6 19.1 

GME -3.4 10.5 -2.9 7.8 

α = 3     

MLE -7.0 11.0 -6.4 9.1 

OBRE -1.7 10.0 -2.0 7.6 

PITSE -1.9 10.0 -2.4 7.7 

PDCE 9.2 27.4 5.0 17.4 

GME -3.6 10.3 -2.9 7.9 

 

Table 8. Simulation results for the Pareto index with data drawn from a Pareto distribution 

(1, )P  with randomly chosen 1% of observations multiplied by 10, ARE = 78%. 

 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE 

α = 1     

MLE -2.4 9.9 -2.3 7.2 

OBRE 0.2 11.4 -0.9 8.2 

WMLE 0.7 11.0 -0.5 8.0 

PITSE 0.8 11.4 -0.5 8.1 

PDCE 16.6 53.9 6.9 24.3 

GME -1.1 11.4 -1.5 8.3 

α = 2     

MLE -4.5 10.3 -4.3 7.8 

OBRE 0.4 11.5 -0.8 8.1 

WMLE 1.5 12.0 -1.7 9.2 

PITSE 0.8 11.5 -0.7 8.1 

PDCE 17.7 314.3 5.2 19.1 

GME -1.0 11.4 -1.6 8.2 

α = 3     

MLE -6.3 10.9 -6.6 9.0 

OBRE 0.5 11.6 -1.0 7.9 

WMLE 4.0 12.9 -0.4 10.3 

PITSE 0.9 11.7 -0.8 8.0 

PDCE 10.3 29.4 4.5 17.1 

GME -0.8 11.5 -1.6 8.0 
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Table 9. Simulation results for the Pareto index with data drawn from a Pareto distribution 

(1, )P  with randomly chosen 2% of observations multiplied by 10, ARE = 94%. 

 n = 50 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE 

α = 1       

MLE -4.2 14.2 -4.4 10.4 -4.4 7.8 

OBRE -0.8 14.8 -2.9 10.3 -3.7 7.7 

PITSE 0.5 15.1 -2.0 10.3 -3.0 7.5 

PDCE – – 17.9 50.4 7.7 24.7 

GME -4.6 14.9 -4.7 10.8 -4.6 8.1 

α = 2       

MLE -8.9 15.0 -8.6 12.0 -8.5 10.3 

OBRE -2.4 14.8 -4.1 10.9 -5.1 8.6 

PITSE -2.0 14.5 -4.0 10.6 -5.1 8.4 

PDCE – – 11.8 32.3 5.0 18.9 

GME -6.2 15.4 -5.9 11.5 -5.9 9.0 

α = 3       

MLE -12.7 16.8 -12.6 14.8 -12.2 13.4 

OBRE -2.4 14.6 -4.4 11.0 -5.1 8.6 

PITSE -3.0 14.5 -5.2 11.2 -6.1 9.1 

PDCE – – 10.9 30.0 4.7 17.4 

GME -6.2 15.2 -6.3 11.7 -5.9 9.1 

 

Table 10. Simulation results for the Pareto index with data drawn from a Pareto distribution 

(1, )P  with randomly chosen 2% of observations multiplied by 10, ARE = 78%. 

 n = 50 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE 

α = 1       

MLE -4.4 14.2 -4.4 10.2 -4.1 7.8 

OBRE 0.7 16.6 -1.7 11.4 -2.5 8.3 

WMLE 1.5 15.8 -1.4 11.2 -3.2 8.4 

PITSE 2.3 17.2 -0.9 11.5 -2.1 8.1 

PDCE – – 18.0 62.8 7.5 25.2 

GME -2.1 16.5 -3.0 11.6 -3.2 8.6 

α = 2       

MLE -9.0 14.9 -8.8 12.2 -8.6 10.5 

OBRE 0.2 16.2 -2.0 11.5 -2.9 8.3 

WMLE 3.0 17.2 -2.6 12.5 -4.0 12.5 

PITSE 1.2 16.7 -1.6 11.7 -3.0 8.4 

PDCE 55.6 403.0 12.1 36.1 – – 

GME -2.5 16.0 -3.3 11.7 -3.6 8.6 

α = 3       

MLE -12.9 17.0 -12.6 14.7 -12.2 13.3 

OBRE 0.1 16.7 -1.9 11.3 -2.7 8.2 

WMLE 6.4 19.9 -1.5 12.1 -1.6 15.1 

PITSE 0.8 17.2 -1.7 11.5 -2.7 8.3 

PDCE – – 10.0 29.9 5.1 17.6 

GME -2.6 16.5 -3.2 11.6 -3.3 8.4 
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Table 11. Simulation results for the Pareto index with data drawn from a Pareto distribution (1, )P  with randomly chosen 5% of observations 

multiplied by 10, ARE = 94%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -10.9 21.9 -11.0 16.9 -11.2 15.3 -10.7 14.2 -10.4 13.3 -10.5 11.9 

OBRE -1.9 22.6 -7.1 15.9 -9.0 14.3 -9.1 13.4 -9.2 12.7 -10.1 11.7 

PITSE 0.8 23.3 -5.3 15.7 -7.5 13.9 -7.7 12.8 -8.0 12.1 -9.1 11.0 

PDCE – – – – 57.2 444.9 25.0 81.1 17.9 49.7 6.7 26.1 

GME -13.2 23.8 -11.7 17.9 -11.9 16.1 -11.3 14.9 -11.0 14.0 -11.0 12.5 

α = 2             

MLE -20.8 25.5 -19.6 22.3 -19.3 21.2 -19.0 20.4 -19.3 20.4 -18.8 19.4 

OBRE -6.8 23.7 -11.6 18.9 -13.1 17.6 -13.7 16.9 -14.6 17.1 -15.0 16.2 

PITSE -4.7 22.8 -10.1 17.4 -11.7 16.2 -12.3 15.5 -13.3 15.7 -13.6 14.8 

PDCE – – – – – – 16.9 61.0 12.1 40.6 5.9 19.8 

GME -17.5 26.8 -15.5 21.1 -15.4 19.3 -15.3 18.1 -15.8 18.0 -15.2 16.4 

α = 3             

MLE -28.3 30.8 -26.9 28.2 -26.5 27.5 -26.3 27.0 -26.2 26.7 -26.0 26.3 

OBRE -7.1 24.7 -11.9 19.0 -13.4 18.0 -14.0 17.3 -14.5 17.1 -15.5 16.7 

PITSE -7.2 24.1 -12.6 18.8 -14.3 18.2 -15.0 17.7 -15.5 17.6 -16.5 17.5 

PDCE – – – – 25.1 171.3 14.2 41.4 10.3 30.4 4.6 17.6 

GME -17.8 27.7 -15.8 21.2 -15.7 19.6 -15.5 18.5 -15.6 18.0 -15.7 16.9 
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Table 12. Simulation results for the Pareto index with data drawn from a Pareto distribution (1, )P  with randomly chosen 5% of observations 

multiplied by 10, ARE = 78%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -11.4 21.9 -10.8 16.7 -10.9 15.0 -10.7 13.9 -10.5 13.2 -10.4 12.0 

OBRE 1.6 27.1 -4.4 17.7 -6.5 15.1 -7.2 13.7 -7.5 12.9 -8.5 11.4 

WMLE 6.3 29.0 -3.6 16.1 -6.1 14.2 -7.3 12.8 -8.3 12.7 -9.3 12.3 

PITSE 5.6 29.2 -2.3 17.5 -5.0 14.6 -5.9 13.0 -6.3 12.2 -7.7 10.8 

PDCE – – – – – – 32.1 259.8 18.6 78.0 6.8 26.0 

GME -5.8 26.6 -7.8 18.7 -8.8 16.1 -8.9 14.7 -9.0 13.8 -9.3 12.0 

α = 2             

MLE -20.9 25.6 -20.1 22.6 -19.1 21.0 -19.1 20.4 -18.9 20.0 -18.9 19.5 

OBRE 0.8 28.1 -5.3 17.8 -5.9 15.4 -7.1 13.7 -7.6 12.9 -8.7 11.3 

WMLE 8.0 31.2 -6.6 17.4 -11.0 16.7 -12.4 16.2 -12.4 19.1 -4.4 20.6 

PITSE 3.9 29.9 -4.2 18.1 -5.7 15.5 -7.0 13.8 -7.6 13.0 -9.2 11.7 

PDCE – – – – 27.9 115.6 17.9 79.2 17.1 177.8 5.0 19.2 

GME -6.2 27.5 -8.7 18.8 -7.9 16.3 -8.8 14.6 -8.9 13.7 -9.4 11.9 

α = 3             

MLE -28.3 30.9 -27.1 28.5 -26.4 27.3 -26.4 27.1 -26.2 26.8 -25.9 26.2 

OBRE 1.4 28.9 -4.8 18.2 -6.3 15.1 -7.4 14.1 -7.8 13.2 -8.8 11.4 

WMLE 9.0 30.1 -6.2 21.0 -10.5 19.6 -14.3 17.9 -9.4 20.4 6.6 20.0 

PITSE 4.5 31.3 -4.1 18.5 -6.0 15.2 -7.6 14.4 -8.2 13.5 -9.4 11.9 

PDCE – – – – 30.2 270.7 14.9 72.2 13.3 128.7 4.6 17.6 

GME -5.6 27.9 -8.1 18.9 -8.4 16.1 -8.9 14.9 -9.1 14.0 -9.4 11.9 
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Table 13. Simulation results for the Pareto index with data drawn from a Pareto distribution (1, )P  with randomly chosen 10% of observations 

multiplied by 10, ARE = 94%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -20.4 25.4 -19.5 22.2 -19.2 21.1 -19.3 20.7 -19.1 20.2 -19.0 19.5 

OBRE -12.9 21.6 -16.5 20.1 -17.7 19.9 -18.4 19.9 -18.5 19.7 -19.1 19.7 

PITSE -9.8 21.6 -14.4 19.1 -16.0 18.7 -16.8 18.8 -17.0 18.6 -18.0 18.7 

PDCE – – – – – – 26.4 126.9 – – 6.1 27.0 

GME -23.1 27.6 -20.7 23.4 -20.4 22.3 -20.5 21.8 -20.3 21.3 -20.1 20.7 

α = 2             

MLE -34.3 35.8 -32.6 33.4 -32.4 33.0 -32.1 32.5 -32.1 32.5 -31.8 31.9 

OBRE -26.0 29.6 -28.7 30.0 -29.9 30.7 -30.3 30.8 -30.7 31.1 -31.0 31.2 

PITSE -19.5 25.8 -23.2 25.6 -24.7 26.2 -25.3 26.4 -25.9 26.7 -26.4 26.8 

PDCE – – – – – – 19.7 80.6 13.7 62.2 4.6 19.2 

GME -34.1 36.9 -31.3 32.7 -31.5 32.3 -31.4 32.0 -31.6 32.0 -31.3 31.5 

α = 3             

MLE -44.0 44.6 -42.4 42.8 -41.9 42.1 -41.5 41.7 -41.5 41.7 -41.2 41.2 

OBRE -32.2 35.6 -36.3 37.4 -37.6 38.3 -38.0 38.4 -38.6 38.9 -39.1 39.3 

PITSE -24.7 29.5 -28.6 30.4 -29.9 31.0 -30.2 31.0 -30.8 31.4 -31.3 31.6 

PDCE – – – – – – 17.4 87.5 10.4 30.8 4.9 17.9 

GME -37.7 40.8 -35.2 36.9 -35.4 36.5 -35.1 35.9 -35.4 36.1 -35.3 35.6 

 



21 

 

Table 14. Simulation results for the Pareto index with data drawn from a Pareto distribution (1, )P  with randomly chosen 10% of observations 

multiplied by 10, ARE = 78%. 

 

 n = 20 n = 40 n = 60 n = 80 n = 100 n = 200 

Estimator RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

α = 1             

MLE -20.9 25.6 -19.6 22.2 -19.7 21.4 -19.2 20.6 -19.3 20.4 -18.8 19.4 

OBRE -9.6 25.2 -14.5 20.9 -16.6 20.2 -17.0 19.9 -17.6 19.8 -18.2 19.3 

WMLE -6.4 23.3 -14.2 19.2 -16.1 19.3 -17.1 19.1 -18.0 19.9 -18.9 20.3 

PITSE -4.9 25.3 -11.3 19.3 -13.9 18.4 -14.6 18.0 -15.4 17.9 -16.2 17.4 

PDCE – – – – – – – – 17.3 66.8 6.4 26.5 

GME -16.6 28.1 -17.9 23.4 -18.9 22.4 -19.0 21.8 -19.3 21.4 -19.3 20.4 

α = 2             

MLE -34.4 35.8 -32.7 33.5 -32.5 33.0 -32.2 32.7 -32.1 32.4 -32.0 32.2 

OBRE -10.1 26.5 -15.1 21.9 -16.7 20.8 -17.6 20.6 -17.9 20.1 -19.2 20.3 

WMLE -12.7 25.2 -22.9 26.0 -26.0 27.8 -27.7 28.8 -20.8 29.5 -3.3 18.0 

PITSE -7.6 26.9 -14.3 21.5 -16.5 20.9 -17.8 20.7 -18.2 20.4 -19.7 20.7 

PDCE – – – – 50.9 620.5 17.3 52.3 12.5 35.4 4.8 20.0 

GME -16.2 28.8 -18.0 24.0 -18.6 22.4 -19.0 21.8 -18.9 21.1 -19.7 20.7 

α = 3             

MLE -44.0 44.6 -42.2 42.6 -41.7 41.9 -41.6 41.8 -41.4 41.5 -41.1 41.2 

OBRE -10.4 26.6 -15.1 21.6 -16.6 20.7 -17.5 20.4 -17.7 20.0 -18.8 19.9 

WMLE -18.4 28.5 -26.1 31.5 -28.4 31.2 -29.9 31.5 -8.9 23.1 4.9 16.9 

PITSE -8.3 27.2 -14.9 21.9 -17.0 21.2 -18.0 21.0 -18.6 20.9 -19.9 21.0 

PDCE – – – – 31.2 327.3 16.8 74.1 10.8 32.7 5.4 18.4 

GME -16.6 28.8 -17.9 23.7 -18.4 22.2 -18.7 21.5 -18.7 20.9 -19.3 20.4 
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In the case of large degree of contamination (5%), which is presented in Tables 11-12, 

we observe that for the ARE = 94% (Table 11), the performance of robust estimators is better 

than that of the MLE for samples of 40 observations and bigger and for α > 1. All robust es-

timators, except for the PDCE, which performs well only for sample size of 200, display simi-

lar, if rather small, improvement over MLE. When more robust versions of estimators are 

considered (Table 12), the protection against outliers is greater, but again only for α > 1. The 

OBRE, PITSE and GME perform similarly and markedly better than the WMLE and PDCE. 

The WMLE gives much smaller RB than the MLE, but it gives no or only very small im-

provement in terms of RRMSE. Finally, Tables 13-14 present results for the extreme case of 

10% contamination. In the case of higher efficiency (Table 13), the PITSE seems to be the 

best choice, at least when α > 1. When less efficient, but more robust versions of estimators 

are considered (Table 14), the OBRE, PITSE and GME provide significant improvement (es-

pecially in terms of RRMSE) with respect to the MLE when α > 1. For n < 200, the WMLE 

usually performs worse than most of other robust estimators. It is only for the case of n = 200 

that the WMLE gives comparable or even slightly better results than alternatives.  

The main results of our Monte Carlo study can be summarized as follows. The PDCE 

and WMLE are not reliable in small samples and can be considered only when the sample 

size is at least 200. The remaining estimators – the OBRE, PITSE and GME – offer in general 

a comparable level of protection against data contamination or model deviation. Since the 

PITSE is the simplest estimator from the computational point of view, it seems that it is the 

best choice for estimating the Pareto index in small samples.  

 

 

4. Conclusions 

 

The classical Pareto distribution is widely used in many areas of economics and other scienc-

es to model the right tail of heavy-tailed distributions. Since the most popular method of esti-

mating the shape parameter (the Pareto index) of this distribution – the maximum likelihood 

estimation – is non robust to model deviation and data contamination, several robust ap-

proaches have been proposed in the literature. In this paper, we have provided an extensive 

Monte Carlo comparison of the small-sample performance of the most popular robust estima-

tors for the Pareto index.  

 The main conclusions from our simulation study are the following. First, the MLE 

indeed performs unreliably with even a moderate degree of model deviation or data contami-

nation. Our simulations suggest also that the performance of the MLE deteriorates significant-

ly with the rise in the value of the Pareto index. Second, there are computational problems 

with the PDCE for small samples (n ≤ 80). The performance of the PDCE is similar to that of 

other robust estimators only for the largest sample size in our study (200 observations). For 

these reasons, we recommend that the PDCE should be avoided in practical small-sample 

settings (n < 200). Third, the WMLE usually performs worse than most of other robust esti-

mators, but shows good results in samples of size 200. Therefore, this estimator should be 

only used in sufficiently large samples. Fourth, the OBRE, PITSE and GME offer a similar 

level of protection in most of the studied settings. Taking into account the fact that the PITSE 

is the simplest estimator from the computational point of view, while both remaining alterna-

tives (and especially the OBRE) are  much more complex computationally, the PITSE seems 

to give the desired compromise between ease of use and power to protect against outliers in 

the small-sample setting. 
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