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AAbbssttrraacctt::  Stacked ensembles approaches have been recently gaining importance in complex 
predictive problems where extraordinary performance is desirable. In this paper we develop a 
multilayer stacking framework and apply it to a large dataset related to credit scoring with 
multiple, imbalanced classes. Diverse base estimators (among others, bagged and boosted tree 
algorithms, regularized logistic regression, neural networks, Naive Bayes classifier) are examined 
and we propose three meta learners to be finally combined into a novel, weighted ensemble. To 
prevent bias in meta features construction, we introduce a nested cross-validation schema into the 
architecture, while weighted log loss evaluation metric is used to overcome training bias towards 
the majority class. Additional emphasis is placed on a proper data preprocessing steps and 
Bayesian optimization for hyperparameter tuning to ensure that the solution do not overfits. Our 
study indicates better stacking results compared to all individual base classifiers, yet we stress the 
importance of an assessment whether the improvement compensates increased computational 
time and design complexity. Furthermore, conducted analysis shows extremely good performance 
among bagged and boosted trees, both in base and meta learning phase. We conclude with a thesis 
that a weighted meta ensemble with regularization properties reveals the least overfitting 
tendencies. 
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1. Introduction 

In recent years, ensemble learning techniques have been constantly gaining in popularity for 

machine learning applications, especially in those areas where extraordinary predictive 

performance is recommended and problems addressed are of a rather complicated nature 

(among others, in Lessmann et al. (2015); Alaraj and Abbod (2016); Hung and Chen (2009); 

Marqués et al. (2012); Nanni and Lumini (2009); Xiao et al. (2016); Zhai and Chen (2018); 

Whalen and Pandey (2013); Madasamy and Ramaswami (2018); Zhang et al. (2018); Lessmann 

et al. (2019); Kang et al. (2015); Menahem et al. (2009)). The general idea is to use multiple 

algorithms and combine their predictions into a single one. We may divide them into 

homogenous ensemble models: in those methods weak learners from the same family are used 

(e.g., decision tree in Random Forest and Gradient Boosting Machine, see Hastie et al. (2009); 

Wan and Yang (2013); Brown and Mues (2012)) or heterogeneous ensemble models which take 

advantage of diverse set of learners and multilayer architectures, with stacking and blending 

being the most successful (e.g., in Shahhosseini et al. (2019); Zhang et al. (2018); LeDell 

(2015); van Veen et al. (2015)). As pointed out by LeDell (2015) the superior results do come 

with a burden of computational cost assigned to training multiple models and becomes more 

acute in case of rigorous validation and complicated frameworks present, therefore one should 

remember about the possible tradeoff between the score obtained and time consumption. 

 Among numerous ensemble approaches, stacking, in one of its forms sometimes also 

referred to as Super Learning (van der Laan et al. (2007)), appears to be the most widely used 

and achieves top performance improvements, notably those reported in machine learning 

competitions and literature (e.g., in Zhai and Chen (2018); Whalen and Pandey (2013); Sill et 

al. (2009)). With many available and evolving variations designed to solve particular problems 

from various fields, theoretical basis underlying the stacking structure consist of adapting cross-

validation for training and selecting multiple algorithms - base learners - and building the final 

model - meta learner - on top of them, thus reducing the generalization error (Wolpert (1992)). 

In case of nonlinear, very complex relationships existing in the given data, when single 

classifiers may struggle to approximate the true prediction function (LeDell (2015)), stacked 

ensembles are often utilized. The advantages are even more tangible for broader area of data 

challenges, including multiclass or multilabel classification, large datasets or class imbalance 

which are currently regularly faced by many data science and business experts (among others, 

in Büyükçakir et al. (2018); Zhang et al. (2018); Madasamy and Ramaswami (2018); Sjardin et 

al. (2016); Kang et al. (2015); Menahem et al. (2009)). 
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An important area of studies that incorporates both high class imbalance and large data 

volumes, and is increasingly addressed by modern machine learning algorithms (Alaraj and 

Abbod (2016); Lessmann et al. (2015)), relates to broadly defined credit scoring, a topic 

essential from the perspective of financial institutions and proper loan decisions (Vahid and 

Ahmadi (2016)). Though numerous researches on credit scoring with ensemble methods 

utilized are available, they mainly focus on a traditional default prediction subject with good 

and bad entities distinguished (e.g., in Xiao et al. (2016); Brown and Mues (2012); Nanni and 

Lumini (2009)). Nevertheless, as shown by Irawan and Samopa (2019), Vahid and Ahmadi 

(2016) or Kwon et al. (2013), ensemble learning and stacking in particular might be successfully 

adapted to more complicated, multiclass creditworthiness assessment problems, for example 

existing in a form of credit ratings or various credit states.  

The aim of this study is to propose a comprehensive stacking solution and investigate 

its performance against multiclass classification problem for peer-to-peer loan default dataset 

with over one million observations and highly imbalanced classes present. To obtain 

satisfactory results, three stage approach is proposed with nested cross-validation and Bayesian 

optimization for hyperparameter tuning and meta features construction. For the first stage 

multiple and diverse algorithms are used with decision tree based ensemble methods (e.g., 

bagging, boosting), linear classifiers (e.g., logistic regression, support vector machines), 

feedforward neural networks and Naive Bayes classifiers being the main ones. For the second 

level, three different meta learners (logistic regression, tree based model and neural network) 

are applied and it is further examined whether the final stage prediction being an ensemble of 

those three with corresponding weights tuned improves the whole solution effectiveness. 

Results are also compared with single base learners scores and we additionally observe if a 

model family outperforming others can be distinguished. In particular, the problems of 

overfitting, choosing the right evaluation metric and data preprocessing steps (e.g., dealing with 

high cardinality features) are addressed as well. 

 This paper is organized as follows. The second section contains literature review 

regarding different stacking approaches over the years and related work. Third section provides 

thorough methodology description, including algorithm architecture, data preprocessing and 

evaluation. Subsequent section describes the dataset used in research. In fifth part the empirical 

results are presented and the last section concludes the paper findings. 
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2. Literature review 

The concept of stacking has been initially proposed by Wolpert (1992) with respect to neural 

networks as base learners. Stacked generalization idea, as introduced by the author, relies on 

adapting leave-one-out cross-validation to construct the - so called - level one data and 

combining given set of predictors instead of just selecting the best one. It is also concluded that 

picking the type and the number of generalizers (therefore defining the stacking architecture) 

is rather an art not a theoretically proven approach, which is, to some extent, the case even in 

modern machine learning solutions. Breiman (1996), by suggesting decision trees (with varying 

number of terminal nodes) and generalized linear models as base models, and k-fold cross 

validation framework (as opposed to Wolpert, mainly due to computational efficiency), extends 

Wolpert’s research to develop stacked regressions. Although his stacking attempts are still 

made within the same model classes (CART or GLM) author achieves the most satisfying 

results from the mix of subset regressions (different predictor variables) and ridge regressions 

with different ridge parameters thus finally supporting a thesis that the most noticeable error 

reduction occurs when stacked models are not too similar (see also Hashem (1996); Lanes et 

al. (2017)). 

 Van der Laan et al. (2007) were among the first to provide a theoretical background for 

stacked ensembles and proposed a super learner algorithm that according to the authors research 

is an asymptotically optimal learning system (it performs asymptotically as well as the best 

estimator from given candidates). Super learner, composed of wide variety of candidate learners 

(e.g., CART, Random Forest, LARS or ridge regression), uses 10-fold cross-validation to obtain 

candidates predictions and on top of that fits a linear regression model with least squares method 

for learners parameters estimates (they may be interpreted as indicators of a given base model 

importance for the particular problem). In the study algorithm is applied to many different 

datasets performing reasonably well for each of them and therefore providing a strong evidence 

of its flexibility and stacking potential in general. Those observations for regression problems 

are confirmed by more modern researches, for example presented by Zhai and Chen (2018) 

who introduce a complex stacked generalization strategy to predict the PM2.5 concentration 

averages in China. Their approach, including, among others, XGBoost or AdaBoost (base layer) 

and Support Vector Regressor (meta learner), outperforms any single estimator considered. 

What is more, lower overfitting vulnerability is observed which is also the point in van Veen et 

al. (2015).  
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Another important study was conducted by Whalen and Pandey (2013) in the area of 

computational genomics where, as stressed by authors, even small performance improvements 

compared to the industry baseline are of a great importance, especially when one takes into 

account extreme class imbalance, high missing values percentage and feature complexity 

presence. Four different ensemble techniques are compared in the experiment: simple averaging 

of classifier’s predictions, novel cluster based meta learning, ensemble selection based on 

choosing the best classifiers subset and stacking with logistic regression, with the latter offering 

the most significant improvement in the final results. Each technique is trained using up to 27 

heterogeneous models with nested cross-validation and undersampling underneath. Advantages 

of adapting stacked ensembles to handle highly imbalanced datasets for classification problems 

are also outlined by Madasamy and Ramaswami (2018) and Zhang et al. (2018). First paper 

applies the two layer solution for the real-time data while the latter tests the similar architecture 

for plenty of different datasets and many metrics observed, both reporting impressing 

effectiveness. LeDell (2015), who introduces an AUC-maximizing super learner, claims that 

for a binary classification the gain obtained when compared to the top base algorithm is even 

higher if the class imbalance is more evident. Although the results itself are reliable in case of 

meta learning superiority, it is widely discussed whether AUC can be considered a good metric 

for skewed datasets (e.g., in Jeni et al. (2013)). 

Beside choosing the proper evaluation metric for a particular case one should take into 

account rigorousness of cross-validation schema (e.g., whether it is flat, nested, repeated or 

combination), hyperparameter tuning and potential overfitting presence – crucial components 

with respect to designing the proper stacking architecture, though not directly referred to 

stacking per se. Cawley and Talbot (2010) along with Krstajic et al. (2014) emphasize the 

importance of rigorous cross-validation (both for model selection overfitting prevention and 

reliable performance evaluation), particularly with limited size datasets. On the other hand, 

Wainer and Cawley (2018) show that in practice using flat or standard cross-validation (even 

though it introduces bias) versus nested variant leads to the selection of models that are 

approximately almost the same in quality, provided there are relatively few hyperparameters to 

be tuned. To overcome the issues observed by aforementioned authors, Shahhosseini et al. 

(2019) propose a novel ensemble technique (COWE-ITH) based on nested algorithm and 

Bayesian optimization for hyperparameter tuning which is to a certain degree similar to our 

approach. 
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3. Methodology 

 

3.1. Stacked ensembles 

For this study we focus on meta learning with stacking, i.e., probabilistic outputs from base 

classifiers on the first level are further used as an input (meta features) to the meta classifier 

(Whalen and Pandey (2013)). In this form it is rather a standard, well known technique. The 

general solution is therefore extended by implementing nested cross-validation at the meta 

features creation level, introducing Bayesian optimization to effectively tune hyperparameters 

and redefining the meta classifier composition to finally come with a more innovative stacking 

design. The detailed architecture is presented in subsequent sections. 

 

3.1.1.  Cross-validation framework for stacked ensembles 

The general aim of nested cross-validation is to obtain more reliable, almost unbiased estimator 

performance assessment, which is, according to Krstajic et al. (2014), a completely different 

task than using conventional cross-validation for model selection process. Having that 

knowledge, we use the mentioned property of nested cross-validation in order to build a meta 

features set that will not be biased towards any of the particular base learners. In other words, 

classifier’s probabilistic predictions at the first, base stage of learning are considered to reflect 

the true estimation error. Pseudocode for the stacking algorithm is shown in Figure 1. 
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Algorithm 1: Stacking algorithm 

1. split main dataset into train80 and test20 with 80:20 split ratio 

2. for b=1 to B (number of base classifiers): 

2.1. split train80 dataset into kouter=3 stratified folds 

2.2. for each trainingouter fold (outer loop): 

 2.2.1. split trainingouter into kinner=3 stratified folds 

2.2.2. for each traininginner fold (inner loop): 

2.2.2.1. tune_hyperparametersinner_b  

2.2.3. fit base_classifierb with chosen hyperparametersinner_b to trainingouter 

2.2.4. predict on validationouter and set aside predictionsouter_b for each class 

2.2.5. tune_hyperparametersouter_b 

2.3. fit base_classifierb with chosen hyperparametersouter_b to training80 

2.4. predict on test20 to obtain the final score for base_classifierb 

2.5. merge 2.2.4. results across rows 

3. merge 2.4. and 2.5. results across columns to obtain trainmeta and testmeta, respectively 

4. for m=1 to M (number of meta classifiers): 

4.1. split trainmeta dataset into kouter=3 stratified folds 

4.2. for each trainingouter fold: 

 4.2.1. tune_hyperparametersouter_m 

4.3. fit meta_classifierm with chosen hyperparametersouter_m to trainmeta 

4.4. predict on testmeta to obtain the final score for meta_classifierm 

Figure 1: Pseudocode for the stacking algorithm. 

 

Whole architecture consists of two loops: outer and inner, with training and validation 

folds created for both. First loop is used for model selection while the latter is responsible for 

hyperparameter tuning for meta features creation purposes. The choice of 3 x 3 nested cross-

validation schema (kouter=3 outer folds and kinner=3 inner folds for each outer fold) is primarily 

dictated by the computational time reduction willingness and sufficient dataset size in which 

case there is no need for more rigorous approach as model selection variance is reduced (Cawley 

and Talbot (2010)). The tune_hyperparametersindex term, introduced for pseudocode 

readability, simply stands for hyperparameter tuning process consisting of averaging scores 

across all validation folds in cross-validation loop (whether it is inner or outer, for given base 
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model b or meta model m, all of them denoted by index subscript) and selecting 

hyperparameters set maximizing the average. Aforementioned best set obtained during the inner 

loop is then used to fit the model to trainingouter fold (which is actually repeated kouter times) and 

predict on validationouter dataset (in literature also called out-of-sample or holdout data). This is 

in contrast to tuning and predicting only on trainingouter and validationouter (without nested folds) 

where the same data is used to search for the best model and estimate its performance. The 

detailed framework for hyperparameter tuning is presented in Figure 2. 

 

 
Figure 2: Hyperparameter tuning within outer and inner cross-validation loop. 

Note: For each base_classifierb from the pool of B base classifiers, hyperparameters are first tuned within the inner 
cross validation loop (tune_hyperparametersinner_b) for n_iter iterations and the prediction ‘pred’ is made as a part 
of meta features set. Second, there is a hyperparameter tuning for the outer loop performed with the same number 
of iterations (tune_hyperparametersouter_b) to obtain test set predictions (‘pred_test’). Finally, meta features (blue 
fields) are used for meta_classifierm hyperparameter tuning for n_itermeta rounds (tune_hyperparametersouter_m) 
resulting in predictions for pred_testmeta set, which is a concatenation of ‘pred_test’ sets for all base classifiers. 
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One may notice that there are actually two tuning rounds for outer folds performed. To 

be technically precise, first one is also extended by inner tuning stage for all base models. The 

key note at this point is to use the same folds across all trained classifiers. For simplicity let’s 

assume that we train identical estimators on different folds and generate predictions for meta 

learning. It is rather obvious that a meta learner will choose the base estimator with a higher 

score, though they are both the same. It complicates even more if various models are fitted to 

different folds, thus introducing potential bias to the system. Nevertheless, diverse splits may 

be possible and beneficial but in case the repeated cross-validation is applied (Džeroski and 

Ženko (2004)). The second run is specifically designed for meta learners training with trainmeta 

dataset of nrow(train80) x (B*n_classes) dimension, where B is the total number of base 

classifiers used and n_classes denotes dependent variable unique levels count. 

Another important issue that arises is rather a practical concern and might have the effect 

on the total time spent on system training. Hyperparameter tuning, especially in case of complex 

algorithms, is rarely a one-time process – quite often a few rounds of tuning (e.g., with different 

parameter ranges) are required for results to be satisfactory. For that reason, any effective and 

flexible stacking architecture should be designed in a way allowing to work on a specific 

algorithm without the necessity to rerun already tuned estimators or the whole system. Thus, 

the pseudocode presented in Figure 1 begins with the loop iterating over base classifiers as 

opposed to initial cross-validation folds split followed by tuning all classifiers in one go. 

The last point, also emphasized by Cawley and Talbot (2010), refers not only to 

particular stacking algorithm but to machine learning in general. In order to overcome the 

selection bias or any potential pitfalls during the algorithm building process, one should not 

treat it simply as fitting a specific model (like decision tree) to a new data but as a whole learning 

procedure which involves model selection and fitting integrally conducted. Considering the 

complexity of majority stacking approaches the latter is especially important for creating a 

successful solution.     

 

3.1.2. Learners selection overview 

Diverse predictions of base learners unleash the meta classifier’s capability to collectively 

capture those areas where their performance on the holdout set is ultimate, leading to a more 

generalizable final ensemble and expected improved performance over each single first level 

estimator (Zhai and Chen (2018)). Therefore a proper attention is necessary in the algorithms 
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selection process and things like a specific dataset, computational time and model’s 

characteristics need to be examined.  

Considering all of the above we first construct the baseline approaches being the easiest 

to implement algorithms available. This consists of fitting a dummy classifier (it uses class 

frequencies as predictions) to have a general benchmark of other method’s performance 

followed by training a relatively fast and simple Complement Naive Bayes model (Rennie et 

al. (2003)), an extended version well suited for handling imbalanced classes problems. The 

second one serves not only as a good point of reference but may also have an ability to build 

up valuable meta features. 

For each subsequent estimator chosen (including naive bayes mentioned) mean cross-

validation score obtained for the outer loop is reported and saved for further comparison 

purposes. What is more, the performance across all folds and tuning iterations is being tracked 

to observe the classifier’s behavior on training and validation samples. Although time 

consuming in case of complex algorithms, such approach allows to tune hyperparameters more 

precisely, for instance by consecutively narrowing hyperparameter ranges or observing regions 

where model overfits and thus providing more reliable out-of-sample predictions. Additionally, 

the train80 and test20 datasets are scored, though only for the final performance reporting, not 

any kind of selection.  

Based on the knowledge above, we are able to effectively discard algorithms performing 

worse than the baseline set, prone to overfitting or those with computational time inadequate to 

gains, in particular ones endlessly computing due to large dataset. It is also worth noting that 

any sort of comparisons should be especially rigorous among classifier’s families and not as 

such between families themselves. As an example, one may almost harmlessly reject one of 

two variations of logistic regression with similar score, while throwing away tree based 

algorithm only because it performs worse than logistic regression might be unreasonable due 

to the fact that, despite the weaker score, different patterns are potentially discovered.  

To check for learners diversity we also examine the correlation matrix for meta features 

dataset but it is conducted rather to make sure about its presence (at least to the extent the 

correlation defines diversity) than to discard base models only due to high correlation for a 

given class predictions. As Lanes et al. (2017) indicate, even though the meta set is considered 

more diversified (whichever metric is chosen), the stacking solution itself does not necessarily 

improve. We should then consider diversity as a set of different patterns captured by mixed 

classifiers, not a single measure. To ensure the aforementioned is provided, ensemble based 
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methods, linear classifiers, neural networks, support vector machines, naive bayes and k-nearest 

neighbors are investigated and trained, with the main focus on the differences between groups 

of algorithms and algorithms themselves as well. 

From among boosting methods, one of ensemble families, we choose to adapt Gradient 

Boosting Machine (GBM) introduced by Friedman (2000), multiclass extension of AdaBoost 

called SAMME (Zhu et al. (2009)) and a very competitive XGBoost (Chen and Guestrin 

(2016)).  Those three, despite being designed for sequential optimization with weak learners, 

differ in approaches. GBM utilizes regression trees fitted on top of the gradient of the loss 

function deviance. On the other hand, SAMME uses classification trees (at least in our research) 

in a stagewise additive modeling manner minimizing the exponential loss. XGBoost, the most 

recent among considered propositions, has a more regularized formalization than traditional 

gradient boosting and scales incredibly well (sparsity awareness, multicore computations, in 

Chen and Guestrin (2016)).  

Another representation of ensemble methods, also referred to as averaging, unlike 

boosting builds a set of independent estimators aggregated in order to reduce variance (Hastie 

et al. (2009)). In this paper two decision tree based algorithms are presented: Random Forest 

(Breiman (2001)) and Extra-Trees (extremely randomized trees, in Geurts et al. (2006)). Each 

of them places the emphasis on rather deeply grown trees and randomization (bootstrap 

samples, random subsets of features) as a means to variance reduction, but Extra-Trees moves 

one step further in its randomness and chooses the best split in particular tree node amongst 

randomly designated splits. 

Turning to linear classifiers, first of all we focus on training multinomial logistic 

regression extended by the elastic net regularization included to prevent overfitting (Friedman 

et al. (2010)). As an alternative, stochastic gradient descent algorithm (SGD) with modified 

Huber loss is proposed (Sjardin et al. (2016)). Although both similar in the core concept, they 

vary in optimization method and loss function underneath thus leading to potentially different 

predictions. Following the linear classification, we also apply Support Vector Machine (SVM) 

model with linear kernel and multiclass probabilistic estimates calculated according to Wu et 

al. (2004). 

Several architectures of feedforward neural networks using back-propagation are fitted 

as well, with combinations of hidden layers number and size, activation functions (tanh, relu, 

sigmoid), dropout, L1 and L2 regularization, diverse optimizers (e.g., SGD, Adam) and learning 

schema (Geron (2017)). Nevertheless, we keep in mind that complex structures are more 
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computationally expensive and the gain achieved should be satisfactory in comparison with 

simpler algorithms. 

Already mentioned Support Vector Machine is also trained with polynomial and 

Gaussian RBF kernels to capture nonlinear relationships, however, as stated by Geron (2017), 

neither of presented versions is predestined for large datasets. The same applies to K-Nearest 

Neighbors classifier (KNN; tried with various neighbors numbers), even though faster 

implementations are used in our research (Hastie et al. (2009)). 

For meta learners, three algorithms from different families are chosen arbitrarily: SGD 

optimized logistic regression with regularization (Sjardin et al. (2016)), feedforward neural 

network and tree based method (XGBoost or Extra-Trees – to be decided during ensemble 

performance investigation). Those are tuned and assessed separately within the second phase 

of stacking as discussed in Section 3.1.1. The novel concept that we introduce is to combine all 

meta models into a single big estimator (according to Figure 1 pseudocode it might be 

considered as M-th meta classifier) and tune all hyperparameters expanded by corresponding 

meta weights w1, w2 and w3 simultaneously (approximately 20 hyperparameters in total). This 

is what we call the third stage of training, although technically it is proceeded in parallel to the 

second one. Each tuning iteration then consists of fitting a set of hyperparameters (including 

w1, w2, w3) with the final prediction for a given class being a weighted average of constituent 

models predictions, thereby reducing the stacking variance. We believe that in case there is no 

a single meta learner that dominates others in terms of estimation accuracy, hyperparameters 

chosen and performance is expected to be different than if tuned independently (as in the second 

stage), which would be in accordance with Shahhosseini et al. (2019). 

To conclude, dependent on the particular algorithms specifications, we cross-validate 

roughly up to 20 base classifiers, which is a sufficient and reasonable amount according to the 

literature provided. Nonetheless, due to selection process described, not all of them may be 

chosen for the second and third phase of stacking where four learners are fitted altogether with 

the last constructed as an aggregated hybrid ensemble. 

 

3.1.3. Hyperparameter tuning with Bayesian optimization 

Taking into account the complexity level and the total number of algorithms applied in this 

research, one needs to focus on time efficient and reliable method leading up to finding the best 

hyperparameters sets. This term refers not only to algorithm specific parameters, but also to 
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weights used for training to overcome the class imbalance problem and weights associated with 

meta learners aggregation (see Section 3.1.2. for more details), as those are all tunable as well. 

For the above reasons, we choose to adapt the Bayesian search for hyperparameter optimization, 

since its effectiveness is widely reported in the literature (among others, in Shahhosseini et al. 

(2019); Snoek et al. (2012); Rasmussen and Williams (2006)), especially in the event of large 

parameters space scanned. 

In referring to Snoek et al. (2012), the general idea is to approximate the underlying, 

unknown function, usually by utilizing Gaussian processes, based on initial random guesses 

and to update it at each step when the most recent information (i.e., new observation) is being 

gathered. In our case, a function denotes evaluation measure chosen. The simplified form of 

such process is presented in Figure 3. 

 

 
Figure 3: Bayesian optimization of score function for a single hyperparameter value h and 
5 iterations.  

Note: True score (assumption is that it exists and can be defined in a functional form) is well approximated in the 
area that has been exploited by more observations (h=5 to 8), while the region around h=1 is still to be explored. 
Values on the axes serve only as an example. 

 

Up against multi-dimensional space with many hyperparameters available, sufficient 

number of iterations and careful hyperparameter candidate ranges selection is crucial for 

stacking success, though the exact numbers are rather dictated by the dataset size, expert 

judgement, intuition and computational resources. Our algorithms, particularly the most 
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sophisticated ones like the weighted meta learner trained during the third stage, are tuned with 

even up to 100 iterations, not to mention multiple tuning rounds performed for vast majority of 

them. This consumes meaningful amount of time, but is still considered to be more efficient in 

terms of obtaining the optimum within fewer trials than traditional random search (e.g., in 

Nishio et al. (2018); Yamashita et al. (2018)). 

 

3.2. Data preprocessing and feature engineering 

This section summarizes all data preprocessing and feature engineering or extraction techniques 

applied in our research, with some of them constituting a standard in machine learning 

implementations whilst others being rather innovative and hybrid approaches. Furthermore, 

several steps are only applicable for certain types of algorithms, which is also outlined. To 

prevent overfitting and ensure a good ensemble generalization, we avoid any potential data 

leakage, meaning each rule that requires learning is trained without the contribution of 

validation or test datasets, in particular during cross-validation loops. 

After initial data cleaning that includes, among others, missing values patterns 

investigation according to Zhang (2015) and dropping (almost) perfectly correlated or (near) 

zero variance variables, we use the following methods, presented in order of their actual 

application. 

 

Power transform 

In case of highly skewed distributions, Yeo-Johnson transformation is employed as it 

allows, through maximum likelihood estimation, to make the data more normal-like and is also 

dedicated for nonpositive values (Yeo and Johnson (2000)). Although tree based models, which 

constitute a significant part of our project, are rather insensitive to predictors skewness, 

Gaussianity is recommended for many other algorithms (Kuhn and Johnson (2013)). 

Additionally, a symmetric distribution combined with data scaling is also a useful property for 

subsequent distance based engineering methods. 

 

Word2vec and k-means clustering 

Raw text inputs, for instance customers answers gathered during credit interviews, are 

handled by word2vec and k-means algorithms altogether – the approach we call sentences to 
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variable, conceptually similar to a sentiment expression analysis performed by Wang and 

Castanon (2015). In general, upon initial text cleaning, a word2vec learns the numerical 

representation of the entry tokenized strings (Mikolov et al. (2013)) and k-means clusters the 

received sentences vector space (word vectors are averaged across sentences at first) to 

eventually extract a single, cluster labeled categorical variable. Specifically, we expect to obtain 

a separate cluster for empty input sentences with others carrying a meaningful and 

differentiated, word based information. Technically, for word2vec a fifty-dimensional vector 

size is defined, whereas k-means relies on Euclidean distance and an automatic algorithm 

specifying the optimal number of clusters (H2O.ai., n.d.). 

 

Target encoding 

To deal with high cardinality categorical features like zip codes or addresses, we 

incorporate a mean aggregation of target variable in relation to the problematic feature, as 

proposed by Micci-Barreca (2001). This approach is then extended for multiclass classification 

and the calculation is performed in one versus all manner with a given level of dependent 

variable denoted as 1 and 0 assigned to the other instances (analogical example for WoE in 

Zdravevski et al. (2015)). Therefore, we end up with n_classes new attributes. The target 

encoding formula calculated for class c and categorical predictor’s unique level ul is presented 

in Equation 1. 

!!" = l($!")
$#_!"
$!"

+ '1 − l($!")*
$#
$%&

, (1) 

where: 

!!"  = calculated estimate within a [0, 1] range, 

l  = sigmoidal function (smoothing parameter), 

$!"  = number of records for unique level ul, 

$#_!"  = number of class c positive instances for level ul, 

$#  = total number of class c positive instances, 

$%&  = total number of training set records. 

Apart from introducing a blended average (l parameter) to prevent overfitting, the 

desired statistic is also calculated in a 3-fold cross-validation scheme for each training set, with 

the final estimate being an average aggregated only from holdout samples. Missing values are 

left alone for further processing, they are not encoded. 
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Missing data imputation 

Although some of modern machine learning algorithms have their own, in-built 

imputation methods (e.g., XGBoost), we decide to choose a unified line throughout all models 

and apply a Random Forest multiple imputation technique, mainly due to its effectiveness 

reported (e.g., in Shah et al. (2014); Tarap and Stos (2019)). As shown by Shah et al. (2014), 

continuous features, becoming respectively response variables for the sake of algorithm training 

process, are imputed with random values drawn from Gaussian distribution that is centered on 

the Random Forest mean prediction and scaled by the out-of-bag root mean square error 

(RMSE) obtained from a given fit. For categorical attributes, authors propose to train numerous 

independent tree estimators on bootstrap samples and predict each missing value with a 

randomly selected tree. Before this step, we additionally encode a separate NA category for the 

highest missing percentages observed. 

 

KNN and K-means based features 

Classifiers performance is potentially enhanced by the implementation of K-Nearest 

Neighbors as a feature engineering method. For the specified number of neighbors k and within 

each dependent variable class separately, we compute a sum of distances between a given 

observation and its 1 up to k nearest neighbors, thus resulting in k* n_classes new features that 

characterize in transition from a nonlinear space into a linear one (Pinto (2017)). For our 

research k=5 is chosen to control the total preprocessing time.  

K-means, on the other hand, allows us to engineer two types of predictors – nominal 

one, represented by the clusters labels, and K numerical features calculated as distances from 

each cluster center, where K is the total number of clusters. The same technical specification as 

previously described in word2vec section is used.  

Prior to the application of either aforementioned technique, the input data is subset only 

to continuous, power transformed variables and then standardized. 

In addition to outlined preprocessing steps, before feeding the data to a base learner and 

if it is advised for the given estimator to do so, continuous features are scaled, either by 

normalization ([0, 1] range) or standardization (zero mean, unit variance). In particular, this 
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refers to a family of stochastic gradient optimized algorithms. Furthermore, remaining 

categorical variables, if not already target encoded, are treated by a one-hot encoder. 

 

3.3. Model evaluation 

To properly address the class imbalance problem and build a reliable meta features set 

(constructed from probability outputs, see Section 3.1.1.), special emphasis should be placed 

on a performance measure that handles these both requirements. To fulfil the second condition, 

we choose a log loss metric, as it allows to evaluate the quality of the probabilistic estimates 

and prepare a good input for an ensemble algorithm (Ferri et al. (2009)). The target classes 

skewness is addressed by introducing case weights, which is shown in Equation 2 with a 

modified log loss formula for multiclass classification (often referred to as cross entropy; in 

Geron (2017)) implemented in our solution. 

,-.,-// = − 1
∑ 1'(
')*

	3 	
(

')*
31' ∗ 5'_# ∗ 6$(7'_#)
+

#)*
	 (2) 

where: 

$  = number of observations, 

1'  = weight assigned to observation i, 

9  = number of classes, 

5'_#  = 1 if observation i belongs to class c, 0 otherwise, 

7'_#  = probability estimated for observation i and class c. 

For this research, weights are calculated as inverse proportions of class frequencies 

(King and Zeng (2001)), though it would also be reasonable to associate 1' with any meaningful 

business value, like credit exposure. 

The important, yet sometimes confused point is that the log loss adapted for scoring 

purposes, similar to AUC or F1, needs to be distinguished from using this measure as a loss 

function optimized during algorithm training, e.g., in logistic regression or neural networks. 

 

4. Data 

Our analysis was conducted on the Lending Club data available online 

(https://www.lendingclub.com) for the period from June 2007 to December 2017, according to 
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the loan issuance date. The gathered dataset contains information about peer-to-peer lending 

activity with the status of the loan denoted as a response variable.  

Since the predictions were to be made at the moment of credit application, we first 

filtered the data for the variables only known up to that time and thus prevented a potential data 

leakage. In the next step, all records with current loans were dropped (due to being non-

informative for predictive model learning) and the remaining statuses were encoded as follows.  

The default class was composed of charged off credits or borrowers that failed to repay 

for extended period of time. Loans that were due for 16-30 and 31-120 days were tagged as 

late. A 15-day grace period instances were excluded as it is hard to consider those actually late 

– many debtors extensively make use of an interest-free option. From business point of view, 

separation of the late class might be beneficial due to an early detection of potentially 

problematic customers. Fully paid loans fell into the last category. As a result, the dependent 

variable was constructed with default, late and paid classes, for which we also observed a major 

imbalance of 19.9%, 1.9% and 78.2%, respectively. After performing above operations and 

right before the train/test split, the dataset consisted of 1,223,196 observations and 47 raw 

explanatory variables available for further processing. 

More in-depth investigation revealed several data problems. The pattern appeared for 

seven variables with the largest missing values percentage, as their missings were observed for 

the same period (approximately 3.7% samples). To our best knowledge, it seems like at the 

beginning the data for those variables has not been gathered. Yet, we decided not to discard 

affected records and subject them to a standard imputation process. 

For many continuous predictors, a noticeable right skewness was also detected. This, 

for example, applies to income based features and is a natural reflection of a fact that individuals 

report the highest earnings. Skewed variables were handled by Yeo-Johnson transformation, 

shown in Appendix A. Among numerous categorical features, we identified a high cardinality 

ones, with multiple unique levels present and zip code being the most problematic (over 900 

hundred distinct values). According to preprocessing scheme, those were addressed by target 

encoding (see Appendix B). Text variable, including a loan description provided by the 

borrower during application and composed of sentences of varying length and content, has been 

a subject to word2vec and k-means approach. 

Finally, the aforementioned steps and data preprocessing allowed us to obtain a 

numerical matrix consisting of 175 columns for algorithm training. 
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5. Results 

Results of our research are illustrated in Figure 4, which presents a log loss value obtained on 

3-fold cross validation holdout samples (mean score), train and test datasets. All algorithms that 

were chosen to a final stacked ensemble are shown and the log loss is reported separately for 

the base and meta learners (the latter denoted with meta prefix). Classifiers are also sorted by 

their performance on the test set. The more precise numbers can be additionally found in Table 

1. 

Our analysis demonstrates two main findings. First and foremost, all meta models 

outperformed base learners, however the differences in relation to the best single base classifiers 

are not dramatic and might be of little practical business use, at least not as a priority. In 

particular, top three meta algorithms appeared to score very similar, with the slight advantage 

of the complex weighted learner. Second, we observe a significant share of well performing 

and efficient tree based methods. Both of these points are the subject of a further discussion. 
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Figure 4: Results for base and meta learners, calculated on Ubuntu server with Python 
3.7 and scikit-learn, h2o, xgboost and Keras libraries (last two GPU supported). 

 

According to the inverse order in the Figure 4, nine base estimators used in the stacking 

solution are: Complement Naive Bayes, Stochastic Gradient Descent algorithm with modified 

Huber loss, feedforward neural network, regularized logistic regression, Extra-Trees classifier, 

AdaBoost, Random Forest, XGBoost and Gradient Boosting Machine. Other classifiers 

examined for this stage were discarded, either due to a large computational time burden (e.g., 

KNN, variations of SVM) or a poor performance compared to the dummy model that scored 

1.94 for the test set (see Table 1). 

In the second phase of ensemble learning, 27 new meta features allowed to train three 

meta learners and while a neural network (meta_keras) and logistic regression (meta_lr) were 

selected arbitrary, Extra-Trees estimator (meta_extr) provided more stable and slightly better 

results than XGBoost candidate, therefore being our final choice for the stacking architecture. 
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Lastly, the weighted meta model (meta_weighted) fitted in the third step was composed of 

[0.0244, 0.4878, 0.4878] weights vector for meta_lr, meta_extr and meta_keras, respectively. 

Implications of introducing the weighted solution are also raised in the subsequent section. 

 

Table 1: Log loss summary results for all learners used in the stacked ensemble 

learners cv train test 

meta_weighted 0.865503 0.856358 0.859343 
meta_keras 0.866597 0.865595 0.859534 
meta_extr 0.866285 0.856912 0.860083 
meta_lr 0.871553 0.872038 0.867112 
h2ogb 0.874424 0.839490 0.868141 
xgb 0.874410 0.843409 0.873250 
h2orf 0.895326 0.872491 0.886271 
adaboost 0.905681 0.901164 0.895343 
extrclf 0.929000 0.925230 0.919961 
h2oglm 0.925876 0.948772 0.945716 
h2onn 0.938245 0.921203 0.955768 
sgdhub 0.955162 0.961741 0.956091 
sknaive 1.013754 1.006417 1.003702 
dummy — 1.943596 1.943596 

Note: Bold numbers denote the best score obtained for a given type of the dataset: cross-validation holdout samples 
(cv), training set (train) and test set (test). 

 

6. Discussion 

In line with previous studies (among others, in Zhai and Chen (2018); Zhang et al. (2018); 

LeDell (2015)) we show that stacking improves the overall algorithm performance, although 

the complexity of the architecture presented and subtle gain boost may indicate applying it to 

those business areas that require enhanced results regardless of the costs or using it in the second 

place, after a well-established and simpler solution had been built. Minor differences in the 

achieved score are also of a great importance in the vast majority of machine learning 

competitions (van Veen et al. (2015)). To start with stacked ensembles, one can specifically 

consider applying a single meta learner instead of several algorithms or combinations, though 

we argue that using a simple classifier like logistic regression, as suggested for example by 

Whalen and Pandey (2013), might be the optimal selection. Indeed, according to our results, 

meta_lr was not able to fully capture complicated relationships. Choosing a more sophisticated 
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meta learner, e.g., from bagging or boosting family, might further elevate the performance, 

especially in case of nonlinearities presence among the meta features set. 

A strong evidence for implementing tree based algorithms to obtain a good predictive 

results on tabular data is found, which confirms a conclusion reached by Olson et al. (2018) on 

the basis of 165 datasets. In our research, top 5 base learners were actually tree ensembles, with 

Extra-Trees estimator additionally being an important component of the meta learning 

architecture. What is more, satisfactory scores in aforementioned cases were achieved with a 

high efficiency due to the parallelization and GPU contribution. We also find a clear support 

for the thesis that any machine learning algorithm and tree ensembles in particular, can benefit 

substantially from meta features learning – Extra-Trees, an average base learner, performed 

incredibly well as a meta_extr classifier. 

On the other hand, a slight tendency to overfit for this dataset was observed among tree 

boosting methods (very optimistic train score for h2ogb and xgb, see Figure 4), therefore 

indicating a necessity for a cautious and time consuming hyperparameter search. The latter 

directly refers to tuning the tree depth for Extra-Trees in meta_weighted solution, where the 

particular depth appeared to give satisfactory results while constantly overfitting in a single 

meta_extr model. This is in accordance with Shahhosseini et al. (2019) and proves that tuning 

meta hyperparameters altogether in a meta ensemble algorithm leads to a different estimates 

compared to treating meta learners separately. 

The last point that should be discussed is the stability and generalizability of the stacking 

ensemble, which definitely requires a further investigation and we also consider it as a potential 

limitation of our research. However, to the extent that this can be determined by the presented 

study, we claim that the weighted meta learner, as an optimal combination of the best attributes 

of its components, is less prone to overfitting than any single algorithm examined. The weights 

vector recommended during the Bayesian search equally favored meta_extr and meta_keras 

classifiers while marginalizing a logistic regression. Thus, an analogy to the regularization can 

be made (and it is generally agreed that regularization reduces overfitting), where weights serve 

as coefficients and meta learners predictions are penalized, which might be additionally useful 

for meta algorithm selection process. Nevertheless, a thorough investigation, certainly 

including more than three meta learners and various datasets, would be appropriate for stronger 

evidence. 

 



                Stelmach, M. and Chlebus, M. /WORKING PAPERS 8/2020 (314)                                 22 
 

7. Conclusion 

In this paper we propose a comprehensive, end-to-end stacked ensemble approach and evaluate 

its performance on the large, loan default dataset with multiple classes and high class imbalance 

presence – problems especially difficult to handle for single classifiers, yet widely faced in 

machine learning applications. Particularly, a complex multilayer structure consisting of 

diverse algorithms is built, with three separate meta learners examined and a combined, 

simultaneously tuned weighted ensemble fitted in the last stage. The whole architecture is also 

extended by a nested cross-validation schema for constructing unbiased meta features set. 

Results obtained indicate that stacking offers a noticeable improvement compared to individual 

estimators, although we conclude that any implementation should consider a relation between 

gains potentially acceptable only in certain business areas and increased computational load 

along with diminished model interpretability. The latter is especially important in the context 

of explainable AI (Arrieta et al. (2019)). 

To overcome the imbalanced classification problem, weighted log loss metric is 

proposed, thus preventing models from being biased towards the majority class during training. 

Additionally, necessary preprocessing steps are outlined as an inherent part of an effective, not 

overfitted stacking solution. Specifically, we use Yeo-Johnson transformation in case of skewed 

variables and Random Forest multiple imputation technique for missing values. High 

cardinality categorical features are successfully addressed by a target encoding. Word2vec, K-

means and KNN algorithms are utilized for a feature engineering or extraction processes. 

In the second place, our findings confirm the supremacy of tree based methods for 

tabular data in predictive modeling. Not only their overall performance as base learners is 

satisfactory (including time efficiency), but also Extra-Trees algorithm appears to be a strong 

meta classifier, capturing more complicated data relationships than a popular logistic 

regression. Moreover, it is equally weighted with a neural network in the final ensemble. As a 

supplementary observation, cautious hyperparameter selection is recommended to prevent 

overfitting, in particular for bagged or boosted trees, and it is not guaranteed that the same 

hyperparameters set is an optimal choice in both separated and combined meta learning phase. 

For hyperparameter tuning purposes, Bayesian optimization is applied in this study. 

Further research should aim to investigate the stability and generalizability of the 

presented stacking architecture, especially when implementing a weighted meta learner, which, 

in our opinion, is less prone to overfitting as it introduces regularization-like behavior to the 

system and might be potentially used for best meta algorithms selection. 
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Appendix A 

Yeo-Johnson transformation for continuous variables 

 
Figure A1: Variables before (left picture) and after (right picture) Yeo-Johnson power transformation. Distributions on the right appear 
to have more Gaussian-like distribution, though skewness is still persistent in several cases. Response classes are also distinguished. 
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Appendix B 

Target encoding of high cardinality variables 

 
Figure B1: Bar plots for all categorical variables (number of levels in square brackets) and target encoding for the most high cardinal 
predictors (right picture), in one versus all manner. Twelve continuous features are generated instead of utilizing hundreds of unique 
categorical levels. 
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