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1. Introduction 

The use of the ratio of an attribute parameter to a cost parameter to measure willingness to pay 

(WTP) for the attribute in a discrete choice model is a long-standing and widely used practice 

in applied economics. It appears to have first been used in Lisco’s (1967) University of Chicago 

dissertation using a probit model to look at transportation mode choice and the value of time.1 

By the time of McFadden's seminal 1974 paper on conditional logit models, the ratio calculation 

of attributes divided by cost was made without substantive comment, and it is described in some 

detail in Ben-Akiva and Lerman’s highly cited 1985 book. WTP as the ratio of parameters has 

subsequently been implemented in a vast number of papers in many fields of applied 

microeconomics, including agricultural economics, environmental economics, health policy, 

industrial organization, marketing, and transport (e.g., Haab and McConnell 2003; Anderson et 

al. 1992; Train 2009; Louviere et al. 2006). The standard reference text by Hensher, Rose and 

Greene (2005) succinctly sums up conventional wisdom: “In simple linear models, WTP 

measures are calculated as the ratio of two parameter estimates, holding all else constant. 

Provided at least one attribute is measured in monetary units, the ratio of the two parameters 

provides a financial indicator of WTP.”2 There are now thousands of studies and millions of 

WTP and consumer surplus estimates based on this approach. 

In practice, the true parameters of the utility function are unknown. A researcher usually 

deals with maximum likelihood (ML) estimates of the utility function parameters, so there is 

uncertainty associated with them. Taking this uncertainty into account in estimating statistics 

related to the underlying WTP distribution, the ML estimates of the utility function parameters 

are considered to have  an asymptotically normal distribution, with means equal to their ML 

estimates and standard deviations equal to their standard errors (Bockstael and Strand 1987). 

This in essence gives them an informal Bayesian interpretation (Geweke 1986). However, in 

this case, calculating moments of a resulting ratio distribution (e.g., the empirical distribution 

of WTP) becomes problematic, and we argue that it is generally performed incorrectly.3 

                                                           

1 Lisco noted that his approach to obtaining a confidence interval for the value of time by using the confidence 

intervals of the parameters of his probit model was ad hoc and not strictly valid. 
2 A footnote to “linear models” notes: “As models of discrete choice are linear in the utility functions, the choice 

modeler is able to take advantage of this fact.” 
3 This ratio is also often referred to as consumer surplus (subtracting price from WTP), an implicit price or the 

marginal rate of substitution. For simplicity, we will refer to all these ratio measures as WTP throughout this paper. 

Many other ratio measures in economics, other social sciences, biology and medicine have a similar structure. Here 

for concreteness we will assume that the denominator of this ratio is the parameter on some function of the 
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Non-existence of moments of a ratio distribution resulting from dividing two independent 

normally distributed variables has long been known in statistics (e.g., Fieller 1932; Geary 1930; 

Merrill 1928; Nicholson 1941). More recent, but by now quite old work (Marsaglia 1965; 

Hinkley 1969) in statistics deals with the case of the ratio of correlated normals which is the 

situation of interest here.4 More generally the non-existence of moments issue confronts all ratio 

estimates that exhibit Cauchy-like tail behavior where that occurs because the distribution of 

the denominator spans zero (Lehmann and Shaffer 1988). We show that this problem exists 

with the estimated standard error of WTP in all commonly used discrete choice logit and probit 

models, with non-random parameters (e.g., multinomial logit (MNL), nested logit, latent class 

logit). We also show that the same problem also exists in models with random parameters such 

as the commonly used random parameters (mixed) logit (MXL) and newer generalized 

multinomial logit models that use a non-random monetary attribute coefficient as the 

denominator of WTP expressions to avoid the issues involved in having a distribution of cost 

parameters in the denominator of the expression for WTP.  

In section 2, we look at problems that can occur with the delta method and the Krinsky-

Robb parametric bootstrap, the two most commonly used ways of calculating standard errors 

and confidence intervals for WTP ratio estimators. In section 3, we examine where the problem 

of non-existent moments of a ratio distribution of two normally distributed random variables 

comes from, and analyze the probability density function (pdf) of the resulting ratio distribution. 

In section 4, we propose a new specification for selected parameters in discrete choice models 

which allows for the cost parameter to be constrained to strictly negative or positive values 

only. This alternative specification imposes a standard restriction from neoclassical economic 

theory and, at the same time, avoids problems associated with non-existent moments of the 

resulting WTP ratio distribution. Our proposed alternative specification can be easily 

implemented in available commercial software and used for any discrete choice model with a 

non-random cost coefficient. Section 5 considers more general discrete choice models where it 

is common practice to use a fixed cost coefficient to avoid having some type of random variation 

                                                           

monetary variable. The framework put forward here can be adapted to more complicated specifications involving 

functions of both cost and income variables.  
4 The non-existence of the expectation of the ratio of two independent standard normal occurs because the ratio 

has a Cauchy distribution. This result is a staple in books on counterexamples in probability (e.g., Romano and 

Siegel 1986). The Cauchy result can be obtained under considerably weaker conditions than two independent 

standard normals including allowing for non-zero expectations of the two random variables, and substituting the 

weaker condition of symmetry for normality coupled with a restriction of the relative size of the scale parameters 

(Stoyanov 1997).  
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in the cost coefficient. Section 6 briefly examines the use of estimation in WTP space and show 

that it causes a related problem when its estimated parameters are transformed in preference 

space. Section VII provides an illustration of how our proposed alternative specification works 

in practice using data from a well-known contingent valuation study valuing the prevention of 

oil spills off the central coast of California and, in a random-parameters setting, using an 

alternative-fuel vehicle discrete choice experiment study. Section VIII provides some 

concluding remarks and puts forward the proposition that our reformulation of the relevant 

likelihood become the new reference statistical model for WTP ratio estimates.  

2. Delta Method and Krinsky-Robb Parametric Bootstrap 

Two methods are commonly used in empirical applications for estimating statistics related to 

the  WTP distribution: the delta method (Greene 2011) and the Krinsky and Robb (KR; 1986) 

parametric bootstrapping.5 It will be useful to draw a clear distinction between (i) estimation of 

the variance of the WTP distribution which can be used to look at the risk of an estimator using 

a quadratic loss function like mean squared error and (ii) determining a confidence interval 

within which some fraction, such as 95%, of the estimates of WTP defined in terms of the ratio 

of ML parameters is expected to fall with repeated sampling. This distinction is often 

unimportant because confidence intervals are cast in terms of plus or minus the absolute value 

of the relevant z-statistic times the standard error.6 However, it helps to explain why some 

estimators with unbounded risk appear to perform well when performance is judged in terms 

confidence interval coverage. 

                                                           

5 The delta method has long been used for calculating the confidence interval for the ratio of normal parameters. 

Daly, Hess and de Jong (2012) put forward the case for using this approach for asymptotic WTP ratio estimates 

from choice models. For an early and highly cited application of the KR method (1986; 1991) for this purpose see 

Park et al. (1991). This application was motivated by the well-recognized potential problems with the delta method 

in this case. A third method, the Fieller confidence interval (Fieller 1954), is often used in the biometrics literature. 

Despite some proponents (Dufour 1997), it is used infrequently in econometrics (some notable examples include 

Valentine 1979; Staiger et al. 1997; Blomqvist 1973). The main reasons for this seem to be that it is based on using 

fiducial, rather than frequentist or Bayesian inference (Wallace 1980), and the less intuitive form of the interval 

which requires solving for roots of quadratic inequalities which may result in a finite interval, two disjoint semi-

infinite intervals (a complement of a bounded interval) or even the whole real line. The Fieller method does not 

always result in finite confidence intervals is a result of a denominator which may have a distribution with 

significant mass around zero (Scheffe 1970; Zerbe 1978). Effectively, the Fieller confidence interval only requires 

the normality of numerator and denominator of the ratio rather than the ratio itself. Hirschberg and Lye (2010) 

provide a geometric comparison between the delta and Fieller confidence intervals as well as a frequentist 

interpretation. It is also possible to base confidence intervals on the likelihood ratio test statistic (Williams 1986) 

and non-parametric bootstrap approaches (e.g., Hole 2007). New approaches for providing confidence intervals in 

small samples continue to be proposed (e.g., Paige et al. 2011).  
6 Throughout the text we use z-stats for simplicity, although the equivalent t could be used for small samples. 
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The delta method in our case is based on a linear first-order Taylor series approximation 

of a non-linear function. The asymptotic variance of an estimator function g , which is assumed 

to be continuously differentiable, is given by: 

   
   

as.var
g g

g b
 

 

  
  

  
 , (1) 

where b  is the estimator of the parameters   and the asymptotic variance covariance matrix is 

 .  

Applying this to the case of a ratio of two random variables following bivariate normal 

distribution    , , ; , ;B c B CB C BVN     : , the asymptotic variance of their ratio becomes:  

 
2

2 2

4 2 3

21
as.var B B

C B B C

C C C

B

C

 
   

  

 
   

 
 . (2) 

The quality of the delta approximation with respect to ratios of estimated coefficients for 

probit and logit models has long been questioned in the biometrics literature (Finney 1971). 

This has not deterred its use in applied economics work. Ruud (2000) for example, in his 

widely-used econometrics text, provides an example of using the delta method to look at the 

distribution of the ratio of two ML parameters. He cautions, though, that “sensible application 

of the delta method is limited to situations in which this approximate linearity holds for all likely 

values of the random variable”. The difficulty with the ratio of two ML parameters, however, 

goes much deeper. Its moments do not exist and hence the delta estimate is inadmissible from 

a statistical perspective as it poses infinite risk (Zellner 1978).7 

However, as can be seen in (1) above, the delta method provides a finite well-behaved 

estimate of the asymptotic variance. Most applied researchers are unaware that ML is often 

known to produce finite estimates of infinite quantities (Oehlert 1992). 8  Intuitively, the 

                                                           

7 Interestingly, this problem was noted earlier in the context of welfare measurements in travel cost analysis using 

continuous variables which also involves a ratio estimate for WTP (Smith 1990). Smith’s paper explicitly followed 

Zellner’s (1978) view of ratio estimators. The impetus for treating the regression coefficients from travel cost 

models as random was Bockstael et al. (1987) seminal paper. Adamowicz et al. (1989) impose non-negativity on 

the consumer surplus estimate using Geweke’s (1986) Bayesian oriented method of imposing an inequality 

constraint. Kling (1991) in a simulation study notes that while there were some differences between approaches to 

estimating “either the standard deviation or confidence intervals” that all “provided reasonable approximations”. 

This seemed to cement the typical empirical practice of using either the delta method or the Krinsky-Robb 

approach. 
8 Some hint of the problem can be seen by noting that the higher order terms of the Taylor series expansion does 

not die out when the estimate of the price parameter is close to zero (Graham-Tomasi et al. 1990). Variants of the 
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continuity assumption is being violated. For any fixed value of B , the magnitude of the ratio 

variable B C  jumps dramatically when as C  goes from being negative to being positive. 

Further, the assumption sometimes made that 0C   does not solve the existence problem with 

respect to the delta estimate for a ratio variable confidence interval. 

Gleser and Hwang (1987) in an important theorem for a class of problems, which includes 

the ratio of two normal, show that it is impossible to construct confidence intervals for key 

parameters which have both positive confidence and finite expected length.9 The underlying 

difficulty is that there is part of the parameter space for which identification is tenuous. This 

issue has been explored at some length in the econometrics literature by Dufour (1997) who 

shows that the Gleser and Hwang theorem holds when near some value (e.g., 0C  ) the 

function of interest is locally almost unidentified. Effectively, if the interval on which a potential 

confidence interval is defined contains a locally almost unidentified region, then the method 

used to develop the confidence interval must be capable of producing an infinite interval if too 

much of the density is close to zero, which the delta method is incapable of doing in this case. 

Serving to underscore that the nature of the problem is not at the single point 0C  , Lai et al. 

(2004) study the inverse of a “punctured” normal looking at how large the fraction of the density 

trimmed off on each side of zero needs to be in order to obtain an estimate of the ratio variable 

with finite first and second moments.  

 There are other symptoms of the problem with the delta method in forming confidence 

intervals for ratio variables. It always produces a symmetric confidence interval, even though 

the distribution of the WTP ratio variable can be quite asymmetric, particularly if the sample 

size is not large. The delta confidence interval also can diverge considerably from the Fieller 

confidence interval which is valid under more general circumstances. The underlying reason 

for both problems is that the delta method can be a poor approximation if C  is not sufficiently 

far from zero and the sample size not large.   

                                                           

ratio estimator problem appear in simultaneous equation models (Bergstrom 1962), distributed lagged models 

(Lianos and Rausser 1972) and the reduce rank regression used in tests of cointegration (Phillips 1994). More 

recently, the ratio estimation problem has been shown to lie behind the notion of weak instruments in econometric 

models (Woglom 2001).  
9 Gleser and Hwang (1987) show this result holds for a number of important statistical problems. Koschat (1987) 

independently derives it for the ratio of two normal. Franz (2007) provides a useful discussion of the importance 

of the Gleser and Hwang (1987) theorem to a set of long standing issues with ratio estimators.  
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Given these potential problems with the delta method, there are two related questions for 

applied work. Why does the delta method appear to work well in many simulation studies and 

is it possible to identify conditions where the delta confidence interval is likely to work well? 

Hirschberg and Lye (2010) provide a review of the previous analytical and simulation studies 

starting with Finney (1971) who argued that the delta method is only adequate if the t-statistic 

on the denominator of the ratio was above 8.75, a condition not typically met in applied 

economic work.10 They point out that most Monte Carlo simulation studies (e.g., Hole 2007; 

Dorfman et al. 1990), have assumed that the denominator of the ratio is highly significant and 

the numerator less so, and thus examine a situation where the delta method should perform 

reasonably well.11   

From a technical perspective, to see when the delta method will produce a reliable 

confidence interval, it is useful to first note that both the normal and the Cauchy are both 

members of the symmetric stable family of distributions. The ML location parameter for the 

Cauchy distribution is the median and the scale parameter is the half-width, which is half the 

distance between the 25th and 75th quantiles. The half-width is deterministically linked to the 

standard deviation in the normal case. What is important to keep in mind is that the closer to 

zero C  gets the larger the Cauchy scale parameter gets because it is the density near zero that 

is generating the extreme Cauchy tails. While the WTP ratio distribution is still Cauchy, it is 

reasonably approximated by a normal if C  is far enough away from zero in a statistical sense 

(i.e., a function of the actual distance, the half-width scale parameter, and sample size) if one 

does not go too far out into the tails. The reason the delta method has good performance in this 

situation is that among the class of asymptotically unbiased median estimators, no estimator has 

a higher probability than the ML estimate of being in a specified interval around the true value 

of the ratio (Zaman 1981; Fiebig 1985). Thus, while the delta method’s estimate of the variance 

                                                           

10 Much of this literature is cast in terms of the coefficient of variation, which is the inverse of the t-statistic, and 

assuming that the correlation coefficient is equal zero. Marsaglia (2006) provides a tighter bound for the ratio 

variable having an approximate normal distribution that requires the t-statistic on the denominator, Ct , be greater 

than 4 and    
.5

21B Ct t    be less than 2.256, where Bt  is the t-statistic for the numerator. This condition is 

also frequently not met in empirical studies. Further, letting n   does not guarantee that this condition is met. 

If the correlation coefficient   is equal to zero, meeting this condition involves the numerator being substantially 

less significant than a very significant denominator. Hirschberg and Lye (2010) show that when   is not equal to 

zero, the case where the ratio variable differs in sign from   is particularly problematic in terms of the delta 

method providing erroneous results.  
11 Hole (2007) is particularly careful to point out that good performance of the delta method is dependent on having 

a highly significant cost parameter.  
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may be useful in forming percentile-based confidence intervals it is not a valid estimate of the 

variance. 

The KR approach assumes joint asymptotic normality of the individual estimated 

parameters. It is viewed as avoiding some of the potential problems with the delta 

approximation and often results in somewhat larger confidence intervals than the delta method. 

The KR approach is parametric bootstrap procedure and involves simulating multiple draws 

from the distribution of structural parameters of the WTP ratio variable.12 The function of the 

draws (in our case, the ratio of simulated coefficients) provides empirical distribution of WTP 

which is used for calculating its mean, median, standard deviation or quantiles. Since, however, 

in this case, the ratio (WTP) distribution has undefined moments (i.e., mean and standard 

deviation) the KR simulation method is used incorrectly, as calculated mean and standard 

deviation (which are in fact infinite) are unstable and tend to ‘explode’ with increasing the 

number of random draws.13 We illustrate this with simulation results presented in Table 1, 

where two normally distributed variables were assumed to have means equal to 1, standard 

deviations corresponding to p-value of 0.05 (i.e., ; the minimum p-value reported in 

many empirical studies), and set the correlation coefficient equal to 0.5.14 

 

  

                                                           

12 The multivariate normal distribution is characterized by a coefficient vector (as a vector of means) and an 

asymptotic variance-covariance matrix.  
13 The common application of the KR method to calculate means and standard deviations of ratios of normally 

distributed parameters seems to be a misinterpretation of the method. The original application, calculating 

elasticities, for the KR approach did not involve ratios of parameters (Krinsky and Robb 1991; Krinsky and Robb 

1986). 
14 The Krinsky-Robb method for calculating median or other quantiles (e.g. 0.025 and 0.975 quantiles used to 

report ‘confidence interval’ of WTP) is robust, since the quantiles of the ratio distribution of two normals are well-

defined. The popular Poe et al. (1994); (1997) convolutions test for whether two WTP distributions are different 

is often treated as a test of the difference in mean WTP between the two samples. However, this test (as its authors 

note) allows the two distributions to vary on extreme quantiles so it is possible to accept that two WTP distributions 

are statistically equivalent when they have radically different means. Ignoring divergences in extreme quantiles 

where there is little information may be a desirable property in comparing two distributions, but the test should not 

be treated as looking at the difference in means. The overlapping confidence interval approach to testing the 

difference between two ratio estimates of WTP (Park et al. 1991) is invalid because the confidence intervals do 

not exist. Classical tests of the difference in the means of two ratio WTP estimates that rely on having well-defined 

standard deviations likewise fail. 

   0.5102



Carson, R.T. and Czajkowski, M. / WORKING PAPERS 4/2018 (263)                                   8 
 

 

Table 1: Behavior of delta and Krinsky Robb estimates for ratio-based WTP 

Method Draws Mean 
Standard 

Deviation 
Median 95% c.i. / quantile range 

Analytical – Undefined Undefined 0.97 (0.63;4.29) 

Delta – 1* 0.51 1* (0.00;2.00) 

Krinsky 

and Robb 

100 0.89 0.82 0.84 (-1.00;2.61) 

1000 0.36 24.19 0.97 (-0.68;3.78) 

10,000 1.20 12.70 0.97 (-0.45;4.12) 

100,000 1.12 21.06 0.97 (-0.51;4.32) 

1,000,000 0.76 302.93 0.97 (-0.51;4.33) 

10,000,000 0.54 1,194.51 0.97 (-0.52;4.31) 

100,000,000 -0.05 12,769.87 0.97 (-0.52;4.29) 

Fieller – 1* – 1* 
   13, 2.18 10 0.00,    

 
* calculated as ratio of coefficients        

Many empirical works use a KR simulation to derive means, standard deviations, and 

confidence intervals of the WTP distribution with 100 to 10,000 draws being common. As 

illustrated with an example provided in Table 1 and explained in more detail below, this method 

leads to erroneous results. Like the delta method, the KR approach always produces a 

confidence interval of finite length even though one can observe sizeable increases in the 

standard deviation in Table 1 as n  increases. As a consequence, it and non-parametric bootstrap 

procedures must not have positive confidence according to the Gleser and Hwang (1987) 

theorem. A bootstrap procedure based on Fieller bounds does have positive confidence because 

it can return an interval with infinite length (Hwang 1995). 

3. The Algebra of Ratio Variables 

Typical algebraic operations on multivariate random variables result in sum distributions, 

difference distributions, product distributions, and ratio (or quotient) distributions (Springer 

1979). Drawing inferences from the ratio of coefficients is elemental in many statistical 

applications. Formally, let W  be a random variable defined as W B C , where B  and C  are 

random variables following some known distributions, with joint distribution function  

 ,f b c . The pdf of W  can then be calculated from (Curtiss 1941): 

    ,h w q f wq q dq





  . (3) 

In the case of discrete choice models estimated with ML techniques, the parameter 

estimates are known with uncertainty and are almost always treated as being asymptotically 
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normally distributed random variables with known means (estimated parameters) and standard 

deviations (equal to estimated standard errors). A researcher interested in deriving the marginal 

rate of substitution of one choice attribute for another wants to be able to estimate key statistics 

related to its empirical (ratio) distribution.  

Assume B  and C  are normally distributed, so that  ,B C  has bivariate normal density: 

 

 
22

22

, ; , ; , ;

1 1 1
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2 12 1
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. (4) 

Solving (3) for a closed form solution is troublesome, as the integral becomes (Fieller 1932): 
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 (5) 

If 0B C   , (5) simplifies and  h w  becomes the pdf of a Cauchy distribution. In a more 

general case, expression (5) does not have closed-form solution in terms of elementary 

functions, as the densities of B  and C  are not negligible at 0w . However, (5) can be 

expressed in terms of the standard normal CDF    (Hinkley 1969): 
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or in terms of the Kummer’s confluent hypergeometric (Hermite) function  1 1F  (Pham-Gia et 

al. 2006).15 

 
Daly, Hess and Train (2012) have recently shown in the context of random parameter 

choice models that if the distribution of the cost parameter has positive density at zero, then the 

resulting ratio distribution for WTP does not have finite moments. The Daly, Hess and Train 

result is applicable to a much wider range of contexts.16 For normally distributed B  and C , 

this follows directly from (5), where non-zero density of C  at zero creates the ‘Cauchy 

component’, causes the integrals to diverge and, as a result, moments to be infinite. Only if 

 Pr 0 0C    is the resulting ratio distribution ‘well-behaved’. Even if the mean and the 

standard deviation of the ratio distribution are undefined, (6) can still be used to derive its 

quantiles, such as the median or 0.025 and 0.975 percentiles, which can serve as a measure of 

spread or a substitute for confidence intervals.  

It is instructive to analyze the shape of the ratio distribution resulting from dividing two 

normally distributed random variables. Appendix 1 provides illustrative examples of ratio 

distributions resulting from dividing normally distributed variables characterized by different 

coefficients of variation (i.e., the ratios of standard deviations to the means of the distributions 

 . .c v   , which correspond to p-values of the estimated coefficients) and different 

correlation coefficients.17 The resulting ratio distribution is clearly not normal and often not 

symmetrical. The distribution can even be bimodal (Marsaglia 1965). Thus, the two standard 

location parameters, mean and median, of the resulting ratio distribution are likely to differ. The 

WTP ratio estimate is not a consistent estimate of either location statistic.  

To illustrate this divergence further, Appendix 2 contains examples of how taking the 

ratio of coefficients (in our case normalized to 1) differs from the ‘pseudo-mean’, and the 

median of the ratio distribution.18 The true mean and standard deviation of this distribution are 

                                                           

15 As an aside, we found that the popular statistical packages (e.g., MATLAB) evaluate (6) more quickly than the 

frequently used Kummer’s confluent hypergeometric (Hermite) function representation. 
16 See Piegorsch and Casella (1985) and Khuri and Casella (2002) for general discussions and proofs regarding 

conditions required for the existence of negative moments of random variable (e.g., 1 C ) moments.  

17 The mean    is normalized to 1. The standard deviation    is selected ensure the specified p-value. 

18 The pseudo-means and pseudo-standard deviations were simulated using 108 draws from multivariate normal 

distribution of B  and C . The results are calculated for a few ‘illustrative’ cases (p-value of B  and C  equal to 

0.01, 0.05, 0.1; correlation coefficient equal to -0.9, -0.5, 0, 0.5, 0.9). 
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undefined. The simulation masks this problem by not taking enough draws, especially in the 

case when means of B  and C  are relatively far from 0.19 

Appendix 2 reports the ‘pseudo-standard deviation’, and 2.5’th and 97.5’th percentiles of 

the distribution along with the delta, KR, and Fieller confidence intervals. The delta interval 

mistakenly suggested the process is well behaved. The KR-based interval is sometimes 

substantially different from the delta one but it too appears well behaved. The admissible Fieller 

bounds show that 95% confidence intervals frequently include ± ∞. 

  To summarize, we have shown, under the usual specification of a discrete choice model, 

that (a) the mean and standard deviation of the resulting WTP ratio distribution are undefined, 

and (b) the resulting distribution is not normal, being typically skewed and potentially bimodal. 

The ratio formed by the point estimate of the coefficients is also different from the median of 

the ratio distribution. The usual implementations of the delta and KR approaches to obtaining 

confidence intervals help to mask the nature of the problem. It is still possible to report median 

WTP calculated using (6) or (7) and reporting of extreme quantiles such as those used here (i.e., 

0.025 and 0.975) can help to illustrate the spread of the distribution.  

If one is prepared to rule out 0C   as a point estimate, then the question can be raised, is 

it is any less likely that the true parameter value is negative? Once the possibility of the cost 

parameter has a zero or the negative true parameter value is ruled out,20 the estimation procedure 

used should be revised to take account of this restriction. We delve into this issue in the next 

section and show that implementing this restriction is straightforward and solves several issues 

related to the estimation of WTP. 

                                                           

19 Generally, the ratio of coefficients is closer to the median of the distribution than to its pseudo-mean; however, 

only when p-values of B  and C  are relatively small and correlation coefficient is quite large does the median of 

the resulting ratio distribution become reasonably close to the ratio of coefficients. 
20 That this is often the case and the restriction is required by standard economic theory (Varian 1992). Only goods 

not conforming to the law of demand (Giffen and Veblen goods) have positive price coefficients. We note that the 

same procedure can be applied to other coefficients that economic theory clearly signs. Gelman (2011), a 

prominent statistician, has pointed out that serious inference problems exist for any ratio variable in which the 

denominator of the ratio can plausibly take on either a positive or negative value. Marsaglia (2006) notes that the 

normality assumption for a ratio variable is much less tenuous if one is prepared to assume that the denominator 

is always positive. 
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4. An Alternative Specification for the Discrete Choice Model 

In this section, we propose a different approach that directly ensures existence of moments of 

the empirical distribution of WTP. Usually all parameters enter the utility function linearly so 

individual i ’s utility associated with choosing alternative  is given by: 

  i ij ij ij ijU Alternative j U z     β x , (7) 

where 
ijx  is a vector of alternative-specific attributes and 

ijz  is the cost associated with it (with 

β  and   being utility function parameters). We reformulate this utility function so that the 

coefficient of the monetary attribute has no support in negative values. When cost is used as the 

monetary variable, as is typically the case, it will be necessary to redefine zij to be the negative 

of the cost variable.21 A simple specification that does this is given by: 

    expi ij ij ij ijU Alternative j U z     β x  . (8) 

Estimation of the parameters of the model follows in the usual way. However, now the 

parameter associated with the cost attribute   , which has an asymptotic normal distribution, 

is exponentiated. Since  exp   is strictly positive, the ratio distribution representing the 

empirical distribution of WTP will have well-defined moments including the mean and standard 

deviation.22 If the cost parameter originally had the expected sign, the log-likelihood (LL) of 

the model will be unchanged since maximization of the LL occurs at the same place with the 

estimate of λ equal to the exponentiation of the estimate of δ. Note that the z-statistic for δ will 

be different than for λ, typically but not always larger.23 

Utilizing a lognormal transformation to impose bounds on the resulting transformation is 

a standard practice in econometric applications. For example in a discrete choice context, Train 

and Sonnier (2005) use lognormal transformations in order to introduce bounds on distributions 

of WTP for changes in attribute levels in a random parameter logit model with correlated 

                                                           

21 Specifications using some function of income and cost will generally fulfill this requirement without having to 

change the sign of the variable. 
22 Daly, Hess and Train (2012) show that lognormal distribution approaches zero at a rate which assures the 

existence of finite moments. 
23 The invariance principle of ML does not extend to standard errors so that rescaling the parameters with a non-

linear transformation alters significance levels. The likelihood ratio test is invariant to whether the model is 

specified in terms of   or  exp   in terms of the inclusion of the cost variable in the model. Our transformation 

of one of the parameters in a ML model is similar to what is frequently done with the variance parameter to enforce 

the known sign restriction on the variance parameter (Ruud 2000). 

j
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parameters, 24  while Fiebig et al. (2010) use lognormal transformations to assure positive 

distribution of scale in generalized-MNL model.  

On a practical note, implementation of this approach does not require programing the 

MNL model from scratch. Even though the MNL model included in many popular statistical 

packages assumes that all the parameters enter utility function linearly, it is often possible to 

estimate this model as a constrained version of a Random Parameters Logit model. The negative 

of the cost parameter is specified as random and lognormally distributed. Then a constraint is 

specified that the standard deviation on the cost parameter is equal to 0. Appendix 3 provides 

pseudo code for implementing our proposed model in this fashion in LIMDEP/NLOGIT and 

STATA.25 

Introducing the above reparameterization of the model assures finite moments of the ratio 

(WTP) distribution. It is therefore possible to utilize the delta, KR or the Fieller approaches for 

deriving the standard error or the confidence interval of WTP. Appendix 4 presents how the 

associated formulas can be derived for a few typical cases.26 

5. More General Discrete Choice Models  

Our proposed restriction on the cost parameter can be imposed in other more general discrete 

choice models when the cost parameter is specified a fixed rather than random parameter. For 

instance, nested logit or latent class models, both have fixed parameters that are used in WTP 

calculation, even though these parameters are often allowed to differ across nests or classes. 

Our approach can also be used in the case of specifications involving random parameters, if the 

cost parameter is not modeled as random, which is a common practice in applied work.27 

Several motivations have been advocating for using a fixed cost parameter. The first is the 

recognition that having a normally distributed distribution of cost parameters parameter causes 

problems with respect to the existence of the moments of the WTP distribution (Meijer and 

Rouwendal 2006).  Daly, Hess and Train (2012) show in an MXL model that if the parameter 

                                                           

24 They also consider other distributions such as the censored normal and Johnson’s (1949) 
BS  to restrict the sign 

of the cost coefficient.   
25 In the online supplement to this paper we also show how to use the DCE estimation package developed in 

Matlab, available from github.com/czaj/DCE under Creative Commons BY 4.0 license, to implement the 

specification we propose. 
26 In the online supplement to this paper we make available a collection of Matlab functions useful for applying 

delta and Fieller methods for the calculating confidence intervals / sets.  
27 Train and Weeks (2005) provide an extensive list of empirical examples that use a fixed cost parameter in RPL 

models. Their discussion is motivated in terms of directly specifying the distribution of WTP, an issue we consider 

below. 
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associated with cost has non-zero probability at zero, then the ratio distribution of WTP has 

undefined moments. Other reasons why researchers use a fixed cost parameter in an MXL 

model include wanting to restrict the monetary parameter to have the same sign for all 

individuals,28 ensuring that the distribution of the WTP has the theoretically expected sign, 

making the calculation of WTP (and the associated confidence intervals) less burdensome, and 

making the identification easier, in particular in models which allow for correlated parameters, 

and in datasets with few observed choices per individual (Hess and Train 2011; Revelt and 

Train 1998). 

6. Discrete Choice Models in WTP-Space 

A solution that is sometimes proposed for potential problems with WTP defined as the ratio of 

two parameters is to reparametrize WTP so that it is a direct argument in the LL function 

(Cameron 1988; Train and Weeks 2005). The standard formulation assumes that WTP follows 

normal distribution, although other distributional assumptions are possible.29  While mixed 

results have been obtained in terms of goodness of fit and out-of-sample prediction when 

comparing discrete choice models specified in preference and WTP space, specification in WTP 

space overcomes the problems we have been discussing. However, there is a direct (asymptotic) 

translation between parameters in models estimated in probability space and WTP space 

(Scarpa et al. 2008). We show that fixing the WTP problem creates a different problem if one 

wants to go from the WTP space parameters to probability space parameter.  

The nature of this new problem stems from the key parameter of interest in preference 

space generally being one of the attribute parameters and the reason that a normal distribution 

was originally selected for it was the belief that people might be indifferent to changes in the 

level of this attribute. Thus, the hypothesis of interest is that a specific 0k  . However, the 

WTP space representation rules out this possibility. The reason is that going from the WTP 

space representation to the preference space representation involves the product of two normally 

distributed parameters rather than the ratio of such parameters. The resulting distribution is 

                                                           

28  Alternatively, the cost parameter can be modeled as random, following a bounded distribution, such as 

lognormal, censored normal or Johnson SB (Train and Sonnier 2005). Using some of these distributions has been 

shown, however, to entail numerical difficulties (especially in the case of correlated parameters modeled in the 

classical framework) or to produce behaviorally implausible results (Greene et al. 2005). 
29 Some of these such as the log-normal often result in implausibly large mean WTP estimates because of the 

distributions long right tail, which is often not well pinned down due to range of observed data. 
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known as a product normal distribution, which has rather peculiar properties – its pdf is not 

defined at zero.  

Using the notation of (7), the vector of WTPs for the choice attributes x  is  and 

that the utility function can be expressed in WTP space as: 

    i ij i i ij i ij ijU Alternative j U z      w x  . (9) 

These expressions of utility function are behaviorally equivalent. Note, however, that any 

distribution of parameters in preference space implies some distributions in WTP space, and 

vice versa. Therefore, when moving from a model estimated in WTP space to probability space, 

and the WTP vector estimate is assumed to have a normal distribution, the key implied 

parameters will be the product of two normals  w  . Unfortunately, just as the ratio of two 

normal is not normal, the product of two normal is not normal.30  

The product normal distribution is a rather unusual distribution whose pdf expressed in 

terms of the parameters in (9) is given by: 

  
1

,
b

h b f q dq
q q

 
  

 
  (10) 

While this distribution has a finite expectation and variance, it is not defined at 0b  , and 

further, tends to have sharply spiked exponential-like shoulders around its expectation (Ware 

and Lad 2003). This is not the type of distribution one would typically associate with a 

preference parameter. Its use raises a set of issues involving quantities like elasticities and 

market shares typically associated with the preference space that have not been explored.  

7. Two Empirical Examples 

To provide an illustration of how our approach may be used, we provide two empirical examples 

using data from two publicly available stated preference experiments.31 The first is a large 

contingent valuation (CV) survey designed to value WTP to prevent oil spills along California’s 

                                                           

30 The closed form pdf of the product normal was derived by Craig (1936) and Rohatgi (1976). It is, however, 

inconvenient to use as it is expressed in the form of the difference between two integrals. Several approximations 

to this distribution were proposed (e.g., Aroian 1947), as well as series expansions for purposes of numerical 

computation which rely mostly on the Mellin and Laplace transformation techniques (e.g., Cornwell et al. 1978; 

Glen et al. 2004).,   
31 The use of stated preference data here avoids the issue of potential endogeneity of the cost variable that often 

characterizes revealed preference data. Note that may influence how the cost parameter is estimated from revealed 

data but not the way that the WTP estimate is generally formed as the ratio of parameters.  

w β
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central coast (Carson et al. 2004) and the second is a discrete choice experiment (DCE) study 

of an alternative-fuel vehicle choice (Train and Sonnier 2005).32 33 

A. WTP Estimates from California Oil Spill Prevention CV Study 

In the oil spill prevention study, a single binary choice question elicitation format was used. 

Random assignment of cost to respondents allows us to focus on the unconditional expected 

WTP estimated using a simple conditional logit model. There are only two variables, an 

alternative specific constant (ASC) associated with implementing the new prevent scenario  B

, versus the status quo and the cost  C  of the prevention program if implemented.34 Table 2 

provides estimation results with all parameters entering linearly (panel 1), the cost parameter 

entering exponentially (panel 2), and both cost and the ASC parameters entering exponentially 

(panel 3). This last case is equivalent to assuming it is implausible for a consumer to have 

negative utility associated with both money and introducing the program. 

Table 2: Results from Typical and Two Alternative Specifications (Complete Dataset)35  

 MNL – typical 

specification 

(cost enters linearly) 

MNL – alternative 

specification 1 

(cost enters 

exponentially) 

MNL – alternative 

specification 2 

(ASC and cost enter 

exponentially) 

B  – ASC associated with 

introducing the scenario  

0.5602*** 

(0.0934) 

0.5602*** 

(0.0934) 

-0.5794*** 

(0.1667) 

C  – cost associated with 

introducing the scenario 

0.7152*** 

(0.0845) 

-0.3351*** 

(0.1181) 

-0.3351*** 

(0.1181) 

Ratio of coefficients36 78.33 78.33 78.33 

Median WTP – KR 78.33 77.79 78.33 

E(WTP) – KR 78.28 (undefined) 77.73 78.83 

Std. err. E(WTP) – delta 8.81 (undefined) 8.81 8.81 

Std. err. E(WTP) – KR 9.01 (undefined) 8.98 8.90 

95% c.i. E(WTP) – delta (61.05;95.60) (61.05;95.60) (61.05;95.60) 

95% c.i. E(WTP) – KR  

(quantile range) 
(60.39;95.90) (59.83;95.25) (62.82;97.66) 

                                                           

32 We use the 1484 choice observations from 100 respondents included in the dataset available at Kenneth Train’s 

website: http://elsa.berkeley.edu/~train/. 
33 The code and data for estimating the models presented in this paper are available from 

http://czaj.org/research/supplementary-materials.  
34 In estimation, we use negative of the actual cost divided by 100.  
35 ***, **, * – Significance at 1%, 5%, 10% level; standard errors in parentheses. 
36 B C ,  expB C  or    exp expB C , respectively; WTP results are scaled back to $ (from the cost parameter 

specified in $100).  

http://elsa.berkeley.edu/~train/
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95% c.s. E(WTP) – Fieller (60.39;95.90) (60.39;95.90) (60.38;95.90) 

Log-likelihood -712.7737 -712.774 -712.7737 

AIC/n 1.3176 1.3176 1.3176 

n (observations)
 

1,085 1,085 1,085 

 

The first aspect of Table 2 to note is that the alternative specifications do not differ in 

terms of model fit, while the parameters of the attributes entering exponentially are equal to the 

natural logarithm of parameters entering linearly.37 Since probability of 0C   is now 0 in 

specifications 1 and 2, the moments of the ratio distribution exist and can be easily calculated. 

We use the KR approach to numerically simulate draws from a bivariate normal and then 

calculate the mean and standard deviation of the resulting ratio distribution.38  

The dataset used for this illustration is about as well-behaved as possible, considering p-

values of B  and C  in linear MNL specification are smaller than 10-8. In datasets in which p-

values of the parameters are not so low, one can expect larger differences between ratio of 

maximum likelihood coefficients B C , mean (i.e., expected value of WTP, if defined) and 

median of the resulting ratio distribution. To illustrate this, we estimated the model again for a 

sub-sample of 100 respondents that resulted in standard errors of the coefficients being 

substantially larger. The results are provided in Table 3. 

Once again, the alternative specifications provide the same fit in terms of the LL, but 

allow us to calculate mean and standard deviation of the ratio distribution. This time, with many 

fewer observations in the sample, there is now considerable uncertainty with respect to the true 

value of parameters B  and C  as illustrated by much larger standard errors. Thus, the spread of 

the empirical distribution of WTP is larger. This can be best seen by noting that as the extreme 

0.025 and 0.975 quantiles are much further away from each other than in Table 2. The 

commonly used ratio of the two ML coefficients for the estimate of WTP ($48.35) is now 

substantially different from either the expected value of the WTP (estimated mean, $34.09) or 

median ($43.12) of the ratio distribution in the case of the cost parameter entering exponentially. 

When both ASC and cost parameters enter exponentially, the mean is $64.72, and the median 

($48.35) effectively becomes identical to the B/C ratio. 

                                                           

37 This is a result of the invariance principle which states that the maximum likelihood estimator of a function is a 

function of the maximum likelihood estimator.  
38 We used 108 draws from a multivariate normal distribution of parameters B  and C  to derive the empirical 

distribution of WTP using KR method. 
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Table 3: Results from Typical and Two Alternative Specification (N=100 Subsample of Data) 

 MNL – typical 

specification 

(cost enters linearly) 

MNL – alternative 

specification 1 

(cost enters 

exponentially) 

MNL – alternative 

specification 2 

(ASC and cost enter 

exponentially) 

B  – ASC associated with 

introducing the scenario  

0.2843 

(0.2964) 

0.2843 

(0.2964) 

-1.2578 

(1.0431) 

C  – cost associated with 

introducing the scenario 

0.5879** 

(0.2954) 

-0.5312 

(0.5026) 

-0.5312 

(0.5027) 

Ratio of coefficients39 48.35 48.35 48.35 

Median WTP – KR 49.60 43.12 48.35 

E(WTP) – KR 60.03 (undefined) 34.09 64.72 

Std. err. E(WTP) – delta 36.90 (undefined) 36.90 36.92 

Std. err. E(WTP) – KR 39.59·104 (undefined) 57.26 57.57 

95% c.i. E(WTP) – delta (-23.98;120.68) (-23.98;120.69) (-24.00;120.71) 

95% c.i. E(WTP) – KR  

(quantile range) 
(-153.64;168.62) (-108.47;114.86) (10.83;215.96) 

95% c.s. E(WTP) – Fieller (-1,610.35;153.12) (-1,640.96;153.19) (-1,658.72;153.19) 

Log-likelihood -66.8654 -66.8654 -66.8654 

AIC/n 1.3773 1.3773 1.3773 

n (observations)
 

100 100 100 

 

Figure 1 shows the empirical distribution of WTP for the alternative specifications for the 

full sample and the much smaller sub-sample of the California oil spill data. For the full sample 

used in the left panel of Figure 1, the estimated ratio distributions have very similar shapes, 

indicating that using the proposed specification does not alter the results much, while at the 

same time allowing for calculating correct (bounded) moments of the WTP distribution. This 

similarity in the estimated ratio distributions does not carry over to the smaller sample used in 

the right panel of Figure 1. The linear specification results in a spread-out distribution for WTP 

with a substantial fraction estimated to hold negative WTP values. The alternative specification 

constraining the cost parameter to be strictly positive allows calculation of the moments. This 

concentrates the empirical distribution somewhat but does not constrain the distribution of WTP 

to be positive. There is substantial uncertainty exists with respect to ASC, so a non-trivial 

fraction of the sample is still estimated to hold negative WTP estimates. If it is justifiable to 

assume that the utility associated with implementing a new prevention program at zero cost 

cannot be negative, then the second alternative specification that further constraints the 

                                                           

39 B C ,  expB C  or    exp expB C , respectively; WTP results are scaled back to $ (from the cost parameter 

specified in $100).  
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empirical distribution of WTP to be positive should be used. It results in a much more 

asymmetric distribution and the inference one would draw about mean WTP from the sample 

of 100 observations is similar to that from the original sample of 1,000 observations.  

Figure 1. Probability Density Function of Empirical Distribution of E(WTP) for Full Sample            

( 1085n  ) in the Left Panel and for Subsample ( 100n  ) in the Right Panel 

  
 

B. Alternative Fuels Vehicle DCE Study  

In the case of the vehicle choice study, the elicitation format was a sequential multinomial 

choice. Each respondent was presented with 10-15 choice tasks consisting of 3 alternatives. The 

choice attributes in this study included: range (for non-gas fueled cars;  

range ), engine type (dummy coded as electric  or hybrid , with gas  as a reference level), 

performance (dummy coded as _p medium  or _p high ) and cost, in terms of purchase price  

( _c purchase ) and monthly operating cost ( _c operate ). 

Using this dataset, we estimated a random parameters multinomial logit model. Range  

is assumed to be distributed log-normally, _p medium , _p high , electric  and hybrid  

normally distributed. The two cost coefficients were assumed to be fixed (non-random) 

parameters. Assuming a log-normally distributed range  allows us to impose a behavioral 

restriction that says that marginal utility associated with this attribute cannot be negative. When 

the cost parameter is assumed fixed, the researcher can let the parameter multiplying the 

negative of cost enter the utility function in the same exponential form. Table 4 provides 

estimation results for the case where the two (non-random) cost parameters enter linearly (panel 



Carson, R.T. and Czajkowski, M. / WORKING PAPERS 4/2018 (263)                                   20 
 

 

1) and exponentially (panel 2) as well as WTP for range  expressed as the marginal rate of 

substitution for monthly operating cost ( _c operate ).40  

Table 4. Results for Range from Typical and Alternative Specification 41 

 MXL – typical specification 

(cost parameters enter linearly) 

MXL – alternative specification 

(cost parameters enter exponentially) 

 
Means 

Standard 

deviations 
Means 

Standard 

deviations 
range   

(log-normally distributed) 

-0.7328 

(0.4636) 

0.5915** 

(0.2980) 

-0.7328 

(0.4519) 

0.5915** 

(0.2917) 

electric   

(normally distributed) 

-1.7908*** 

(0.3426) 

1.2658*** 

(0.2156) 

-1.7908*** 

(0.3380) 

1.2658*** 

(0.2153) 

hybrid   

(normally distributed) 

0.4395*** 

(0.1694) 

0.9745*** 

(0.1369) 

0.4395*** 

(0.1693) 

0.9745*** 

(0.1368) 

_p medium   

(normally distributed) 

0.5310*** 

(0.1134) 

0.5696*** 

(0.1420) 

0.5310*** 

(0.1133) 

0.5696*** 

(0.1420) 

_p high   

(normally distributed) 

0.0770 

(0.0999) 

0.3514** 

(0.1675) 

0.0770 

(0.1000) 

0.3514** 

(0.1677) 

_c purchase   

(fixed) 

0.4748*** 

(0.0380) 
– 

-0.7448*** 

(0.0799) 
– 

_c operate   

(fixed) 

0.0136*** 

(0.0039) 
– 

-4.3006*** 

(0.2902) 
– 

Ratio of coefficients42 42.21 42.21 

Median WTP – KR 41.16 40.86 

E(WTP) – K&R 49.43 (undefined) 48.69 

Std. err. E(WTP) – delta 18.74 (undefined) 18.58 

Std. err. E(WTP) – KR 30.04·103 (undefined) 23.42 

95% c.i. E(WTP) – delta (5.47;78.95) (5.80;78.63) 

95% c.i. E(WTP) – KR  

(quantile range) 
(19.89;129.53) (18.79;107.49) 

95% c.s. E(WTP) – Fieller (12.99;110.54) (13.43;110.33) 

Log-likelihood -1,347.0764 -1,347.0764 

AIC/n 1.8316 1.8316 

n (observations)
 

1,484 1,484 

 

Our results demonstrate that the alternative specifications result in the same LL, while the 

parameters of the attributes entering exponentially are equal to the natural logarithm of 

                                                           

40 We used 108 draws from a multivariate normal distribution of parameters range , range  and _c operate  to 

derive the empirical distribution of WTP using KR method.  
41 ***, **, * – Significance at 1%, 5%, 10% level; standard errors in parentheses. For log-normally distributed 

parameters, estimates of the mean and standard deviation of the underlying normal distribution are provided. 
42  2exp 0.5 _range range c operate   or    2exp 0.5 exp _range range c operate  , respectively.  
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parameters entering linearly.43 Even though the medians of WTP distributions are similar, the 

alternative specification assures the existence of finite moments of WTP. Restricting the cost 

parameter to be strictly positive allows for the moments (mean, standard deviation) of the ratio 

distribution to be well defined. Figure 2 illustrates these findings with kernel densities of 

empirical distributions of mean WTP under alternative specifications. As can be seen, the 

approach we propose does not ‘tamper’ with the results – it merely assures that the simulated 

ratio (WTP) distribution has finite moments.  

Figure 2. Probability Density Function of Empirical Distribution of E(WTP)                                      

( _range c operate )  

 

8. Concluding Remarks 

We show that the usual practice of calculating the moments and confidence intervals of WTP 

and other similar economic quantities estimated using the ratio of parameters from a discrete 

choice model is seriously flawed. The ratio of the two maximum likelihood parameters is not, 

as often assumed, normally distributed and is not equal to expected WTP nor median WTP. The 

expected value of WTP and its standard deviation are both undefined. The workhorse delta 

method and the KR approach used for estimating WTP confidence intervals do not work. For 

                                                           

43 There are small differences in results due to numerical approximations. 
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the delta method, the issue is producing a misleading finite and often reasonable estimate of the 

standard error when the true quantity is undefined and the potential poor quality of the delta 

method approximated percentile-based confidence interval unless the cost parameter is highly 

significant. The KR approach eventually shows the degenerate nature of the WTP ratio at 

extremely large sample sizes. Unfortunately, it typically produces plausible statistics for the 

number of replications used in applied work. 

We are not the first to note problems with ratio-based WTP estimators. The problem is 

well-known in statistics and some of the key issues have been long pointed out in the literature 

on estimating WTP (Hanemann and Kanninen 2002). This has not, however, stopped the 

practice of estimating statistics related to WTP and similar economic quantities using the ratio 

of coefficients from discrete choice models. Part of the reason for this lies with convenience 

and following tradition. Part of it stems from the mistaken belief that mean and median WTP 

are equal and both equal to the ratio of ML parameters. Empirical practice has been reinforced 

by the delta method and the KR approach usually producing plausible statistics. 

The problem is perceived to be much more acute in random parameter models. Allowing 

cost to be random usually results in enough density near zero and in the negative range that the 

problem cannot be ignored, as the implied distribution of WTP is completely implausible. Two 

ways of dealing with the issue have emerged. The first way is make the denominator fixed. We 

argue that this is only assumes all individuals are characterized by the same parameter and it 

does not eliminate uncertainty over the fixed parameter estimate which leads to non-existent 

moments of WTP. The second is to estimate the model in WTP space with WTP as direct 

argument LL function. This solves the problem in the sense of estimating WTP under the 

assumption that it is normally distributed. However, this solution hides the converse problem. 

In preference space, key parameters of interest such as market shares are simulated as the 

product of two normal distributions. The resulting distribution is known as a product-normal 

distribution and has a very peculiar pdf which is not defined for the central tendency and has 

very steep double exponential like shoulders. Lying at the heart of the problem is implausibility 

of the assumptions associated with using ratios or products of normals as the estimator for many 

quantities of economic interest.  

We provide a different, simple and elegant solution to this problem by making selected 

preference parameters enter utility function exponentially, whenever no support in negative 

values is justified by economic theory and logic. Our approach will almost never change the 

overall model goodness of fit because key parameters such as cost almost always have the 
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correct sign. Yet, our approach assures the existence of moments and finite confidence intervals 

of WTP and allows for a technically correct way of calculating mean WTP and its standard 

deviation. It is easily implemented using commonly used software for estimating random 

parameters choice models and is generalizable in a straightforward manner to many models 

beyond the simple conditional logit model if the parameter in the denominator of the ratio 

expression for WTP is fixed. Further, imposition of the restriction on cost and other parameters 

will often substantially tighten the confidence intervals around expected WTP, suggesting the 

restriction(s) brings considerable useful information. When both an attribute and the cost 

parameter are constrained, our approach will result in empirical estimates of the WTP 

distribution that have support only with respect to positive values, which makes behavioral 

sense in many if not most cases. 
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Appendix 1. Ratio Distribution for Different Correlation Coefficients of Normally Distributed Random Variables (Expressed in Terms of p-values) 
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Appendix 2. Pseudo-Moments and Quantiles of the Ratio Distribution for a Range of Correlation Coefficients and Coefficients of Variation 

of Normally Distributed Random variables (Expressed in Terms of p-values)  

p-

value  

of B 

p-

value  

of C 

corr. 

coef. 
B C 

 

pseudo-

mean 

(KR) 

media

n 

(KR) 

pseudo-

st.dev. 

(KR) 

pseudo-

st.dev. 

(delta) 

95% c.i. of mean – 

KR 

(quantile range) 

95% c.i. of 

mean – delta 
95% c.i. of mean – Fieller 

0.01 0.01 -0.90 1.00 1.36 0.99 1.52·103 0.76 (0.12;6.18) (-0.48;2.48) (0.14;7.08) 

0.01 0.01 -0.50 1.00 1.26 0.99 1.06·103 0.67 (0.14;5.23) (-0.32;2.32) (0.17;5.96) 

0.01 0.01 0.00 1.00 0.19 0.99 1.21·104 0.55 (0.19;4.04) (-0.08;2.08) (0.22;4.53) 

0.01 0.01 0.50 1.00 1.18 1.00 5.00·102 0.39 (0.30;2.79) (0.24;1.76) (0.33;3.05) 

0.01 0.01 0.90 1.00 1.03 1.00 1.35·102 0.17 (0.59;1.63) (0.66;1.34) (0.60;1.68) 

0.01 0.05 -0.90 1.00 1.50 0.95 2.11·103 0.88 (-1.99;9.82) (-0.72;2.72) (-∞;-7.33·1012)(0.13;+∞) 

0.01 0.05 -0.50 1.00 0.95 0.95 3.99·103 0.78 (-0.45;8.34) (-0.53;2.53) (-∞;-6.01·1013)(0.15;+∞) 

0.01 0.05 0.00 1.00 0.78 0.96 4.19·103 0.64 (-0.50;6.46) (-0.26;2.26) (-∞;-4.35·1013)(0.21;+∞) 

0.01 0.05 0.50 1.00 1.24 0.97 2.16·103 0.46 (-0.19;4.53) (0.10;1.90) (-∞;-2.70·1013)(0.34;+∞) 

0.01 0.05 0.90 1.00 1.23 0.99 2.53·103 0.23 (0.40;2.79) (0.54;1.46) (-∞;-1.37·1013)(0.67;+∞) 

0.01 0.10 -0.90 1.00 -1.26 0.89 1.47·104 0.97 (-8.76;12.06) (-0.91;2.91) (-∞;-8.77)(0.11;+∞) 

0.01 0.10 -0.50 1.00 0.63 0.90 5.79·103 0.87 (-7.08;10.36) (-0.70;2.70) (-∞;-7.07) (0.14;+∞) 

0.01 0.10 0.00 1.00 1.14 0.92 3.88·103 0.72 (-4.98;8.18) (-0.41;2.41) (-∞;-4.97)(0.20;+∞) 

0.01 0.10 0.50 1.00 0.85 0.94 1.81·103 0.53 (-3.00;5.99) (-0.05;2.05) (-∞;-2.94)(0.34;+∞) 

0.01 0.10 0.90 1.00 1.04 0.96 8.91·102 0.31 (-1.54;4.06) (0.39;1.61) (-∞;-1.53)(0.65;+∞) 

0.05 0.01 -0.90 1.00 1.54 0.99 1.73·103 0.88 (-0.03;6.96) (-0.72;2.72) (-1.37·10-14;8.00) 

0.05 0.01 -0.50 1.00 1.90 0.99 5.30·103 0.78 (-0.03;5.75) (-0.53;2.53) (-1.69·10-14;6.56) 

0.05 0.01 0.00 1.00 1.37 0.99 1.10·103 0.64 (-0.05;4.25) (-0.26;2.26) (-2.27·10-14;4.75) 

0.05 0.01 0.50 1.00 1.07 1.00 3.58·102 0.46 (-0.03;2.76) (0.10;1.90) (-3.69·10-14;2.94) 

0.05 0.01 0.90 1.00 0.96 1.00 7.09·101 0.23 (0.10;1.51) (0.54;1.46) (-7.30·10-14;1.50) 

0.05 0.05 -0.90 1.00 2.44 0.94 1.21·104 0.99 (-0.42;10.96) (-0.95;2.95) (-∞;-8.27·1013)(0.00; ;+∞) 

0.05 0.05 -0.50 1.00 2.27 0.95 1.09·104 0.88 (-1.06;9.04) (-0.73;2.73) (-∞;-6.53·1013)(-4.83·10-3;+∞) 

0.05 0.05 0.00 1.00 1.10 0.96 2.29·103 0.72 (-0.84;6.64) (-0.41;2.41) (-∞;-4.35·1013)(0.00;+∞) 

0.05 0.05 0.50 1.00 0.98 0.97 4.05·103 0.51 (-0.52;4.29) (0.00;2.00) (-∞;-2.18·1013)(1.21·10-3;+∞) 

0.05 0.05 0.90 1.00 102.36 0.99 1.01·106 0.23 (0.16;2.17) (0.55;1.45) (-∞;-4.35·1012)(6.64·10-3;+∞) 

0.05 0.10 -0.90 1.00 0.21 0.87 9.11·103 1.09 (-9.87;13.34) (-1.14;3.14) (-∞;-9.87)(-1.06·10-14;+∞) 

0.05 0.10 -0.50 1.00 2.10 0.89 7.54·103 0.97 (-7.60;11.12) (-0.90;2.90) (-∞;-7.60)(-1.38·10-14;+∞) 

0.05 0.10 0.00 1.00 0.53 0.91 5.85·103 0.79 (-4.87;8.36) (-0.56;2.56) (-∞;-4.76)(-2.30·10-14;+∞) 
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0.05 0.10 0.50 1.00 3.63 0.94 1.89·104 0.57 (-2.48;5.64) (-0.11;2.11) (-∞;-1.93)(-5.67·10-14;+∞) 

0.05 0.10 0.90 1.00 1.01 0.97 7.76·102 0.27 (-0.54;3.08) (0.48;1.52) (-∞;0.00)(0.34;+∞) 

0.10 0.01 -0.90 1.00 1.79 0.99 1.42·103 0.97 (-0.15;7.59) (-0.91;2.91) (-0.11;8.74) 

0.10 0.01 -0.50 1.00 1.41 0.99 1.45·103 0.87 (-0.18;6.18) (-0.70;2.70) (-0.14;7.05) 

0.10 0.01 0.00 1.00 1.50 0.99 1.71·103 0.72 (-0.26;4.45) (-0.41;2.41) (-0.20;4.95) 

0.10 0.01 0.50 1.00 1.08 1.00 6.66·102 0.53 (-0.35;2.81) (-0.05;2.05) (-0.34;2.94) 

0.10 0.01 0.90 1.00 3.34 1.00 2.39·104 0.31 (-0.45;1.55) (0.39;1.61) (-0.65;1.53) 

0.10 0.05 -0.90 1.00 1.55 0.93 6.51·103 1.09 (-0.56;11.88) (-1.14;3.14) (-∞;-9.02·1013)(-0.10;+∞) 

0.10 0.05 -0.50 1.00 1.13 0.94 9.56·103 0.97 (-1.16;9.60) (-0.90;2.90) (-∞;-6.94·1013)(-0.13;+∞) 

0.10 0.05 0.00 1.00 1.39 0.95 1.59·103 0.79 (-1.13;6.84) (-0.56;2.56) (-∞;-4.35·1013)(-0.21;+∞) 

0.10 0.05 0.50 1.00 1.05 0.98 1.64·103 0.57 (-0.87;4.25) (-0.11;2.11) (-∞;-1.76·1013)(-0.52;+∞) 

0.10 0.05 0.90 1.00 0.93 1.00 3.49·102 0.27 (-0.28;2.04) (0.48;1.52) (-∞;2.92)(3.15·1012;+∞) 

0.10 0.10 -0.90 1.00 0.57 0.86 8.31·103 1.19 (-10.76;14.36) (-1.32;3.32) (-∞;-10.76)(-0.09;+∞) 

0.10 0.10 -0.50 1.00 -0.69 0.88 2.76·104 1.05 (-8.03;11.74) (-1.06;3.06) (-∞;-8.02)(-0.12;+∞) 

0.10 0.10 0.00 1.00 0.57 0.90 5.65·103 0.86 (-4.86;8.57) (-0.69;2.69) (-∞;-4.54)(-0.22;+∞) 

0.10 0.10 0.50 1.00 22.06 0.94 2.12·105 0.61 (-2.36;5.53) (-0.19;2.19) (-∞;+∞) 

0.10 0.10 0.90 1.00 0.60 0.99 3.42·103 0.27 (-0.44;2.71) (0.47;1.53) (-∞;+∞) 
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Appendix 3. Implementation of the Alternative Model Specification in IMDEP/NLOGIT 

and STATA 

Our proposed model can be implemented without special programming in many statistical 

packages that can estimate mixed logit models. This can be done by declaring the variable that 

will serve as the denominator of the WTP ratio to have a random parameter that follows a log-

normal distribution and then constraining the standard deviation of that parameter to be zero. 

Below we provide pseudo code for two commonly used statistical packages LIMPEP/NLOGIT 

and Stata. In these examples, Y represents the dependent variable while X1, …, Xc are choice 

attributes, of which Xc is the monetary attribute which in the alternative specification enters 

with an exponentiated parameter. 

 

Limdep/Nlogit Stata 

Typical (MNL) specification 
nlogit 

    ; lhs = Y 

    ; choices = ... 

    ; model: U(*) = B*X1 + … + C*Xc 

    ; …$ 

clogit Y X1 … Xc, …  

The alternative specification with the parameter of variable Xc entering exponentially 
nlogit 

    ; lhs = Y 

    ; choices = ... 

    ; model: U(*) = B*X1 + … + C*Xc 

    ; rpl 

    ; fcn: C(l) 

    ; sdv = 0 

    ; …$ 

constraint define 1 [SD]Xc = 0 

mixlogit Y X1 … Xc, rand(Xc)  

constraint(1) ln(1) … 

 

Note that this specification may, in some cases, require providing better starting values than 

those obtained from the MNL model. Specifically, the parameter estimate of logarithm of 

monetary attribute from a MNL model is usually a good starting value.  
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Appendix 4. Deriving formulas for standard errors and confidence sets of WTP under 

alternative model specifications 

 

Let b  and c  be normally distributed estimates of B  and C , such that: 

 
2

2
, B CB

BC C

b B
N

c C

 

 

      
     

      

:  . 

The estimate of the function  ,g B C  can be defined as  b,g c , and approximated using the 

first-order Taylor series around  ,B C . The asymptotic variance of g  can thus be derived 

using the delta method (see formula (1) in the main text). The results for the cases of interest 

for this paper are provided in Table 5.44  

 

Table 5. Asymptotic variance using the delta method 

 ,g B C  Asymptotic variance 

B

C
 

2
2 2

2 3 4

1 2
B BC C

b b

c c c
     

 exp

B

C
 

 

2 2 22

exp 2

B BC Cb b

c

   
 

 

 

exp

exp

B

C
   2 2exp 2 2 2B BC Cb c       

 

The Fieller bounds are derived by specifying the z-statistic. For illustration, consider the first 

case of interest here, i.e.  ,g B C B C . Whatever the true value of g : 

 20, ZZ b gc N   :  , 

                                                           

44  The functions one may be particularly interested in are  ,g B C B C ,    , expg B C B C  and 

     , exp expg B C B C  which correspond to the usual (linear) model specification, the alternative 

specification with C  constrained to be strictly positive (see equation (8) in the main text), and the alternative 

specification in which both B  and C   are constrained to be strictly positive, respectively. 
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where 2

Z   can be derived using formula (1), i.e. 
2

2

2
  B CB

Z

BC C

Z Z Z Z

b c b c

 


 

       
             

. In 

our first case, since  ,g B C B C  then 2 22 22C CZ B Bg g      . The z-statistic of interest is 

thus 

2

Z

b gc
z




  . 

Setting the desired confidence level requires using the appropriate value of z-statistics 0z  (e.g., 

for the 95% confidence interval 0 1.6449z  ) so that  2 2

0Pr 0.95z z   . This yields the 

following inequality: 

   2 2 2 2 2 2 2 2

0 0 02 2 0C BC Bz c g bc z g z b        . 

Solving it for g  results in the confidence set.45 The same algorithm can be applied to derive 

Fieller bounds for the other cases of interest for this paper. The results are provided in Table 6. 

Finally, we note that in the case of random parameter models, if B  is normally distributed one 

can still use formulas provided in Table 5 and 6, while substituting b  for the estimate of the 

mean of B , and using the appropriate submatrix of the full asymptotic variance-covariance 

matrix of the model. If, however, B  is assumed to be lognormally distributed, such that: 

2

2

2

,

B B B

B B B B

B B

B s Cb B

b B s s Cs

C s C C

s N s

Cc

 





   

  

  

     
      
     
           

:  , 

where B   and Bs  correspond to the mean and standard deviation of the underlying normal 

distribution of lognormally distributed B , the expected value of b  is equal to  

 2exp 0.5b bs  . Applying the same procedures as described above, the formulas for deriving 

asymptotic variance using the delta method and Fieller confidence sets are presented in  

Table 7.  

                                                           

45 In addition to the ‘typical’ bounded interval case, it is possible the set will include entire real line, or will be 

unbounded. This first case occurs if 2 2

0 0Bz b   , i.e., if z-test of the hypothesis 0c   is significant at the 

specified level. See Appendix 2 for an illustration.  



Carson, R.T. and Czajkowski, M. / WORKING PAPERS 4/2018 (263)                                   35 
 

 

Table 6. Fieller confidence sets under different model specifications 

 ,g B C  Fieller confidence set – g  such that: Fieller bounds46 

B

C
    2 2 2 2 2 2 2 2
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46 The interval is bounded if 2 2 2

0 0Cz c    or 2 2

0 1 0Cz    , for the usual ( B C ) or for the alternative (  expB C ,    exp expB C ) specifications, respectively.  
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Table 7. Asymptotic variance using the delta method and Fieller confidence sets under two 

different model specifications for a random (lognormally distributed) numerator of WTP 
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47 The interval is bounded if 2 2 2

0 0Cz c   .  
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