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Abstract 
The two-state Markov switching model of dating recessions  breaks down when confronted with the 
low volatility macroeconomic time series of the post 1984 Great Moderation era.  In this paper, I 
present a new model specification and a two--stage maximum likelihood estimation procedure that 
can account for the lower volatility and persistence of macroeconomic times series after 1984, while 
preserving the economically interpretable two--state boom--bust business cycle switching. I first 
demonstrate the poor finite sample properties (bias and inconsistency) of standard models then 
suggest a new specification and estimation procedure that resolves these issues.  The suggested 
likelihood profiling method achieves consistent estimation of unconditional variances across 
volatility regimes while resolving the poor performance of models with multiple lag structures in 
dating business cycle turning points. Based on this novel model specification and estimation, I find 
that the nature of US business cycles has changed: economic growth has permanently become lower 
while booms last longer than before. The length and size of recessions however remain unchanged. 
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1 Introduction

Since the publication of Hamilton’s (1989) influential paper on the analysis of nonstationary time
series, the two state regime switching model has become a predominant approach in the business
cycle dating and forecasting literature while also finding multiple applications in different areas
of macroeconomics.1 However, as noted by Boldin (1996) and more recently by Chauvet and
Su (2014), the model breaks down when the data are extended to periods after 1984; it fails to
identify the transitions from booms to recessions that characterise business cycles across most of
the worlds industrialized economies. Business cycle forecasters have identified the need to model
the fall in volatility of many macroeconomic time series, now generally referred to as the “Great
Moderation”2 in order to maintain the model’s empirical relevance using time series after 1984.
The most interesting approach and the focus of this paper, has been the introduction of a second
Markov chain to model the downward shift in volatility during Great Moderation era.3

While this solution is quite innovative and has been successfully used to address the problem of
identifying business cycle phases using time series post 1984, the implied estimates of the uncondi-
tional variance of time series before and after the onset of moderation show very large biases. The
bias in the unconditional variance estimates would not be of much consequence if researchers were
merely interested in business cycle dating (in which case the estimated (un)conditional volatilities
could be disregarded as nuisance or incidental parameters). However, these estimates have been
used to calibrate macroeconomic models that explain the boom in asset prices (see e.g. Lettau,
Ludvigson and Wachter 2008, Liu and Miao 2015) and to explain the volatility reduction itself
(Bullard and Singh 2012) without careful evaluation of how close estimates are to the artefacts of
interest. The statistical properties of maximum likelihood (ML) parameter estimates of Markov
switching models are based on large sample asymptotic theory (see e.g. Franke 2012). However,
simulation studies have shown that ML estimates of these models as characterized by large biases
(see Psaradakis and Sola 1998, Ho 2001). The macroeconomics literature does not seem to have

1See Hamilton (2011), Barnett, Chauvet and Leiva-Leon (2016) for applications to forecasting recessions, Sims
and Zha (2006) on monetary policy shifts, Lanne, Lütkepohl and Maciejowska (2010), Netsunajev (2013), Lütkepohl
and Velinov (2016) on identification of structural vector auto-regressions via heteroskedasticity and Hamilton (2016)
for a general survey of other applications.

2See e.g. Justiniano and Primiceri (2008) and the references therein.
3An early application of this approach to modelling economic growth with two independent Markov chains that

captured the Great Moderation was implemented by McConnell and Perez Quiros (2000). In their textbook imple-
mentation of Hamilton’s (1989) model, Kim and Nelson (1999) add a dummy variable for growth rates after 1984
to potentially capture “a change in the mean growth rates during boom or recession”(p. 80). Other implementations
of this approach include Chen (2006), Bai and Wang (2011), Doornik (2013) and Chauvet and Su (2014) who also
provide a comprehensive survey. Lettau et al. (2008) also use independent chains to model the lower volatility of
consumption growth while examining how lower risk led to the stock market boom of the 1990s
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given much attention to the potential bias inherent in estimates from these models, yet such biases
could have considerable impacts on the interpretation of calibrated models.

In this paper, I first document the bias in unconditional variance estimates implied by ML esti-
mators from Markov switching models (see Section 2.2). I link this general bias to an old statistical
result due to Neyman and Scott (1948) on the inconsistency of ML estimators when dealing with
partially consistent observations/data.4 I then propose a new model specification and estimation
procedure that exploits the Bayesian structure of Hidden Markov Models to implement an idea
originally due to Basu (2011) on dealing with incidental/nuisance parameters. One outcome of the
“Double Mixture Autoregressive” model I propose and its estimation procedure is that it allows
for the lag order or autocorrelation structure of the data generating process (DGP) to vary across
variance regimes. This is a novel implementation of a Markov switching regression that has not
be attempted in the economics or related statistical literature. By accounting for the change in the
lag length of time series across the different volatility periods, I am able to obtain more precise
estimates of the unconditional moments. Finally, my model allows for the intercepts, persistence
and state duration of the business cycle related growth phases to change across volatility regimes,
which as noted by Kim and Nelson (1999) has been an important feature of the data.5 The re-
mainder of the paper is organized as follows: in the next section (2), I revisit the standard Markov
switching model and document the size of the bias in estimates of the unconditional variance in the
literature. In section 3, I specify a new type of model, “A Double Mixture Autoregressive Model”
and describe a likelihood profiling method that affords estimation and filtering. In section 4, I
give results of estimating the model for using 3 time series: US GNP, Industrial Production and
Consumption Growth. The final section concludes with a discussion of the results and potential
applications.

2 The Markov Switching Model

Hamilton (1989) modelled the growth rate in United States GNP as the outcome of a first order
hidden Markov chain with states St = {0,1} defined by transition probabilities:

p j |i = Prob
[
St = j |St−1 = i

]
, i , j = 0,1 (1)

4Markov Switching models of the business cycle fit this framework as we are essentially dealing with observation
sequences that obey a probability law with different parameter values.

5There has been a narrowing of the gap between growth rates during booms and recessions post 1984. See Filardo
and Gordon (1998) or Chang, Choi and Park (2017, sec 5.2) for alternative takes on the time varying duration issue.
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The time series yt , follows the auto-regression:

yt =µSt +
∑`

l=1φl
(
yt−l −µSt−l )

)+et , et ∼ i.i.d N (0,σ2
e ) (2)

where mean growth rate µSt depends on current state St and realizations of the state going back to
a maximum of ` lags. For ease of exposition, I denote this specification as the Markov Switching
Mean - Autoregressive [MSM - AR(`)] model. The presence of lags in the dynamic regression
can be dealt with by defining a new hidden state variable together with a transition matrix. For
example, if ` = 1 so that we have only one lag, we can define a new 4 - state Markov chain with
states S∗

t and transition matrix P:

S∗
t =



0 if St = 0, St−1 = 0

1 if St = 1, St−1 = 0

2 if St = 0, St−1 = 1

3 if St = 1, St−1 = 1

; P∗ :=


p0|0 p1|0 0 0

0 0 p0|1 p1|1
p0|0 p1|0 0 0

0 0 p0|1 p1|1

 (3)

The state variable S∗
t now keeps track of the previous period’s state but is still the outcome a

first-order Markov chain whose transition matrix P∗ preserves the normalization
∑3

j=0 p j |i = 1 for
i = {0,1,2,3}. Estimating this model requires a specification of the likelihood function and which
can then be efficiently evaluated using the filtering procedure of Hamilton (1990) after expanding
the state-space and transition matrix to account for the presence of lags.

2.1 Split Sample Estimates

In order to better infer why Hamilton’s original specification no longer works, it is useful to esti-
mate the model using separate samples: before and after 1984. First, this would show if we can
“independetly” use the model post 1984. Second, we would be able to see if there are any signifi-
cant changes in the dynamics of the data post 1984 which we may need to account for when using
the whole time-series.

I estimate the model specified in (2) for samples covering the following periods: (1) 1952(Q2) :

1984(Q2), (2) 1984(Q3) : 2014(Q4) and (3) 1952(Q2) : 2014(Q4). The estimates are summarized in
Table 2.1 below. The dependent variable is yt = 100×∆GNPt %. For each sample I use standard
model selection criteria (AIC, BIC, HIC) and likelihood ratio tests to select the appropriate number
of lags.

Column (1) in Table 2.1 gives estimates using data from the first sample, which covers the same
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Table 1: MSM(2)–AR(`) model with split samples
(1) (2) (3)

Period: 1952(Q2)−1984(Q2) 1984(Q3)−2014(Q4) 1952(Q2) : 2014(Q4)

Model: MSM(2)–AR(4) MSM(2)–AR(0) MSM(2)–AR(3)

µ0 1.366 (0.009) 0.665 (0.005) 0.901 (0.007)
µ1 -0.670 (0.018) -0.894 (0.020) -0.713 (0.019)
σe 0.819 (0.006) 0.522 (0.004) 0.804 (0.003)
p0|0 0.907 (0.003) 0.949 (0.003) 0.952 (0.002)
p1|1 0.795 (0.007) 0.463 (0.017) 0.722 (0.007)
φ1 0.093 (0.008) – – 0.213 (0.005)
φ2 0.170 (0.008) – – 0.202 (0.005)
φ3 -0.094 (0.008) – – -0.163 (0.005)
φ4 -0.138 (0.007) – – – –

Duration St = 0 10.6979 19.764 20.6228
Duration St = 1 4.8780 1.8622 3.5971

Log Likelihood -184.260 -114.098 -327.953 –
T 124 120 246

period as Hamilton’s original paper. The specification with 4 lags is maintained based on model
selection criteria but estimates are slightly different to those of the original paper (Hamilton 1989,
Table 1; Kim and Nelson 1999, Chapter 4, Table 4.1). This is due to the new data having been
revised and re-based. The probability of staying in the positive growth regime (boom) remains
virtually the same at p0|0 = 0.907 and that of negative growth (recession) rises to p1|1 = 0.795,
still close to the 0.75 estimate using the original data. This value of p1|1 implies that the expected
duration of a recession is Dur. = 1

1−p1|1 = 4.9 quarters or approximately 15 months. In the data,
the average duration of a recession over this period is 3.6 quarters or 11 months, so the model
estimates overstates the length of a recession by up to a half a quarter which is a moderately large
difference.

The estimates in column (2) are from the second sample; the period following the onset of the
Great Moderation. Several observations are worth noting from these estimates. First, the average
growth rate of GDP during booms is less than half what what is was in the earlier sample; falling
to µ0 = 0.665 in comparison to µ0 = 1.366. Second, the volatility is much lower, as has been
documented for many macroeconomic time-series since 1984. Third, the model selection and
likelihood ratio tests indicate that the there are no longer dynamic effects on growth rate. Finally,
estimates of transition probability in a recession p1|1 = 0.463 is much smaller than estimates from
the earlier sample period which implies recessions have become less than half as short in the
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modern period (compared to the earlier period). However the average length of a recession has not
changed, over the second sample period, recessions actually still last 3.6 quarters6 as in the earlier
period. However the average length of booms has doubled, from 13.86 to 29.67 quarters, so the
second period model underestimates both the length of recessions and booms (all phis in column
(2) are statistically equal to zero.). Finally, estimates in column (3) use the whole sample. For the
mean growth rates, the full sample model equally weights the growth rates from the two sample
periods as expected. The expected durations are close to the full sample averages: 3.60 and 19.30
(actual) versus 3.59 and 20.62 (estimated) for recessions and booms, respectively. The full sample
model however fails to do a good job at identifying recessions as shown in Figure 1 below which
plots the smoothed state inference for recession state: Prob[St = 1|y1:T ].

Figure 1: Smoothed Probability: MSM(2)-AR(l )

6The sample mean length of a recession, but based on only 3 recession events since the mid 1980s.
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2.2 Asymptotic Consistency and Finite Sample Bias

Simulation evidence suggests that obtaining estimates close enough to the true data generating pro-
cess for Markov switching models requires samples longer or larger than what is typically available
for macroeconomic time series (Psaradakis and Sola 1998, Ho 2001). In this subsection, I discuss
estimates from two papers (Bai and Wang 2011, Chen 2006) using two-state switching models to
identify economic growth phases of the US economy. I compute the actual average growth rates
over the periods identical to the recession (and boom) phases identified by the models and compare
them to the estimates obtained by these authors. This comparison shows large differences between
actual values of mean and volatility of GDP to the estimates obtained by the authors. For mean
estimates, the source of the bias seems to small sample sizes which may make inference difficult
(see footnote 9 below). For the volatility estimates, a proof of the inconsistency of estimators such
as those implied by the Markov switching models can found in for example Spanos (2013, see also
footnote 11)

The estimates of σ in columns (1) and (2) capture the Great Moderation. The selected number
of lags in column (2) estimates show that growth is less persistent in the periods after 1984 : Q2.
For the autoregressive model of order `= 1, specified by (2), the unconditional variance of is7:

Var(yt ) = π0π1(µ0 −µ1)2

1−φ2
1

(1−φ2
1 −2φ1(p0|0 +p1|1 −1))+ σ2

e

1−φ2
1

(4)

which collapses to Var(yt ) = π0π1(µ0 −µ1)2 +σ2
e when φ1 = 0. For the second period estimates in

Table 2.1, this formula gives an estimate of the sample standard deviation equal to 0.6804 which is
close to the true value (the actual standard deviation of the series in 0.6828). The great moderation
is observed as change in the unconditional variance of a series as illustrated in Figure 2 for the
United States GNP.

The lower volatility of the series post-1984 also coincides with the lack of autoregressive terms
as indicated by results in column (2) of Table 2.1. Note that in the estimates in column(3), model
selection reduces the significant autoregressive terms to 3 compared to 4 in the earlier period and
the whole sample model does a poor job of identifying recessions post 1984. As the discussion
in the introduction indicated, Chen (2006), Doornik (2013) and Bai and Wang (2011) amongst
others, have moved to specifications that correctly identify recession dates in the modern era by
having two independent Markov chains: one for the switching mean growth rates and a second
chain for the variance with an “absorbing” low volatility state that occurs around 1984. In all these

7See Appendix A for a derivation of this formula. See also Timmermann (2000) and Petričková (2014) for alter-
native representations of the moments of Markow switching models.
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Figure 2: GNP Growth (Quarterly)

specifications, the lag length reduces either one (Chen 2006, Doornik 2013) or zero (Bai and Wang
2011). The failure to properly account for the changing persistence of the data across the volatility
phases has large consequences on the estimated unconditional variances.

To see this, first consider Bai and Wang’s (2011) estimates using data from 1947Q2:2006Q4.
In their four-state regime switching model, the last two states are the recession and boom phases
of the post-moderation era. Their estimates are as follows: p0|0 = 0.8332; p1|1 = 0.9630; µ0 =
0.1716; µ1 = 0.8913; π0 = (1−p1|1)

(2−p1|1−p0|0) = 0.1816; π1 = (1−p0|0)
(2−p1|1−p0|0) = 0.8184; σ2

e = 0.1590. These
estimates imply that the unconditional variance of post-moderation data (using equation (4) with
φ1 = 0) equals 0.2360. The actual variance for the data over this time period is 0.29618 which
is a bias of -20.3%. For the mean growth rates, there is also considerable bias: in the post-
moderation era, Bai and Wang’s (2011) estimates of the mean growth rate during recessions in
0.1716 (which is positive), while actual growth rate during post-moderation recessions in their
sample is -0.2616.9 As another example, consider the estimates of Chen (2006, Table 4, page 98):
p0|0 = 0.733; p1|1 = 0.926;µ0 = −0.265;µ1 = 1.258;π0 = (1−p1|1)

(2−p1|1−p0|0) = 0.3595;π1 = (1−p0|0)
(2−p1|1−p0|0) =

0.6405;φ1 = 0.127;σ2
e = 0.928, which gives an estimate of the unconditional variance in the pre-

moderation era equal to 1.2650. Again this measure underestimates the actual variance over the
pre-moderation period (1.2650 < 1.4229).

While the asymptotic theory on ML estimators of Markov switching model parameters es-
tablish their consistency and unbiasedness properties (Krishnamurthy and Ryden 1998, Douc,

8This is the unconditional variance over the period 1984Q3 : 2006Q4. The data are downloaded from the Journal
of Applied Econometrics Data Archive: http://qed.econ.queensu.ca/jae/2011-v26.5/bai-wang

9 This critique may be unfair given the length of their sample: there are only 5 quarters when the US economy is
in recession during this period.
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Moulines and Rydén 2004), the preceding discussion suggests that estimates of the unconditional
variance from Markov switching models are actually biased. This is not surprising given simula-
tion evidence on the finite sample distribution of ML estimates from Markov switching models.
These have been studied by Psaradakis and Sola (1998, Table 1a and 1b) and Ho (2001), who both
show that the small sample estimates are largely biased and caution against relying on the asymp-
totic properties MLE estimators for these type of models.10 Neither are the results from finite
sample simulations surprising if one considers theoretical results from the econometric/statistical
literature,11 which have been ignored by researchers implementing the extended Markov switching
models with volatility changes.

In the next section, I propose a model specification that accounts for both the change in mean
growth rates across business cycle related regimes and the Great Moderation while allowing for
potentially different autocorrelation structures across the volatility regimes. While the specification
is related to those of Chen (2006), Doornik (2013), Bai and Wang (2011) and Chauvet and Su
(2014) it differs in three important dimensions. First, in order to obtain consistent estimates of the
volatility within the variance regimes, I “concentrate” the likelihood function in a manner similar
to that described by Basu (2011, Sec. 8). Second, the likelihood concentration allows for the mean
growth rate to have different lag lengths between the different volatility regimes. While the lag
structure selection approach is not new,12 there is no model in the economic or statistical literature
that considers independent variance shifts that determine the AR structure of the underlying time
series which is driven by another hidden Markov process. Third, in the implementation of this
mixing AR structure model, I account for the change in the duration and mean growth rates during
booms (determined by the mean shift chain) by adding a parameter that links the mean shift chain
to the variance shift chain.

After specifying this model, I describe a likelihood “profiling” and filtering technique that
exploits its natural Bayesian structure to “integrate out” the incidental parameter and facilitate
estimation. This form of the likelihood facilitates a two-stage estimation procedure originally due

10Simulation results included in Krishnamurthy and Ryden (1998, Section 5.1) do not capture this problem because
their models do not have an intercept which would induce the incidental/nuisance parameter problem and bias the
MLE estimators.

11 See Example 2 in Lancaster (2000) or Basu (2011) and Example 3 in Neyman and Scott (1948). These examples
describe the inconsistency of ML estimators of the variance or “structural parameter” when the data follow k proba-
bility laws. In the context of Markov switching models, we are trying to estimate a common σ from k distributions
with µi 6=µ j∀i , j = 1, . . . ,k.

12In the time-series/statistics/engineering literature, Glasbey (2001), Ailliot et al. (2006), Kalliovirta et al. (2015)
use models where the states choose AR models of different lags. Such models are also discussed by Lu and Berliner
(1999) and also Douc, Moulines and Stoffer (2014, Chapter 9). See also Psaradakis and Spagnolo (2006) and Ekner
(2014) for examples in the STAR/SETAR type models.
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to Sir Ronald Fisher (see e.g. Hald 2006, Sec. 19.3). In the first stage, I estimate the parameters
of primary interest (the mean growth rates across recessions and booms). In the second stage,
I hold fixed the first stage parameters and estimate the volatility related “nuisance” parameters.
This approach obtains consistent estimates of variances while identifying the Great Moderation
volatility switch.

3 A Double Mixture Autoregressive Model

Let yt = 100×∆ log(GNPt )%, t = 1 : T represent a time series such as that displayed in Figure
2. Let Sm

t and Sυt represent, respectively, the mean and variance regime indicators. Here Sυt =
{0,1} captures volatility changes characterising the Great Moderation while Sm

t = {0,1} represents
shifts in the growth rate of GNP related to business cycles. The regimes Sm

t and Sυt are each
the outcome an independent first order Markov chain with transition matrices: Pm = pm

j |i and
Pυ = pυ

j |i , respectively. The two components correspond to a restricted four regime model, with
state St = Sm

t ×Sυt and transition matrix:

Sυt = 0 Sυt = 1

Sm
t = 0 Sm

t = 1 Sm
t = 0 Sm

t = 1

St = 0 St = 1 St = 2 St = 3

St−1 = 0
pυ

0|0Pm pυ
1|0Pm

P = St−1 = 1 = Pm ⊗Pυ
St−1 = 2

pυ
0|1Pm pυ

1|1Pm

St−1 = 3

(5)

The state St defines a dynamic linear model:

yt =
 µSm

t
+ ∑`(Sυt )

l=1 φl

(
yt−l −µSm

t−l

)
+σSυt

et , Sm
t , Sυt = {0,1}

µSt + ∑`(St )
l=1 φl

(
yt−l −µSt−l

)+σSt et , St = {0,1, . . . ,K }
et ∼ iid N (0,1) (6)

with time varying intercepts µSm
t

and volatilities σSυt
. The lag length `(Sυt ) in (6) is potentially

changing across variance regimes. This is the first innovation in the paper. In the original model
of Hamilton (1989), there are no volatility changes with the state and σ can be thought of as a
nuisance parameter in the sense of Elliott, Müller and Watson (2015) which we are not interested
in. In the present context, we are interested in modelling the business cycle related shifts in mean
growth rates while treating the change in volatility post 1984 as incidental shift parameters in
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the sense of Neyman and Scott (1948, Example 1).13 In the next two subsections, I describe
an estimation and filtering procedure that implements Basu’s intimation “to fix a prior, compute

the posterior, integrate out the nuisance parameter from the posterior, to arrive at the posterior

marginal distribution of the parameter of interest, and then let the statistical argument rest on

the posterior marginal distribution”(Basu 2011, paragraph 10, Section 1). I finally describe the
two–stage MLE procedure in the third subsection.

3.1 Likelihood function

In the standard ML approach, if St were observed, the parameters {µSt ,σSt }3
St=0 of equation (6)

would be estimated by maximizing the log-likelihood function

lnL =
T∑

t=1
ln f (yt |St )

where f (yt |St ) is the conditional distribution of yt given the state St

f (yt |St ) = 1p
2πσSt

exp

−1

2

{
yt −µSt −

∑`
l=1φl

(
yt−l −µSt−l

)
σSt

}2
 .

However since the state St is not observed, one would begin by considering the joint density of yt ,
St and information up to time t −1, denoted by ψt−1 = y1:t−1. The marginal density f (yt |St ,ψt−1)

used in the likelihood, is then obtained by integrating out St from f (yt ,St |ψt−1):

f (yt |ψt−1) =∑
St

f (yt |St ,ψt−1) f (St |ψt−1) =
K∑

k=0
f (yt |St ,ψt−1)P [St = k|ψt−1]

where P [St = k|ψt−1], is the prior state probability14 and f (yt |ψt−1) is the posterior likelihood
having observed yt . For the K = 4 state case described by (5) without lags the log-likelihood

lnL =
T∑

t=1
ln

(
4∑

k=0
f (yt |St ,ψt−1)×P [St = k|ψt−1]

)
(7)

would be maximized to obtain the parameters θ =
{

pm
0|0, pm

1|1, pυ
0|0, pυ

1|1,µ0,µ1,σ0,σ1

}
.

13Note that we could alternatively treat the µ’s as the nuisance/incidental parameters if we were interested in esti-
mating the σ’s (see e.g. Spanos 2013)

14See Hamilton (1994, p. 692) or Kim and Nelson (1999, p. 63) for textbook illustrations of deriving the updating
formula.
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To implement Basu’s (2011) idea of integrating out the nuisance parameter, start with (7) hav-
ing fixed a prior P [St = k|ψt−1] and computed the posterior f (yt |St ,ψt−1). We now want to
integrate out the nuisance parameter (σSυt

) to arrive at the posterior marginal distribution of the
parameter of interest (µSm

t
):

f (yt |Sm
t ,ψt−1) =

1∑
k=0

f (yt |Sm
t ,Sυt = k,ψt−1)×P [Sυt = k|Sm

t ,ψt−1] (8)

where the predictive density for the mean is:

f (yt |Sm
t ,Sυt = k,ψt−1) =∑

km

f (yt |Sm
t = km ,Sυt = k,ψt−1)×P [Sm

t = km |Sυt = k,ψt−1] (9)

with km indexing the (possibly expanded) number of states of Sm
t in the presence of lags (see

Section 3.2 below). The final likelihood is given by:

lnL =
T∑

t=1
ln

(
1∑

k=0
f (yt |Sm

t ,Sυt = k,ψt−1)×P [Sυt = k|Sm
t ,ψt−1]

)
(10)

3.2 Filtering

In order to evaluate equations (8) and (9), we need to compute the prior probabilities P [Sm
t =

km |Sυt = k,ψt−1] and P [Sυt = k|Sm
t ,ψt−1]. Given a value of the prior P [St = k|ψt−1] and the likeli-

hood f (yt |St = l ,ψt−1), we can compute the posterior, P (St = k|ψt ) using Bayes’s law as:

P (St = k|ψt ) = P (St = k|ψt−1) f (yt |St = k,ψt−1)

f (yt |ψt−1)
(11)

where ψt = {ψt−1, yt }. Following Cox and Miller (1965), expand the state space to account for
the number of lags to obtain nm = 2(`(Sυt )+1) states for each m = Sυt = {0,1} volatility state. Collect
the set of possible conditional densities f (yt |Sm

t ,Sυt = k) in a (1×nm) row vector ηm,t . Likewise,
define the (1×nm) vector ξm,t |t−1 whose nth

m element is P [Sm
t = km |Sυt = k,ψt−1]. Taking the

inference on ξm,t−1|t−1, the update ξm,t |t can be calculated after observing yt . Following Hamilton
(1994, p. 692) this is accomplished by using the transition matrix Pm

m and applying (11) to obtain
the predicted and filtered probabilities:

11



ξm,t |t−1 = ξm,t−1|t−1Pm
m (12)

ξm,t |t =
ξm,t |t−1 ¯η′m,t∑
ξm,t |t−1 ¯η′m,t

(13)

where Pm
m is an expansion similar to (3) of the state matrix Pm defined by (5), ¯ is the Hadamard

product and the summation is over nm states.
To update P [Sυt = k|Sm

t ,ψt−1], collect these probabilities into the (4× 1) vector ξυ,t |t−1 and
collapse each ηm,t over their respective lags to obtain the likelihood f (yt |Sm

t ,ψt−1) which are
collected in a (4×1) vector ηυ,t . Again, using the transition matrix and applying (11), we obtain
the predicted and filtered(updated) state probabilities:

ξυ,t |t−1 = ξυ,t−1|t−1P (14)

ξυ,t |t =
ξυ,t |t−1 ¯ηυ,t∑
ξυ,t |t−1 ¯ηυ,t

(15)

where P is defined by (5) and ¯ is the Hadamard product. The elements of the transition matrices
Pm

m and Pυare specified by:

pm
0,0|0 = exp(p0)

1+exp(p0)
, pm

0,1|1 = exp(p1)

1+exp(p1)
, for Pm

0

pm
1,0|0 = exp(p0 +p0d )

1+exp(p0 +p0d )
, pm

1,1|1 = exp(p1 +p1d )

1+exp(p1 +p1d )
, for Pm

1

pυ
0|0 = exp(q0)

1+exp(q0)
, pυ

1|1 = exp(q1)

1+exp(q1)
, for Pυ

(16)

where p0, p1,r0,r1, q0, q1 are unconstrained parameters and the transition probabilities are con-
strained within the [0,1] interval. The filter at t = 1, is started by setting ξυ,t−1|t−1 equal to the
unconditional probability vector:

πυ = ((A′A)−1A′)

(
0(K×1)

1

)
; where A =

(
IK −Pυ

1(1×K )

)
and K = length (Pυ).

with a similar procedure for every m of ξm,t−1|t−1. The parameters p0d and p1d in (16) allow
for the possibility of different transition probabilities when the volatility state is Sυt = 1. These

12



are similar to a dummy variable coefficient if the volatility state were priorly known. I add a
similar “dummy” coefficient for the mean growth rates in the second volatility state: µ0d ,µ1d .
This completes the characterization of computing the likelihood (10) which is maximized over the
parameter vector θ =

{
p0, p1, p0d , p1d , q0, q1,µ0,µ1,µ0d ,µ1d ,σ0,σ1,φ0

1, . . . ,φ0
`0

,φ1
1, . . . ,φ1

`1

}
and `0

need not equal `1.

3.3 Two Stage Estimation

In the first stage, freely estimate all the model parameters: θ = {
p0, p1, p0d , pd1, q0, q1,µ0,µ1,µ0d ,µ1d ,

σ0,σ1,φ0
1, . . . ,φ0

`0
,φ1

1, . . . ,φ1
`1

}
which gives consistent estimates of the parameters: θ′ = {

p0, p1, p0d , pd1,

q0, q1,µ0,µ1,µ0d ,µ1d
}
. In the second stage, hold the consistently estimated parameters θ′ fixed and

use the integrated out likelihood to estimate second stage parameters β=
{
σ0,σ1,φ0

1, . . . ,φ0
`0

,φ1
1, . . . ,φ1

`1

}
.

4 Empirical Results

I estimate the model described in the previous section by using the non-linear programming solver
fminunc in MATLAB R2016b. After finding a solution, standard errors are obtained from the
inverted Hessian matrix using the delta method.15 I consider two time series at first, real GNP
and industrial production. The data are downloaded from the online Federal Reserve Economic
Data (FRED).The time series are of quarterly frequency, from 1947:Q2 – 2014:Q2. All series are
deflated using the consumer price index (CPI).

4.1 First Stage Estimates: µm’s

I estimate the Conditional Markov Chain (CMC) model of Bai and Wang (2011) and compare
it to the Double Mixture Autoregressive (DM-AR(`0,`1)) model proposed here for the quarterly
real GNP growth data shown in Figure 2. I then compare the estimates of mean growth rates and
unconditional variances to the actual values over periods defined by the Great Moderation and
NBER business cycles dates. Table 4.1 gives results of the first stage estimation. I use standard
model selection criteria (AIC, BIC, HIC) to select amongst models of different lag lengths.

In column (1) of Table 4.1 are the estimates of the CMC model of Bai and Wang. Columns
(2) & (3) are DM–AR(`0,`1) models estimates. There is not much to separate the models but
AIC and HIC suggest the model in (3) does a better job of representing the data and the null of
no autoregressive terms in reject using Wald and likelihood ratio tests. In Bai and Wang’s (2011)

15See Martin, Hurn and Harris (2012, p. 107) for a discussion.
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Table 2: First Stage Estimates
(1) (2) (3)

Model CMC DM–AR(0,0) DM–AR(0,1)

µ0 1.3766 (0.0069) 1.3758 (0.0069) 1.3711 (0.0068)
µ1 -0.5514 (0.0135) -0.5445 (0.0132) -0.6067 (0.0131)
µ0d 0.6647 (0.0034) 0.6648 (0.0034) 0.661 (0.0030)
µ1d -0.8950 (0.0138) -0.896 (0.0137) -0.9629 (0.0144)
σ0 0.9554 (0.0042) 0.958 (0.0042) 0.9489 (0.0041)
σ1 0.5258 (0.0025) 0.5258 (0.0025) 0.5219 (0.0023)
pm

0,0|0 0.8949 (0.0023) 0.9009 (0.0023) 0.9057 (0.0022)
pm

0,1|1 0.7337 (0.0054) 0.729 (0.0052) 0.7191 (0.0053)
pm

1,0|0 0.95 (0.0017) 0.677 (0.0095) 0.6858 (0.0091)
pm

1,1|1 0.4664 (0.0113) 0.2454 (0.0097) 0.2657 (0.0103)
pυ0|0 1 (0.0000) 0.9933 (0.0004) 0.9933 (0.0004)
pυ1|1 0.9916 (0.0005) 1 (0.0000) 1 (0.0000)
φ1

1 – – – – -0.1503 (0.0061)

Dur.: Sm
t = 1|Sυt = 0 3.7555 3.6894 3.5606

Dur.: Sm
t = 1|Sυt = 1 1.8742 1.3252 1.3619

Log Likelihood -357.89 -357.59 -354.42
AIC 2.7501 2.7479 2.7419
BIC 3.1601 3.1578 3.1873
HIC 2.8145 2.8123 2.8119

Wald – – 614.9011
p-valw – – 0.0000
LR. – – 6.3473
p-valLR – – 0.0118

T 269 269 268
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implementation of the CMC model using real GDP, the models ability to properly identify business
cycle turning point broke down when any lags were included, even though they rejected the null
of no auto–regression terms. However, for the DM-AR models, I can still successfully identify
recessions as shown in Figure 3 using the first stage estimation. Figure 4 shows inference on the
onset of the Great Moderation using the DM–AR model, which happens on or about 1984 : Q2.

Table 3 gives an evaluation of the bias of model implied estimates of unconditional moments
of the time series. The column True Value contains “true” estimates of the means and variances of
the time series over the periods of interest based on our knowledge of published NBER recession
dates and the date of the onset of the Great Moderation as identified in the literature. The RMSEs
in the last two rows show that as one proceeds to the model that best represents the data, the bias
of the model implied unconditional moments increases – which is an undesirable property. The
second stage estimation should help resolve this problem.

Table 3: Unconditional Moments: Actual vs. Model Implied (1st Stage)
Model Estimates

“True Value” CMC DM–AR(0,0) DM–AR(0,1)

µ0 1.1605 1.3766 1.3758 1.3711
µ1 -0.5781 -0.5514 -0.5445 -0.6067
µ0d 0.7028 0.6647 0.6648 0.661
µ1d -0.6061 -0.895 -0.896 -0.9629
σ2

0 1.7140 1.66702 1.64077 1.6365
σ2

1 0.5106 0.4670 0.7878 0.8115

RMSEµ 0.1819 0.1823 0.2087
RMSEσ2 0.0640 0.1442 0.1580

4.2 Second Stage Estimates: σ2
υ’s

We now hold fixed the set of parameters relating to the µm’s and re-estimate the model. The results
in Table 4 are the best model estimates based on a combination of the three standard information
criteria: AIC, BIC and HIC. In selecting the three specifications shown, I run through combinations
of (`0,`1) for each `i = {0,1,2,3,4}, i = {0,1}, i.e. 25 possible lag structure configurations. The
three models shown have the minimum of combinations of the three model selection criteria. The
best model is in column (4) with 2 significant lags in the moderation era and zero lags in the pre-
moderation: DM–AR(0,2). Based on results in Table 3, we would ordinarily expect the bias in the
model implied unconditional moments to increase as we increase the lag structure: but MSEs of

15



Table 4: Second Stage Estimates
Model DM-AR(0,0) DM-AR(1,0) DM-AR(1,1) DM-AR(0,2)

σ0 0.9579 (0.0040) 0.9549 (0.0041) 0.9541 (0.0041) 0.9495 (0.0040)
σ1 0.5258 (0.0024) 0.5258 (0.0024) 0.5206 (0.0023) 0.5099 (0.0022)
pυ

0|0 0.9933 (0.0004) 0.9933 (0.0004) 0.9933 (0.0004) 0.9932 (0.0004)
pυ

1|1 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
φ1

1 – 0.1124 (0.0066) 0.1124 (0.0066) –
φ1

2 – – – (0.0061) –
φ2

1 – – -0.1452 -0.0767 (0.0061)
φ2

2 – – – 0.2540 (0.0068)

Log Like -357.59 -354.98 -353.961 -349.34
AIC 2.6884 2.6864 2.6863 2.6617
BIC 2.8250 2.8577 2.8918 2.8679
HIC 2.7099 2.7134 2.7186 2.6941

Wald 287.371 13.398 296.008
pvalw 0 0.0012 0
LR. 5.2137 7.2578 16.4978
pvalLR 0.0224 0.0265 0.0003

T 269 268 268 267
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Figure 3: Filtered (light blue) and Smoothed (black) Prob. of Recession

Figure 4: Filtered (light blue) and Smoothed (black) Prob. of Low Volatility Regime

unconditional moments in Table 5 indicate otherwise.16 As we get to the best model in representing
the data, the bias of the unconditional variance estimates actually falls. This is the true innovation
of my model and estimation procedure.

Finally, in Figure 5, I show inference on the state Sυt = 1 after the second stage where the param-
eters q0, q1 have been re-estimated and together with the variances. The second stage inference in
virtually identical to the first stage which is what we would expect given that the only inconsistent
parameter from the first–stage are the συs.

The main achievement of our model specification and estimation procedure is the ability to

16Statistically, this should not happen if the higher lag model is the best representation of the data, but we are faced
with an inconsistent estimator if we estimate the model in one go.
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Table 5: Unconditional Variance: Actual vs. Model Implied(2nd Stage)
Model Estimates

True Value DM-AR(0,0) DM-AR(1,0) DM-AR(1,1) DM-AR(0,2)

σ2
0 1.7140 1.6670 1.5351 1.5335 1.6247

σ2
1 0.5106 0.4670 0.4670 0.4864 0.4849

Biasσ2
0

-2.7422 -10.4391 -10.5293 -5.2136
Biasσ2

1
-8.5293 -8.5390 -4.7332 -5.0238

RMSE 0.0453 0.1302 0.1288 0.0657

Figure 5: Filtered (1st stage: light blue, 2nd stage: blue dotted) and Smoothed (1st stage: black,
2nd stage: magenta dotted) Probability of Low Volatility Regime

reduce the bias in unconditional moments when proper accounting of the lag structure in our data
has been undertaken.

5 Conclusion

In this paper, I have revisited Hamilton’s regime switching model for business cycle dating. I
began by showing that the unconditional moments implied by finite sample estimates from modern
implementations of this model are characterized by large biases. Appealing to almost century old
statistical theory, I show that by exploiting the Bayesian nature of the model, we can use a two–
stage MLE strategy that maintains the model’s usefulness for business cycle dating while resolving
the inconsistency problem exacerbated by a proper accounting of the lag structure of the time series
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of interest.
My results have potential applications in a wide range of econometric applications including

the identification by heteroskedasticity literature advanced by Netsunajev (2013) and Lütkepohl
and Velinov (2016) amongst others,17 and the asset pricing and learning literatures of Lettau, Lud-
vigson and Wachter (2008).18

17This literature requires estimation of the variance across regimes, so the results here directly apply.
18This literature requires the estimation of the variance of say consumption growth, which measures risk and deter-

mines the expected return to the aggregate stock market.
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A Appendix

A.1 Moments of a Two-State Markov Switching Model

Timmermann (2000) and Petričková (2014) have derived moments of a general class of Markov
regime–switching models. Here, I derive similar moments but in the case where there are two
states and the variance doesn’t change with the regime (in contrast to the standard assumption in
many applications of regime switching for financial market data). For the model in (2) with `= 0,

µ= E(yt ) =π0µ0 +π1µ1 (A.1)
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where the πi is the unconditional probability of being in state St := {0,1} and satisfies the recursion
πP =π for the transition matrix P . The second central moment is obtained by computing:

E(y2
t ) =π0E(y2

t |St = 0)+π1E(y2
t |St = 1) (A.2)

=π0π1σ
2
e +π0µ

2
0 +π1µ

2
1 (A.3)

V(yt ) = E(y2
t )−µ2 (A.4)

=σ2
e +π0π1(µ1 −µ0)2 (A.5)

So that the unconditional variance is increasing in the persistence of the time series (πi ) and the
difference between growth rates. For the general case where ` 6= 0 in (2), I use a state-space
representation to recast the model as vector auto-regression of order one (VAR(1)):

yt

yt−1
...

yt−`

=


φ1 φ2 . . . φ` 0

0

I`×`
...
0




yt−1

yt−2
...

yt−`−1

+


1 −φ1 . . . −φ`
0 . . . 0
... . . .

0 . . . 0




µSt

µSt−1

...
µSt−`

+


1

0
...
0

et

(A.6)
or in matrix form,

Yt =Φ1Yt−1 +Φ2Mt +Cet (A.7)

The moments are then defined as follows:

M = E(Mt) = 1`+1µ (A.8)

where 1`+1 is a vector of ones and µ is defined by (A.1). Now define the variance-covariance
matrix of the time varying mean vector Mt by:

ΣM = E(Mt −M)(Mt −M)′ (A.9)

=


E(µSt −µ)2 E(µSt −µ)(µSt−1 −µ) . . . E(µSt −µ)(µSt−` −µ)

E(µSt −µ)(µSt−1 −µ) E(µSt−1 −µ)2 . . .
... . . .

. . . E(µSt−` −µ)2

 (A.10)

where the main diagonal entries are give by E(µSt −µ)2 =~π′ ((~µs −~µ)¯ (~µs −~µ)
)

with the vectors
~π = (π0,π1)′, ~µs = (µ0,µ1)′, ~µ = (µ,µ)′ and ¯ is the element by element multiplication operator.

25



The off diagonal entries are given by E(µSt −µ)(µSt−n −µ) =~π′ ((P n(~µs −~µ)
)¯ (~µs −~µ)

)
where the

2×2 matrix P is the matrix of transition probabilities.19

Taking expectations over (A.7), we have:

E(Yt) =Φ1E(Yt−1)+Φ2E(Mt) (A.11)

where we have used the zero mean property of et . The covariance-stationary property of yt then
implies that

E(Yt) = (I`+1×`+1 −Φ1)−1Φ21`+1µ= 1`+1µ

To determine the unconditional variance, first subtract (A.11) from (A.7) to obtain

Yt −EYt =Φ1(Yt−1 −EYt−1)+Φ2(Mt −M)+Cet

The orthogonality of et to (Yt−1 −EYt−1) and (Mt −M) then implies:

E(Yt −EYt)(Yt −EYt)′ =Φ1E(Yt−1 −EYt−1)(Yt−1 −EYt−1)′Φ′
1 +Φ2E(Mt −M)(Mt −M)′Φ′

2 +CC′σ2
e

(A.12)
which can be written compactly as:

Σt =Φ1Σt−1Φ
′
1 +Φ2ΣMΦ

′
2 +CC′σ2

e (A.13)

where ΣM is defined by (A.9). Again, stationary yt implies Σt =Σt−1 =Σ so the unconditional
variance is defined by:

vec(Σ) = (
I(`+1)2 −Φ1 ⊗Φ1

)−1 vec
(
Φ2ΣMΦ

′
2 +CC′σ2

e

)
(A.14)

= (
I(`+1)2 −Φ1 ⊗Φ1

)−1 [
(Φ2 ⊗Φ2)vec (ΣM)+vec(CC′)σ2

e

]
(A.15)

Applying this result to the AR(1) case we would have: Φ1 = [
φ1,0;1,0

]
and Φ2 = [

1,−φ1;0,0
]
;

C = (1,0)′. After some tedious algebra, it can be shown that the variance-covariance matrix ΣM

has entries in the main diagonal E(µSt −µ)2 = π0π1(µ0 −µ1)2 and off-diagonal elements E(µSt −
19This assumes that the process generated by P is time reversible, which holds in general for 2× 2 chains. See

Footnote 5 of Timmermann (2000) for discussion of this issue and a definition of the “backward” probabilities required
in higher order chains
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µ)(µSt−1 −µ) =π0π1(µ0 −µ1)2(p0|0 +p1|1 −1). This gives the variance expression

Σ11 =Var(yt ) = π0π1(µ0 −µ1)2

1−φ2
1

[
1−φ2

1 −2φ1(p0|0 +p1|1 −1)
]+ σ2

e

1−φ2
1

(A.16)

and covariance

Σ12 =Cov(yt , yt−1) = π0π1(µ0 −µ1)2

1−φ2
1

[
φ1(1+φ2

1)−2φ2
1(p0|0 +p1|1 −1)

]+ φ1σ
2
e

1−φ2
1

(A.17)
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